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Abstract—We consider an initial-boundary value problem for a sixth order Cahn-Hilliard equation
describing the formation of microemulsions. Based on a Ciarlet-Raviart type mixed formulation as a
system consisting of a second order and a fourth order equation, the spatial discretization is done by a
C0 Interior Penalty Discontinuous Galerkin (C0IPDG) approximation with respect to a geometrically
conforming simplicial triangulation of the computational domain. The DG trial spaces are construc-
ted by C0 conforming Lagrangian finite elements of polynomial degree k > 2. This leads to an initial
value problem for an index 1 Differential Algebraic Equation (DAE) which is further discretized in
time by an s-stage Diagonally Implicit Runge-Kutta (DIRK) method of order p > 2. The resulting
parameter dependent nonlinear algebraic system is solved numerically by a predictor-corrector con-
tinuation strategy with constant continuation as a predictor and Newton’s method as a corrector fea-
turing an adaptive choice of the continuation parameter. Numerical results illustrate the performance
of the suggested approach.

Keywords: sixth order Cahn-Hilliard equation, interior penalty discontinuous Galerkin methods, di-
agonally implicit Runge-Kutta methods, automatic step-size selection in time

This paper is dedicated to the seventieth anniversary of Yuri A. Kuznetsov

1. Introduction

Microemulsions are thermodynamically stable colloidal dispersions of oil and wa-
ter. They typically occur as oil-in-water, water-in-oil, or water/oil droplets with a
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diameter up to 200 nm and are thus considerably smaller than ordinary emulsions.
Due to their efficient drug solubilization capacity and bioavailability, microemul-
sions have significant applications in pharmacology as drug carriers for the deliv-
ery of hydrophilic as well as lipophilic drugs (cf. [12,19,21,22,25,26]). Based on a
Ginzburg-Landau free energy for ternary oil-water-microemulsions due to Gomp-
per et al. [13,14,15,16], the dynamics of the microemulsification process can be de-
scribed by an initial-boundary value problem for a sixth order Cahn-Hilliard equa-
tion which has been analytically investigated by Pawlow et al. [23,24,27] (cf. also
[20]).
By introducing the chemical potential as an additional unknown, we consider a
Ciarlet-Raviart type mixed formulation as a system consisting of a second and a
fourth order equation. For its spatial discretization we use a C0 Interior Penalty
Discontinuous Galerkin (C0IPDG) approximation with respect to a geometrically
conforming simplicial triangulation of the computational domain where the DG
trial spaces are constructed by C0 conforming Lagrangian finite elements of poly-
nomial degree k > 2. We note that IPDG methods for the standard fourth order
Cahn-Hilliard equation have been studied in [28] based on IPDG approximations
of fourth order problems including the biharmonic equation considered in [4,7] (cf.
also [2,9,10,11]). The semidiscretization in space by the C0IPDGmethod leads to an
initial value problem for an index 1 Differential Algebraic Equation (DAE) which
is discretized in time by an s-stage Diagonally Implicit Runge-Kutta method of or-
der p> 2 with respect to a partitioning of the time interval (cf., e.g., [1,5,17]). The
resulting parameter dependent nonlinear algebraic system is numerically solved by
a predictor-corrector continuation strategy with the time step size as the continu-
ation parameter. As a predictor we use constant continuation whereas the corrector
is chosen as Newton’s method [18]. The predictor-corrector continuation strategy
features an adaptive choice of the continuation parameter based on an affine covari-
ant convergence theory of the simplified Newton method [6].
The paper is organized as follows: In section 2, we present the initial-boundary value
problem for the sixth order Cahn-Hilliard equation based on a Ginzburg-Landau free
energy and introduce a Ciarlet-Raviart type mixed formulation as a system consist-
ing of a second and a fourth order equation. Then, in section 3 we consider the
semidiscretization in space by the C0IPDG method leading to an initial value prob-
lem for an index 1 DAE. The discretization in time by an s-stage DIRK method is
addressed in section 4 whereas section 5 is devoted to the numerical solution of the
resulting parameter dependent nonlinear algebraic system by a predictor-corrector
continuation strategy with an adaptive selection of the continuation parameter. In
section 6, we present numerical results which show the formation of water-in-oil
and oil-in-water droplets in a ternary water-oil-microemulsion system and illustrate
the performance of the adaptive predictor-corrector continuation strategy. Finally,
the last section 7 contains some concluding remarks.
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2. The sixth order Cahn-Hilliard equation

Given a quadrilateral domain Ω= (a1,b1)⇥ (a2,b2),ai < bi,16 i6 2, with bound-
ary Γ = ∂Ω, and exterior unit normal vector n, denoting by T > 0 the final time,
and setting Q := Ω⇥ (0,T ), Σ= Γ⇥ (0,T ), we consider the following sixth order
Cahn-Hilliard equation

σ
∂c
∂ t

�M∆
⇣
{∆2c�a(c)∆c� 1

2
a0(c)|∇c|2+ f0(c)

⌘
= 0 in Q (2.1a)

with the boundary conditions

n ·∇c= n ·∇µ(c) = n ·∇∆c= 0 on Σ (2.1b)

and the initial concentration

c(·,0) = c0 in Ω. (2.1c)

Here, σ is a surface energy density, M stands for the mobility which in the sequel
will be assumed to be a positive constant, { is a positive constant as well, and the
coefficient function a(c) is assumed to be of the form

a(c) = a0+a2c2, a0 2 R, a2 > 0.

The function f0(c) = F 0
0(c) is the derivative of the multiwell free energy

F0(c) =
Z

Ω

β
2
(c+1)2(c2+h0)(c�1)2 dx, h0 2 R,

where β is another surface energy density. Moreover, µ(c) denotes the chemical
potential which is the variation

µ(c) =
δF(c)
δc

of the total free energy

F(c) = F0(c)+
Z

Ω

⇣1
2
a(c)|∇c|2+ 1

2
{|∆c|2

⌘
dx, (2.2)

and c0 is a given initial condition.

Remark 2.1 As mentioned in section 1, the initial-boundary value problem (2.1a)-
(2.1c) describes the dynamics of ternary oil-water-microemulsion systems where
the solution c is an order parameter representing the local difference between the
oil and water concentrations. We note that the Ginzburg-Landau free energy (2.2)
for such systems has been suggested in [14,15] and [13,16]. Analytical results with
regard to the existence and uniqueness of global solutions have been provided in
[23,24,27].
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We introduce the chemical potential µ(c) as an additional unknown w := µ(c) and
can equivalently formulate the sixth order Cahn-Hilliard equation (2.1a) as a system
of a linear second order and a nonlinear fourth order equation in (c,w) according to

σ
∂c
∂ t

�M∆w= 0 in Q, (2.3a)

{∆2c�a(c)∆c�a2c|∇c|2+ f0(c)�w= 0 in Q (2.3b)

with the boundary conditions

n ·∇c= n ·∇w= n ·∇∆c= 0 on Σ (2.3c)

and the initial condition

c(·,0) = c0 in Ω. (2.3d)

The initial-boundary value problem for the system (2.3a),(2.3b) has been analytic-
ally studied in [27] and it has been shown that the system admits a unique weak
solution.

3. Semidiscretization in space by the C0 interior penalty discontinuous
Galerkin method

For semidiscretization in space of the coupled system (2.3a)-(2.3d) we will use the
C0IPDG method with respect to a simplicial triangulation of the computational do-
main. Due to the convexity of the computational domain, we can use the Ciarlet-
Raviart mixed formulation of (2.3b) by introducing z=∆c as an additional unknown
so that (2.3b) can be written as the following system of two second order equations

z= ∆c, (3.1a)
{∆z+g(c) = w, (3.1b)

where g(c) denotes the nonlinear function

g(c) :=�a(c)∆c�a2c|∇c|2+ f0(c). (3.1c)

Multiplying (3.1a) by a test function ϕ 2 H1(Ω) and (3.1b) by a test function ψ 2
H2(Ω) and integrating over Ω, integration by parts and observing (2.3c) yields the
weak formulation

(z,ϕ)0,Ω =�(∇c,∇ϕ)0,Ω, (3.2a)
({z,∆ψ)0,Ω� ({z,n ·∇ψ)0,Γ+(g(c),ψ)0,Ω = (w,ψ)0,Ω. (3.2b)

We assume Th(Ω) to be a shape-regular simplicial triangulation of Ω. For D ✓ Ω,
we denote by Eh(D) the sets of nodal points of Th in D. For T 2 Th and E 2 Eh we
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further refer to hT and hE as the diameter of T and the length of E .
Denoting by Pk(T ), k 2 N, the linear space of polynomials of degree 6 k on T , for
k > 2 we refer to

Vh := {vh 2H1(Ω) | vh|T 2 Pk(T ), T 2 Th} (3.3)

as the finite element space of Lagrangian finite elements of type k (cf., e.g., [3]).
We refer to Nh(Ω) as the set of nodal points such that any vh 2 Vh is uniquely
determined by its degrees of freedom vh(a), a 2 Nh(Ω). We note that Vh 6⇢ H2(Ω)
and hence, Vh is a nonconforming finite element space for the approximation of the
fourth order equation (2.3b). In particular, for a function zh onΩ that is elementwise
polynomial, we define averages and jumps according to

{zh}E :=
(

1
2

⇣
zh|E\T+ + zh|E\T�

⌘
, E 2 Eh(Ω),

zh|E , E 2 Eh(Γ),
(3.4a)

[zh]E :=
⇢
zh|E\T+ � zh|E\T� , E 2 Eh(Ω),

zh|E , E 2 Eh(Γ).
(3.4b)

The general C0DG approximation of (3.2a),(3.2b) reads:
Given wh 2Vh, find (ch,zh) 2Vh⇥Vh such that for all (ϕh,ψh) 2Vh⇥Vh it holds

∑
T2Th(Ω)

⇣
(zh,ϕh)0,T +(∇ch,∇ϕh)0,T

⌘
� ∑

E2Eh(Ω̄)

(nE · ĉE ,ϕh)0,∂T
⌘
= 0, (3.5a)

∑
T2Th(Ω)

⇣
({zh,∆ψh)0,T +(g(ch),ψh)0,T

⌘
� ∑

E2Eh(Ω̄)

(ẑE ,∇ψh)0,E � (wh,ψh)0,T
⌘
= 0,

(3.5b)

where ĉE and ẑE are suitably chosen numerical flux functions that determine the type
of C0DG approximation. In particular, for the C0IPDG approximation we choose

ĉE :=
⇢
{∇ch}E , E 2 Eh(Ω)

0 , E 2 Eh(Γ)
, (3.5c)

ẑE :=
⇣
{∆ch}E �

α
hE

[
∂ch
∂n

]E
⌘
nE , E 2 Eh(Ω̄), (3.5d)

where α > 0 is a penalization parameter. The choice (3.5c),(3.5d) has the advantage
that for ϕh = {∆ψh in (3.5a) we may eliminate the dual variable zh from the sys-
tem and thus arrive at the following primal variational formulation of the C0IPDG
approximation: Find ch 2Vh such that for all ψh 2Vh it holds

aDGh (ch,ψh)+ ∑
T2Th(Ω)

(g(ch),ψh)0,T = (wh,ψh)0,Ω, (3.6)
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where aDGh (·, ·) :Vh⇥Vh ! R stands for the C0IPDG bilinear form

aDGh (ch,ψh) := ∑
T2Th(Ω)

({∆ch,∆ψh)0,T � ∑
E2Eh(Ω)

⇣
({nE · [∇ch]E ,{∆ψh}E)0,E

(3.7)

+({{∆ch}E ,nE · [∇ψh]E)0,E
⌘
+ ∑

E2Eh(Ω)

α
hE

(nE · [∇ch]E ,nE · [∇ψh]E)0,E .

The C0IPDG approximation of (2.3b) has the advantage that we may approximate
the variable w in (2.3a) by a function in Vh as well. Consequently, the C0IPDG
approximation of (2.3a),(2.3b) reads: Find (ch,wh) 2 H1([0,T ],Vh)⇥L2([0,T ],Vh)
such that for all ϕh 2Vh it holds

σ (
∂ch
∂ t

,ϕh)0,Ω�M (∇wh,∇ϕh)0,Ω = 0, (3.8a)

aDGh (ch,ϕh)+ ∑
T2Th(Ω)

(g(ch),ϕh)0,T � (wh,ψh)0,Ω = 0, (3.8b)

(ch(·,0),ϕh)0,Ω� (c0,ϕh)0,Ω = 0. (3.8c)

We note that Vh = span{ϕ (1)
h , · · · ,ϕ (Nh)

h }, where ϕ (i)
h ,16 i6 Nh, are the basis func-

tions associated with the nodal points in Nh(Ω). Hence, the unknowns ch,wh 2 Vh
admit the representations

ch =
Nh
∑
j=1

ch, j ϕ
( j)
h , wh =

Nh
∑
j=1

wh, j ϕ
( j)
h .

Introducing the vector-valued functions ch(t) = (ch,1(t), · · · ,ch,Nh(t))T , wh(t) =
(wh,1(t), · · · ,wh,Nh(t))T , the matrices Mh = (mi j)

Nh
i, j=1,Ah = (aDGi j )Nhi, j=1,Sh =

(si j)Nhi, j=1, and the vectorsGh(ch)= (Gh,1(ch), · · · ,Gh,Nh(ch))T ,c0h=(c0h,1, · · · ,c0h,Nh)
T

according to

mi j := σ (ϕ (i)
h ,ϕ ( j)

h )0,Ω, aDGi j := aDGh (ϕ (i)
h ,ϕ ( j)

h ), si j :=M(∇ϕ (i)
h ,∇ϕ ( j)

h )0,Ω,

Gh,i(ch) := ∑
T2Th(Ω)

(g(ch),ϕ
(i)
h )0,T , c0h,i := (c0,ϕ

(i)
h )T ,16 i6 Nh,

the C0IPDG approximation of (2.3a),(2.3b) can be written as an initial-value prob-
lem for the differential-algebraic system of index 1

Mh
dch
dt

+Shwh = 0, (3.9a)

Ahch+Gh(ch)�Mhwh = 0, (3.9b)
ch(0) = c0h. (3.9c)
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Denoting by M h the block diagonal matrix M h := diag(Mh,0) and setting zh :=
(ch,wh)T , the DAE (3.9a),(3.9b) can be written as

M h
dzh
dt

=�
⇣ Shwh
Ahch+Gh(ch)�Mhwh

⌘
=: fh(zh). (3.10)

4. Discretization in time by diagonally implicit Runge-Kutta methods

For the discretization in time of the index 1 DAE (3.9a)-(3.9c) implicit numerical
integrators are mandatory (cf., e.g., [5,17]). Here, we will use (s, p) diagonally im-
plicit Runge-Kutta (DIRK) methods of stage s and order p where the order is adjus-
ted to the order of the C0IPDG approximation in space. Given a partitioning of the
time interval [0,T ] into subintervals [tm�1, tm] of length τm := tm� tm�1,16m6M,
we denote by cmh and wmh approximations of ch and wh at time level tm and set
zmh := (cmh ,wmh )T . An s-stage DIRK method reads

M hzmh = M hzm�1h + τm
s

∑
i=1

bifh(zm,ih ), , (4.1a)

M h z(m,i)h = M h zm�1h + τm
i

∑
j=1

ai j fh(z(m, j)h ), 16 i6 s, (4.1b)

where the coefficients ai j,1 6 j 6 i 6 s, with aii 6= 0,1 6 i 6 s, and bi,ci,1 6 i 6
s, are given and the intermediate states z(m,i)h are approximations of zh at tm�1+
ciτm,16 i6 s. The method can be characterized by the Butcher scheme
Table 1. Butcher scheme of an s-stage DIRK method

c1 a11
c2 a21 a22
...

... . . .
cs as1 as2 · · · ass

b1 b2 · · · bs

Remark 4.1 If aii = a 6= 0,16 i6 s, then the method is called a singly diagonally
implicit Runge-Kutta (SDIRK) method.
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In more explicit form (4.1b) reads

Mhc(m,i)h =Mhcm�1h � τm
i

∑
j=1

ai j Shw(m, j)
h , 16 i6 s (4.2a)

0= τm
i

∑
j=1

ai j
⇥
Ah c(m, j)h +Gh(c(m, j)h )�Mhw(m, j)

h
⇤
, 16 i6 s. (4.2b)

To avoid cancelations, we introduce the increments u(m,i)h := c(m,i)h �cm�1h , 16 i6 s.
Then (4.2a), (4.2b) and the ch-component of (4.1a) can be written in the form

u(m,i)h = � τm
i

∑
j=1

ai jM�1
h Shw

(m, j)
h , 16 i6 s, (4.3a)

0=
i

∑
j=1

ai j
⇣
Ahu(m, j)h +Gh(cm�1h +u(m, j)h )�Mhw(m, j)

h +Ahcm�1h

⌘
, 16 i6 s,

(4.3b)

cmh = cm�1h � τm
s

∑
i=1

biM�1
h Shw

(m,i)
h . (4.3c)

Setting Umh =
�
u(m,1)h · · · u(m,s)h

�T 2 RNh⇥s and Wm
h =

�
w(m,1)
h · · · w(m,s)

h
�T 2 RNh⇥s,

in matrix-vector notation (4.3a) and (4.3c) can be written as

Umh =�τm M�1
h ShW

m
h A T , cmh = cm�1h � τm M�1

h ShW
m
h b,

where b := (b1, · · · ,bs)T and A 2 Rs⇥s is the lower triangular matrix with entries
ai j,1 6 j 6 i 6 s. Further, introducing d = (d1, · · · ,ds)T := A �Tb 2 Rs and using
Umh A �T =�τm M�1

h ShWm
h , the ch-update (4.3c) can be simplified to

cmh = cm�1h +
s

∑
i=1

di u(m,i)h . (4.4)

To summarize, at each time instant tm the unknowns

xmh := (um,1h ,w(m,1)
h , . . . ,u(m,s)h ,w(m,s)

h ,cmh ) 2R2Nhs+Nh

satisfy the following nonlinear system of equations

Fh(xmh ,τm) = 0, (4.5)
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where

Fh(xmh ,τm) :=

0

BBBBBBBBBBBB@

Mhu(m,1)h + τma11Shw(m,1)
h

a11
⇣
Ahu(m,1)h +Gh(cm�1h +u(m,1)h )�Mhw(m,1)

h +Ah cm�1h

⌘

...
Mhu(m,s)h + τm ∑s

j=1 as j Shw
(m, j)
h

s

∑
j=1

as j
⇣
Ahu(m, j)h +Gh(cm�1h +u(m, j)h )�Mhw(m, j)

h +Ah cm�1h

⌘

∑s
i=1 diu

(m,i)
h � cmh + c

m�1
h

1

CCCCCCCCCCCCA

.

Dropping the second argument τm for notational convenience for the rest of this sec-
tion, we partition Fh(xmh ) according to (Fh,1(xmh ), . . . ,Fh,s(xmh ),Fh,s+1(xmh )), where
Fh,i(xmh ) 2R2Nh ,16 i6 s, and Fh,s+1(xmh )2RNh . The Jacobian DFh(xmh ) has a lower
triangular block structure

0

BBBB@

D1Fh,1(xmh )
D1Fh,2(xmh ) D2Fh,2(xmh )

...
... . . .

D1Fh,s(xmh ) D2Fh,s(xmh ) · · · DsFh,s(xmh )
D1Fh,s+1(xmh ) D2Fh,s+1(xmh ) · · · DsFh,s+1(xmh ) Ds+1Fh,s+1(xmh )

1

CCCCA

with blocks D jFh,i(xmh ) given by

DiFh,i(xmh ) =
 

Mh τm aii Sh
aii
⇣
Ah+DGh(cm�1h +u(m,i)h )

⌘
�aii Mh

!
2R2Nh⇥2Nh

for 16 i6 s,

D jFh,i(xmh ) =
 

0 τm ai j Sh
ai j
⇣
Ah+DGh(cm�1h +u(m, j)h )

⌘
�ai jMh

!

2 R2Nh⇥2Nh ,

for 16 j < i6 s, and

D jFh,s+1(xmh ) = (dj INh , 0) 2 RNh⇥2Nh , 16 j < s+1,
Ds+1Fh,s+1(xmh ) =�INh .

5. Numerical solution of the fully discretized system

We first consider the application of Newton’s method to (4.5) in subsection 5.1 and
then elaborate on a predictor-corrector continuation strategy featuring an adaptive
choice of the time step size in subsection 5.2.
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5.1. Newtons’s method

The nonlinear system (4.5) is solved by Newton’s method

DFh(x(m,`)h ,τm)∆x(m,`)h = �Fh(x(m,`)h ,τm), (5.1a)

x(m,`+1)h = x(m,`)h +∆x(m,`)h , (5.1b)

where x(m,`)h ,` 2 N0, stands for the `-th Newton iterate. As initial guess we choose

u(m,i,0)h := 0, w(m,i,0)
h := w(m�1,i)

h , 16 i6 s, c(m,0)h := cm�1h . (5.2)

The Jacobian DFh(x(m,`)h ,τm) is regular, if this applies to each diagonal block DiFh,i
(x(m,`)h ,τm),16 i6 s+1. Obviously, Ds+1Fh,s+1(x(m,`)h ,τm) is regular. The following
result shows that DiFh,i(x(m,`)h ,τm),16 i6 s, is invertible, if the time step size τm is
appropriately chosen.

Theorem 5.1. Let λmin(Mh) be the smallest eigenvalue of the symmetric posit-
ive definite matrixMh. If the time increment τm fulfills the inequalities

0< τm

8
><

>:

< ∞ if Sh = Ah+DGh(x(m,i)h ),

6 λmin(Mh)2

a2ii kSh� (Ah+DGh(x(m,i)h ))k22
else, (5.3)

where for simplicity we have used the notation DGh(x(m,i)h ) := DGh(cm�1h +u(m,i)h ),
then the matrix

Bi(τm) := DiFh,i(xmh ,τm) =
✓ Mh τm aiiSh
aii (Ah+DGh(x(m,i)h )) �aii Mh

◆
2R2Nh⇥2Nh

is regular and the spectral norm of its inverse can be estimated by

��Bi(τm)�1
��
2 6

8
>><

>>:

2
λmin(Mh)

1
τm

for 0< τm 6 1
2

λmin(Mh)
τm for τm > 1.

(5.4)

Proof. We use a simplified version of the Banach-Nečas-Babuška theorem
(see,e.g.,[8]): For 0 6= v 2R2Nh with components v j 2 RNh , 16 j 6 2, we construct
a vector 0 6= w= (w1,w2)T 2 R2Nh such that for some γi > 0 it holds

wTBi(τm)v> γi kvk2 kwk2. (5.5)
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This implies kBi(τm)vk2 > γi kvk2 which is equivalent to the injectivity (and there-
fore bijectivity) of the mapping v 7! Bi(τm)v.
We choose w1 := v1 and w2 := �τm v2 so that w 6= 0. Introducing for the moment
the notation µh := λmin(Mh), we obtain the estimate

wTBi(τm)v= vT1Mhv1+ τmaii vT2
�
Sh� (Ah+DGh(xm,ih ))

�
v1+ τm aii vT2Mhv2

(5.6)

> µh kv1k22� τm aii kSh� (Ah+DGh(x(m,i)h ))k2| {z }
=: ci(xh)=:ci

kv1k2 kv2k2 + τm aii µh kv2k22

> (µh� τmaii ci ε) kv1k22+ τm

✓
µh�aii ci

1
4ε

◆
kv2k22,

where in the last step we have used Young’s inequality with some ε > 0. Let us first
assume ci 6= 0. We choose ε such that µh/(aii ci)>max(τm ε ,1/(4ε)). To this end,
we set τm ε = 1/(4ε) and solve for ε = 1/(2pτm). Then the above requirement
reads µh/(aii ci)>

p
τm/2. If we choose

0 <

p
τm
2

6 1
2

µh
aii ci

(which is equivalent to the second case of (5.3)), both factors in (5.6) are positive
with value µh� τm aii ci ε = µh�aii ci/(4ε)> µh/2. Therefore,

wTBi(τm)v>
µh
2
kv1k22+ τm

µh
2

kv2k22 >

8
<

:
τm

µh
2
kvk22 if τm 6 1

µh
2

kvk22 else
. (5.7)

Furthermore, we have kwk2 6 kvk2 for τm 6 1 and kwk2 6 τm kvk2 for τm > 1.
Combining this observation with (5.7) yields the desired estimate wTBi(τm)v >
γi kvk2 kwk2 with inf-sup constant

γi :=

8
><

>:

τm
µh
2
, if τm 6 1

1
τm

µh
2
, else

.

In case of Sh = Ah +DGh(xm,ih ) (i.e., ci = 0) there is no restriction on the time
increment τm > 0 as can be seen from the right-hand side of (5.6). As improved
inf-sup constant we get γi = τm µh for τm 6 1 and γi = µh/τm for τm > 1.
Setting w = Bi(τm)v , v = Bi(τm)�1w, from the proven estimate kBi(τm)vk2 >
γi kvk2 we get 1/γi > kBi(τm)�1wk2/kwk2 for w 6= 0. Taking the maximum over
all w 6= 0 finally gives (5.4). ⇤
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As a side result of the previous theorem we obtain:

Corollary 5.2 Under the assumptions of Theorem 5.1 kBi(τm)�1k2 is bounded for
all τm 2 [0,τi(xmh )], where

τi(xmh ) :=

8
>>><

>>>:

T � tm�1, if Sh = Ah+DGh(x(m,i)h ),

λmin(Mh)2

a2ii kSh�
⇣
Ah+DGh(x(m,i)h )

⌘
k22

, else.

Proof. The function f (τm) := kBi(τm)�1k2 is defined on [0,τi(xmh )], since in
addition to the result of the previous theorem

Bi(0) =
✓ Mh 0
aii (Ah+DGh(x(m,i)h )) �aii Mh

◆

is invertible with

kBi(0)�1k2 6 (1+
1
aii

) kM�1
h k2+kM�1

h k22 kAh+DGh(x(m,i)h )k2

=
1

λmin(Mh)

 ✓
1+

1
aii

◆
+

kAh+DGh(x(m,i)h )k2
λmin(Mh)

!

=:Ci(xh).

The function f is also continuous, since Bi(τm) depends continuously on τm and
Bi(τm) 7! Bi(τm)�1 is continuous as well. Therefore, f attains its maximum over
[0,τi(xmh )] in some τ0, and we get for all τm 2 [0,τi(xmh )]

��Bi(τm)�1
��
2 6 βi(xmh ) :=

8
>>>>><

>>>>>:

Ci(xh) for τ0 = 0

2
λmin(Mh)

1
τ0

for 0< τ0 6 1
2

λmin(Mh)
τ0 for τ0 > 1

. (5.8)

⇤

Remark 5.3 As an alternative to the ’global’ Newton method (5.1a),(5.1b) it is
possible to solve

Fh,i(xmh ) = 0
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with given (u(m,1)h ,w(m,1)
h , . . . ,u(m,i�1)h ,w(m,i�1)

h ) and unknowns (u(m,i)h ,w(m,i)
h ) for

i = 1,2, · · · ,s one after another by Newton’s method, which also takes advantage
of the staggered structure of (4.5). However, we have chosen the ’global’ Newton
formulation for a good reason: when it comes to the adaptive stepsize selection in
the next subsection, we rely on the global information ∆xm,(0)h .

5.2. Adaptive time step size selection

The system (4.5) can be seen as a parameter dependent nonlinear system with the
time step size as the parameter. The vector

xm�1h (τ = 0) := (0,w(m�1,1)
h , . . . ,0,w(m�1,s)

h ,cm�1h )

is the solution to Fh(xh,0) = 0. From Corollary 5.2 we know that DFh(xm�1h (0),0)
is invertible. Then the implicit function theorem guarantees the existence of a ho-
motopy path xm�1h : [0,τ⇤] ! Λ ⇢ R2Nhs+Nh such that Fh(xm�1h (τ),τ) = 0 for all
τ 2 [0,τ⇤] for some τ⇤ = τ⇤(cm�1h )> 0. The parameter dependent nonlinear system
can be solved by a predictor-corrector continuation strategy featuring an adaptive
choice of the time step size. Having determined the solution at time instant tm�1,
one proceeds to the next time instant tm by providing a predicted solution x̂h(τm)
that serves as an initial guess for Newton’s method. The simplest possible choice
for a continuation step is constant continuation, i.e., x̂h(τm) := xm�1h (0) which is in
agreement with (5.2). Taylor expansion gives the approximation error

kx̂h(τm)�xm�1h (τm)k6 η τm, η := max
τ2[0,τ⇤]

�����
dxm�1h
dτ

(τ)

�����
2

. (5.9)

The predictor is based theoretically on the simplified Newton method. We recall that
for a given start iterate x(m,0)h the simplified Newton method is of the form

DFh(x(m,0)h ,τm) ∆xh
(m,`)

= �Fh(x(m,`)h ,τm), (5.10a)

x(m,`+1)h = x(m,`)h +∆xh
(m,`)

, `= 0,1, . . . . (5.10b)

Theorem 5.4. Let DFh(xh,τ) be nonsingular for all (xh,τ) 2 Λ⇥ [0,τ⇤] and
assume that the homotopy path xm�1h : [0,τ⇤]!Λ exists. Further, suppose that there
exists a local Lipschitz constant ω = ω(cm�1h ) such that for all xh 2 Λ and for all
06 τ 6 τ⇤, the affine covariant Lipschitz condition

kDFh(x̂h(τ),τ)�1 (DFh(xh,τ)�DFh(x̂h(τ),τ))k2 6 ω kxh� x̂h(τ)k2 (5.11)
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holds true. Then, the simplified Newton method (5.10) with initial guess x̂h(τ) :=
xm�1h (0) converges towards the solution xm�1h (τ) for all stepsizes

06 τ 6 τmaxm :=
p
2�1
ω η

. (5.12)

Proof. We refer to Corollary 5.5 in [6]. ⇤

The following result shows that for the nonlinear system (4.5) under consideration
the affine covariant Lipschitz condition (5.11) from Theorem 5.4 is satisfied.

Theorem 5.5. In addition to the conditions from Theorem 5.1 assume that Gh
is Lipschitz-continuously differentiable with Lipschitz constant LDGh for DGh. Let

06 τ 6 τ(x̂mh ) := min
16i6s

τi(x̂mh ).

Then, the nonlinear mapping Fh(·,τ) from (4.5) satisfies the affine covariant Lipschitz
condition (5.11) from Theorem 5.4. Further, ω can be estimated by the τ-independent
upper bound

ω 6
⇣
1+{s (1+ s kdk∞)

⌘
LDGh s kA k∞, (5.13)

where d = A �Tb stems from section 4. Moreover, {s can be estimated recursively
by

{i 6 {i�1
⇣
1+βi(xm�1h (0))

⇣
τ(xm�1h (0)) kShk2+kAh+DG(cm�1h )k2 +

kMhk2
⌘ i�1

∑
j=1

|ai j|
⌘
+βi(xm�1h (0)), 26 i6 s,

where {1 = β1(xm�1h (0)) (cf. (5.8) for the definition of βi).

Proof. Dropping the argument τ in Fh for notational simplicity, we split the
left-hand side of (5.11) into

kDFh(x̂h(τ))�1 (DFh(xh)�DFh(x̂h(τ)))k2 (5.14)
6 kDFh(x̂h(τ))�1k2 kDFh(xh)�DFh(x̂h(τ))k2.

We note that DFh(xh)�DFh(x̂h(τ)) has a lower triangular block structure and its
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norm can be estimated according to

kDFh(xh)�DFh(x̂h(τ))k2 6
s

∑
i=1

i

∑
j=1

|ai j| kDGh(cm�1h +u(·, j)h )�DGh(cm�1h +0)k2

6 LDGh

s

∑
i=1

i

∑
j=1

|ai j| ku(·, j)h �0k2 6 LDGh s kA k∞ kxh� x̂h(τ)k2.

This gives the kxh� x̂h(τ)k2-term in (5.11) and the last three factors in (5.13). It
remains to estimate kDFh(x̂h(τ))�1k. For a regular matrix of the form

A (i) =

✓
A (i�1) 0
A i,i�1 A ii

◆
, i> 2,

there holds

A (i)�1 =

 
A (i�1)�1 0

�A �1
ii A i,i�1 A (i�1)�1 A �1

ii

!

. (5.15)

Then one can estimate

kA (i)�1k2 6 kA (i�1)�1k2+kA �1
ii A i,i�1 A (i�1)�1k2+kA �1

ii k2
6 kA (i�1)�1k2

�
1+kA �1

ii k2 kA i,i�1k2
�
+kA �1

ii k2 =: {i.

Setting A (1) := A 11 and {1 := kA (1)�1k, inductively one finds

{i 6 {i�1
�
1+kA �1

ii k2 kA i,i�1k2
�
+kA �1

ii k2.

Observing and combining

kA iik2 := kDiFh,i(x̂h(τ))k2 6 βi(xm�1h (0)), 16 i6 s,
kA s+1,s+1k2 := k� INhk2 = 1,
kA i,i�1k2 := k(D1Fh,i(x̂h(τ)), · · · ,Di�1Fh,i(x̂h(τ)))k2

6 (τ(xm�1h (0)) kShk2+kAh+DGh(cm�1h )k2+kMhk2)
i�1

∑
j=1

|ai j|, 26 i6 s,

kA s+1,sk2 := k(d1 INh ,0, · · · ,ds INh ,0))k2 6 s kdk∞,

we obtain the first factor of the upper bound in (5.13). ⇤

From the simplified Newton method we compute the contraction factors

Θ`(τm) :=
k∆xh

(m,`+1)k2
k∆xh

(m,`)k2
, `> 0, (5.16)
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which will serve as convergence monitors for the convergence of the predictor-
corrector continuation strategy. It can be shown (cf., for instance, [18]), that Θ0(τm)
satisfies the estimate

2 Θ0(τm)

k∆xh
m,(0)k2

6 ω , (5.17)

which provides a lower bound for the critical local Lipschitz constant ω (cf. The-
orem 5.5). Along with η from (5.9), this is the second key quantity for an adaptive
time step size selection strategy. In order to exploit the steplength criterion (5.12)
in an algorithmic realization, we compute estimates [·] of the a priori unknown con-
stants and apply the steplength criterion with ω , η replaced by [ω ], [η ].

5.2.1. τ-prediction strategy. We can use estimate (5.17) to obtain

2 Θ0(τm)

k∆xh
(m,0)k2

=: [ω ]6 ω

as an estimate for ω and likewise

kx(m,0)h �xmh k2
τm

=: [η ]6 η ,

which obviously provides a lower bound of η due to (5.9). Inserting these compu-
tationally available quantities into (5.12) instead of ω and η results in

τm+1 := τm+1,0 :=
(
p
2�1) k∆xh

(m,0)k2
2 Θ0(τm) kx(m,0)h �xmh k2

τm. (5.18)

This formula predicts the next time increment τm+1 adaptively based upon informa-
tion about local and global constants of the homotopy gathered within the last New-
ton correction step. By nature of the constants ω , η , our approximations [ω ], [η ]
represent lower bounds. Thus (5.18) will in general overestimate the true maximal
steplength τmaxm+1. This explains why also a correction formula for τm+1 is required.

5.2.2. τ-correction strategy. If convergence failure of the Newton correction
step for τm+1, j occurs, we need to correct (decrease) the time step τm+1, j and re-
peat the last xh-prediction step with an adaptively reduced stepsize τm+1, j+1. Here,
the quantity Θ0(τm+1, j) is available from the last unsuccessful Newton correction.
It can be exploited to gain refined information about the crucial quantity ω η from
(5.12). This leads to the τ-correction formula (for details see [18])

τm+1, j+1 :=
p
2�1q

4Θ`( j)(τm+1, j)+1�1
τm+1, j, j > 0.
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6. Numerical results

We consider the initial-boundary value problem (2.1a)-(2.1c) in Q := Ω⇥ (0,T ]
with Ω := [0,L]2,L := 1.0 · 10�4m, and T := 1.0 · 10+1s. The physical parameters
β ,{,σ , and a0,a2,h0,M are given in Table 2 in their physical units. We use the
reference quantities

Lre f := 1.0 ·10�5m, Tre f := 1.0 ·10�2s, σre f := 1.0 Jm�2 (6.1)

and scale all parameters to dimensionless form. The values of the parameters in
dimensionless form are also listed in Table 2. The initial concentration c0 has been
chosen randomly.

Table 2. Physical parameters in the sixth order Cahn Hilliard equation

Symbol Value Unit Dimensionless Value
σ 1.0 Jm�2 1.0
β 5.0 Jm�2 5.0
h0 5.0 ·10�1 1 5.0 ·10�1
M 1.0 ·10�13 m2s�1 1.0 ·10�3
{ 1.0 ·10�25 Jm2 1.0 ·10�1
a0 �4.0 ·10�12 J �4.0
a2 1.0 ·10�12 J 1.0

We have implemented the C0IPDG method with k = 2 combined with a 2-stage
SDIRK method of order 2 (cf. Table 3), the C0IPDG method with k = 3 combined
with a 3-stage SDIRK method of order 3 (cf. Table 4) and the C0IPDG method with
k = 4 combined with a 3-stage SDIRK method of order 4 (cf. Table 5).

Table 3. Butcher scheme of a 2-stage SDIRK method of order 2

{ { 0
1 1�{ {

1�{ {
{ = 1± 1

2
p
2
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Table 4. Butcher scheme of a 3-stage SDIRK method of order 3

α α 0 0
1+α
2

1�α
2 α 0

1 b0 b1 α

b0 b1 α

where α ⇡ 0.44 is the root of p(x) = x3� 3x2+ 3
2x�

1
6 , b0 = � 6α2�16α+1

4 , and
b1 = 6α2�20α+5

4 (cf. [1]).

Table 5. Butcher scheme of a 3-stage SDIRK method of order 4

(1+{)/2 (1+{)/2 0 0
1
2 �{/2 (1+{)/2 0

(1�{)/2 1+{ �(1+2{) (1+{)/2
1/(6{2) 1�1/(3{2) 1/(6{2)

{ = 2 cos(π/18)/
p
3

The associated spatial grid sizes are given in Table 6.
We note that the 2-stage SDIRKmethod of order p= 2 (cf. Table 3) and the 3-stage
SDIRK method of order p = 3 (cf. Table 4) are both strongly stable, whereas the
3-stage SDIRK method of order p = 4 (cf. Table 5) is not strongly stable, but still
A-stable (cf.,e.g.,[1]).
Figure 1 shows a visualization of the microemulsification process obtained by the
numerical solution of the sixth order Cahn-Hilliard equation using C0IPDG with
k = 2 and 2-stage SDIRK with p = 2. The pure water phase (c = 1) is depicted in
dark blue, the pure oil phase (c = �1) in dark red, and the microemulsion phase
(c= 0) in light green. In Figure 1 (right), which represents the microemulsification
process after t = 3.86, the formation of oil-in-water and water-in-oil droplets are
clearly visible.

Table 6. Polynomial degree k , grid size, stage s and order p in the C0IPD/SDIRK approach

C0IPDG (s, p)�SDIRK
Pol. Degr. k Grid Stage s Order p

2 32⇥32 2 2
3 32⇥32 3 3
4 32⇥32 3 4



Sixth order Cahn-Hilliard equation 19

Figure 1. Formation of oil-in-water and water-in-oil droplets after t = 0.60 (left) and t = 3.86 (right).
C0IPDG with k = 2 on a 128⇥128 grid and 2-stage SDIRK with p= 2.
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Figure 2. Evolution of the adaptively chosen time step sizes: C0IPDG with k= 2 and 2-stage SDIRK
with p= 2.
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Figure 3. Evolution of the adaptively chosen time step sizes: C0IPDG with k= 3 and 3-stage SDIRK
with p= 3.
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Figure 4. Evolution of the adaptively chosen time step sizes: C0IPDG with k= 4 and 3-stage SDIRK
with p= 4.

The performance of the predictor-corrector continuation strategy with an adaptive
selection of the continuation parameter (time step size) is illustrated in Figure 2,
Figure 3, and Figure 4. The figures display the evolution of the adaptively chosen
time step sizes over the entire time interval [0,10]. Discarded time steps due to the
τ-correction strategy as described at the end of section 5 are marked by stars. In
particular, Figure 2 shows the result for C0IPDG with k = 2 and 2-stage SDIRK
with p = 2, Figure 3 the result for C0IPDG with k = 3 and 3-stage SDIRK with
p = 3, and Figure 4 the result for C0IPDG with k = 4 and 3-stage SDIRK with
p = 4. We see that the number of discarded time step sizes is significantly larger
for C0IPDG with k = 4 and 3-stage SDIRK with p= 4 than for the other two cases
which is due to the strong stability of the 2-stage SDIRKmethod of order p= 2 and
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the 3-stage SDIRK method of order p = 2, whereas the 3-stage SDIRK method of
order p= 4 lacks strong stability.

7. Conclusions

Based on the mixed formulation of an initial-boundary value for a sixth order Cahn-
Hilliard equation describing microemulsification processes we have considered high
order space-time discretizations by C0IPDG approximations in space with DG trial
spaces composed of C0 conforming Lagrangian finite elements of polynomial de-
gree k > 2 and s-stage DIRK methods of order p > 2. The resulting parameter de-
pendent nonlinear algebraic system has been solved by a predictor-corrector con-
tinuation strategy with an adaptive choice of the continuation parameter. For a tern-
ary water-oil-microemulsion system, numerical results show the formation of water-
in-oil and oil-in-water droplets and the performance of the approach by displaying
the evolution of the adaptively chosen time step sizes over the entire time interval.
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