Department of Mathematics, University of Houston Topology & Geometry Sample Qualifying Exam

Answer at least 6 questions from the Topology part and at least 3 questions from the Geometry of Manifolds part. Identify the problems that should be graded.

 \mathbf{R}^n is Euclidean *n*-space, $\mathbf{R} = \mathbf{R}^1$.

Topology

- 1. (a) Which subspaces of a compact Hausdorff space are compact?
 - (b) What is a locally compact space?
 - (c) Prove that an open subspace of a compact Hausdorff space is locally compact.
 - (d) Is every locally compact Hausdorff space homeomorphic to an open subspace of a compact Hausdorff space? Say why or give a counterexample.
- 2. (a) What is a first countable topological space?
 - (b) What is a net, and what does it mean for a net in a topological space to converge?
 - (c) Is a convergent net in **R** bounded? Prove it or give a counterexample.
 - (d) Prove that in a compact first countable space, every sequence has a convergent subsequence.
- 3. (a) How is a quotient topology defined?
 - (b) Show that the quotient topology obtained from \mathbf{R} by identifying two numbers if they differ by a rational number, is the indiscrete topology.
- 4. State as many characterizations as you know of separable metric spaces.
- 5. (a) How is the product topology defined?
 - (b) Show that the 'projection map' from a product topological space $\prod_{j\in J} X_j$ (with the product topology) to one of the spaces X_j , is an open map.
 - (c) Let X be the product of an infinite countable number of copies of the two point set $\{0,1\}$ with its usual (discrete) topology. Give X the product topology. What topological properties does it have? Is it normal? Metrizable? Compact? Explain. What are its connected components?

- 6. Let (X, d) be a metric space and $f: X \to X$ a continuos function that has no fixed points (that is, there is no $x \in X$ such that f(x) = x).
 - (a) If X is compact show that there is an $\varepsilon > 0$ such that $d(x, f(x)) > \varepsilon$ for each $x \in X$.
 - (b) Show that the result of (a) is false when compactness is not assumed.
- 7. (a) Show that if Y is compact then the projection $\pi_1: X \times Y \to X$ is a closed map.
 - (b) Does the result of (a) remain true if Y is not compact?
- 8. Let X be a completely regular space, $\beta(X)$ its Stone-Čech compactification, and Y any compactification of X (that is, Y is a compact Hausdorff space that contains X as a dense subset). Show that there is a unique continuous map $g:\beta(X)\to Y$ which is the identity on X. Prove that this map is surjective and closed.

Geometry of Manifolds

1. Let

$$\mathbf{RP}^m = \{ [x] \mid x = (x_0, \dots, x_m) \in \mathbf{R}^{m+1} \setminus \{\mathbf{0}\} \},\$$

where [x] is the equivalence class of x, and the equivalence relation " \sim " is defined as: $x \sim y$ if and only if $x = \lambda y$ for some λ in \mathbf{R} . Prove that \mathbf{RP}^m is an m-dimensional smooth manifold.

- 2. Let M, N be smooth manifolds and f a smooth map from M to N.
 - (a) Let $p \in M$. Give the definition of $f_{*,p}$, the differential of f at p (also called the derivative of f at p in our notes).
 - (b) Suppose that M is connected. Show that f is constant if and only if $f_{*p} = 0$ for all $p \in M$.
- 3. Let $\omega = xydx + zdy yzdz$, $\eta = xdx yz^2dy 2xdz$, and $f: \mathbf{R}^2 \to \mathbf{R}^3$ defined by

$$f(u, v) = (uv, u^2, 3u + v), \quad (u, v) \in \mathbf{R}^2.$$

Find: (1) $d\omega$; (2) $d\eta$; (3) $d\omega \wedge \eta - \omega \wedge d\eta$; (4) $f^*\omega$ and $f^*(d\omega)$.

4. Let Γ be the ellipsoid $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$ in \mathbf{R}^3 and $\omega = z dx \wedge dy - y dz \wedge dx$. Calculate $\int_{\Gamma} \omega$.