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Abstract

Standard Arbitrary Lagrangian-Eulerian (ALE) methods for the simulation of
fluid-structure interaction (FSI) problems fail when the structural displacement
is large. We propose an extended ALE method that successfully deals with this
problem without remeshing. The extended ALE approach relies on a variational
mesh optimization technique, combined with an additional constraint which is
imposed to enforce the alignment of the structure with certain edges of the fluid
triangulation without changing connectivity. This method is applied to a 2D
FSI benchmark problem modeling valves: a thin elastic 1D leaflet, modeled by
an inextensible beam equation, is immersed in a 2D incompressible, viscous fluid
driven by the time-dependent inlet and outlet data. The fluid and structure are
fully coupled via the kinematic and dynamic coupling conditions. The problem
is solved using a Dirichlet-Neumann algorithm, which is enhanced by an adap-
tive relaxation procedure based on Aitken’s acceleration. The proposed method
is assessed through several numerical tests, including a comparison with a stan-
dard ALE method when the structural displacement is small. It is shown that
that proposed method deals well with both small and large displacements, and
that thanks to the interface alignment, the hydrodynamic force at the interface
can be computed accurately.

Key words: Mesh optimization, Arbitrary Lagrangian-Eulerian formulation,
Fluid-structure interaction, Domain decomposition methods.

1. Introduction

This paper is concerned with the numerical simulation of the motion of an
elastic body immersed in an incompressible, viscous fluid and undergoing large
displacements. The motivation comes from fluid-structure interaction (FSI) be-
tween blood flow and heart valves. We focus here on a 2D benchmark problem
proposed in [17] consisting of a 1D inextensible leaflet interacting with a 2D
incompressible fluid. Although dealing with a very simplified model, the prob-
lem under consideration retains important physical features common to more
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complex models: large displacements and added mass effect, which are known
to induce various numerical difficulties [44, 12].

Several approaches have been proposed in the literature to simulate FSI
problems with large structural displacements, involving valves in particular.
We briefly report on the most popular methods, mentioning that the following
overview is by no means complete, but is rather meant to give an idea of the
variety of methods existing in the literature.

We start with Arbitrary Lagrangian-Eulerian (ALE) approaches [31, 16],
since the method proposed in this paper can be classified as an extended ALE
approach. A standard ALE approach moves the mesh to follow the elastic
body movements. ALE methods were proved to be accurate and robust for
hemodynamics applications involving small mesh displacements (see, e.g., [22]).
Although these methods offer many advantages provided by the explicit rep-
resentation of the fluid-structure interface [30, 44, 3], problems arise whenever
strong deformations or even topological changes of the interface lead to a degen-
eration of the computational mesh. Thus, in the presence of large displacements,
standard ALE algorithms need frequent remeshing [18, 35, 34], which may in-
troduce an additional source of errors since quantities of interest have to be
transferred from the old mesh to the new mesh.

An alternative to ALE methods is provided by methods that are based on
fixed meshes. This is the case of the immersed boundary method (see, e.g.,
[38, 40, 39] and references therein). In this approach, the fluid feels the presence
of the structure through external forces (Dirac Delta functions) acting on the
fluid. In order to get around the difficulties associated to the discretization of the
Dirac Delta, the extended immersed boundary method [47] and the immersed
finite element method [49] were introduced. Another method that has been
originally designed for fixed meshes is the fictitious domain method [26, 25].
In this method, the coupling is obtained by enforcing the kinematic coupling
condition with Lagrange mutlipliers. The first applications of the fictitious
domain method involved the interaction of a fluid with rigid particles. Later,
this method has been applied for interactions with flexible structures by using
Lagrange multipliers located on the structure surface [2, 29, 45, 46]. Mixed ALE
and fictitious domain formulations have also been proposed [28, 17]. In order
to give accurate results for the viscous shear stresses on the solid boundary, the
fictitious domain method has to be combined with adaptive mesh refinement.

Among other methods used for fluid-structure interactions with large struc-
tural displacements, it is worth mentioning an approach based on the level set
method [13] and Lattice-Boltzmann methods [32, 21, 19].

The method we propose uses one fixed base mesh that is adapted to approx-
imate the interface while maintaining mesh connectivity (nodes or elements are
neither inserted nor removed). We adopt a technique that has been introduced
in [48, 7, 6] for two-phase flows and one-way coupled FSI problems (i.e., the
structure moves with a prescribed law) and extend it to two-way coupled FSI
problems. The fundamental building block of our extended ALE method is a
variational mesh optimization approach that does not rely on any combinatorial
considerations. Alignment of the optimized mesh with the structure interface
is stated as a side constraint of the mesh optimization problem thanks to a
level set description of the geometry. Thus, the proposed approach results in a
nonlinear, constrained optimization problem.

The main advantages of the proposed extended ALE approach are:
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- The alignment of the mesh with the interface, which allows for a simple
definition and efficient implementation of problem-specific finite element
spaces;

- Fixed mesh connectivity, which makes the method easy to implement in
an existing standard ALE code.

Concerning the first point, for the application under consideration the extended
ALE allows to easily capture the pressure discontinuity across the interface,
which coincides with the 1D leaflet. Methods based on fixed meshes cannot
capture such a discontinuity. Moreover, thanks to the mesh alignment with the
interface, the kinematic coupling condition is easily enforced.

Once the mesh has been obtained from the above mentioned constrained
optimization problem, the FSI problem is solved with a classical Domain De-
composition algorithm, namely, the Dirichlet-Neumann method (see, e.g., [42]),
which is combined with an Aitken’s acceleration technique [33].

The outline of the paper is as follows. In Section 2 we state the problem. The
constrained optimization approach, which is at the core of our extended ALE
method, is explained in Section 3. We touch on the numerical methods that
we use for the time and space discretization of the fluid, structure, and coupled
fluid-structure problems in Section 4. In Section 5, we present numerical results
obtained on a carefully chosen series of numerical tests showing the main features
of the method. Conclusions are drawn in Section 6.

2. Problem definition

Consider a domain Ω ⊂ R2 containing a thin elastic leaflet forming a 1D
manifold Γ(t) ⊂ Ω whose location depends on time. The leaflet is surrounded
by an incompressible, viscous fluid occupying domain Ω, defining the time de-
pendent fluid domain Ωf (t) := Ω \ Γ(t). See Figure 1.

2.1. The fluid problem

In the fluid domain, the fluid flow is governed by the Navier-Stokes equations
for an incompressible, viscous fluid:

ρf

(
∂u

∂t
+ (u · ∇)u

)
−∇ · σ = 0 in Ωf (t), (1)

∇ · u = 0 in Ωf (t), (2)

for t ∈ [0, T ], where ρf is the fluid density, u is the fluid velocity, and σ the
Cauchy stress tensor. For Newtonian fluids σ has the following expression

σ(u, p) = −pI + 2µε(u),

where p is the pressure, µ is the fluid dynamic viscosity, and ε(u) = (∇u +
(∇u)T )/2 is the strain rate tensor. Equations (1)-(2) need to be supplemented
with initial and boundary conditions.

In order to describe the evolution of the fluid domain, we adopt an Arbitrary
Lagrangian-Eulerian (ALE) approach [31]. Let Ω̂f ⊂ R2 be a fixed reference
domain. We consider a smooth mapping

A : [0, T ]× Ω̂f → R2,

A(t, Ω̂f ) = Ωf (t), ∀t ∈ [0, T ].
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For each time instant t ∈ [0, T ], A is assumed to be a homeomorphism. The
domain velocity w is defined as

w(t, ·) = ∂tA(t,A(t, ·)−1).

For any sufficiently smooth function F : [0, T ] × R2 → R, we may define the
ALE time derivative of F as

∂F

∂t

∣∣∣
x̂

=
∂F

∂t
(t,A(t, x̂)) =

∂F

∂t
(t,x) + w(t,x) · ∇F (t,x)

for x = A(t, x̂), x̂ ∈ Ω̂. With these definitions, we can write the incompressible
Navier-Stokes equations in ALE formulation as follows:

ρf
∂u

∂t

∣∣∣
x̂

+ ρf (u−w) · ∇u−∇ · σ = 0 in Ωf (t), (3)

∇ · u = 0 in Ωf (t), (4)

for t ∈ [0, T ].

2.2. The structure problem

The thin leaflet is modeled as an inextensible beam with negligible torsional
effects [17]. Let us denote by ρs the linear density (i.e. mass per unit length),
by L the length, and by EI the flexural stiffness of the beam. The following
notation will be used for the spatial and temporal derivatives, with s denoting
arc length and t time:

y′ =
∂y

∂s
, ẏ =

∂y

∂t
, y′′ =

∂2y

∂s2
, ÿ =

∂2y

∂t2
.

Using the virtual work principle, the beam motion for t ∈ [0, T ] is modeled
by: Find x(t) ∈ K:

∫ L

0

ρsẍ · yds+

∫ L

0

EI x′′ · y′′ds =

∫ L

0

f · yds, ∀y ∈ dK(x), (5)

with

K =
{
y ∈ (H2(0, L))2, |y′| = 1, y(0) = a, y′(0) = b

}
,

(6)

dK(x) =
{
y ∈ (H2(0, L))2, x′ · y′ = 0, y(0) = 0, y′(0) = 0

}
,

where f denotes the force acting on the beam. In our case f is the hydrody-
namic force, which will be specified in Subsection 2.3. Condition |y′| = 1 is
the inextensibility condition. It is included in the set K. Weak formulation (5)
assumes that at s = L natural boundary conditions x′′(L) = 0 and x′′′(L) = 0
are imposed. Note that problem (5) in strong form reads:

ρsẍ+ EIx′′′′ = f ,

|x′| = 1.

The problem is supplemented with initial conditions.
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Figure 1: The leaflet Γ(t) separates the fluid domain Ωf (t) into subdomains Ω1
f (t) and Ω2

f (t).

2.3. The coupled fluid-structure interaction problem

The leaflet moves due to the contact force exerted by the fluid. Ideally, the
location of the leaflet determines two subdomains Ω1

f (t) and Ω2
f (t), such that

Ωf (t) = Ω1
f (t) ∪ Ω1

f (t), and Γ(t) belongs to a portion of the boundary joining

Ω1
f (t) and Ω2

f (t), see Fig. 1. Let n1 and n2 be the outward normals at Γ(t) on

Ω1
f (t) and Ω2

f (t), respectively. See Fig. 1.
The hydrodynamic force acting on the leaflet is given by

fΓ = −σ1n1 − σ2n2. (7)

For t ∈ [0, T ], the fluid problem (3),(4) and the structure problem (5) are
coupled by two conditions:

1. kinematic coupling condition (continuity of velocity, i.e., the no-slip con-
dition)

u = ẋ on Γ(t); (8)

2. dynamic coupling condition (balance of contact forces)

fΓ = f on Γ(t), (9)

where f is given by Eq. (5).

Here, notation u = ẋ in (8) is used to express the relation u(t,x(t, s)) =
ẋ(t, s), s ∈ [0, L] (analogously for fΓ and f in (9)).

Notice that since the structure domain has one dimension less than the fluid
domain, the fluid-structure interface coincides with the structure domain.

3. Numerical Representation of the Geometry

The ALE approach we use to deal with large displacements of the leaflet was
introduced in [48, 7, 6] for one-way coupled fluid-structure interaction problems
and two-phase flows. Here, we extend this approach to two-way coupled FSI
problems. The main feature of this method is a variational mesh optimization
technique combined with an additional constraint to enforce the alignment of
the structure interface with edges of the resulting triangulation. A method with
similar properties was introduced in [9]. The alignment procedure proposed
therein is based on explicit combinatorial considerations to approximate the
interface using the fluid mesh. In contrast, the approach we use here does not
rely on any combinatorial consideration. In the following, we present a brief
outline of our approach.
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3.1. Optimal triangulations
Let T be an initial triangulation of the domain Ω (not necessarily approx-

imating the structure interface at this stage). Following a variational mesh
optimization technique introduced by M. Rumpf in [43], we aim at finding an
“optimal” triangulation T ∗ resulting from an optimal mesh deformation ϕ∗ of
T , i.e. T ∗ = ϕ∗(T ). Deformation ϕ∗ belongs to the set D of piecewise affine,
orientation preserving, and globally continuous deformations:

D =
{
ϕ ∈ C0(Ω) : ∇ϕ|T ∈ GL(2), det(∇ϕ|T ) > 0, ∀T ∈ T

}
,

with GL(2) = {A ∈ R2×2 : det(A) 6= 0}.
Deformation ϕ∗ ∈ D is “optimal” in the sense that it is the argument for

which a certain functional F attains its minimum value:

F(ϕ∗) = min
ϕ∈D
F(ϕ). (10)

We assume that the functional in (10) can be represented by a sum of weighted,
element-wise contributions FT :

F(ϕ) =
∑

T∈T
µTFT (ϕ),

where µT > 0 denotes a positive weight with
∑

T µT = 1. Let RT denote the
linear reference mapping from a prescribed reference element T ∗ (an equilateral
simplex with customizable edge length h) to T . Under the assumptions of
translational invariance, isotropy and frame indifference of the functionals, it
can be shown (see [43]) that in two dimensions FT may be expressed as a
function of the invariants ‖∇RT (ϕ)‖2 and det(∇RT (ϕ)). Here, ‖ · ‖ denotes the
Frobenius norm. Note that the quantity ‖∇RT (ϕ)‖2 measures the change of
edge lengths with respect to the reference element, and det(∇RT (ϕ)) measures
the change in area.

In order to rule out deformations with vanishing determinant, we need

lim
det(∇RT (ϕ))→0

FT (ϕ) =∞.

A classical example of function FT is given by

FT (ϕ) = (‖∇RT (ϕ)‖2 − 2)2 + det(∇RT (ϕ)) +
1

det(∇RT (ϕ))
. (11)

The optimally deformed simplex is obtained if ϕ∗|T = I, i.e. if

FT (ϕ∗) = FT (I) = (2− 2)2 + 1 + 1 = 2.

The variational mesh smoothing approach described above has several ad-
vantages:

- Minimization problem (10) yields triangulations which are optimal in the
sense of the local measure (11);

- These triangulations can be shown to be non-degenerate, i.e. no self-
intersection of elements occurs;

- The element-wise representation of F provides built-in, local mesh quality
control.

The price to pay for those advantages is that functional F in (10) is highly
non-linear, non-convex, and global minimizers may be non-unique.
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φ(xe,1) < 0

φ(xe,2) > 0

e

Γ(t)

Figure 2: Γ(t) intersecting elements of the fluid mesh.

3.2. Interface aligned mesh

We are now interested in having a triangulation that is optimal (as explained
in the previous subsection) and aligned with the leaflet position Γ(t), i.e. we
want the optimal triangulation edges to approximate Γ(t). To this purpose, we
introduce as an auxiliary tool, a continuous level set function φ : [0, T ]×Ω→ R
which implicitly defines the structure position x by its zero level set:

Ω1
f (t) = {y ∈ Ω : φ(t,y) > 0} ,

Ω2
f (t) = {y ∈ Ω : φ(t,y) < 0} ,
Γ(t) = {y ∈ Ω : φ(t,y) = 0} .

(12)

Let us consider the situation reported in Fig. 2: let e be an arbitrary edge of
the triangulation T intersected by Γ(t), and let xe,1 and xe,2 be its endpoints.
Due to continuity of φ and assumption (12), we conclude that

φ(xe,1)φ(xe,2) < 0

if and only if e is intersected by Γ(t), provided that the mesh size h is sufficiently
small to resolve the shape of Γ(t). We therefore define the triangulation to be
linearly aligned with Γ(t) if

φ(xe,1)φ(xe,2) ≥ 0 for all e ∈ T .

We define a scalar constraint

c : D → R+
0 ,

c(ϕ) =
∑

e∈ϕ(T )

H(φ(xe,1)φ(xe,2)) where

H(z) =

{
> 0 if z < 0,

= 0 otherwise.

Only deformations ϕ for which c(ϕ) = 0 will give aligned triangulations. Thus,
a linearly aligned triangulation of optimal quality is obtained from the following
constrained optimization problem:

min
ϕ∈D
F(ϕ) such that c(ϕ) = 0.

For details on the numerical realization of the above problem, we refer the reader
to [7, 48].
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Figure 3: Linearly aligned triangulation with isoparametric elements without (left) and with
(right) quadratic alignment of the additional quadratic degree of freedom x6.

Given an aligned triangulation T , we may define a linear approximation of
the interface as

Γh = {edges e ∈ T : φ(xe,i) = 0 for i = 1, 2} .

In order to obtain a more accurate representation of the leaflet position,
we also consider piecewise quadratic approximations of Γ(t). We make use of
isoparametric elements equipped with additional degrees of freedom located at
the edges. We denote by K̂ = {x̂ ∈ R2 :

∑2
i=1 x̂

(i) ≤ 1, x̂(i) ≥ 0} the reference

simplex, and by GK : K̂ → K the quadratic isoparametric mapping:

GK(x̂) =
6∑

i=1

xiϕi(x̂), (13)

where ϕi, i = 1, . . . , 6 are the quadratic Lagrange basis functions. Once a lin-
early aligned triangulation T ∗ and the corresponding discrete interface are ob-
tained, in order to achieve quadratic alignment we move each quadratic node
(e.g., x6 in Figure 3) along the linear normal to the zero level set.

Details on the numerical realization together with an evaluation of the mesh,
approximation quality, and computational costs can be found in [7, 4, 48].

Remark 1. In order to reduce computational costs, the mesh optimization is
performed only in a box bounding the leaflet, instead of the whole domain. The
bounding box moves with the leaflet and is such that the leaflet never intersects
its boundary. Outside the box, the mesh is unaffected by leaflet motion.

4. Discretization

In this section, we describe our strategy for the numerical solution of the FSI
problem (3),(4),(5),(8),(9). In Section 4.1 we discuss the method we choose to
solve the coupled problem, while the methods adopted for the space and time
discretization of the fluid and structure sub-problems are presented in Sections
4.2 and 4.3, respectively. We also report on how the hydrodynamic force (7) is
computed.
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4.1. A partitioned approach for the coupled FSI problem

For the solution of the coupled problem, we choose a classical Domain De-
composition method, called the Dirichlet-Neumann algorithm (see, e.g., [42]).
This algorithm is based on the evaluation of independent fluid and structure
problems, coupled via the coupling (transmission) conditions (8) and (9) in
an iterative fashion: the Dirichlet boundary condition (8) is imposed on the
interface for the fluid sub-problem, whereas the structure sub-problem is sup-
plemented with the Neumann boundary condition (9).

Let ∆t be a time discretization step and set tn = n∆t, for n = 1, .., N , with
N = T/∆t. At every time tn, the Dirichlet-Neumann algorithm iterates over the
fluid and structure sub-problems until convergence. These are Richardson (also
called fixed point) iterations for the position of Γ(tn). Let k be the index for
these iterations. At time tn+1, iteration k+1, the following steps are performed:

- Step 1: Solve the fluid sub-problem for the flow variables uk+1, pk+1 de-
fined on Ωf,k, with Dirichlet boundary condition uk+1 = ẋk on Γk.

- Step 2: Solve the structure sub-problem for the structure position xk+1,
driven by the just calculated hydrodynamic force fΓ,k+1, i.e., fk+1 =
fΓ,k+1 on Γk, and obtain Γk+1, which defines Ωf,k+1.

- Step 3: Check the stopping criterion, e.g.

||xk+1 − xk||
||xk||

< εDN , (14)

where εDN is a given stopping tolerance. For instance, for the tests in Sec.
5, we set εDN = 10−8.

If the stopping criterion is satisfied, we set un+1 = uk+1, pn+1 = pk+1, xn+1 =
xk+1, Γn+1 = Γk+1, and Ωn+1

f = Ωf,k+1; otherwise we go back to step 1.

Remark 2. Due to the high computational costs associated with numerical min-
imization, we perform the mesh optimization algorithm described in Sec. 3.2
only once per time step (for k = 1), that is only after the Dirichlet-Neumann
method has converged in the previous time step. For subiterations k > 1, we do
not update the fluid mesh, but keep Ωf,k = Ωf,0.

The evident advantage of the Dirichlet-Neumann method is modularity: it
allows to reuse existing fluid and structure solvers with minimum effort. Unfor-
tunately, the convergence properties of the Dirichlet-Neumann algorithm depend
heavily on the added-mass effect [12]. In fact, it is known that when the struc-
ture lies on part of the fluid domain boundary the number of Dirichlet-Neumann
iterations required to satisfy the stopping criterion (14) increases as the struc-
ture density approaches the fluid density. Moreover, below a certain density
ratio ρs/ρf , which depends on the domain geometry, relaxation is needed for
the Dirichlet-Neumann algorithm to converge (see, e.g., [36, 37, 12]).

To this end, we adopt the relaxation parameters given by a simple Aitken’s
acceleration technique, which is known to reduce the number of Dirichlet-Neumann
iterations. This strategy, introduced in [33], was proposed for a setting similar
to ours in [1].

9



Let x̃k+1 be the unrelaxed structure position predicted by Step 2 of the
Richardson iteration above. Then after Step 2, we introduce a relaxation pa-
rameter ωk+1, which is computed via

ωk+1 =
(xk − xk−1) · (xk − x̃k+1 − xk−1 + x̃k)

|xk − x̃k+1 − xk−1 + x̃k|2
.

The position of the interface is then corrected via the relaxation algorithm:

xk+1 = ωk+1x̃k+1 + (1− ωk+1)xk.

It was found in [1] that only a few accelerated Dirichlet-Neumann sub-iterations
are to be expected for FSI problems with an immersed structure. We will
comment on the required number of subiterations in Section 5.3.

We are currently implementing a different partitioned scheme (see, e.g., [11])
which might have better performance and stability properties when the fluid and
structure have comparable densities. The current work will serve as a benchmark
for further computational method developments in this area.

4.2. The discrete fluid sub-problem

Let us start by writing the weak formulation for problem (3),(4) supple-
mented with boundary condition (8). We will state the problem in weak form
by including only the boundary condition on Γ(t), since those on ∂Ωf (t)\Γ(t)
are understood and do not affect the presented method.

For any given t ∈ [0, T ), we define the following spaces:

V (t) =
{
v : Ωf (t)→ R2, v = v̂ ◦ (A)−1, v̂ ∈ (H1(Ω̂f ))2

}
,

V0(t) =
{
v ∈ V (t), v|Γ(t) = 0

}
,

Q(t) =
{
q : Ωf (t)→ R, q = q̂ ◦ (A)−1, q̂ ∈ L2(Ω̂f )

}
.

In the following we will use the notation Vk := V (tk) and Qk := Q(tk) to denote
the finite element spaces at the time instant tk.

We introduce the following linear forms:

m(Ω;u,v) =

∫

Ω

ρf (u · v) dΩ,

a(Ω;u,v) =

∫

Ω

µ (ε(u) : ε(v)) dΩ,

c(Ω;u;v,w) =

∫

Ω

ρf ((u · ∇)v ·w) dΩ,

b(Ω; p,v) = −
∫

Ω

p∇ · v dΩ.

The variational formulation of the fluid problem (3),(4) with boundary con-
dition (8) reads: given t ∈ (0, T ], find (u, p) ∈ V (t) × Q(t) such that ∀(v, q) ∈
V0(t)×Q(t) the following holds:

m
(

Ωf (t);
∂u

∂t

∣∣∣
x̂
,v
)

+ c(Ωf (t);u−w;u,v) + a(Ωf (t);u,v) + b(Ωf (t); p,v) = 0

b(Ωf (t); q,u) = 0,

u|Γ(t) = ẋ.
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Time and space discretization. We approximate in time the above weak
problem by the backward differentiation formula of order 1 or 2 (BDF1 or BDF2)
and we linearize the convective term by an extrapolation formula of the same
order. At time tn+1, and at the (k+ 1)-st Dirichlet-Neumann sub-iteration, the
time discrete linearized fluid sub-problem reads as follows: Find (uk+1, pk+1) ∈
Vk ×Qk such that

m
(

Ωf,k; ∂∆tuk+1

∣∣∣
x̂
,v
)

+ a(Ωf,k;uk+1,v) + b(Ωf,k; pk+1,v)

+c(Ωf,k;u∗ −w∗;uk+1,v) = 0, (15)

b(Ωf,k; q,uk+1) = 0, (16)

uk+1 = ẋk on Γk, (17)

for all (v, q) ∈ V0,k ×Qk, where

BDF1 : ∂∆tuk+1

∣∣∣
x̂

=
uk+1 − un

∆t
, u∗ = uk, w∗ = wk,

BDF2 : ∂∆tuk+1

∣∣∣
x̂

=
3uk+1 − 4un + un−1

2∆t
, u∗ = 2uk − uk−1, w∗ = 2wk −wk−1.

For the space discretization of problems (15)-(17), we choose the inf-sup
stable Taylor-Hood finite element pair P2−P1. However, while the velocity field
is continuous at Γk, the pressure space should be able to capture discontinuities
across Γk, which are needed also for the correct evaluation of the hydrodynamic
force (7). In order to deal with pressure discontinuities that occur at Γk (recall
that Γk belongs to a portion of the boundary between domains Ω1

f,k and Ω2
f,k),

we introduce the following spaces:

Ṽ h
k =

{
v ∈ (H1(Ωf,k))2 : v|K ◦G2

K ∈ P2(K̂),v|Ωi
f,k
∈
(
C0(Ωi

f,k)
)2
, i = 1, 2

}
,

Ṽ h
0,k =

{
v ∈ Ṽ k

h : v|Γk
= 0

}
,

Q̃h
k =

{
q ∈ L2(Ωf,k), q|K ◦GK ∈ P1(K̂), q|Ωi

f,k
∈ C0(Ωi

f,k), i = 1, 2
}
,

where K̂ is the reference simplex, and GK is given by (13). The respective
continuous spaces will be denoted by V h

k , V h
0,k, and Qh

k . The appropriate finite

element space for the unknowns in problems (15)-(17) is given by V h
k × Q̃h

k .
For the numerical implementation of our approach, we adopt a strategy

called Subspace Projection Method [8, 6, 41]: we will work with spaces Ṽ h
k and

Q̃h
k , and then use an additional discrete projection to enforce continuity for the

velocity on Γk. Note that V h
k is a vector subspace of space Ṽ h

k .
To make this precise, we first notice that Oseen problem (15) can be formally

expressed as: Find (uk+1, pk+1) ∈ Vk ×Qk such that

s((uk+1, pk+1), (v, q)) = g(v, q), ∀(v, q) ∈ V0,k ×Qk, (18)

where s : (Vk × Qk) × (V0,k × Qk) → R is the bilinear form containing all the
terms with index k+1, and g : (Vk×Qk)→ R is a linear form containing all the
terms involving known quantities. Then, we can define a projection operator:

P : Ṽ h
k → V h

k ,

11



Γf
k,h Γs

k,h

Figure 4: Fluid triangulation (green) aligned with the structure mesh Γs
k,h (black). The fluid

nodes are marked with dots, while the structure nodes are marked with squares. Γf
k,h (red)

is the approximation of the interface given by the fluid mesh.

where V h
k is a vector subspace of space Ṽ h

k . By the Subspace Projection Method,

a discrete counterpart of problem (18) reads: Find
(
ũh
k+1, p̃

h
k+1

)
∈ Ṽ h

k × Q̃h
k

such that

s((Pũh
k+1, p̃

h
k+1), (Pṽh, q̃h)) = g(Pṽh, q̃h), ∀(ṽh, q̃h) ∈ Ṽ h

0,k × Q̃h
k ,

and then set the continuous velocity uh = Pũh.
The linear system resulting from linearization and discretization is solved

with a direct solver (UMFPACK [15, 14]).
Enforcement of the kinematic coupling condition, i.e., the Dirichlet

condition (17). Recall that at every Dirichlet-Neumann sub-iteration k, the
fluid mesh is aligned with the structure position found at the previous iteration
n (see Remark 2). However, in general the fluid and structure meshes do not
coincide since they are made up of different elements (cubic Hermite elements
on the structure side, and quadratic isoparametric edges on the fluid side).
This creates a problem when enforcing the kinematic coupling condition, i.e.,
Dirichlet condition (17) in the fluid problem. However, due to the alignment
of fluid mesh with the structure at time tn, fluid nodes which approximate the
interface are always located on the structure mesh, see Figure 4. Therefore, to
approximate the value of the structure velocity at the fluid nodes (in case they
are not identical), we can simply interpolate the structure velocity at the fluid
nodes and set that approximate structure velocity equal to the fluid velocity at
those nodes to implement the kinematic coupling condition.

More precisely, we take the following approach. Denote by Γf
k,h the approx-

imation of the location of Γk = Γn given by the fluid mesh, and by Γs
k,h the

approximation of Γk = Γn by the structure mesh, see Figure 4. Denote by UΓ,k

and Ẋk the arrays of the nodal values of the corresponding fluid and structure
velocities at the interface. Let us denote by Bfs,k the interpolation matrix of
the structure mesh at the fluid interface nodes. To impose Dirichlet condition
(17), we set

UΓ,k+1 = Bfs,kẊk. (19)

4.3. The discrete structure sub-problem

Time and space discretization. For the time discretization of problem
(5), we will consider a generalized Crank-Nicolson scheme (see, e.g., [27]). At

12



time tn+1, and Dirichlet-Neumann sub-iteration k+1, the time discrete structure
sub-problem is as follows: Find xk+1 ∈ K such that:

∫ L

0

ρs
xk+1 − 2xn + xn−1

∆t2
· yds+

∫ L

0

EI(αxk+1 + (1− 2α)xn + αxn−1)′′ · y′′ds

=

∫ L

0

(αfk+1 + (1− 2α)fn + αfn−1) · yds, (20)

for all y ∈ dK(xk+1), where dK(t) is defined in (6). Here xk+1 refers to the
approximated structure position at the time step n + 1, Dirichlet-Neumann
iteration k + 1.

This scheme is known to be second order accurate for linear problems. For
the numerical results in Sec. 5, we will set α = 1/4 since it is known that for
linear cases this choice leads to an unconditionally stable scheme which possesses
a very small numerical dissipation compared to other schemes, e.g., the Houbolt
method [10]. Our results in [5] show that even for our nonlinear problem, this
choice of α works well.

Time discretization approximates problem (5) by a sequence of quasi-static
problems. Each quasi-static problem is equivalent to the following minimization
problem

xk+1 = arg min
y∈K

J(y), (21)

where the total energy of the beam can be written as:

J(y) =
1

2

∫ L

0

ρs
∆t2
|y|2ds+

1

2

∫ L

0

EIα |(y)′′|2 ds−
∫ L

0

f̃k+1 · yds,

with f̃k+1 accounting for the forcing terms and the terms resulting from time
discretization (i.e. terms involving the solution at previous time steps).

To treat the inextensibility condition |y′| = 1, which is a quadratic con-
straint, we use an augmented Lagrangian Method (see, e.g., [10, 23, 24, 27]).
Let us introduce the following spaces and sets:

V =
{
y ∈ (H2(0, L))2, y(0) = a, y′(0) = b

}
,

V0 =
{
y ∈ (H2(0, L))2, y(0) = 0, y′(0) = 0

}
,

Q =
{
q ∈ (L2(0, L))2, |q| = 1 a.e. on (0, L)

}
,

Problem (21) is equivalent to

{xk+1,x
′
k+1} = arg min

{y,q}∈W
J(y), with W = {y ∈ V, q ∈ Q, y′ − q = 0}.

For r > 0, we introduce the following augmented Lagrangian functional:

Lr(y, q;µ) = J(y) +
r

2

∫ L

0

|y′ − q|2 ds+

∫ L

0

µ · (y′ − q) ds. (22)

Let {x,p;λ} be a saddle point of Lr over (V × Q) × (L2(0, L))2. Then x is a
solution of problem (21) and p = x′. In order to solve the above saddle-point
problem, we employ the algorithm called ALG2 studied, e.g., in [23, 27], which
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is in fact a ‘disguised’ Douglas-Rachford operator-splitting scheme. It reads as
follows.

Take an initial guess {x−1,λ0} ∈ V×(L2(0, L))2. Then, for i ≥ 0,
{
xi−1,λi,

}

being known, proceed with:

Step 1: Find pi ∈ Q such that:

Lr(xi−1,pi;λi) ≤ Lr(xi−1, q;λi), ∀q ∈ Q. (23)

Step 2: Find xi ∈ V such that:

Lr(xi,pi;λi) ≤ Lr(y,pi;λi), ∀y ∈ V0. (24)

Step 3: Update the Lagrange multipliers by:

λi+1 = λi + r((xi)′ − pi). (25)

For details on how to solve the minimization problems at Steps 1 and 2 we refer
the reader to [10, 23, 24, 5]. For the space discretization of problem (20), we
use a third order Hermite finite element method (see, e.g., [10]).

Steps 1, 2, and 3 are repeated until the following stopping criterion

(∫ L

0

∣∣∣∣
∂

∂s
xi − pi

∣∣∣∣
2

ds

)1/2

≤ εinex (26)

is satisfied for a given tolerance εinex > 0, or the number of iterations exceeds a
given number.

Remark 3. It is known that parameter r plays a fundamental role for the con-
vergence of algorithm (23)-(25), as was pointed out in [17]. We adopt the same
adaptive strategy presented in [17], i.e. we start with an initial guess r = r0,
where r0 is a fixed number (for instance in the range of the flexural stiffness EI).
Once the Augmented Lagrangian algorithm terminates, we check if termination
criterion (26) is met. In case (26) is violated, the value of r is increased (e.g.,
by a factor of 10) and ALG2 is repeated with the new value of r.

Once (26) is satisfied, we set x̃k+1 = xi, which defines the new structure
position before relaxation.

Remark 4. Numerical experiments in [5] show that the generalized Crank-
Nicolson scheme with α = 1/4 is of second order when solving the inextensible
beam problem with ALG2, provided that the stopping tolerance for the Aug-
mented Lagrangian method is sufficiently small.

Enforcement of the dynamic coupling condition, i.e, the fluid load
onto the structure. The fluid load onto the structure is given by the hydro-
dynamic force (7). The computation of the hydrodynamic force (7) is crucial
for the numerical stability and accuracy of the Dirichlet-Neumann FSI solver
(see, e.g., [20]). In the setting considered in this paper (an immersed leaflet),
the quality of approximation of the pressure jump across the leaflet is of great
importance, as demonstrated by the results in Section 5.1.
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The load exerted by the fluid onto the structure fΓ can be computed as
the variational residual R of the momentum conservation equation for the fluid,
tested with test functions v that are different from zero at Γ(t):

∫

Γ(t)

fΓ · v dΓ = −
∫

Γ(t)

σ1n1 · v dΓ−
∫

Γ(t)

σ2n2 · v dΓ

= −
(

Ω1
f (t);

∂u

∂t

∣∣∣
x̂
,v
)
− c(Ω1

f (t);u−w;u,v)− a(Ω1
f (t);u,v)− b(Ω1

f (t); p,v)

−
(

Ω2
f (t);

∂u

∂t

∣∣∣
x̂
,v
)
− c(Ω2

f (t);u−w;u,v)− a(Ω2
f (t);u,v)− b(Ω2

f (t); p,v)

= R(Ω1
f (t);u, p,v) +R(Ω2

f (t);u, p,v). (27)

Let ff
Γ,k+1 denote the discrete hydrodynamic force at Γf

k,h. After time and

space discretization of (27), ff
Γ,k+1 is calculated from:

∫

Γf
k,h

ff
Γ,k+1 · vh dΓ =R(Ω1

f,k;uh
k+1, p

h
k+1,vh)

+R(Ω2
f,k;uh

k+1, p
h
k+1,vh), (28)

where uh
k+1 and phk+1 are the discrete velocity and pressure at the Dirichlet-

Neumann sub-iteration k+ 1, obtained from solving system (15)-(17) with vh ∈
V h
k . By using matrix notation, this problem can be written as follows:

Mf
Γ,kF

f
Γ,k+1 = Rk+1, (29)

where F f
Γ,k+1 is the array of nodal values of ff

Γ,k+1, Mf
Γ,k is the mass matrix at

Γf
k,h, and Rk+1 corresponds to the known values of the combined residuals ap-

pearing on the right-hand side of equation (28). This defines the hydrodynamic
force, calculated at the fluid mesh nodes along the leaflet.

To enforce the dynamic coupling condition (9), this hydrodynamic force
needs to be set equal to the structural load f on the leaflet. Since the fluid and
structure meshes do not match, we are facing the same difficulty as in evaluating
the kinematic coupling condition (i.e., the Dirichlet condition) in the fluid sub-
problem. To get around this difficulty, we assign the values of the hydrodynamic
force at the structure mesh nodes Γs

k,h in the following way.
Denote by F s

Γ,k+1 the values of the hydrodynamic force at the structure
mesh nodes Γs

k,h. To calculate F s
Γ,k+1 we first project the structure mesh nodes

Γs
k,h onto the fluid mesh Γf

k,h at the interface. This can be done easily since

the two meshes are aligned (although not matching). Then, evaluate ff
Γ,k+1

at the projected structure nodes using interpolation. Denoting by Bsf,k the

interpolation matrix of the projected structure nodes on Γf
k,h, we define

F s
Γ,k+1 = Bsf,kF

f
Γ,k+1. (30)

This defines the hydrodynamic force at the structure mesh nodes, and enforces
the dynamic coupling condition (9).

Power exchange. It is important to notice that in this numerical imple-
mentation of the dynamic coupling condition, the power exchanged between the
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fluid and structure is not perfectly balanced, i.e., at the discrete level, the en-
ergy imparted by the fluid onto the structure is not perfectly converted into the
total energy of the structure, and vice versa. This is due to the non-matching
fluid and structure meshes. Never the less, as we show in Sec. 5.2, the difference
between the two is ”negligible”. This can be precisely quantified as follows.

At the time tn+1, after the convergence of the Dirichlet-Neumann sub-
iterations, the discrete power exchanged at the interface from the fluid side
is

P f,n+1 =

∫

Γf,n+1
h

ff,n+1
Γ · un+1

h dΓ = (Un+1
Γ )TMf,n+1

Γ F f,n+1
Γ

= (Ẋn+1)T (Bn+1
fs )TMf,n+1

Γ F f,n+1
Γ , (31)

where for the last equation we used (19). Similarly, the discrete power exchanged
at the interface from the structure side is

P s,n+1 =

∫

Γs,n+1
h

fs,n+1
Γ · ẋn+1

h dΓ = (Ẋn+1)TMs,n+1
Γ F s,n+1

Γ

= (Ẋn+1)TMs,n+1
Γ Bn+1

sf F f,n+1
Γ , (32)

where for the last equation we used (30). Thus, the power exchanged at the
interface is balanced if

(Bn+1
fs )TMf,n+1

Γ = Ms,n+1
Γ Bn+1

sf .

Since Γf,n+1
h and Γs,n+1

h are aligned but do not coincide (Γs,n+1
h is a piecewise

cubic, globally C1 function and Γf,n+1
h is a piecewise quadratic interpolation)

and the fluid and structure discretizations are based on different elements, the
balance equation is not necessarily fulfilled exactly. However, in Sec. 5.2 we
will show that the difference between P f,n+1 and P s,n+1 is very small in our
computations.

5. Numerical results

We performed a series of numerical tests aimed at assessing our extended
ALE approach and showing its features. In all the tests, we consider the follow-
ing:

• Geometry: A rectangular fluid domain of height 1 cm and length 6
cm: [−3, 3] cm ×[−0.5, 0.5] cm is considered. The thin “valve leaflet” is
clamped at the midpoint of the base, and it is 0.5 cm long.

• Boundary conditions: A no slip condition is imposed on Γdown (see Fig.
1), a symmetry condition is imposed on Γup, and a homogeneous Neumann
condition is enforced on Γout. The inlet condition changes depending on
the test.

The fluid density ρf is set to 1 g/cm3, while the dynamic viscosity µ varies to
achieve a peak Reynolds number (based on the maximum inlet velocity U) equal
to 100 in each test. The structure properties will be specified in each test case.
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We will consider different meshes for the fluid domain, while for the struc-
ture space discretization we take hs = 0.5/44 cm in every test. The time step
is always set to 10−2 s. For the Augmented Lagrangian method in Sec. 4.3,
we take εinez = 10−4 in (26), and at the beginning of the simulation we set
r0 = 10−4.

5.1. Test 1: Continuous vs. discontinuous pressure across the interface

The goal of this preliminary test is to show the importance of capturing
the pressure discontinuity across the interface. For this purpose we consider
a simple test problem which involves a steady state solution. This solution
is obtained after a time-independent Poiseuille profile is imposed at Γin with
maximum velocity U = 1 cm/s, and the initial position of the leaflet is a vertical
straight line. We set ρs = 106 g/cm and EI = 0.01 g/(cm s2). For the given
inlet condition and structural parameters, the leaflet displacement is negligible
(' 10−5 cm) during the time interval [0, 10] s. See Figure 6.

(a) x component (b) y component

Figure 5: Integral over the interface of the components of the hydrodynamic force over time:
(a) x component and (b) y component. The results are obtained on four different meshes
(l = 0, 1, 2, 3) and with finite element pairs V h

k × Qh
k (continuous pressure) and V h

k × Q̃h
k

(discontinuous pressure). The legend in (b) is common to both subfigures.

We consider four meshes resulting from uniform refinement of an initial
coarse mesh for the fluid subdomain, with edge lengths hf =

√
2/8 · 2−l cm, l =

0, 1, 2, 3. We track the behavior of the hydrodynamic force along the leaflet over
time to see the convergence behavior of both pressure approximations. Namely,
we track, in time, the x and y components of the integrated hemodynamic force
(“averaged force”) over the interface:

FΓ,x(t) =

∫

Γs
h(t)

ff
Γ,x(t) dΓ, FΓ,y(t) =

∫

Γs
h(t)

ff
Γ,y(t) dΓ.

In Fig. 5, we plot FΓ,x and FΓ,y for all four meshes and finite element pairs
V h
k ×Qh

k corresponding to the continuous pressure case, and all for meshes and

finite element pairs V h
k × Q̃h

k corresponding to the discontinuous pressure case.
The following conclusions can be reached from this study:

- In all the cases, both components reach a plateau after roughly 8 s, mean-
ing that a steady state has been “achieved” at that time, i.e., a steady
state is well approximated by the solution at time 8 s.
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- When using the V h
k × Q̃h

k pair, corresponding to the discontinuous pres-
sure approximation, mesh independence is reached at the third mesh re-
finement, while for the V h

k ×Qh
k pair, mesh independence is not achieved

even after four mesh refinements.
- At each successive refinement the solution values computed with contin-

uous pressure get closer to the solution values computed with the dis-
continuous pressure on coarse mesh. Thus, the V h

k × Qh
k pair requires a

significantly finer mesh to approximate the physical solution as well as the
discontinuous pressure pair V h

k × Q̃h
k .

continuous pressure discontinuous pressure

(a) l = 0

(b) l = 1

(c) l = 2

(d) l = 3

Figure 6: Pressure in a portion of the computational domain at time t = 9 s computed with
the continuous (left) and discontinuous (right) pressure finite element pair on four different
refinement levels: (a) l = 0, (b) l = 1, (c) l = 2, and (d) l = 3.

As a qualitative evidence, we report in Fig. 6 the pressure at time t = 9 s
computed on the four meshes with both finite element pairs. One can see
that when using the continuous pressure, there is a huge difference between
the pressure computed on the coarsest mesh and the pressure computed on the
finest mesh. This is not the case when using the discontinuous pressure finite
element pair. Moreover, the continuous pressure computed on the finest mesh
looks clearly similar to the discontinuous pressure on any mesh.

From now on, we present the results which have all been obtained with the
V h
k × Q̃h

k pair.
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5.2. Test 2: Standard ALE vs. extended ALE for small structure displacements

With this test we aim at showing that when the structure displacement
is relatively small, the solution obtained using our extended ALE approach
“coincides” with the solution obtained using the standard ALE approach. For
this purpose, we consider a time-dependent (time periodic) problem which is
driven by the inlet velocity data, which is a time-dependent Poiseuille velocity
profile, with maximum velocity:

U(t) =
1

4

(
1− cos

(π
2
t
))

cm/s.

The Strouhal number for this problem is 0.5, and we set ρs = 5 g/cm and EI =
0.05 g/(cm s2). The inlet boundary condition and the structural parameters
were chosen to generate a “moderate”-amplitude oscillatory motion of the beam
around its initial configuration, which is a straight vertical line.

We consider two meshes for the fluid subdomain with hf =
√

2/8 · 2−l cm,
l = 1, 2, and apply our extended ALE method and a standard ALE method
on both meshes. We study: (1) the quantitative comparison of the location of
the beam tip, i.e., its x coordinate, vs. time, (2) the qualitative comparison of
the solution in the 2D channel, superimposed over the fluid mesh, and (3) the
quantitative comparison between the two methods of the power exchanged at
the interface. The following conclusions are obtained:

- The oscillations of the beam tip computed with the two methods are per-
fectly in phase both for mesh l = 1 and l = 2. See Figure 7. While there
is a slight difference in amplitude with mesh l = 1 (the movement com-
puted with the standard ALE method is slightly smaller), the movements
of the beam tip computed with the two approaches on mesh l = 2 are
superimposed over the whole time interval [0, 10] s.

- A qualitative comparison of the beam position, together with the fluid ve-
locity magnitude, computed with the standard and extended ALE meth-
ods at time t = 7.9 s is reported in Fig. 8. In Fig. 8, we also show the
computational mesh at the selected times: we can see the difference in the
mesh deformation given by the standard ALE method and our extended
ALE approach. We remind that in the latter case the mesh is optimal in
the sense of the local measure (11).

- Excellent agreement between the values of the discrete power exchanged
at the interface between the two methods can be seen in Fig. 9. More
precisely, Fig. 9 shows the discrete power exchanged at the interface from
the fluid side P f , defined in (31), computed with the two ALE approaches
on meshes l = 1, 2. We see occasional jumps in the discrete power com-
puted with the extended ALE approach. Those jumps occur when a node
passes from the fluid domain (either Ω1

f (t) or Ω2
f (t)) to the interface, or

vice versa, and they become smaller as the mesh gets finer (compare Fig.
9(a) and 9(b)). A further quantification of the power exchange error is
presented at the end of this section.

Mesh independence. We show that the results reported in Figs. 7 and
9 are mesh independent. We consider three different fluid domain meshes with
hf =

√
2/8 · 2−l cm, l = 0, 1, 2. The x component of the beam tip vs. time,

computed with the standard ALE method on the three different meshes over the
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(a) l = 1 (b) l = 2

Figure 7: Comparison of the x component of the beam tip movement computed with a
standard ALE and the extended ALE method on mesh l = 1 (a), and on mesh l = 2 (b).

(a) t = 7 s (b) t = 9 s

Figure 8: Test 2: Fluid velocity magnitude and beam position computed with a standard
ALE approach (top) and the extended ALE method (bottom) at the time t = 7s (a), and at
t = 9s (b). The computational mesh is also shown.
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(a) l = 1 (b) l = 2

Figure 9: Comparison of discrete power exchanged at the interface from the fluid side P f ,
defined by (31), computed with a standard ALE vs. our extended ALE method on mesh l = 1,
shown in panel (a), and on mesh l = 2, shown in panel (b).

(a) standard ALE (b) extended ALE

(c) zoom of (a) (d) zoom of (b)

Figure 10: Horizontal component of the beam tip movement computed with a standard ALE
method, shown in panel (a), and our extended ALE method, shown in panel (b), for different
meshes. A zoomed view of (a) and (b) is reported in (c) and (d), respectively.
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(a) P f and P s (b) P f − P s

Figure 11: Extended ALE method, mesh l = 2: (a) discrete power exchanged at the interface
from the fluid side P f , defined in (31), and from the structure side P s, defined in (32), over
time; (b) the difference P f − P s.

time interval [0, 10] s, is plotted in Fig. 10(a). The corresponding graph obtained
with the extended ALE method is shown in Fig. 10(b). Since one can hardly see
any difference in the results computed with the three meshes, we report in Fig.
10(c) and 10(d) a zoomed view of Fig. 10(a) and 10(b), respectively. For both
ALE methods, mesh independence is reached at the second mesh refinement. If
fact, we see in Fig. 10(c) and 10(d) that the beam tip movement computed by
both ALE methods on meshes l = 1 and l = 2 are superimposed.

Power exchange quantification. Next, we quantify the unbalance in the
power exchange at the interface. As explained at the end of Sec. 4.3, at each
time tn+1 the powers exchanged at the interface from the fluid side P f,n+1 and
from the structure side P s,n+1 are not necessarily equal. In Fig. 11(a), we
plot the powers P f and P s computed by the extended ALE method with mesh
l = 2 over the time interval under consideration, while in Fig. 11(b) we show
the difference P f − P s. In Fig. 11(b), we see that over a long time interval
the difference between the two powers exchanged at the interface is of the order
of 10−5 g cm/s3. This corresponds to 0.1% of the power value, which is of the
order of 10−2 g cm/s3, as shown in Fig. 11(a). Such a small difference in P f

and P s does not endanger stability.

5.3. Test 3: Dirichlet-Neumann sub-iterations

This test is aimed at assessing the effectiveness of Aitken’s acceleration
method when the structure is immersed in the fluid. For this purpose we con-
sider the same boundary conditions as in Test 2, and we set the same value
for the flexural stiffness EI = 0.05 g/(cm s2), however, we let the structure
density vary: ρs = 32, 16, 8, 4, 2, 1, 0.5 g/cm. Recall that the fluid density is
ρf = 1 g/cm3. As noted earlier, we expect to see problems (instabilities) in the
Dirichlet-Neumann approach in the cases when the structure is relatively light
with respect to the fluid [12]. In the problems studied in this manuscript, this
means that we can expect instabilities in the Dirichlet-Neumann sub-iterations
when the ratio ρs/ρf approaches one (from above).

We use the mesh for the fluid subdomain with hf =
√

2/4 cm, and we
track the number of Dirichlet-Neumann iterations over time without and with
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(a) no relaxation (b) relaxation with Aitken’s acceleration

Figure 12: Extended ALE method: number of Dirichlet-Neumann iterations required to satisfy
stopping criterion (14) over time (a) without and (b) with Aitken’s acceleration paramenters.

relaxation parameters given by Aitken’s acceleration method. Fig. 12 report
the results. The following conclusions can be obtained:

- When the structure is immersed in the fluid the number of Dirichlet-
Neumann iterations increases as the structure density decreases, as ex-
pected. Such an increase in the number of iterations is more dramatic
when no relaxation is used (see Fig. 12(a)).

- If no relaxation is used, the Dirichlet-Neumann algorithm ceases to con-
verge when ρs reaches the value of ρf or goes below it.

- When the relaxation parameters are set by Aitken’s acceleration method,
the Dirichlet-Neumann algorithm converges regardless of the value of ρs
and in much less iterations. For instance, for ρs = 2 g/cm, the average
number of Dirichlet-Neumann iterations over interval [0, 10] s is 25 when
no relaxation is used and 7 when Aitken’s acceleration method is adopted.

5.4. Test 4: Large displacements

For the last test case, we impose at Γin a time dependent Poiseuille profile
with maximum velocity which is four times larger than the one used in Test 2:

U(t) =
(

1− cos
(π

2
t
))

cm/s,

giving the Strouhal number 0.5, as in Test 2. The structural parameters are the
same as in Test 2. The inlet boundary condition and the structural parameters
are such that the induced motion of the beam displays large amplitude oscilla-
tions. See Fig. 14. The initial configuration of the beam is that of a straight,
vertical line.

We use a mesh for the fluid subdomain with hf =
√

2/16 cm. We let
the simulations with the standard and extended ALE method run until the
standard ALE method breaks down due to excessive mesh distortion, which
happens shortly after t = 6.5 s.

Fig. 13 shows a comparison between standard and extended ALE method
in terms of the x component of the beam tip movement and discrete power
exchanged at the interface from the fluid side P f , defined in (31). As long as
the simulations with both ALE methods run, the computed x components of
the movement of the beam tip are in excellent agreement (see Fig. 13(a)). The
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(a) movement of the beam tip (b) Power P f

Figure 13: Comparison between standard and extended ALE method in terms of (a) the x
component of the beam tip movement and (b) discrete power exchanged at the interface from
the fluid side P f (31).

(a) t = 5.8 s (b) t = 6.5 s

Figure 14: Test 4: fluid velocity magnitude and beam position computed with a standard
ALE approach (top) and the extended ALE method (bottom) at the time (a) t = 5.8 s and
(b) t = 6.5 s. The computational mesh is also shown.
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Figure 15: Minimum angle of the elements in the mesh given by the standard and extended
ALE methods versus time.

discrete powers P f computed by the two ALE methods are in good agreement
until around t = 5.8 s, which is close to when the simulation with the standard
ALE method crashes.

In Fig. 14, we show a qualitative comparison of the beam position, together
with the fluid velocity magnitude, computed with the standard and extended
ALE methods at the time snap-shots corresponding to t = 5.8 s and t = 6.5 s.
Fig. 14 also displays the computational mesh at the selected times: notice the
severe distortion of the mesh given by the standard ALE method occurring at
time t = 6.5 s. This will lead to the simulation break down within a few time
steps. On the other side, the quality of the mesh given by the extended ALE
method is still high (see Fig. 14(b), lower panel).

As a further proof of the different quality of the meshes given by the standard
and extended ALE methods, we report in Fig. 15 the minimum angle of the
elements over time. We see that the minimum angle in the meshes given by
the standard ALE method occasionally drops below 10 degrees, while this never
happens with the extended ALE method. In particular, the minimum angle
in the mesh obtained with the standard ALE method is equal to 4 degrees at
t = 6.5 s. On the other hand, the average minimum angle for the meshes given
by the extended ALE method oscillates around 23 degrees most of the time.

Unlike the simulation with the standard ALE method, the simulation with
the extended ALE method does not crash over the time interval under consid-
eration [0, 10] s.

6. Conclusions

Standard ALE methods for the simulation of fluid-structure interaction prob-
lems fail when the structural displacement is large. In this paper, we proposed
an extended ALE method to overcome this limitation.

Our extended ALE method relies on a variational mesh optimization tech-
nique with an additional constraint to enforce the alignment of the structure
interface with edges of the resulting triangulation. We combined this method
with a Dirichlet-Neumann algorithm to simulate the interaction of an incom-
pressible fluid with an inextensible beam. We adopted an acceleration technique
based on Aitken’s relaxation to allow convergence of the Dirichlet-Neumann al-
gorithm when the structure density is comparable to, or smaller than, the fluid

25



density, and to speed up the convergence when the structure density is greater
than the fluid density.

We performed several 2D tests to assess the proposed method. In particular,
we showed that when the structural displacement is mild, the results given by
our extended ALE method are in excellent agreement with the results given by
a standard ALE method. On the other hand, when the structural displacement
is large, and a standard ALE method fails, we showed that the quality of the
mesh given by the extended ALE method remains high, thereby allowing full
computer simulations of the underlying problem.

Due to the simplicity and their instructive nature, the test problems consid-
ered in this manuscript could be used as benchmark problems in the develop-
ment of numerical tools for the computer simulation of FSI problems involving
immersed structures with large displacement, such as, e.g., heart valve problems.
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