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Fig 17: Inversion results for Field Station ET008
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Fig 18: Inversion results for Field Station ET10n
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Conclusion and Summary

• INN learns the forward process and obtains the inverse process ‘for 
free’.

• Efficiently and effectively draws from the posterior distribution to 
characterize the associated uncertainties.

• The generation of the INN posteriors is computationally very cheap 
compared to other Bayesian approaches.

•  Future work involves applying INN for a full 2D and 3D MT field 
inversion.
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Fig 19: Data Generation Steps for 2D training using Invertible Neural Network
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Fig 20: Inversion results for 2D Synthetic MT  data

Field MT Inversion Results

Preliminary 2D Synthetic results
1 Introduction

• Climate changes have a lot of impact on 
our lives.

• Extensive research on renewable energy.
• Renewable energy depends on minerals 

like copper, lithium, nickel, cobalt and 
aluminum.

Fig1: The progress of AusLamp data acquisition with 
emphasis on the East Tenant region.

Objective • Electromagnetic (EM) methods are key in 
mineral exploration and geothermal energy.

• Growing demand for geothermal energy and 
critical minerals will boost EM data use.

• Finding an alternative approach that 
accurately and efficiently samples from the 
posterior probability distribution.

• Explore the feasibility of using Invertible 
Neural Network to solve EM inverse 
problems and quantity uncertainties.Fig 2: Picture of resistivity model from MT data inversion 

showing geothermal production systems.

Rosenkjaer et al., 
2015

Motivation
East Tennant

Fig 3: The progress of AusLamp data acquisition 
with emphasis on the East Tenant region.

• INN works with Bayes’ theorem and normalizing flows.
• Mapping is learnt in the forward direction
• Training-free backward mapping.
• Added latent variable guarantees bijectivity.

Fig 7 : Backward coupling architecture

• INN splits the input into 2 halves.
• Each half goes through an affine transformation.
• The results are concatenated to produce the output.
• For inversion, each half goes through inverse transformation.
• The results are concatenated to produce the inputs in the backward direction.
• This produces the inversion.
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Fig 16: Cover thickness estimates and associated uncertainties from MT data inversion using the INN.

Fig 9: Predicted AEM data

Fig 10: Distribution of the latent variable

Fig 11: Resistivity model prediction Fig 12: Posterior distributions of resistivity models

• UQ enhances inversion for better risk 
analysis and decision making.

• Traditional inversions yield a single model, 
restricting uncertainty assessment.

• Efficient high-dimensional sampling 
(Posterior probability Density) methods are 
needed.

• Propose the use of Invertible Neural 
Networks.

• Apply INN to MT data from East Tennant, 
Australia

Fig 15: Loss Function Curves
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Fig 6 : Forward coupling architecture
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Fig 8 : Our adaptation of INN

Fig 4: Ambiguity in 
mapping
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Fig 5: Bijective Mapping INN
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Fig 13: Inversion results for Synthetic example 1
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Fig 14: Inversion results for Synthetic example 2
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