
Modern Algebra Preliminary Exam
Practice Problems

Department of Mathematics
University of Houston

The purpose of this list of problems is to help students practice for the Modern Al-
gebra prelim. Some of the actual prelim problems may be entirely different from
those on this list, and they will depend on the particular instructor who writes the
exam. Therefore, students planning to take the exam should either take the pre-
lim course for the corresponding year, or speak with the instructor to clarify which
specific topics will and will not be covered.

Problem 1: Let p be a prime number. Show that an element has order p in Sn if
and only if its cycle decomposition is a product of commuting p-cycles. Also, show
by an explicit example that this need not be the case if p is not a prime.

Problem 2:

(a) Show that if n ≥ m, then the number of m-cycles in Sn is given by

n(n− 1)(n− 2) . . . (n−m+ 1)

m
.

(b) Find all numbers n such that S7 contains an element of order n.

Problem 3: Show that if n ≥ 4, then the number of permutations in Sn which are
the product of two disjoint 2-cycles is

n(n− 1)(n− 2)(n− 3)

8
.

Problem 4: Prove that S4 does not contain a subgroup isomorphic to Q8.

Problem 5: Let H be a subgroup of order 2 in G.

(a) Show that NG(H) = CG(H)

(b) If NG(H) = G, then show that H ⩽ Z(G)

(c) Prove that A5 cannot have a normal subgroup of order 2.
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Problem 6: Consider

H(F ) =


1 a b
0 1 c
0 0 1

 : a, b, c ∈ F


Then H(F ) is a group of order |F |3 under matrix multiplication, called Heisenberg
Group over F .

(a) Find the order of each element of the finite group H(Z/2Z).
(b) Prove that every non-identity element of the group H(R) has infinite order.

(c) Find the center Z(H(F )) of group H(F ) and prove that Z(H(F )) is isomor-
phic to the group (H,+).

Problem 7: If ϕ : G→ H is an isomorphism, prove that |ϕ(x)| = |x| for all x ∈ G.
Deduce that any two isomorphic groups have the same number of elements of order
n for each n ∈ Z+. Show by an explicit example that this may not be true if ϕ is
only assumed to be a homomorphism.

Problem 8: Let G = {z ∈ C : zn = 1 for some n ∈ Z+}. Prove that for any
fixed integer k > 1, the map from G to itself defined by z 7→ zk, is a surjective
homomorphism. Also show that it is not an isomorphism.

Problem 9: Let p be a prime and G = Zp × Zp. Determine the order of Aut(G),
the group of automorphisms of G.

Problem 10: Let A be a non-empty set, let k be a positive integer with k ≤ |A|,
and let B be the set of all subsets of A with cardinality k. The symmetric group
SA acts on B by

σ.{a1, a2, ..., ak} = {σ(a1), σ(a2), ..., σ(ak)}.

(a) Prove that this is a group action.

(b) Describe explicitly how the elements (1 2) and (1 2 3) act on the six 2−element
subsets of {1, 2, 3, 4}.

Problem 11: Let H be a subset of group G.

(a) Show ifH is non-empty, finite and closed under multiplication then it satisfies
the subgroup criterion.

(b) Give an explicit example of a group G and an infinite subset H of G that is
closed under the group operation but is not a subgroup of G.

Problem 12:
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(a) Let G be an Abelian group. Prove that {g ∈ G : |g| <∞} is a subgroup of
G.

(b) Show by an explicit example that this may not be true if G is not Abelian.

(c) Find an example of a group G for which the subset of elements of infinite
order together with the identity is not a subgroup of G.

Problem 13: Give an example of a group G and an integer n ∈ Z for which
{g ∈ G : gn = 1} is not a subgroup of G.

Problem 14: Let H be a subgroup of a group G. Show that

(a) H ≤ NG(H). Also give an example to show that this is not necessarily true
if H is not a subgroup of G.

(b) H ≤ CG(H) if and only if H is Abelian.

Problem 15: Let G and H be groups and ϕ : G→ H be a homomorphism. Let E
be a subgroup of H. Prove that ϕ−1(E) ⩽ G. Additionally, if E ⊴ H, prove that
ϕ−1(E) ⊴ G. Deduce that Ker(ϕ) ⊴ G.

Problem 16: Calculate the number of Abelian groups of order 2000, up to isomor-
phism.

Problem 17: Construct 2 non-isomorphic groups of order 21.

Problem 18: Construct two non-isomorphic, non-Abelian groups of order 27.
Prove that they are non-Abelian and non-isomorphic to one another.

Problem 19: Let G be a finite group with |G| = 2024. Prove that there exists
a ∈ G such that a ̸= e and a ∗ a = e.

Problem 20: Let G be a finite group and suppose that H and K are subgroups of
G such that gcd(|H|, |K|) = 1. Prove that H ∩K = {e}.

Problem 21: Letm,n ∈ N. Prove that the group Zn×Zm is cyclic iff gcd(m,n) = 1.

Problem 22: Let G andK be groups and ϕ : G→ K a homomorphism. Prove that
for every a ∈ G, if a has finite order, then ϕ(a) has finite order and o(ϕ(a)) |o(a).

Problem 23: Let G and K be groups and ϕ : G → K a homomorphism. Prove
that ϕ is injective if and only if o(ϕ(a)) = o(a) for every a ∈ G.

Problem 24: Prove that {(1, 2), (1, 2, · · · , n)} is a generating set for Sn.
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Problem 25: Prove that the center of Sn is trivial for every n ≥ 3.

Problem 26: Prove that the map ϕ : Sn → Z2 defined by

ϕ(σ) =

{
0 if σ is even
1 if σ is odd

is a homomorphism.

Problem 27: Let G be a finite group with |G| = n. Let S be a subset of G with
|S| > n

2
. Prove that G = {ab : a, b ∈ S}.

Problem 28: Prove that any subgroup of a cyclic group is cyclic.

Problem 29: For a given set A, denote by SA the group of all bijective functions
from A to A with the composition as the binary operation. Prove that for any sets
A and B, if |A| = |B|, then SA

∼= SB.

Problem 30: Prove that R is not finitely generated.

Problem 31: Prove that Q is not finitely generated.

Problem 32: Let H ⩽ G. On the left coset space G/H define the operation

aH ∗ bH = abH.

Prove that ∗ is a well-defined binary operation if and only if H is normal in G.

Problem 33: Given two subsets A,B ⊆ G, denote A•B = {ab : a ∈ A and b ∈ B}.
Let H ⩽ G. Prove that H is normal in G iff for every x, y ∈ G, the set xH • yH is
a left coset of H in G.

Problem 34: Let H ⩽ G, and let ∗ and • be the operations as defined above.
Prove that H is normal in G iff for every x, y ∈ G

xH ∗ yH = xH • yH.

Problem 35: Suppose that S is a non-empty subset of G such that aSa−1 ⊂ S for
all a ∈ G. Prove that ⟨S⟩ is normal in G.

Problem 36: Let G′ be the subgroup generated by the set {aba−1b−1 : a, b ∈ G}.
Prove that

(a) G′ ⊴ G.

(b) The quotient group G/G′ is Abelian.

(c) If H ⊴ G is such that G/H is Abelian, then G′ ⊆ H.
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Problem 37: A subgroup H ≤ G is said to be a characteristic subgroup of G if
α(H) ⊆ H for all α ∈ Aut(G). Prove that

(a) Every characteristic subgroup of G in normal in G.

(b) Z(G) and G′ are characteristic subgroups of G.

(c) If H ⊴ G and K is a characteristic subgroup of H, then K ⊴ G.

Problem 38: Let H ⊴ G and let α ∈ Aut(G) be such that α(H) ⊂ H. Prove that
there exists β ∈ Aut(G/H) such that π ◦ α = β ◦ π, where π : G → G/H is the
canonical quotient map.

Problem 39: Let G and K be groups and ψ : G→ K a homomorphism. Prove or
disprove the following statements.

(a) If H ⊴ G, then ψ(H) ⊴ K.

(b) If L ⊴ K, then ψ−1(L) ⊴ G.

Problem 40: Prove that every finitely generated Abelian group is a quotient of Zn

for some n ∈ N.

Problem 41: For the given group G and the generating set S for G in each of the
following parts, find the cardinality of the set BS(n) = {g ∈ G : |g|S ≤ n}, where

|g|S := min{n ∈ N : ∃s1, s2, . . . , sn ∈ S such that g = s1s2 · · · sn},

is the word length of g with respect to the generating set S.

(a) G = Z and S = {−1, 1}
(b) G = Z and S = {−2,−1, 1, 2}
(c) G = Z× Z and S = {(1, 0), (0, 1), (−1, 0), (0,−1)}
(d) G = F2 = ⟨a, b⟩ and S = {a−1, a, b, b−1}

Definitions for Problems 42 and 43: An action of a group G on a set X is said
to be

(i) faithful if for every non-trivial g ∈ G, there exists x ∈ X such that gx ̸= x.

(ii) free if for every non-trivial g ∈ G and every x ∈ X we have gx ̸= x.

Problem 42: Let G be a group and H a subgroup of G. For each of the following
actions, determine whether the action is faithful, free, both or neither.

(a) The action of G on G by left multiplication.

(b) The action of G on G by conjugation.

(c) The action of G on G/H by left multiplication.
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(d) The action of G on the set X of all subgroups of G by conjugation.

Problem 43: For each of the following actions, determine whether the action is
faithful or not.

(a) The canonical action of Sn on {1, 2, . . . , n}.
(b) The action of GLn(R) on Rn by matrix multiplication.

(c) The action of Z on the unit circle S1, given by rotations k · x := R2πkθ,
∀k ∈ Z, x ∈ S1, for a fixed 0 < θ < 1.

(d) The action of GL2(R) on the the set X of all lines in R2 passing through the
origin.

Problem 44: Prove that an action of the group G on a set X is transitive if and
only if it is conjugate to the canonical action of G on the coset space G/H for some
subgroup H ≤ G.

Problem 45: Let G be a group, and let x ∈ G. Consider the action of G on G by
conjugation. What is the stabilizer subgroup Gx.

Problem 46: Let G be a group, H a subgroup of G, and x ∈ G. Consider the
action G on G/H by left multiplication. What are the stabilizer subgroup and the
orbit of the point xH ∈ G/H.

Problem 47: Consider the action of Z on S1 as in part (c) of Problem 43 above,
in the case θ = 3

8
. For an arbitrary point x ∈ S1, find the stabilizer subgroup and

the orbit of x.

Problem 48: Let G be a group.

(a) Denote Inn(G) := {ϕg : g ∈ G} for the set of all inner automorphisms of G.
Prove that Inn(G) ⊴ Aut(G).

(b) Prove that the map Φ : G → Inn(G) defined by Φ(g) = ϕg is a (surjective)
group homomorphism, and find the kernel of Φ.

Problem 49: Prove or disprove: If K ⊴ H and H ⊴ G, then K ⊴ G.

Problem 50: Let G be a group and let G′ be the subgroup generated by the set
{aba−1b−1 : a, b ∈ G}. Prove that

(a) G′ ⊴ G.

(b) The quotient group G/G′ is Abelian.

(c) If H ⊴ G is such that G/H is Abelian, then G′ ⊆ H.
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Problem 51: A subgroup H ⩽ G is said to be a characteristic subgroup of G if
α(H) ⊆ H for all α ∈ Aut(G). Prove that

(a) Every characteristic subgroup of G in normal in G.

(b) Z(G) and G′ are characteristic subgroups of G.

(c) If H ⊴ G and K is a characteristic subgroup of H, then K ⊴ G.

Problem 52: Let H and K be normal subgroups of G and H ⩽ K. Show that
K/H is a normal subgroup of G/H, and G/K ∼= (G/H)/(K/H).

Problem 53: Prove that every finitely generated Abelian group is a quotient of Zn

for some n ∈ N.

Problem 54: Let G andK be groups and ϕ : G→ K a homomorphism. Prove that
for every a ∈ G, if a has finite order, then ϕ(a) has finite order and o(ϕ(a)) |o(a).

Problem 55: Let H = Z/2Z×Z/2Z and K = Aut(H), and let φ : K → K be the
identity map, φ(k) = k for all k ∈ K. Prove that H ⋊φ K ∼= S4.

Problem 56: The group G = Z4×Z4 can be written using generators and relations
as

G = ⟨x, y | x4 = y4 = 1, xy = yx⟩.

Given this presentation, let G = G/⟨x2y2⟩.

(a) Show that |G| = 8.

(b) Exhibit each element of G in the form xayb, for some integers a and b.

(c) Find the order of each of the elements of G exhibited in (b).

(d) Prove that G ≃ Z4 × Z2.

Problem 57: Let N be a finite subgroup of a group G.

(a) Show that gNg−1 ⊆ N if and only if gNg−1 = N

(b) Show that NG(N) = {g ∈ G : gNg−1 ⊆ N}
(c) Show by an example that (b) need not be true if N is not finite.

Problem 58: Let A be an Abelian group and let D be the diagonal subgroup

D = {(a, a)|a ∈ A} ⩽ A× A.

(a) Prove that D ⊴ A× A and A×A
D

∼= A.

(b) Prove that this result is still be true for all non-Abelian groups A, or give a
counterexample to show that it is not.
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Problem 59:

(a) Let p be a prime number, let G be a finite Abelian group, and let H be a
subgroup of G. Prove that H has index p in G if and only if it is the kernel
of surjective homomorphism

φ : G→ Z/pZ.
(b) Give an example to show that the conclusion of (a) is not true in general if

G is not assumed to be Abelian.

(c) Using part (a), calculate the number of subgroups of index 5 in the group

G = Z/5Z× Z/5Z× Z/5Z.

Problem 60: Let F be a field of order q and let n ∈ N. Use the First Isomorphism
Theorem to prove that

|GLn(F ) : SLn(F )| = q − 1.

Problem 61: Prove that Z(SL2(F3)) = {±I}, and that

SL2(F3)/Z(SL2(F3)) ∼= A4.

Problem 62: Suppose that M and N are normal subgroups of G and that G =
MN . Prove that

G/(M ∩N) ∼= G/M ×G/N.

Problem 63: Suppose that A is a finite Abelian group, that p is a prime number,
and that φ : A→ A is the map defined by φ(a) = ap. If H,K ⩽ G are defined by

H = φ(A) and K = ker(φ),

prove that A/H ∼= K.

Problem 64: Prove that if G is a group then the index |G : Z(G)| is not a prime
number.

Problem 65: Let p be an odd prime number. Recall that, for k ∈ N, an integer g
is called a primitive root modulo pk if(

Z/pkZ
)×

= ⟨g⟩.

Suppose that g is a primitive root modulo p. Prove that g or g + p is a primitive
root modulo pk, for all k ∈ N.

Problem 66: Let N = 6! = 720. Calculate the number of elements of order 2 in
(Z/NZ)×, the multiplicative group of invertible residue classes modulo N .
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Problem 67: Let p be an odd prime number and let φ : (Z/pZ)× → (Z/3Z)× be
defined by

φ(a) =

{
1 if a = b2 for some b ∈ (Z/pZ)×,
−1 otherwise.

(a) Prove that φ is a homomorphism.

(b) Prove the −1 ∈ ker(φ) if and only if p = 1 mod 4.

Problem 68: The exponent of a group G is defined to be the smallest positive
integer n ∈ N with the property that, for all g ∈ G gn = e, or ∞ if no such n exists.

(a) Prove that any finite group has finite exponent.

(b) Give an example of an infinite group with finite exponent.

(c) Prove of disprove the following statement: A finite group of exponent n
always contains an element of order n.

Problem 69: Let p be an odd prime and let P be a p-group.

(a) Prove that if every subgroup of P is normal then P is Abelian.

(b) Give an example to show that the result in (a) is not true for p = 2.

Problem 70: Let G be a non-trivial finite group and p a prime. Suppose that
every subgroup H ̸= G has index divisible by p. Prove that the center of G has
order divisible by p.

Problem 71: Let p be a prime and n a positive integer with n < p2. Find (with
proof) a Sylow p-subgroup of the symmetric group Sn.

Problem 72: Let F be a field and let F× denote the group of non-zero elements of
F. Show that every finite subgroup of F× is cyclic.

Problem 73: Let x be a nilpotent element of the commutative ring R.

(a) Prove that x is either zero or zero-divisor.

(b) Prove that rx is nilpotent for all r ∈ R.

(c) Prove that 1 + x is a unit in R.

(d) Deduce that the sum of a nilpotent element and a unit is a unit.

Problem 74: A ring R is called a Boolean ring if a2 = a for all a ∈ R.

(a) Let X be a non-empty set and let P (X) be the set of all subsets of X
(the power set of X ). Define addition and multiplication on P (X) by
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A + B = (A − B) ∪ (B − A) and A × B = A ∩ B. Show that P (X) is a
Boolean ring with an identity.

(b) Prove that every Boolean ring is commutative.

(c) Prove that the only Boolean ring that is an integral domain is Z/2Z.

Problem 75: Let R and S be non-zero rings with identity and denote their re-
spective identities by 1R and 1S. Let ϕ : R → S be a non-zero homomorphism of
rings.

(a) Prove that if S is an integral domain then ϕ(1R) = 1S .

(b) Show by an example that (a) need not be true if S is not an integral domain.

(c) Prove that if ϕ(1R) ̸= 1S, then ϕ(1R) is a zero divisor in S.

(d) Prove that if ϕ(1R) = 1S, then ϕ(u) is a unit in S and ϕ(u−1) = ϕ(u)−1 for
each unit u of R.

Problem 76:

(a) Let I be an ideal of R and let S be a subring of R. Prove that I ∩ S is an
ideal of S.

(b) Show by an example that not every ideal of a subring S of a ring R need be
of the form I ∩ S for some ideal I of R.

Problem 77: Assume R is a commutative ring. Let P (x) = anx
n + an−1x

n−1 +
...+ a1x+ a0 be an element of the polynomial ring R[x].

(a) Prove that P (x) is a unit in R[x] iff a0 is a unit and a1, a2, ..., an are nilpotent
in R.

(b) Prove that P (x) is nilpotent in R[x] iff a0, a1, ..., an are nilpotent elements of
R.

Problem 78: Let I and J be ideals of R.

(a) Prove that I + J is the smallest ideal of R containing both I and J .

(b) Prove that IJ is the ideal contained in I ∩ J .
(c) Give an example where IJ ̸= I ∩ J .
(d) Prove that if R is commutative and if I + J = R, then IJ = I ∩ J .

Problem 79: Let ϕ : R → S be a homomorphism of commutative rings.

(a) Prove that if P is a prime ideal of S then either ϕ−1(P ) = R or ϕ−1(P ) is a
prime ideal of R.

(b) Prove that if M is a maximal ideal of S and ϕ is surjective then ϕ−1(M) is
a maximal ideal of R.
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(c) Give an example to show that (b) need not be true if ϕ is not surjective.

Problem 80: Let R = C([0, 1]) be the ring of continuous real valued functions on
the interval [0, 1]. Prove that the set A1/2 = {f ∈ R : f(1/2) = 0} is an ideal in R,
and that the quotient ring R/A1/2 is ring isomorphic to R.

Problem 81: Let R be the rings of all continuous functions on R. For each c ∈ R,
let Mc be the maximal ideal {f ∈ R : f(c) = 0}.

(a) Let I be the collection of functions f(x) in R with compact support. Prove
that I is an ideal of R that is not a prime ideal.

(b) LetM be a maximal ideal of R containing I (properly). Prove thatM ̸=Mc

for any c ∈ R.

Problem 82: Let R be a ring with identity 1 ̸= 0. Assume a is an idempotent in
R (i.e. that a2 = a), and that ar = ra for all r ∈ R.

(a) Prove that Ra and R(1− a) are two sided ideals of R and that

R ∼= Ra×R(1− a).

(b) If R is a finite Boolean ring, prove that

R ∼= Z/2Z× · · · × Z/2Z.

Problem 83: Let R = Z[
√
−n], where n is a squarefree integer greater than 3.

(a) Prove that 2,
√
−n, and 1 +

√
−n are irreducible elements in R.

(b) Prove that R is not a UFD.

(c) Give an explicit ideal in R that is not principal.

Problem 84: Let R be a commutative ring. Prove that if R contains a prime ideal
P with no zero divisors, then R is an integral domain.

Problem 85: Let R be an integral domain with quotient field F and let p(x) be
monic polynomial in R[x]. Assume that

p(x) = a(x)b(x),

where a(x) and b(x) are monic polynomials in F [x] of degree smaller than that of
p(x).

(a) Prove that if a(x) /∈ R[x] then R is not a UFD.

(b) Deduce that Z[2
√
2] is not a UFD.

Problem 86: Let R be the subring of C defined by

R = {a+ b
√
−5 : a, b ∈ Z},
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and let I ⊆ R be the principal ideal I = (1 +
√
−5).

(a) Find a complete set of distinct representatives for the quotient ring R/I.

(b) Prove that I is not a prime ideal.

Problem 87: Let R be the subring of R defined by

R = {a+ b
√
2 : a, b ∈ Z},

and let I ⊆ R be the principal ideal I = (3).

(a) Prove that R/I is a field, and compute its cardinality.

(b) Find a generator for the multiplicative group (R/I)×.

Problem 88: Let F be a finite field of order q and let f(x) be a polynomial in F [x]
of degree n ≥ 1.

(a) Prove that F [x]/(f(x)) has qn elements.

(b) Prove that F [x]/(f(x)) is a field if and only if f(x) is irreducible.

(c) Use the above results to explicitly construct a field of order 49.

(d) Prove that the multiplicative group of the field constructed in part (c) is
cyclic, by explicitly demonstrating a generator for the group.

Problem 89: Find all commutative rings R with 1 such that R has a unique
maximal ideal and such that the only units of R are 1 and −1.

Problem 90: Prove that an ideal I of a commutative ring R is prime if and only
if R/I is an integral domain.

Problem 91: Prove that if R is a PID then every non-zero prime ideal in R is
maximal.

Problem 92: Prove that R[x] is a PID if and only if R is a field.

Problem 93: Prove that Z[
√
−3] is an integral domain but not a unique factoriza-

tion domain.

Problem 94: A proper ideal P of a commutative ring R is prime if ab ∈ P implies
that either a ∈ P or b ∈ P . Prove that every nonzero prime ideal in a principal
ideal domain is maximal.

Problem 95: Suppose that R is a subring of a commutative ring S and that R is
of finite index n in S. Let m be an integer that is relatively prime to n. Prove that
the natural map R/mR → S/mS is a ring isomorphism.
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Problem 96: Let R = Q[x, y] be the ring of polynomials in two variables with
rational coefficients.

(a) Give an example of a maximal ideal of R that is proper (i.e. ̸= {0}, ̸= R),
or prove that no such ideal exists.

(b) Give an example of a principal ideal of R that is proper (i.e. ̸= {0}, ̸= R),
or prove that no such ideal exists.

Problem 97: Two elements in an arbitrary ring are called relatively prime if the
only elements dividing both are units. Let A and B be principal ideal domains such
that A ⊆ B. Suppose that p and q are relatively prime elements in A. Show that p
and q are also relatively prime in B.

Problem 98: Let R be an integral domain.

(a) Show that a polynomial of degree d in R[x] has at most d roots.

(b) Give an example to show that this is not true in general if R is not assumed
to be an integral domain.

Problem 99: Suppose that N ≥ 3 is an odd number with N = pa11 p
a2
2 · · · pakk ,

where p1 < · · · < pk are prime numbers and a1, . . . , ak ∈ N. Compute the number
of solutions x mod N to the equation

x3 − 3x2 + 2x = 0 mod N.

Problem 100:

(a) Let p be a prime number with p = 1 mod 4. Prove that there are exactly
two solutions to the equation x2 = −1 mod p. You may use the fact that
(Z/pZ)× is cyclic.

(b) Suppose that N = p1p2 · · · pk, where p1 < · · · < pk are prime numbers
satisfying pi = 1 mod 4 for each 1 ≤ i ≤ k. Calculate the number of
elements of order 4 in (Z/NZ)×.

Problem 101: Show that p(x) = x3 − 2 is irreducible in Q[x]. Let θ be a root of
p(x). Find the inverse of 1 + θ in Q(θ).

Problem 102: Consider f(x) = x5 − ax − 1 ∈ Z[x]. Find the values of a ∈ Z so
that f(x) is irreducible in Z[x].

Problem 103:

(a) Prove that Q(
√
2 +

√
3) = Q(

√
2,
√
3).

(b) Determine the degree of
√
2 +

√
3 over Q.
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(c) Find an irreducible polynomial satisfied by
√
2 +

√
3.

Problem 104: Let p be a prime

(a) Determine the elements of the Galois group of xp − 2.

(b) Determine all the subfields of the splitting field of xp − 2.

(c) Prove that the Galois group of xp − 2 is isomorphic to the group of matrices(
a b
0 1

)
where a, b ∈ Fp , a ̸= 0.

Problem 105:

(a) Prove that f(x) = x4 − 2x2 − 2 is irreducible over Q.

(b) Show that there are roots α1, α2 of f(x) such that if K1 = Q(α1) and K2 =
Q(α2). Then K1 ̸= K2 and K1 ∩K2 = Q(

√
3) = F .

(c) Prove that the splitting field of f(x) over Q is of degree 8 with dihedral
Galois group.

Problem 106: Let F9 be finite field with 9 elements. Let σ9 = (σ3)
2, where σ3 is

the Frobenius automorphism x→ x3.

(a) Prove that σ9 fixes F9.

(b) Prove that every finite extension of F9 of degree n is the splitting field of
x9

n − x over F9, hence is unique.

(c) Prove that every finite extension of F9 of degree n is cyclic with σ9 as the
generator.

(d) Prove that the subfields of the unique extension of F9 of degree n are in
bijective correspondence with the divisors d of n.

Problem 107: Prove that if K/F is a finite extension of fields then K/F is alge-
braic. Show that the converse is not true, in general.

Problem 108: Let K = Q(
√
3,
√
5). Find an element α ∈ K for which K = Q(α).

Problem 109: Give an example of a degree 4 extension of Q with exactly 2 distinct
embeddings into R.

Problem 110: Suppose L/K is a finite, separable, field extension with [L : K] = n,
and let σ1, . . . , σn be the distinct embeddings of L into K which fix K. Prove that
if α ∈ L and σi(α) = α for all 1 ≤ i ≤ n, then α ∈ K.
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Problem 111: Let p be a prime and let F be a field. Let K be a Galois extension
of F whose Galois group is a p-group ( i.e. the degree [K : F ] is a power of p). Such
an extension is called a p-extension.

(a) Let L be a p-extension of K. Prove that the Galois closure of L over F is a
p-extension of F .

(b) Give an example to show that (a) need not hold if [K : F ] is a power of p
but K/F is not Galois.

Problem 112: Let K be the splitting field over Q of the polynomial x4 − 2.
Determine the Galois group of K/Q and explicitly compute all intermediate fields
of the extension. Which of the intermediate fields are Galois over Q?

Problem 113: For n ∈ N let ξn = e2πi/n ∈ C. Prove that Q(ξn) is a Galois
extension of Q and that

Gal(Q(ξn)/Q) ∼= (Z/nZ)×.

Problem 114: Suppose that K/F is an extension of finite fields, and let σK/F :
K → K be the map defined by

σK/F (x) = x|F |.

(a) Prove that σK/F is a non-zero field homomorphism, and deduce from this
that it is a bijection.

(b) Prove that σK/F ∈ Aut(K/F ).

(c) Prove that the order of σK/F in Aut(K/F ) equals [K : F ], and conclude that

Gal(K/F ) ∼= ⟨σK/F ⟩.

Problem 115: Let p be a prime and let q = p30. Compute the lattice of interme-
diate fields of the extension Fq/Fp.

Problem 116: Let ξ7 ∈ C be a primitive 7th root of unity.

(a) Compute the lattice of intermediate fields of the extension Q(ζ7)/Q.

(b) Write each intermediate field as a simple extension of Q.

Problem 117: Let ξ13 ∈ C be a primitive 13th root of unity.

(a) Describe explicitly the subfields of Q(ξ13) in the form of simple extension of
Q.

(b) Determine the minimal polynomials satisfied by the primitive generators of
subfields in (a).

Problem 118: Let F be an extension of Q of degree 4 that is not Galois over Q.
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(a) Prove that the Galois closure of F has Galois group either S4, A4 or the
dihedral group D8.

(b) Prove that the Galois group is dihedral if and only if F contains a quadratic
extension of Q.

Problem 119:

(a) Determine the Galois group over Q of the polynomial x4 + 8x2 + 8x+ 4.

(b) Determine which of the subfields of this field are Galois over Q.

(c) For the Galois fields in (b), determine a polynomial f(x) ∈ Q[x] for which
they are the splitting field over Q.

Problem 120: Let α1, α2, . . . , αk be elements of an extension field K of F , and as-
sume that they are algebraic over F . Prove that F (α1, α2, . . . , αk) = F [α1, α2, . . . , αk].

Problem 121:

(a) Find the minimal polynomial of
√
2 +

√
5 over Q.

(b) Does the field Q(
√
2 +

√
5) contain any solution to x3 − 5? Prove that your

answer is correct.

Problem 122: Compute the Galois group of the polynomial x3 − 4x + 2 over the
field of rational numbers Q, and over the field of real numbers R.

Problem 123: Show that the field Q[
√
2 +

√
2] is Galois over Q, and determine

its Galois group.

Problem 124: Let K be a field extension of F of degree n and let f(x) ∈ F [x] be
an irreducible polynomial of degree m > 1. Show that if m is relatively prime to n,
then f has no root in K.


