- 1. Let **H** be a subgroup of the group **G**.
 - (a) Define the set \mathbf{G}/\mathbf{H} of (left) cosets of \mathbf{H} in \mathbf{G} .
 - (b) State and prove for finite groups Lagrange's Theorem.
 - (c) Let **G** be a finite group with n elements. Prove that $x^n = e$ holds for every $x \in \mathbf{G}$.
- 2. Let **G** be a group. For any two elements $x, y \in \mathbf{G}$, the element $x^{-1}y^{-1}xy$ is called a *commutator*. The subgroup of **G** which is generated by all commutators is called the *commutator subgroup* \mathbf{G}' .
 - (a) Prove that the inverse of a commutator is a commutator and that G' consists of finite products of commutators.
 - (b) Prove that the group \mathbf{G}' is normal in \mathbf{G} and that the factor group \mathbf{G}/\mathbf{G}' is abelian.
 - (c) Let **H** be a normal subgroup of **G** such that the factor group \mathbf{G}/\mathbf{H} is abelian. Prove that $\mathbf{G}' \subseteq \mathbf{H}$.
- 3. (a) A subgroup H of a group G is called *characteristic* if $\varphi(H) = H$ for any automorphism φ of G. Show that a characteristic subgroup is normal.
 - (b) Suppose that G = HK, where H and K are characteristic subgroups of G with $H \cap K = \{e\}$. Prove that $\operatorname{Aut}(G) \cong \operatorname{Aut}(H) \times \operatorname{Aut}(K)$. (Here, $\operatorname{Aut}(\cdot)$ denotes the group of automorphisms.)
- 4. (a) Let H, K be groups. Give a definition of what it means for G to be a semi-direct product of H, K.
 - (b) Give an example of a group structure on the set $\mathbb{Z}_2 \times \mathbb{Z}_5$ which is different from the product group structure. Prove that the structure you describe is actually different.
 - (c) Let H and K be groups. Let $\varphi : K \to \operatorname{Aut}(H)$ be a homomorphism. Let $\sigma : K \to K$ be an automorphism of K. Let $\psi = \varphi \circ \sigma$. Prove that the semi-direct products $H \rtimes_{\varphi} K$ and $H \rtimes_{\psi} K$ are isomorphic.
- 5. Let $(\mathbf{A}, +)$ be a commutative group and $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n$ be subgroups of \mathbf{A} . Define:
 - (a) **A** is the sum of the subgroups \mathbf{A}_i .
 - (b) **A** is the internal *direct* sum of the \mathbf{A}_i .
 - (c) What do finite abelian groups look like that are *not* the direct sum of non-trivial subgroups?
- 6. (a) State the structure theorem for finite abelian groups.
 - (b) List up to isomorphism classes all abelian groups of order 100, e.g., in terms of direct sums of cyclic groups.
- 7. Let (\mathbf{V}, T) be a pair consisting of a finite dimensional vector space \mathbf{V} over a field \mathbf{F} and a linear map T on \mathbf{V} . How does \mathbf{V} become an $\mathbf{F}[x]$ -module?
- 8. Let **M** be a module over the p.i.d. **D** and let $d \in \mathbf{D}$. Define: $\mathbf{M}(d) = \{x \mid d.x = 0\}$. Prove that if $(d_1, d_2) = (1)$ and $d_1 \cdot d_2 = d$, then $\mathbf{M}(d) = \mathbf{M}(d_1) \oplus \mathbf{M}(d_2)$.
- 9. (a) Define: **N** is a normal subgroup of **G**.
 - (b) Define for a normal subgroup \mathbf{N} the factor group \mathbf{G}/\mathbf{N} .
 - (c) Explain that a homomorphic image of a group is isomorphic to a factor group.
- 10. (a) State the Sylow Theorems.
 - (b) Let H be a normal subgroup of order p^k of a finite group G. Prove that H is contained in every p-Sylow subgroup of G.
- 11. (a) Assume without proof that the polynomial $p(x) = x^4 + 6x + 3$ is irreducible. Let ϑ be a root of p(x). Determine $(2 + \vartheta)^{-1}$ in the field $\mathbb{Q}(\vartheta)$.
 - (b) Let K/F be a finite field extension. Define what it means for this extension to be Galois. Define the Galois group of a Galois extension.

- (c) Let K/F be a Galois extension with Galois group $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Find the number of subfields of K that have degree 4 over F. Justify your answer carefully.
- 12. Let F be a finite field of characteristic p > 0. Let $\varphi : F \to F$, $a \mapsto a^p$. Prove that φ is a field automorphism.
- 13. (a) Define that $T: \mathbf{V} \to \mathbf{V}$ is a linear map on the vector space \mathbf{V} over the field \mathbf{F} .
 - (b) Define that **A** is the matrix for T with respect to the basis e_1, \ldots, e_n .
 - (c) Let **A** be an $n \times n$ matrix with entries from the field **F**. Show that there is a polynomial $p(x) \in \mathbf{F}[x]$ such that $p(\mathbf{A}) = 0$.
- 14. (a) Let \mathcal{A} be an abstract class (that is closed under isomorphic copies) of algebras. Let $q_i : A_i \to A$ be a co-terminal family of homomorphisms. Define that A is a sum system.
 - (b) Prove that the class \mathcal{A} of modules over a ring A admits sums.
 - (c) Define that the module **M** is the internal direct sum $\mathbf{M} = \mathbf{M}_1 \oplus \mathbf{M}_2$.
- 15. (a) Let X be any set and let \mathcal{A} be an abstract class of algebras. State the definition of: the algebra $F_{\mathcal{A}}(X)$ is the free \mathcal{A} algebra, freely generated by X.
 - (b) Let \mathcal{V} be the class of vector spaces over a field F. Prove that every vector space is freely generated by some set B.
- 16. (a) List all subgroups of the additive group \mathbb{Z} of integers.
 - (b) Prove your answer for part (a).
- 17. Let a and b be elements of a principal ideal domain **D**.
 - (a) Define: d is the greatest common divisor of a and b.
 - (b) Prove that $\{xa + yb \mid x, y \in \mathbf{D}\}$ is the smallest ideal in **D** which contains a and b.
 - (c) Prove that the greatest common divisor of a and b exists and that it is of the form xa + yb for certain x and y in **D**.
- 18. (a) Let G be a group. For any subgroup H of G and nonempty subset $A \subset G$, define $N_H(A)$ to be the set $\{h \in H \mid hAh^{-1} = A\}$. Prove that $N_H(A) = N_G(A) \cap H$.
 - (b) Let G be a group and H a subgroup of G. Give the definition of the center Z(G) and the centralizer $C_G(H)$.
 - (c) Let G be a group and H a subgroup of G of order 2. Prove that $N_G(H) = C_G(H)$. Deduce that if $N_G(H) = G$, then H is contained in Z(G).
- (a) Assume without proof that the polynomial p(x) = x⁴ + 6x + 3 is irreducible. Let θ be a root of p(x). Determine θ⁻¹ in the field Q(θ).
 - (b) Determine the splitting field and degree over \mathbb{Q} of
 - i. $x^4 1$,
 - ii. $x^2 2$,
 - iii. $x^4 + 1$.
 - (c) Among the above three splitting fields, are there two which are isomorphic? Prove your answer.
- 20. (a) Define cyclic groups.
 - (b) Prove that a homomorphic image of a cyclic group is cyclic.
 - (c) Prove that a subgroup of a cyclic group is cyclic.
 - (d) Prove that every cyclic group is a homomorphic image of the additive group \mathbb{Z} of integers.
- 21. Prove that the multiplicative group of a finite field is cyclic.

- 22. Let p(x) be an irreducible polynomial over the field **F**.
 - (a) Explain why the factor ring $\mathbf{E} = \mathbf{F}[x]/(p(x))$ is a field.
 - (b) Prove that $a \mapsto a + (p(x))$ is an embedding of **F** into **E**; thus **E** can be perceived as an extension of **F**.
 - (c) Prove that p(x) has a root in **E**.
 - (d) Let $\mathbf{F} = \mathbb{Q}$ be the field of rational numbers and $p(x) = x^2 2$. What do elements of $\mathbb{Q}[x]/(x^2 2)$ look like?
- 23. Prove that every vector space over a field F has a basis S and that every vector space is free for the class \mathcal{F} of all vector spaces over F.
- 24. Let \mathcal{D} be the class of modules over the principal ideal domain (p.i.d.) D. Let \mathbf{M} be a free D-module with finite base S. Prove that any other base of \mathbf{M} has the same number of elements. (Hint: Take a prime element p of D and show that $\mathbf{M}/p\mathbf{M}$ can be made into a vector space.)
- 25. Let $(G, *, {}^{-1}, e)$ be a finite group of order n.
 - (a) Let H be a subgroup of G where |H| = m. Prove that m divides n.
 - (b) Let $x \in G$. Prove that $x^n = e$.
- 26. (a) State the primary decomposition theorem for finitely generated torsion modules.
 - (b) How does this theorem relate to the decomposition of a vector space \mathbf{V} over the field \mathbb{C} of complex numbers into generalized eigenspaces for a linear map T on \mathbf{V} ?
 - (c) List all isomorphism classes of abelian groups of order 144.
- 27. Let \mathcal{A} be the class of fields of a fixed characteristic. Prove that for $X \neq \emptyset$, the class \mathcal{A} does not admit free algebras. What can you say for $X = \emptyset$?
- 28. (a) Let R be a ring. Define what it means for R to be an integral domain.
 - (b) Let R be an integral domain. Let $p \in R$. Give the definitions of what it means for p to be *irreducible* and of what it means for p to be *prime*. Prove that *prime* implies *irreducible*. Prove that the converse of this statement is false. Give a sufficient condition under which the converse does hold, and prove your statement.
- 29. (a) Consider the polynomial $f(x) := x^8 x \in \mathbb{F}_2[x]$, where \mathbb{F}_2 is the field with two elements. Prove that the set K of all roots of f (in an algebraic closure of \mathbb{F}_2) forms a field. How many elements does this field have?
 - (b) What is the prime subfield F of K?
 - (c) Is K a Galois extension of F? Justify your answer carefully.
- 30. (a) Let N be a subgroup of G. Give a definition of what it means for N to be normal.
 - (b) Let N be a normal subgroup of the finite group G. Assume that the order of N and the index of N are relatively prime. Prove that N is the unique subgroup of G of order #N. (It is allowed to cite a theorem from class, but you must state the theorem correctly and in its entirety.)
 - (c) Let H, K be subgroups of a group. Prove that HK is a subgroup if and only if HK = KH.
- 31. (a) Give the definition of what it means for a polynomial $f(x) \in F[x]$ over a field F to be separable.
 - (b) Let $D_x f(x) = na_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + \dots + a_1$ be the derivative of $f = \sum_{i=0}^n a_i x_i \in F[x]$. Prove that f is separable if and only if f and $D_x f$ are relatively prime.
- 32. Let **G** and **H** be groups and $\varphi : \mathbf{G} \to \mathbf{H}$ be a surjective homomorphism. Define the factor group $\mathbf{G}/\ker\varphi$, and prove that $\mathbf{G}/\ker\varphi \cong \mathbf{H}$.

- 33. (a) Prove that the characteristic of a finite field \mathbf{F} is a prime.
 - (b) Prove that the number of elements of a finite field is p^n for some prime p and natural number $n \ge 1$.
- 34. (a) Let $T: V \to V$ be a linear map on a vector space V over a field F. State for T the decomposition theorem according to the elementary divisors, which assumes that $p(x) = p_1(x)^{n_1} \cdots p_k(x)^{n_k}$ is the prime factorization of the minimal polynomial for T.
 - (b) What are the possible elementary divisors of a linear map T on \mathbb{R}^4 if the minimal polynomial for T is $p_T(x) = (x-1)^2(x+1)$?
- 35. Assume that the characteristic polynomial for a linear map T on \mathbb{R}^3 is $c_T(x) = (x-1)(x+1)^2$.
 - (a) Find the minimal polynomial for T in the case that T is cyclic.
 - (b) Find the minimal polynomial for T in the case that T has an eigenbase.
- 36. Assume that the characteristic polynomial for a linear map T on \mathbb{R}^4 is $c_T(x) = (x+1)^4$.
 - (a) Find a matrix A for T for which $A^4 = 0$.
 - (b) Find all similarity classes of maps, say according to elementary divisors or Jordan normal forms, which have $(x + 1)^4$ as their characteristic polynomial.
- 37. (a) Prove that the class \mathcal{A} of modules over a commutative ring A admits sums.
 - (b) Let \mathcal{F} be the class of fields of characteristic zero. Prove that \mathcal{F} does not have sums.
- 38. (a) Prove that the class of modules over a commutative ring A admits for every set B a free module over A. What does it look like?
 - (b) Explain why, in the case that A is a field, every module over A is free.
 - (c) Prove that the class \mathcal{F} of fields of characteristic zero does not have free objects for X different from the empty set.
 - (d) What is the free field of characteristic zero over the empty set?
- 39. (a) Define that **P** is a projective module over the ring A.
 - (b) Prove that free modules over A are projective.
- 40. Let **M** be a module over the principal ideal domain D and let $x \in \mathbf{M}$. How is the period per(x) of x defined? What is per(0)?
- 41. Let **M** be a module over the p.i.d. **D**, and let $d \in \mathbf{D}$. Define: $\mathbf{M}(d) = \{x \in \mathbf{M} \mid d.x = 0\}$. Prove that if $(d_1, d_2) = (1)$ and $d_1 \cdot d_2 = d$, then $\mathbf{M}(d) = \mathbf{M}(d_1) \oplus \mathbf{M}(d_2)$.
- 42. (a) State the primary decomposition theorem for finitely generated torsion modules over a principal ideal domain.
 - (b) What does this theorem say for finite abelian groups?
 - (c) How does this theorem relate to the decomposition of a vector space \mathbf{V} over the field \mathbb{C} of complex numbers into generalized eigenspaces for a linear map T on \mathbf{V} ?
- 43. Let A be a commutative ring where $1 \neq 0$. Let M be a maximal ideal. Prove that the quotient ring A/M is a field.
- 44. Let \mathcal{A} be an abstract class of algebras (that is, \mathcal{A} is closed under isomorphic copies). Let $p_i : A \to A_i$ be a co-initial family of homomorphisms. Define that $p_i : A \to A_i$ is a product system in \mathcal{A} .
- 45. Define that the module **M** is the internal direct sum of \mathbf{M}_1 and \mathbf{M}_2 : $\mathbf{M} = \mathbf{M}_1 \oplus \mathbf{M}_2$.
- 46. Let (\mathbf{V}, T) be a pair consisting of a finite-dimensional vector space \mathbf{V} over a field F and a linear map T on \mathbf{V} . How does \mathbf{V} become an F[x]-module?

- 47. (a) Find an $n \times n$ matrix A such that $A^n = 0$, but $A^{n-1} \neq 0$.
 - (b) Let $p(x) = a_0 + a_1 x + \dots + x^n$ be any polynomial of degree *n*. Prove that there is an $n \times n$ matrix *A* such that p(x) is the characteristic polynomial. (Hint: Define a cyclic space (F^n, T) , where $T(e_1) = e_2, T(e_2) = e_3, \dots, T(e_{n-1}) = e_n$, and $T(e_n) = -a_0.e_1 - a_1.e_2 - \dots - a_{n-1}.e_n$.)
 - (c) Find all Jordan forms of 4×4 matrices where the characteristic polynomial is x^4 .
- 48. Let \mathcal{A} be an abstract class of similar algebras. Let X be any set. Define that $\mathbf{F}_{\mathcal{A}}(X)$ is the free \mathcal{A} -algebra, freely generated by X.
- 49. State Zorn's lemma.
- 50. Prove that every vector space over a field F is free.
- 51. (a) State one version of the structure theorem for finite abelian groups.
 - (b) List up to isomorphism classes all abelian groups of order 200, e.g. in terms of direct sums of cyclic groups.
- 52. Let $|G| = p^n q$ with p > q prime. Prove that G contains a unique normal subgroup of order p^n .
- 53. Assume that the characteristic polynomial for the linear map T on \mathbb{R}^3 is $c_T(x) = (x-1)(x+1)^3$.
 - (a) Find the minimal polynomial for T in the case that T is cyclic.
 - (b) Find the minimal polynomial for T in the case that T is symmetric.
- 54. Let $T: V \to V$ be a linear map on a vector space V over a field F.
 - (a) Define: $m_T(x)$ is the minimal polynomial of T.
 - (b) Define: $c_T(x)$ is the characteristic polynomial of T.
 - (c) State the Cayley-Hamilton theorem.
 - (d) What can you say about the minimal polynomial of a diagonalizable linear map?
 - (e) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear map with characteristic polynomial $c_T(x) = x^2(x-1)$. Find the possible Jordan forms of matrices for T.
- 55. (a) Let G be a group and $x \in G$ an element of finite order n. Prove that if n is odd, then $x^k \neq x^{-k}$ for all k = 1, 2, ..., n 1.
 - (b) Let G be a finite group. Let H be a subgroup of G and let $N \triangleleft G$ be a normal subgroup. Prove that if gcd(#H, |G:N|) = 1, then H is a subgroup of N.
- 56. (a) As detailed as you can, state Sylow's theorem.
 - (b) A group G is called *simple* if it has no non-trivial normal subgroups. Prove that there are no simple groups of order 124.
 - (c) Determine explicitly the set of 3-Sylow subgroups of the symmetric group S_4 . Hint: use Sylow's theorem and additional explicit considerations.
 - (d) For each isomorphism class of abelian groups of order 252, give one representative.
- 57. (a) Find the degree of the field extension $\mathbb{Q}(\sqrt{2}+\sqrt{3})/\mathbb{Q}$. Justify your answer in full detail.
 - (b) Find the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} .
 - (c) Is $\mathbb{Q}(\sqrt{2} + \sqrt{3})/\mathbb{Q}$ a Galois extension? Determine Aut $(\mathbb{Q}(\sqrt{2} + \sqrt{3})/\mathbb{Q})$ explicitly.
- 58. (a) Let k be an infinite field, endowed with the Zariski topology. Is the Zariski topology on the product $k \times k$ the same as the product topology? Prove your answer.
 - (b) As detailed as you can, state Hilbert's Nullstellensatz.

- 59. (a) Let R, S be rings and $\varphi : R \to S$ a ring homomorphism. If I is an ideal of R, prove that $\varphi(\operatorname{rad} I) \subseteq \operatorname{rad}(\varphi(I))$. If in addition φ is surjective and I contains the kernel of φ , prove that $\varphi(\operatorname{rad} I) = \operatorname{rad}(\varphi(I))$.
 - (b) Let k be a field and $I := (f_1, \ldots, f_m) \subset k[x_1, \ldots, x_n]$ an ideal. Let $g \in \mathcal{I}(\mathcal{Z}(I))$. Prove the following: if we take f_1, \ldots, f_m to be elements of $k[x_1, \ldots, x_{n+1}]$, then $\mathcal{Z}((f_1, \ldots, f_m, x_{n+1}g 1)) = \emptyset$.
- 60. (a) Define what it means for a set G to be a group. Define what it means for a subset H of G to be a subgroup.
 - (b) Let G be a finite group. Prove that G cannot have a subgroup H with #H = n 1, where n = #G > 2. (Give a direct proof—you must NOT cite any theorems from class.)
- 61. (a) As detailed as you can, state Sylow's theorem.
 - (b) The proof given in class was based on a theorem called "The Class Equation." State "The Class Equation" as best you can.
 - (c) Prove that a group of order 30 contains a normal subgroup.
- 62. (a) Let K/F be a finite field extension. Define what it means for this extension to be Galois. Define the Galois group of a Galois extension.
 - (b) Which of the following extensions over \mathbb{Q} are Galois? (Justify your answer carefully.)
 - i. $\mathbb{Q}(\sqrt{5}),$
 - ii. $\mathbb{Q}(\sqrt[3]{5}),$
 - iii. $\mathbb{Q}(\sqrt{5},\sqrt{2}).$
 - (c) Let K/F be a Galois extension with Galois group $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Find the number of subfields of K that have degree 4 over F. Justify your answer carefully.
- 63. (a) Let I, J be ideals in the ring R. Prove that $rad(IJ) = rad I \cap rad J$.
 - (b) Let $V = \mathcal{Z}(x^2 y) \subset \mathbb{A}^2$. Prove that \mathbb{A}^1 is isomorphic to V by providing an explicit isomorphism $\varphi : \mathbb{A}^1 \to V$. Provide also the associated k-algebra isomorphism $\tilde{\varphi} : k[V] \to k[\mathbb{A}^1]$. Finally, provide the inverses of φ and $\tilde{\varphi}$.
 - (c) Let k be an algebraically closed field. Use Hilbert's Nullstellensatz to prove that every proper radical ideal in $k[x_1, \ldots, x_n]$ is the intersection of maximal ideals.
- 64. Define cyclic groups and prove that every cyclic group is a homomorphic image of \mathbb{Z} . Prove that cyclic groups are either isomorphic to \mathbb{Z} or isomorphic to the integers modulo n for some n > 0.
- 65. (a) Let X be any set. Define that $\mathbf{F}_{\mathcal{G}}(X)$ is the free group freely generated by the set X.
 - (b) Describe $\mathbf{F}_{\mathcal{G}}(\emptyset)$ and $\mathbf{F}_{\mathcal{G}}(1)$.
- 66. (a) State the structure theorem for finitely generated abelian groups.
 - (b) List up to isomorphism classes all abelian groups of order 144, e.g. in terms of direct sums of cyclic groups.
- 67. (a) Define that I is an ideal of a ring \mathbf{A} (with unit) and state the homomorphism theorem for rings.
 - (b) Explain how the ideals J that contain I correspond to the ideals of \mathbf{A}/I .
 - (c) Define that M is a maximal ideal. Prove that the factor ring \mathbf{A}/M is a field in the case that \mathbf{A} is a commutative ring (with unit) and M a maximal ideal.
 - (d) Prove that every commutative ring with unit admits a homomorphic image which is a field.
- 68. Let (V,T) be a pair consisting of a finite-dimensional vector space V over the field F and a linear map $T: V \to V$. Assign to the pair (V,T) a module over the polynomial ring F[x].

69. Prove the following theorem:

Let $T : \mathbf{V} \to \mathbf{V}$ be a linear map on a vector space \mathbf{V} . Then $\mathbf{V} = \mathbf{V}_1 \oplus \mathbf{V}_2$, where \mathbf{V}_1 and \mathbf{V}_2 are invariant under T and where T restricted to \mathbf{V}_1 is one-to-one and T restricted to \mathbf{V}_2 is nilpotent, that is, $T^k = 0$ for some k.

- 70. (a) State the fundamental theorem for finitely generated abelian groups.
 - (b) List all abelian groups of order 100 according to elementary divisors or invariant factors.
 - (c) For which numbers n is there exactly one abelian group of that order?
- 71. Find a 3×3 matrix **A** such that $\mathbf{A}^3 2\mathbf{A}^2 + 4\mathbf{A} = \text{Id}$.
- 72. Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be a linear map whose characteristic polynomial is $c_T(x) = (x-1)^2(x-2)^2$. What are the possible Jordan normal forms for the matrix of T?