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Abstract

This dissertation concerns efficient numerical treatment of the elliptic partial differ-

ential equations with high-contrast coefficients. High-contrast means that the ratio

between highest and lowest values of the coefficients is very high, or even infinite.

A finite-element discretization of such equations yields a linear system with an ill-

conditioned matrix which leads to significant issues in numerical methods.

The research in Chapter 2 introduces a procedure by which the discrete system

obtained from a linear finite-element discretization of the given continuum problem

is converted into an equivalent linear system of a saddle point type. Then a robust

preconditioner for the Lancsoz method of minimized iterations for solving the derived

saddle point problem is proposed. Numerical experiments demonstrate effectiveness

and robustness of the proposed preconditioner and show that the number of iterations

is independent of the contrast and the discretization size.

The research in Chapter 3 concerns the case of infinite-contrast problems with

almost touching injections. The Dirichlet-Neumann domain decomposition algorithm

yields a Schur complement linear system. The issue is that the block corresponding

to the highly-dense part of the domain is impossible to obtain in practice. An

approximation of this block is proposed by using a discrete Dirichlet-to-Neumann

map, introduced in [11]. The process of construction of a discrete map together

with all its properties is described and numerical illustrations with comparison to

the solution obtained by the direct method are provided.
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Chapter 1

Introduction

Composites, that are materials made from two or more constituents with different

physical characteristics, are very common in both nature and engineering. These

materials are more in demand because of their new properties, they could be stronger,

lighter or cheaper as compared with traditional materials. The first obvious reason

for studying composite materials is because of their usefulness, they are widely used

in engineering. The second important reason is that what we learn from the theory of

composites could be extended to other fields. While we work on challenging problems

from composite field, we can develop new mathematical tools.

We distinguish composites whose two phases are described by different sets of
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equations and those described by equations of the same type. In the research pro-

posed hereafter, we concern with the later. In this case, the phases are differenti-

ated by coefficients of the corresponding partial differential equations (PDE). More-

over, we focus on mathematical models of so-called high-contrast composites. High-

contrast means that the ratio between highest and lowest values of the coefficients

is very high, even infinite. The example of such composites is a conductive medium

with insulating inclusions.

Mathematical modeling of these type of composites poses significant challenges

likewise, a numerical approximation for these composite materials results in a very

large system of algebraic equations with an ill-conditioned matrix [17]. For example,

the ill-conditioning of the discrete problem, describing composites with closely-spaced

inclusions, is a consequence of the small thickness of the length between the inho-

mogeneities. Solving this system of equations is computationally expensive. Since

there is a need in solving problems associated with the high-contrast composites with

complex geometry new methods and tools have to be developed.

In this dissertation, we develop an efficient numerical treatment of the linear

system arising from the discretization of the Poisson problem

−∇ · [σ(x)∇u] = f, x ∈ Ω (1.1)

with appropriate boundary conditions on ∂Ω. We assume that Ω is a bounded domain

Ω ⊂ Rd, d ∈ {2, 3}, that contains m ≥ 1 polygonal or polyhedral subdomains Di, see

Fig. 2.1. The main focus of this work is on the case where the coefficient function

3



σ(x) ∈ L∞(Ω) varies largely within the domain Ω, that is,

κ =
supx∈Ω σ(x)

infx∈Ω σ(x)
� 1.

The finite element method (FEM) discretization of this problem results in a linear

system

Ku = F , (1.2)

with a large and sparse matrix K. A major issue in numerical treatments of (1.1),

with the coefficient σ discussed above, is that the high-contrast leads to an ill-

conditioned matrix K in (1.2). If h is the discretization scale, then the condition

number of the resulting stiffness matrix K grows proportionally to h−2 with the co-

efficient of proportionality depending on κ. Because of that result, the high-contrast

problems have been a subject of recent active research recently, see, e.g., [1, 2].

In Chapter 2 we assume that inclusions are separated by distances comparable

to their sizes, while the key aspect in Chapter 3 is that injections are located very

close, almost touching each other.

We remark that the work in Chapter 2 has been submitted for publication and

the work in Chapter 3 is being prepared for submission.
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Chapter 2

Robust preconditioner for

high-contrast problems with

moderate density of inclusions

2.1 Introduction

If K of (1.2) is symmetric and positive definite, then (1.2) is typically solved with

the Conjugate Gradient (CG) method, see e.g. [3], if K is nonsymmetric the most

common solver for (1.2) is the Generalized Minimal Residual Algorithm (GMRES),

see e.g. [30]. In this dissertation, the introduction of an additional variable allows

us to replace (1.2) with an equivalent formulation of the form

Ax = F (2.1)
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with a saddle point matrix A written in the block form:

A =

AAA BBBT

BBB −Σ

 , (2.2)

where AAA ∈ Rn×n is symmetric positive definite, BBB ∈ Rk×n is rank deficient, and

Σ ∈ Rk×k is symmetric and positive semidefinite, so that the corresponding linear

system is singular but consistent. Unfortunately, the Krylov space iterative methods

tend to converge very slowly when applied to systems with saddle point matrices and

preconditioners are needed to achieve faster convergence.

The CG method, which was mainly developed for the iterative solution of linear

systems with symmetric definite matrices is not in general robust for systems with

indefinite matrices, [35]. The Lanczos algorithm of minimized iterations does not

have such a restriction and has been utilized in this dissertation. Below in this

chapter, we introduce a construction of a robust preconditioner for solving (2.1) by

the Lanczos iterative scheme, whose convergence rate is independent of the contrast

parameter κ� 1 and the discretization size h > 0.

Also, the special case of (1.2) with (2.2) tackled in this chapter is when Σ ≡ 000.

The problem of this type has received considerable attention over the years. But the

most studied case is when A is nonsingular, in which case BBB must be of full rank, see,

e.g., [22, 27] and references therein. The main focus of this research is on singular A

with the rank deficient block BBB. Below we construct a block-diagonal preconditioner

for the Lanczos method employed to solve the problem (2.1), and this preconditioner

is also singular. We also provide numerical experiments demonstrating the robustness

of the proposed approach with respect to the contrast κ and mesh size h > 0.
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The rest of this chapter is organized as follows. In Section 2.2 the mathematical

problem formulation is presented and main results are stated. Section 2.3 discusses

proofs of main results, and numerical results of the proposed procedure are given in

Section 2.4. Conclusions are presented in Section 2.5.

2.2 Problem Formulation and Main Results

Consider an open, bounded domain Ω ⊂ Rd, d ∈ {2, 3} with piece-wise smooth

boundary Γ = ∂Ω, that contains m ≥ 1 subdomains Di, which are located at dis-

tances comparable to their sizes from one another, see Fig. 2.1. For simplicity, we

assume that Ω and Di are polygons if d = 2 or polyhedra if d = 3. The union of Di

is denoted by D.

In the domain Ω we consider the following elliptic problem
−∇ · [σ(x)∇u] = f, x ∈ Ω

u = 0, x ∈ Γ

(2.3)

with the coefficient σ that largely varies inside the domain Ω. For simplicity of the

presentation, the focus of this case is where σ is a piecewise constant function given

by

σ(x) =


1, x ∈ Ω \ D

1 +
1

εi
, x ∈ Di, i ∈ {1, . . . ,m}

(2.4)

with max
i
εi � 1. We also assume that the source term in (2.3) is f ∈ L2(Ω).
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Figure 2.1: The domain Ω with highly conducting inclusions Di, i ∈ {1, . . . ,m}

When performing a FEM discretization of (2.3) with (2.4) with polynomials of

first order, we choose a FEM space Vh ⊂ H1
0 (Ω) to be the space of linear finite-

element functions defined on a conforming quasi-uniform triangulation Ωh of Ω of

the size h � 1. The mesh is adapted to inclusions, that is, nodes are required to

fit ∂Di for all inclusions. For simplicity, we assume that ∂Ωh = Γ. With that, the

classical FEM discretization results in the system of the type (1.2). We proceed

differently and derive another discretized system of the saddle point type as shown

below.

2.2.1 Derivation of a Singular Saddle Point Problem

If Dih = Ωh|Di then we denote V i
h := Vh|Dih and Dh := ∪mi=1Dih. The FEM formulation

of (2.3)-(2.4) is

Find uh ∈ Vh and λh = (λ1
h, . . . , λ

m
h ) with λih ∈ V i

h such that

∫
Ωh

∇uh · ∇vh dx+

∫
Dh

∇λh · ∇vh dx =

∫
Ωh

fvh dx, ∀vh ∈ Vh, (2.5)

provided

uh = εiλ
i
h + ci in Dih, i ∈ {1, . . . ,m}, (2.6)
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where ci is an arbitrary constant. First, we turn out attention to the FEM discretiza-

tion of (2.5) that yields a system of linear equations

AAAu+ BBBTλ = F, (2.7)

and then discuss implications of (2.6).

To provide the comprehensive description of all elements of the system (2.7), we

introduce the following notations for the number of degrees of freedom in different

parts of Ωh. Let N be the total number of nodes in Ωh, and n be the number of

nodes in Dh so that

n =
m∑
i=1

ni,

where ni denotes the number of degrees of freedom in Dih, and, finally, n0 is the

number of nodes in Ωh \ Dh, so that we have

N = n0 + n = n0 +
m∑
i=1

ni.

Then in (2.7), the vector u ∈ RN has entries ui = uh(xi) with xi ∈ Ωh. We count

the entries of u in such a way that its first n elements correspond to the nodes of

Dh, and the remaining n0 entries correspond to the nodes of Ωh \ Dh. Similarly, the

vector λ ∈ Rn has entries λi = λh(xi) where xi ∈ Dh.

The symmetric positive definite matrix AAA ∈ RN×N of (2.7) is the stiffness matrix

that arises from the discretization of the Laplace operator with the homogeneous

Dirichlet boundary conditions on Γ. Entries of AAA are defined by

(AAAu, v) =

∫
Ωh

∇uh · ∇vh dx, where u, v ∈ RN , uh, vh ∈ Vh, (2.8)
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where (·, ·) is the standard dot-product of vectors. This matrix can also be partitioned

into

AAA =

ADD AD0

A0D A00

 , (2.9)

where the block ADD ∈ Rn×n is the stiffness matrix corresponding to the highly

conducting inclusions Dih, i ∈ {1, . . . ,m}, the block A00 ∈ Rn0×n0 corresponds to the

region outside of Dh, and the entries of AD0 ∈ Rn×n0 and A0D = AT
D0 are assembled

from contributions both from finite elements in Dh and Ωh \ Dh.

The matrix BBB ∈ Rn×N of (2.7) is also written in the block form as

BBB =

[
BD 000

]
(2.10)

with zero-matrix 000 ∈ Rn×n0 and BD ∈ Rn×n that corresponds to the highly con-

ducting inclusions. The matrix BD is the stiffness matrix corresponding to the dis-

cretization of the Laplace operator in the domain Dh with the Neumann boundary

conditions on ∂Dh. In its turn, BD is written in the block form by

BD =


B1 . . . 0

...
. . .

...

0 . . . Bm

 = diag (B1, . . . ,Bm)

with matrices Bi∈ Rni×ni , whose entries are similarly defined by

(Biu, v) =

∫
Dih

∇uh · ∇vh dx, where u, v ∈ Rni , uh, vh ∈ V i
h . (2.11)
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We remark that each Bi is positive semidefinite with

ker Bi = span




1

...

1


 . (2.12)

Finally, the vector F ∈ RN of (2.7) is defined in a similar way by

(F, v) =

∫
Ωh

fvh dx, where v ∈ RN , vh ∈ Vh.

To complete the derivation of the linear system corresponding to (2.5)-(2.6), we

rewrite (2.6) in the weak form that is as follows:∫
Dih

∇uh · ∇vih dx− εi
∫
Dih

∇λih · ∇vih dx = 0, i ∈ {1, . . . ,m} ∀ vih ∈ V i
h , (2.13)

and add the discrete analog of (2.6) to the system (2.7). For that, denote

Σε =


ε1B1 . . . 0

...
. . .

...

0 . . . εmBm

 = diag (ε1B1, . . . , εmBm),

then (2.13) implies

Σελ = BBBu. (2.14)

This together with (2.7) yields
AAAu+ BBBTλ = F,

BBBu−Σελ = 0,

u ∈ RN , Rn 3 λ ⊥ kerBD, (2.15)
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or

Aεxxxε = F , (2.16)

where

Aε =

AAA BBBT

BBB −Σε

 =


ADD AD0 BD

A0D A00 000

BD 000 −Σε

 , xxxε =

u
λ

 , F =

F

0

 . (2.17)

This saddle point formulation (2.16)-(2.17) for the PDE (2.3)-(2.4) was first proposed

in [25]. Since AAA is positive definite matrix, there exists a unique solution u ∈ RN of

(2.16)-(2.17).

2.2.2 Discussions on the system (2.15)

Denote the solution of (2.16)-(2.17) by

xxxε =

uε
λε

 ,
and consider an auxiliary linear system

A0xxx0 =

AAA BBBT

BBB 000


u0

λ0

 =

F

0

 , (2.18)

or 
AAAu0 + BBBTλ0 = F,

BBBu0 = 0.

(2.19)
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where matrices AAA, BBB and the vector F are the same as above. The linear system (2.18)

or, equivalently, (2.19) emerges in a FEM discretization of the diffusion problem

posed in the domain Ω whose inclusions are infinitely conducting, where ε = 0 in

(2.4). The corresponding PDE formulation for problem (2.19) might be as follows

(see e.g. [13]) 

4u = f, x ∈ Ω \ D

u = const, x ∈ ∂Di, i ∈ {1, . . . ,m}∫
∂Di

∇u · nnni ds = 0, i ∈ {1, . . . ,m}

u = 0, x ∈ Γ

(2.20)

where nnni is the outer unit normal to the surface ∂Di. If u ∈ H1
0 (Ω \ D) is an electric

potential then it attains constant values on the inclusions Di and these constants are

not known a priori, and are unknowns of the problem (2.20), together with u.

Formulation (2.18) or (2.19) also arises in constrained quadratic optimization

problem and solving the Stokes equations for an incompressible fluid [18], and solving

elliptic problems using methods combining a fictitious domain and a distributed

Lagrange multiplier techniques to force boundary conditions [19].

Then the following relation between solutions of systems (2.15) and (2.19) holds

true.

Lemma 1. Let xxx0 =

u0

λ0

 ∈ RN+n be the solution of the linear system (2.19), and

13



xxxε =

uε
λε

 ∈ RN+n the solution of (2.15). Then

uε → u0 as ε→ 0.

This lemma asserts that the discrete approximation for the problem (2.3)-(2.4)

converges to the discrete approximation of the solution of (2.20) as ε→ 0. Note, the

continuum version of this fact was shown in [13].

Proof. Without loss of generality, assume that all εi = ε, i ∈ {1, . . . ,m}. Hereafter,

denote by C a positive constant that is independent of ε.

Subtract first equations of (2.15) and (2.19) and multiply by uε − u0 to obtain

(
AAA(uε − u0, uε − u0)

)
+
(

BBBT (λε − λ0), uε − u0

)
= 0.

Recall, the matrix AAA is SPD then

(AAAξ, ξ) ≥ µ1(AAA)‖ξ‖2, ∀ξ ∈ RN , (2.21)

where µ1(AAA) > 0 is the minimal eigenvalue of AAA, and ‖ · ‖ = (·, ·).

Making use of the second equation of (2.15) we have

µ1(AAA)‖uε − u0‖2 ≤ −
(
εBDλε, λε

)
+
(
εBDλε, λ0

)
≤
(
εBDλε, λ0

)
,

where we used the fact that BD is positive semidefinite. Then

‖uε − u0‖2 ≤ ε‖BDλε‖. (2.22)

14



Now the goal is to bound BDλε by a constant independent of ε. To show it we

multiply the first equation of (2.15) by AAABBBTλε:(
AAAuε,AAABBBTλε

)
+
(

BBBTλε,AAABBBTλε

)
=
(

F,AAABBBTλε

)
,

which yields

µ1(AAA)‖BBBTλε‖2 ≤ C‖F−AAAuε‖‖BBBTλε‖.

Note that ‖BBBTλε‖ = ‖BDλε‖, hence,

‖BDλε‖ ≤ C‖F−AAAuε‖, (2.23)

so collecting estimates (2.22) and (2.23), it remains to show ‖uε‖ is bounded. For

that we multiply the first equation of (2.15) by uε and obtain

(AAAuε, uε) +
(

BBBTλε, uε

)
=
(
F, uε

)
,

which yields

µ1(AAA)‖uε‖2 +
(

BBBTλε, uε

)
≤ ‖F‖‖uε‖,

where we used (2.21) and Cauchy-Schwarz inequality.

Making use of the second equation of (2.15) and the fact that BD is positive

semidefinite we have

µ1(AAA)‖uε‖2 ≤ ‖F‖‖uε‖.

Hence,

‖uε‖ ≤
‖F‖
µ1(AAA)

. (2.24)
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This shows that boundness of ‖uε‖.

Collecting estimates (2.22), (2.23) and (2.24), we conclude

‖uε − u0‖2 ≤ Cε,

hence uε → u0 as ε→ 0.

2.2.3 Spectral Properties of the Matrix A0 of the Auxiliary

Problem (2.19)

As previously observed, see, e.g., [24], the following matrix

PPP =

AAA 000

000 BBBAAA−1BBBT

 , (2.25)

is the best choice for a preconditioner of A0. This is because there are exactly three

eigenvalues of A0 associated with the following generalized eigenvalue problem

A0

u
λ

 = µPPP

u
λ

 , (2.26)

and which are: µ1 < 0, µ2 = 1 and µ3 > 1; hence, a Krylov subspace iteration

method applied for a preconditioned system for solving (2.26) with (2.25) converges

to the exact solution in three iterations.

The preconditioner (2.25) is also the best choice for our original problem (2.16)-

(2.17) with ε > 0 as the eigenvalue of the generalized eigenvalue problem

Aεxxx = µPPPxxx
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belonging to the union of [c1, c2] ∪ [c3, c4] with c1 ≤ c2 < 0 and 0 < c3 ≤ c4, with

numbers ci being dependent on eigenvalues of (2.26) but not h, see [25].

Since expensive evaluation of AAA−1 in (2.25) makes PPP of limited practical use, PPP

is a subject of primarily theoretical interest. To construct a preconditioner that one

can actually use in practice, we seek a matrix

P =

PA 0

0 PB

 , (2.27)

such that there are constants α, β independent of the mesh size h such that

α(PPPxxx,xxx) ≤ (Pxxx,xxx) ≤ β(PPPxxx,xxx) for all xxx ∈ RN . (2.28)

This property (2.28) is hereafter referred to as spectral equivalence of P to PPP of

(2.25). Below, we construct P of the form (2.27) in such a way that the block PA

is spectrally equivalent to AAA, whereas PB is spectrally equivalent to BBBAAA−1BBBT . For

the former one, use any existing priconditioner developed for symmetric and positive

definite matrices. Our primary aim is to construct a preconditioner PB that could

be effectively used in solving (2.15).

2.2.4 Main Result: Block-Diagonal Preconditioner

The main theoretical result of this chapter establishes a robust preconditioner for

solving (2.18) or, equivalently (2.19), and is given in the following theorem.

Theorem 1. Let the triangulation Ωh for (2.20) be conforming and quasi-uniform.

Then the matrix BD is spectrally equivalent to the matrix BBBAAA−1BBBT , that is, there

17



exist constants µ?, µ
? > 0 independent of h and such that

µ? ≤
(
BDψ, ψ

)(
BBBAAA−1BBBTψ, ψ

) ≤ µ?, for all 0 6= ψ ∈ Rn, ψ ⊥ kerBD. (2.29)

This theorem asserts that the nonzero eigenvalues of the generalized eigenproblem

BBBAAA−1BBBTψ = µBDψ, ψ ∈ Rn, (2.30)

are bounded. Hence, its proof is based on the construction of the upper and lower

bounds for µ in (2.30) and is comprised of the following facts many of which are

proven in the next section.

Lemma 2. The following equality of matrices holds

BBBAAA−1BBBT = BDS−1
00 BT

D, (2.31)

where

S00 = ADD − AD0A−1
00 A0D,

is the Schur complement to the block A00 of the matrix AAA of (2.18).

This fact is straightforward and comes from the block structure of matrices AAA of

(2.9) and BBB of (2.10). Indeed, using this, the generalized eigenproblem (2.30) can be

rewritten as

BDS−1
00 BD ψ = µBDψ, ψ ∈ Rn. (2.32)

Introduce a matrix B
1/2
D via BD = B

1/2
D B

1/2
D and note that kerBD = ker B

1/2
D .
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Lemma 3. The generalized eigenvalue problem (2.32) is equivalent to

B1/2
D S−1

00 B
1/2
D ϕ = µϕ, (2.33)

in the sense that they both have the same eigenvalues µ’s, and the corresponding

eigenvectors are related via ϕ = B1/2
D ψ ∈ Rn.

Lemma 4. The generalized eigenvalue problem (2.33) is equivalent to

BD uD = µS00 uD, (2.34)

in the sense that both problems have the same eigenvalues µ’s, and the corresponding

eigenvectors are related via uD = S−1
00 B

1/2
D ϕ ∈ Rn.

This result is also straightforward and can be obtained multiplying (2.33) by

S−1
00 B

1/2
D .

To that end, establishing the upper and lower bounds for the eigenvalues of (2.34)

and due to equivalence of (2.34) with (2.33), and hence (2.32), we obtain that the

eigenvalues of (2.30) are bounded. Our interest is in the nonzero eigenvalues of

(2.34), for which the following result holds.

Lemma 5. Let the triangulation Ωh for (2.20) be conforming and quasi-uniform.

Then there exists µ̂? > 0 independent of the mesh size h > 0 such that

µ̂? ≤
(BD uD, uD)

(S00uD, uD)
≤ 1, for all 0 6= uD ∈ Rn, uD ⊥ kerBD. (2.35)
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2.3 Proofs of statements in Chapter 2.2.4

2.3.1 Harmonic extensions

Hereafter, we will use the index D to indicate vectors or functions associated with

the domain D that is the union of all inclusions, and index 0 to indicate quantities

that are associated with the domain outside the inclusions Ω \ D.

Now we recall some classical results from the theory of elliptic PDEs. Suppose

a function uD ∈ H1(D), then consider its harmonic extension u0 ∈ H1(Ω \ D) that

satisfies 
−4 u0 = 0, in Ω \ D,

u0 = uD, on ∂D,

u0 = 0, on Γ.

(2.36)

For such functions the following holds true:∫
Ω

|∇u|2 dx = min
v∈H1

0 (Ω)

∫
Ω

|∇v|2 dx, (2.37)

where

u =


uD, in D

u0, in Ω \ D
and v =


uD, in D

v0, in Ω \ D
(2.38)

where the function v0 ∈ H1(Ω \ D) such that v0|Γ = 0, and

‖u‖H1
0 (Ω) ≤ C‖uD‖H1(D) with the constant C independent of uD, (2.39)
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where ‖ · ‖H1(Ω) denotes the standard norm of H1(Ω):

‖v‖2
H1(Ω) =

∫
Ω

|∇v|2dx+

∫
Ω

v2dx, (2.40)

and ‖v‖2
H1

0 (Ω) =

∫
Ω

|∇v|2dx.

In other words, the function u0 of (2.38) is the best extension of uD ∈ H1(D)

among all H1(Ω \ D) functions that vanish on Γ, because it minimizes the energy

functional (2.37). The algebraic linear system that corresponds to (2.37) satisfies

the similar property. Namely, if the vector u0 ∈ Rn0 is a FEM discretization of the

function u0 ∈ H1
0 (Ω \ D) of (2.36), then for a given uD ∈ Rn, the best extension

u0 ∈ Rn0 would satisfy

A0D uD + A00 u0 = 0, (2.41)

and AAA

uD
u0

 ,
uD
u0


 = min

v0∈Rn0

AAA

uD
v0

 ,
uD
v0


 . (2.42)

2.3.2 Proof of Lemma 3

Consider generalized eigenvalue problem (2.32) and replace BD with B1/2
D B1/2

D there,

then

B1/2
D B1/2

D S−1
00 B

1/2
D B1/2

D ψ = µB1/2
D B1/2

D ψ.
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Now multiply both sides by the Moore-Penrose pseudo inverse1
[
B1/2
D

]†
, see e.g. [3]:[

B1/2
D

]†
B1/2
D B1/2

D S−1
00 B

1/2
D B1/2

D ψ = µ
[
B1/2
D

]†
B1/2
D B1/2

D ψ.

This pseudo inverse has the property that[
B1/2
D

]†
B1/2
D = Pim,

where Pim is an orthogonal projector onto the image B1/2
D , hence, PimB

1/2
D = B1/2

D and

therefore,

B1/2
D S−1

00 B
1/2
D ϕ = µϕ, where ϕ = B1/2

D ψ.

Conversely, consider the eigenvalue problem (2.33), and multiply its both sides by

B1/2
D . Then

B1/2
D B1/2

D S−1
00 B

1/2
D ϕ = µB1/2

D ϕ,

where we replace ϕ by B1/2
D ψ

B1/2
D B1/2

D S−1
00 B

1/2
D B1/2

D ψ = µB1/2
D B1/2

D ψ

to obtain (2.32). �

2.3.3 Proof of Lemma 5

I. Upper Bound for the Generalized Eigenvalues of (2.30)

1M† is the Moore-Penrose pseudo inverse of M if and only if it satisfies the following Moore-
Penrose equations:

(i) M†MM† = M†, (ii) MM†M = M, (iii) MM† and M†M are symmetric.
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Consider u =

uD
u0

 ∈ RN with uD ∈ Rn, uD ⊥ kerBD, and u0 ∈ Rn0 satisfying

(2.41), then

(S00uD, uD) = (Au, u) . (2.43)

Using (2.8) and (2.11) we obtain from (2.43):

µ =
(BDuD, uD)

(S00 uD, uD)
=

(BDuD, uD)

(Au, u)
=

∫
Dh

|∇uDh |2 dx

∫
Ωh

|∇uh|2 dx
≤ 1, (2.44)

with

uh =


uDh , in Dh

u0
h, in Ω \ Dh

(2.45)

where u0
h is the harmonic extension of uDh into Ωh \ Dh in the sense (2.36). �

II. Lower Bound for the Generalized Eigenvalues of (2.30)

Before providing the proofs, we introduce one more construction to simplify our con-

sideration below. Because all inclusions are located at distances that are comparable

to their sizes, we construct new domains D̂i, i ∈ {1, . . . ,m}, see Fig. 2.2, centered

at the centers of the original inclusions Di, i ∈ {1, . . . ,m}, but of sizes much larger

of those of Di and such that

D̂i ∩ D̂j = ∅, for i 6= j.

With that, one can see that the problem (2.20) might be partitioned into m inde-

pendent subproblems, hence, without loss of generality, has only one inclusion, that
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is, m = 1.

Figure 2.2: New domains D̂i for our construction of the lower bound of µ

We also recall a few important results from classical PDE theory analogs of which

will be used below. Namely, for a given v ∈ H1(D) there exists an extension v0 of v

to Ω \ D so that

‖v0‖H1(Ω\D) ≤ C‖v‖H1(D), with C = C(d,D,Ω). (2.46)

One can also introduce a number of norms equivalent to (2.40), and, in particular,

below we will use

‖v‖2
D :=

∫
D

|∇v|2dx+
1

R2

∫
D

v2dx, (2.47)

where R is the radius of the particle D = D1. The scaling factor 1/R2 is needed

for transforming the classical results from a reference (i.e. unit) disk to the disk of

radius R 6= 1.

We note that the FEM analog of the extension result of (2.46) for a regular

grid was shown in [34], from which it also follows that the constant C of (2.46) is

independent of the mesh size h > 0. We utilize this observation in our construction

below.

Consider uh ∈ Vh given by (2.45). Introduce a space V̂h =
{
vh ∈ Vh : vh = 0 in Ωh \ D̂h

}
.

Similarly to (2.45), define

V̂h 3 ûh =


uDh , in Dh

û0
h, in Ωh \ Dh

, (2.48)
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where û0
h is the harmonic extension of uDh into D̂h \Dh in the sense (2.36) and û0

h = 0

on ∂D̂h. Also, by (2.37) we have∫
Ωh\Dh

|∇u0
h|2dx ≤

∫
Ωh\Dh

|∇û0
h|2dx.

Define the matrix

Â :=

ADD ÂD0

Â0D Â00


by

(
Âv, w

)
=

∫
Ωh

∇vh · ∇whdx, where v, w ∈ RN , vh, wh ∈ V̂h.

As before, introduce the Schur complement to the block Â00 of Â:

Ŝ00 = ADD − ÂD0Â−1
00 Â0D, (2.49)

and consider a new generalized eigenvalue problem

BD uD = µ̂Ŝ00 uD with Rn 3 uD ⊥ kerBD. (2.50)

By (2.42) and (2.43) we have

(S00uD, uD) ≤
(

Ŝ00uD, uD

)
for all uD ∈ Rn. (2.51)

Now, we consider a new generalized eigenvalue problem similar to one in (2.33),

namely,

B1/2
D Ŝ−1

00 B
1/2
D ϕ = µ̂ ϕ, ϕ ∈ Rn. (2.52)
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We plan to replace B1/2
D in (2.52) with a new symmetric positive-definite matrix B̂

1/2

D ,

given below in (2.55), so that

B1/2
D B1/2

D ξ = B1/2
D B̂

1/2

D ξ = B̂
1/2

D B1/2
D ξ for all Rn 3 ξ ⊥ kerBD, (2.53)

with what (2.52) has the same nonzero eigenvalues as the problem

B̂
1/2

D Ŝ−1
00 B̂

1/2

D ϕ = µ̂ ϕ, ϕ ∈ Rn. (2.54)

For this purpose, we consider the decomposition:

BD = WΛWT ,

where W ∈ Rn×n is an orthogonal matrix composed of eigenvectors wi, i ∈ {0, 1, . . . , n−

1}, of

BDw = νw, w ∈ Rn,

and

Λ = diag [ν0, ν1, . . . , νn−1] .

Then w0 is an eigenvector of BD corresponding to ν0 = 0 and

w0 =
1√
n


1

...

1

 .
To that end, we choose

B̂D = BD + β w0 ⊗ w0 = BD + β w0w
T
0 , (2.55)
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where β > 0 is some constant parameter chosen below. Note that the matrix B̂D

is symmetric and positive-definite, and satisfies (2.53). It is trivial to show that B̂D

given by (2.55) is spectrally equivalent to BD + βI for any β > 0. Also, for quasi-

uniform grids, the matrix h2I (in 3-dim case, h3I) is spectrally equivalent to the mass

matrix MD given by

(MDu, v) =

∫
D1
h

uhvh dx, where u, v ∈ Rn1 , uh, vh ∈ V 1
h ,

see e.g. [31]. This implies there exists a constant C > 0 independent of h, such that(
B̂DuD, uD

)
≥ C

((
BD +

1

R2
MD

)
uD, uD

)
, with β =

h2

R2
. (2.56)

The choice of the matrix BD + 1
R2 MD for the spectral equivalence was motivated by

the fact that the right hand side of (2.56) describes ‖ · ‖Dh-norm (2.47) of the FEM

function uDh ∈ V 1
h that corresponds to the vector uD ∈ Rn.

Now consider u =

uD
u0

 ∈ RN with uD ∈ Rn, uD ⊥ kerBD, and u0 ∈ Rn0

satisfying (2.41), and similarly choose û =

uD
û0

 ∈ RN with û0 ∈ Rn0 satisfying

Â0D uD + Â00 û0 = 0, which implies(
Ŝ00uD, uD

)
=
(

ÂAAû, û
)
. (2.57)

Then(
ÂAAû, û

)
=

∫
Ωh

|∇ûh|2dx =

∫
D̂h\Dh

|∇û0
h|2dx+

∫
Dh

|∇uDh |2dx ≤ (C∗ + 1)‖uDh ‖2
Dh ,

(2.58)
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where ûh ∈ V̂h is the same extension of uDh from Dh to Ωh \ Dh as defined in (2.48).

For the inequality of (2.58), we applied the FEM analog of the extension result of

(2.46) by [34], that yields that the constant C∗ in (2.58) is independent of h.

With all the above, we have the following chain of inequalities:

(BDuD, uD)

(S00uD, uD)
=

(2.53),(2.55)

((BD + β w0 ⊗ w0)uD, uD)

(S00uD, uD)
≥

(2.51)

((BD + β w0 ⊗ w0)uD, uD)(
Ŝ00uD, uD

)
≥

(2.57),(2.56)
C

((
BD + 1

R2MD
)
uD, uD

)(
ÂAAû, û

) ≥
(2.58)

C‖uDh ‖2
Dh

(C∗ + 1)‖uDh ‖2
Dh

=
C

(C∗ + 1)
=: µ̂?, with β =

h2

R2

where µ? is independent of h > 0.

From the obtained above bounds, we have (2.35).

�

2.3.4 Notes on Lanczos algorithm with the block-diagonal

preconditioner P

The preconditioned Lanczos procedure of minimized iterations can be used for solving

algebraic systems with symmetric and positive semidefinite matrices. In this section,

we propose a preconditioner for solving (2.18).

The theoretical justification of the usage of a preconditioner (2.27) where the

blocks PA and PB are spectrally equivalent to AAA and BBBAAA−1BBBT , respectively, was

shown in [21]. With theoretical considerations provided above, in our practical im-

plementation of the generalized Lanczos method of minimized iterations, we use the
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following block-diagonal preconditioner:

P =

PA 0

0 BD

 , (2.59)

where one can choose any typical preconditioner PA for the symmetric and positive

definite matrix AAA. Define

H = P† =

P−1
A 0

0 [BD]†

 , (2.60)

and a new scalar product

(x, y)H := (Hx, y), for all x, y ∈ RN+n,

and consider the preconditioned Lancsoz iterations zk =

uk
λ
k

 ∈ RN+n, k ≥ 1:

zk = zk−1 − βkyk,

where

βk =
(Aεz

k−1 −F ,Aεyk)H
(Aεyk,Aεyk)H

.

and

yk =



H(Aεz
0 −F), k = 1

HAεy1 − α2y1, k = 2

HAεyk−1 − αkyk−1 − γkyk−2, k > 2,

with

αk =
(AεHAεyk−1,Aεyk−1)H

(Aεyk−1,Aεyk−1)H
, γk =

(AεHAεyk−1,Aεyk−1)H
(Aεyk−2,Aεyk−2)H

.
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Here, we recall that the matrix BD is singular, however, as evident from the

algorithm above one actually never needs to use its pseudo inverse at all. Indeed,

this is due to the block-diagonal structure of H (2.60), and block form of the original

matrix Aε (2.16)-(2.17).

2.4 Numerical Results

In this section, we use four examples to show the numerical advantages of the Lanc-

zos iterative scheme with the preconditioner P defined in (2.59) over the existing

preconditioned conjugate gradient method.

Our numerical experiments are performed by implementing the described above

Lancsoz algorithm for the problem (2.3)-(2.4), where the domain Ω is chosen to

be a disk of radius 5 with m = 37 identical circular inclusions Di, i ∈ {1, . . . ,m}.

Inclusions are equally spaced. The function f of the right hand side of (2.3) is chosen

to be a constant, f = 50.

In the first set of experiments the values of εi’s of (2.4) are going to be identical

in all inclusions and vary from 10−1 to 10−8. In the second set of experiments we

consider four groups of particles with the same values of ε in each group that vary

from 10−4 to 10−7. In the third set of experiments we consider the case when all

inclusions have different values of εi’s that vary from 10−1 to 10−9. Finally, in the

fourth set of experiments we decrease the distance between neighboring inclusions.

The initial guess z0 is a random vector that was fixed for all experiments. The
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stopping criteria is the relative error

‖Aεz
k −F‖2

‖F‖2

being less than a fixed tolerance constant.

We test our results agains standard pcg function of MATLAB® with PA =

AAA. The same matrix is also used in the implementation of the described above

Lancsoz algorithm. In the following tables PCG stands for preconditioned conjugate

gradient method by MATLAB® and PL stands for preconditioned Lancsoz method

previously.

Experiment 1. For the first set of experiments we consider particles Di of radius

R = 0.45 in the disk Ω. This choice makes distance d between neighboring inclusions

approximately equal to the radius R of inclusions. The triangular mesh Ωh has

N = 32, 567 nodes. Tolerance is chosen to be equal to 10−4. This experiment

concerns the described problem with parameter ε being the same in each inclusion.

Table 2.1 shows the number of iterations corresponding to the different values of ε.

Values of ε

10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

PCG 10 20 32 40 56 183 302 776

PL 33 37 37 37 37 37 37 37

Table 2.1: Number of iterations in Experiment 1, N = 32, 567

Based on these results, we first observe that our PL method requires fewer it-

erations as ε goes less than 10−4. We also notice that number of iterations in the
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Lancsoz algorithm does not depend on ε.

Figure 2.3: The domain Ω with highly conducting inclusions Di of fours groups

Experiment 2. In this experiment we leave radii of the inclusions to be the same,

namely, R = 0.45. Tolerance is chosen to be 10−6. We now distinguish four groups

of particles of different ε’s. The first group consists of one inclusion – in the center

– with the coefficient ε = ε1, whereas the second, third, and fourth groups are

comprised of the disks in the second, third, and fourth circular layers of inclusions

with coefficients ε2, ε3, and ε4 respectively, see Fig. 2.3 (particles of the same group

are indicated with the same color). We perform this type of experiments for three

different triangular meshes with the total number of nodes N = 5, 249, N = 12, 189

and N = 32, 567. Tables 2.2, 2.3, and 2.4 below show the number of iterations

corresponding to three meshes respectively.

Values of ε

ε1 ε2 ε3 ε4 PCG PL

10−5 10−5 10−4 10−4 217 39

10−5 10−5 10−4 10−3 208 39

10−6 10−5 10−4 10−3 716 39

10−7 10−6 10−5 10−4 571 39

Table 2.2: Number of iterations in Experiment 2, N = 5, 249

These results yield that PL requires much less iterations than the corresponding
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Values of ε

ε1 ε2 ε3 ε4 PCG PL

10−5 10−5 10−4 10−4 116 39

10−5 10−5 10−4 10−3 208 39

10−6 10−5 10−4 10−3 457 39

10−7 10−6 10−5 10−4 454 39

Table 2.3: Number of iterations in Experiment 2, N = 12, 189

Values of ε

ε1 ε2 ε3 ε4 PCG PL

10−5 10−5 10−4 10−4 217 35

10−5 10−5 10−4 10−3 208 35

10−6 10−5 10−4 10−3 716 35

10−7 10−6 10−5 10−4 571 35

Table 2.4: Number of iterations in Experiment 2, N = 32, 567
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PCG with the number of iterations still being independent of both the contrast ε

and the mesh size h for PL.

Experiment 3. The next point of interest is to assign different value of ε for each

of 37 inclusions. The geometrical setup is the same as in Experiment 2. The value of

εi, i ∈ {1, . . . , 37}, is randomly assigned to each particle and is chosen from the range

of ε’s reported in Table 2.5 below. The tolerance is 10−6 as above. The triangular

mesh Ωh has 12, 189 nodes. We run ten tests for each range of contrasts and obtain

the same number of iterations in every case, and that number is being reported

in Table 2.5.

Range of ε PL

10−1 to 10−8 53

10−1 to 10−3 53

10−7 to 10−9 39

Table 2.5: Number of iterations in Experiment 3, N = 12, 189

We also observe that as the contrast between conductivities in the background

domain Ω \ D and the one inside particles Di, i ∈ {1, . . . , 37}, becomes larger our

preconditioner demonstrates better convergence, as the third row of Table 2.5 reports.

This is expected since the preconditioner constructed above was chosen for the case

of absolutely conductive particles. These sets of tests are not compared against

the PCG due to the large number of considered contrasts that prevent this test to

converge in a reasonable amount of time.
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Experiment 4. In the next set of experiments we intend to test how well our

algorithm performs if the distance between particles decreases. Recall that the as-

sumption made for our procedure to work is that the interparticle distance d is of

order of the particles’ radius R. With that, we take the same setup as in Experiment

2 and decrease the distance between particles by making radius of each disk larger.

We set R = 0.56 obtaining that the radius of each inclusion is now twice larger than

the distance d, and also consider R = 0.59 so that the radius of an inclusion is three

times larger than d. The triangular mesh Ωh has N = 6, 329 and N = 6, 497 nodes,

respectively. The tolerance is chosen to be 10−6. Tables 2.6 and 2.7 show the number

of iterations in each case.

Values of ε

ε1 ε2 ε3 ε4 PCG PL

10−5 10−5 10−4 10−4 799 61

10−7 10−6 10−5 10−4 859 61

Table 2.6: Number of iterations in Experiment 4, N = 6, 329

Values of ε

ε1 ε2 ε3 ε4 PCG PL

10−5 10−5 10−4 10−4 311 73

10−7 10−6 10−5 10−4 890 73

Table 2.7: Number of iterations in Experiment 4, N = 6, 497

Here we observe that number of iterations increases for both PCG and PL, while
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this number still remains independent of ε for PL.

We then continue to decrease the distance d, and set R = 0.62 that is approx-

imately four times larger than the distance between two neighboring inclusions d.

Choose the same tolerance 10−6 as above, and the triangular mesh Ωh of N = 6, 699

nodes, and we observed that our PL method does not reach the desired tolerance

in 1, 128 iterations, that confirms our expectations. Further research is needed to

develop novel techniques for the case of closely spaced particles. This fact inspired

research presented in Chapter 3.

2.5 Conclusions

This chapter focuses on a construction of the robust preconditioner (2.59) for the

Lancsoz iterative scheme that can be used in order to solve high-contrast PDEs of

the type (2.3)-(2.4). A typical FEM discretization yields an ill-conditioning matrix

when the contrast in σ becomes high (i.e., ε � 1). We propose a saddle point

formulation of the given problem with the symmetric and indefinite matrix and con-

sequently construct the corresponding preconditioner that yields a robust numerical

approximation of (2.3)-(2.4). The main feature of this novel and elegant approach is

that we precondition the given linear system with a symmetric and indefinite matrix.

Our numerical results have shown the effectiveness of the proposed preconditioner

for these type of problems, and demonstrated convergence of the constructed PL

scheme independently on the contrast ε and mesh size h.
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Chapter 3

Efficient numerical scheme for

high-contrast problems modeling

highly dense composites

3.1 Introduction

This chapter concerns the case when injections are almost touching each other. This

feature leads to rapidly oscillatory coefficients meaning that values alternate on very

small length scales. This leads to challenges in numerical methods due to small mesh

size needed in the gaps between injections.
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We use two types of discretization for continuous problems: numerical and struc-

tural ones. The examples of numerical discretization are finite element, finite differ-

ence and other methods where the mesh size is adjustable depending on the desired

precision. The structural discretization is based on physical features of the consid-

ered domains. An example of such a discretization results in a finite-dimensional

discrete network, which is a graph whose edges and nodes match to the physical

objects. In this case the discretization scale is determined by the natural size of

inhomogeneities and distances between them.

The main goal of this chapter is a numerical treatment of problems associated

with high-contrast composite materials with complex geometry. The novel idea is

to take advantage of properties of structured materials to build new numerically

efficient schemes. In particular, a focus is on the domain decomposition methods

for the problems, which describe media whose parts have high-contrast constituents.

The key step here is to split a large domain into subdomains in a natural way

to deal separately with homogeneous and high-contrast parts. A coupled problem

is obtained where subdomains are bridged though the interface. To avoid solving

the problem in a nonhomogeneous part we use the discrete approximation of the

Dirichlet-to-Neumann (DtN) map that was developed in [11]. Then, we build an

effective iterative method based on the resulted partition.

The rest of this chapter is organized as follows. In Section 3.2 the mathematical

problem formulation is presented and numerical algorithm is described. Section 3.3

discusses the results on DtN map, and numerical results of the proposed scheme are

given in Section 3.4. Conclusions are presented in Section 3.5.
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3.2 Problem formulation and domain decomposi-

tion method

Consider an open, a bounded domain Ω ⊂ R2 with piece-wise smooth boundary ∂Ω,

that contains m ≥ 1 subdomains Di, which are located at distances much smaller

than their sizes from one another. For simplicity, the assumption is that Ω and Di

are polygons. The union of Di is denoted by D. In the domain Ω we consider the

following problem:

−4u = f, x ∈ Ω \ D,

u = const, x ∈ ∂Di, i ∈ {1, . . . ,m},∫
∂Di

∇u · nnni ds = 0, i ∈ {1, . . . ,m},

u = 0, x ∈ ∂Ω,

(3.1)

where nnni is the outer unit normal to the surface ∂Di. If u ∈ H1
0 (Ω \ D) is an electric

potential that attains constant values on the inclusions Di and these constants are

not known a priori so that they are unknowns of the problem (3.1) together with u.

Problem (3.1) describes the case of infinitely conducting injections. With slight

abuse of terminology we refer to this problem as high-contrast one as it is commonly

used in literature.

The assumption is to split the domain Ω := Ω1∪Ω2∪Γ in a way that high-contrast

part is separated in Ω1, while subdomain Ω2 has constant conductivity equal to 1,

see Fig. 3.1. Here Γ denotes the interface between the two subdomains. The goal

is to take advantage of this partition to build an effective domain decomposition
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algorithm.

Figure 3.1: The domain Ω with highly conducting inclusions Di concentrated in one

region of the domain

3.2.1 Discretization of continuous problem

A triangulation Ωh of domain Ω is considered, the nodes of triangulation are required

to match the interface Γ. Classical FEM discretization of (3.1) with piecewise linear

functions results in a linear system

Au = f, (3.2)

with a symmetric, positive definite matrix A.

The degrees of freedom are split into the degrees belonging to Ω1, and to Ω2, and

those belonging to the interface Γ. With that partition system (3.2) can be written

in a block form


A11 0 A1Γ

0 A22 A2Γ

AT1Γ AT2Γ AΓΓ



u1

u2

uΓ

 =


f 1

f 2

fΓ

 . (3.3)
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The stiffness matrix and load vector can be obtained by assembling the corre-

sponding components contributed by the subdomains, denoting

A(i) =

Aii AiΓ

ATiΓ A
(i)
ΓΓ

 , f
(i)

=

 f i

f
(i)

Γ

 , i = 1, 2,

then

AΓΓ = A
(1)
ΓΓ + A

(2)
ΓΓ, fΓ = f

(1)

Γ + f
(2)

Γ .

3.2.2 Schur complement system

The usual first step of many iterative domain decomposition methods is the elimi-

nation of interior unknowns u1 and u2, which reduces the system (3.2) with (3.3) to

the Schur complement system for uΓ

SuΓ = gΓ, (3.4)

where

S = S(1) + S(2), gΓ = g
(1)
Γ + g

(2)
Γ ,

with

S(i) = A
(i)
ΓΓ − A

T
iΓA

−1
ii AiΓ, g

(i)
Γ = f

(i)

Γ − ATiΓA−1
ii f i, i = 1, 2.

Matrix S is usually referred to as Schur complement to the unknowns on Γ. Once

system (3.4) is solved, the internal components could be found from

ui = A−1
ii f i − A−1

ii AiΓuΓ, i = 1, 2. (3.5)
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Next, we derive one more auxiliary approximation that we use later in the de-

scription of the method. Consider local Neumann problem in Ω1A11 A1Γ

AT1Γ A
(1)
ΓΓ


u1

uΓ

 =

 f 1

f
(1)

Γ + λ
(1)

Γ

 ,

with λ
(1)

Γ being an approximation for weak normal derivative on the interface Γ. With

the definition of S(1) as previously introduced the formula becomes

λ
(1)

Γ = S(1)uΓ − g(1)
Γ . (3.6)

3.2.3 The Dirichlet-Neumann algorithm

The classical Dirichlet-Neumann domain decomposition method was described in

[31]. In this research the algorithm is adjusted to the case when Ω1 is embedded in

Ω2.

The iteration step consists of two fractional steps: Dirichlet problem in subdo-

main Ω1 and mixed Neumann-Dirichlet problem in subdomain Ω2 with a Neumann

condition on the interface as determined by the solution Ω1 obtained in the previ-

ous step and with Dirichlet data on ∂Ω2 \ Γ. The next iterate is chosen as a linear

combination of trace of the solution in Ω2 and data on the interface obtained on pre-

vious iteration with a suitably chosen relaxation parameter θ ∈ (0, θmax) to ensure

convergence of the method. In terms of differential operators the above algorithm
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looks as follows:

(D) :


−4 u

n+1/2
1 = f in Ω1,

u
n+1/2
1 = unΓ on Γ,

(D +N) :



−4 un+1
2 = f in Ω2,

un+1
2 = 0 on ∂Ω2 \ Γ,

∂un+1
2

∂n2
= −∂u

n+1/2
1

∂n1
on Γ,

un+1
Γ = θun+1

2 + (1− θ)unΓ on Γ.

With use of the approximations given above, the corresponding iteration for the

discrete problem is as follows

(D) : A11u
n+1/2
1 + A1Γu

n
Γ = f 1,

(D +N) :

A(2)
ΓΓ ATΓ2

AΓ2 A22


un+1

Γ

un+1
2

 =

f (2)

Γ − λ
(1)n+1/2

Γ

f 2

 ,

un+1
Γ = θun+1

2 + (1− θ)unΓ on Γ.
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Next, elimination of u
n+1/2
1 and un+1

2 yields the following equation:

S(2)
(
un+1

Γ − unΓ
)

= θ (gΓ − SunΓ) . (3.7)

This shows that the Dirichlet-Neumann algorithm is a preconditioned Richardson

iteration (3.7) for the Schur complement system (3.4), with the preconditioner S(2).

We remark that S(1) is spectrally equivalent to S(2) due to existence of discrete

harmonic extensions from the interface into the subdomains Ω1 and Ω2. Therefore,

the condition number of S(2)−1S is ensured to stay uniformly bounded.

3.2.4 Challenges of the problem with a densely packed sub-

domain Ω1

The key feature of the problem, which is a densely packed subdomain Ω1, requires

a very fine mesh in the gaps between the inclusions and causes a large size of the

matrix A11. The condition number of that matrix worsens as 1/h2, where h is a size

of the mesh. As a result it is impossible to contract matrix S(1), as this requires

inversion of the block A11.

In this research we propose an approximation of S(1) that could be used to make

the described algorithm applicable in practice. The replacement we suggest uses the

approximation of the DtN map by a discrete one, as introduced in the next section.
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3.3 Introduction to the discrete DtN map

3.3.1 Asymptotic approximation of the DtN map

In this subsection we review the results obtained in [11].

Continuous DtN map of an elliptic PDE maps the boundary trace of the solution

to its normal derivative at the boundary Γ, i.e. Λ : H1/2(Γ)→ H−1/2(Γ). This paper

discusses the DtN map of the following equation

−∇ · [σ(x)∇u(x)] = 0, x ∈ Ω1,

was studied, where Ω1 is a bounded, simply connected domain in Rd. Coefficient

σ(x) has high contrast and varies rapidly within the domain. The map Λ, defined

by

Λψ(x) = σ(x)∇u(x) · n(x), x ∈ Γ,

where n(x) is the outer normal vector to Γ, is self-adjoint. Consequently the map is

determined by its quadratic form

〈ψ,Λψ〉 =

∫
Γ

ψ(x)Λψ(x) ds(x), ∀ψ ∈ H1/2(Γ).

Through integration by parts the map can be related to the energy

〈ψ,Λψ〉 =

∫
Ω1

σ(x)|∇u(x)|2 dx. (3.8)

It was shown that Λ can be approximated by the matrix valued DtN map.
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3.3.1.1 Problem formulation and the main result

The following setup was considered: domain Ω1 is a disk of radius L packed with

m perfectly conductive inclusions Di. Each inclusion is a disk of radius R � L.

There is one more important length scale in this problem: a typical distance between

inclusions δ � R. To define δ first we need to specify what it means for two inclusions

to be neighbors.

Let Vi be the Voronoi cell constructed for inclusion Di, i = 1, . . . ,m

Vi = {x ∈ Ω1 such that |x− xi| ≤ |x− xj| ∀j = 1, . . . ,m, j 6= i} .

Note that each cell is a convex polygon. The inclusions Di and Dj are said to be

neighbors if their cells share an edge. For each inclusion Di denote a set of indices

of the neighboring inclusions

Mi = {j ∈ {1, . . . ,m} , Dj is a neighbor to Di} .

Let the typical distance between two neighboring inclusion be defined as

δij = dist {Di,Dj} , δij � R,

where i = 1, . . . ,m and j ∈Mi.

Similarly, the inclusion Di neighbors the boundary if Vi ∩ Γ 6= ∅ and define the

typical distance between inclusion and the boundary as

δi = dist {Di,Γ} , δi � R.

The inclusions are numbered starting with those who neighbors the boundary and

going counter clockwise. Hence, inclusion Di neighbors the boundary if i = 1, . . . ,mΓ

and Di is an interior inclusion if i = mΓ + 1, . . . ,m.
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Then the conductivity function in the necks between inclusions is defined by

σij = π

√
R

δij
, i = 1, . . . ,m, j ∈Mi,

σi = π

√
2R

δi
, i = 1, . . . ,mΓ.

Since Γ is a circle we parametrize it by angle θ ∈ [0, 2π] and present a boundary

potential ψ as a truncated Fourier series

ψ(θ) =
K∑
k=0

ak cos kθ + bk sin kθ =:
K∑
k=0

ψk(θ). (3.9)

The main result is given in the theorem below.

Theorem 2. For a potential ψ of the form (3.9) we have that

〈ψ,Λψ〉 = 2

[
Enet(Ψ(ψ)) +

1

2
〈ψ,Λ0ψ〉+R(ψ)

]
[1 + o(1)]. (3.10)

The first term is the discrete energy Enet(Ψ(ψ)) of the resistor network given by

Enet(Ψ) = min
U∈Rm


mΓ∑
i=1

σi
2

[Ui −Ψi]
2 +

1

2

m∑
i=1

∑
j∈Mj

σij
2

(Ui − Uj)2

 , (3.11)

with vector Ψ = (Ψ1, . . . ,ΨmΓ)T of boundary potentials defined by

Ψi(ψ) =
K∑
k=0

ψk(θi)e
− k
√

2Rδi
L , i = 1, . . . ,mΓ,

where θi, i = 1, . . . ,mΓ is the closest points on Γ to the inclusion Di.

The second term is the quadratic form of the DtN map Λ0 of the reference medium,

with uniform conductivity σ = 1. For boundary potential given by a single Fourier

mode ψ = cos kx this term is defined by

〈ψ,Λ0ψ〉 = kπ.
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The last term R is given by

R =
mΓ∑
i=1

K∑
k,m=0

e−|k−m|
√

2Rδi
L Ri,k∧m {(akam + bkbm) cos [(k −m)θi]

+(bkam − akbm) sin [(k −m)θi],

where k ∧m = min {k,m}, and Ri,k is defined by

Ri,k =
σi
4

[√
2kδi
πL

Li1/2

(
e−

2kδi
L

)
− e−

2k
√

2Rδi
L

]
, (3.12)

in terms of the polylogarithm function Li1/2.

Proof of the theorem is given in [11].

3.3.2 Construction of discrete DtN map

In this section we use the result of Theorem 2 to construct a matrix-valued DtN map

Λ. We discretize the boundary Γ with M points θi = (i−1)2π
M

, i = 1, . . . ,M . Then

the discrete DtN map Λ ∈ RM×M is a symmetric positive definite matrix. To find

the entries of this matrix we use the approximation to quadratic form (3.10) and

auxiliary fact

〈ϕ̂,Λϕ̃〉 =
1

4

[
〈ϕ̂+ ϕ̃,Λ(ϕ̂+ ϕ̃〉 − 〈ϕ̂− ϕ̃,Λ(ϕ̂− ϕ̃〉

]
, (3.13)

to construct a system of equations

ΦTΛΦ = Υ, (3.14)

where Φ = [ϕ1, . . . , ϕM ] form a basis in RM . Hereafter the ’bar’ indicates vectors in

RM . A set of M linearly independent functions {ϕ1, . . . , ϕM} is selected to be{
1√
π

;
cos θ√
π

; . . . ;
cos
(
M
2
− 1
)
θ

√
π

;
sin θ√
π

; . . . ;
sin M

2
θ

√
π

}
,
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Thus Φ is given by

Φ =


1√
π

cos θ1√
π

. . .
cos (M2 −1)θ1√

π
sin θ1√
π

. . .
sin M

2
θ1√

π

...
...

...
...

...
...

...

1√
π

cos θM√
π

. . .
cos (M2 −1)θM√

π
sin θM√

π
. . .

sin M
2
θM√
π

 .

Entries of the right hand side of (3.14) are given by

υij =
1

2

{
Enet(Ψ(ϕi + ϕj)) +

1

2
〈ϕi + ϕj,Λ0(ϕi + ϕj)〉+R(ϕi + ϕj)

}
−1

2

{
Enet(Ψ(ϕi − ϕj) +

1

2
〈ϕi − ϕj,Λ0(ϕ− ϕj)〉+R(ϕi − ϕj)

}
.

We split υij into a sum of three terms to treat them separately

υ
(1)
ij =

1

2

{
Enet(Ψ(ϕi + ϕj))− Enet(Ψ(ϕi − ϕj)

}
,

υ
(2)
ij =

1

4

{
〈ϕi + ϕj,Λ0(ϕi + ϕj)〉 − 〈ϕi − ϕj,Λ0(ϕi − ϕj)〉

}
,

υ
(3)
ij =

1

2
{R(ϕi + ϕj)−R(ϕi − ϕj)} .

Later we show how much influence each term has depending on k for the boundary

function given by a single mode ϕ = cos kθ.

Once matrix Υ is constructed we obtain DtN map Λ by Λ = (ΦT )−1ΥΦ−1. A de-

tailed description in the following subsections shows how to compute entries υ
(1)
ij , υ

(2)
ij

and υ
(3)
ij .

3.3.2.1 Compute entries υ
(1)
ij

The discrete energy from a boundary function given by a single Fourier mode is

given by (3.11). To use this formula for the boundary functions given by a sum or a

difference of two Fourier modes we need two lemmas.
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Lemma 6. A vector U is the minimizer of (3.11) iff U if and only if U is the solution

of equation MU = P, where entries of M are defined by

Mij =



σi +
∑
l∈Mi

σil, if i ∈ {1, . . . ,mΓ} and i = j,

∑
l∈Mi

σil, if i ∈ {mΓ + 1, . . . ,m} and i = j,

−σij, if i ∈ {1, . . . ,m} and j ∈Mi,

0, if i ∈ {1, . . . ,m} and j /∈Mi,

(3.15)

and entries of P are defined by

Pi =


σiΨi, if i ∈ {1, . . . ,mΓ},

0, if i ∈ {mΓ + 1, . . . ,m}.
(3.16)

Proof. (⇒)To minimize (3.11) take partial derivatives ∀i, i = 1, . . . ,m.

∂Enet

∂Ui
=


σi[Ui −Ψi] +

∑
j∈Mi

σij[Ui − Uj], if i ∈ {1, . . . ,mΓ},

∑
j∈Ni

σij[Ui − Uj], if i ∈ {mΓ + 1, . . . ,m}.

Relation ∂Enet

∂Ui = 0 gives rise to the following equations

(
σi +

∑
j∈Mi

σij

)
Ui −

∑
j∈Mi

σijUj = σiΨi, if i ∈ {1, . . . ,mΓ},

∑
j∈Mi

σijUi −
∑
j∈Mi

σijUj = 0, if i ∈ {mΓ + 1, . . . ,m}.

The last equations yield (3.15) and (3.16).

(⇐) To show that this is sufficient condition, matrix R of second derivatives ∂2Enet

∂Ui∂Uj

must be positive definite. All inclusions are assumed adjacent to the boundary and
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each other. If not, some σi and σij would be zero, which does not affect positive

definiteness of the matrix. Entries of the matrix R are the following

Rij =


σi +

m∑
l=1

σil, if i = j,

−σij, if i 6= j.

We show that this matrix is positive definite by induction over the number of inclu-

sions. Consider case of two inclusions.(
1 α

)σ1 + σ11 + σ12 −σ12

−σ12 σ2 + σ12 + σ22


1

α


= σ1 + σ11 + σ12 − 2ασ12 + α2(σ2 + σ12 + σ22).

The minimizer of this quadratic form is

αmin =
σ12

σ2 + σ12 + σ22

,

and the minimum of quadratic form is

σ1σ2 + σ1σ12 + σ1σ22 + σ11σ2 + σ11σ12 + σ11σ22 + σ12σ2 + σ12σ22

σ2 + σ12 + σ22

> 0.

So quadratic form is positive definite for any α ∈ R in case of two inclusions. Assume

that matrix is positive definite for l inclusions, thus αTRα > 0, ∀α ∈ Rl or

l∑
j=1

αj

l∑
i=1

αiRij > 0.

Consider the case with l + 1 inclusions

(
αT 1

) R∗ −β

−βT σl+1 +
l+1∑
i=1

σi l+1


α

1

 , (3.17)
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where β = (σ1 l+1, . . . , σl l+1) ∈ Rl and

R∗ij =


Rij, if i 6= j,

Rij + σi l+1, if i = j.

Expanding (3.17) we get

l∑
j=1

αj

l∑
i=1

αiR
∗
ij − 2

l∑
i=1

αiβi + σl+1 +
l+1∑
i=1

σi l+1

=
l∑

j=1

αj

(
l∑

i=1

αiRij + αjσj l+1

)
− 2

l∑
i=1

αiσi l+1 + σl+1 +
l+1∑
i=1

σi l+1

=
l∑

j=1

αj
∑
i=1

αiRij +
l∑

i=1

α2
iσi l+1 − 2

l∑
i=1

αiσi l+1 + σl+1 + σl+1 l+1 +
l∑

i=1

σi l+1

=
l∑

j=1

αj

l∑
i=1

αiRij + σl+1σl+1 l+1 +
l∑

i=1

σi l+1(α2
i − 2αi + 1).

Since α2
i −2αi+1 ≥ 0 and

l∑
j=1

αj
l∑

i=1

αiRij > 0 by the l case, we have (3.17) is positive

∀α ∈ Rl. Thus matrix R is positive definite for any number of inclusions and U is

indeed the minimizer of (3.11).

Lemma 7. If the boundary potential Ψ in (3.11) is a sum of two terms Ψ = Ψ(1)+Ψ(2)

then the minimizer of (3.11) is a sum of two terms U = U (1)
+ U (2)

where U (i)
is a

minimizer of (3.11) with boundary potential Ψ(i).

Proof. By Lemma 6 minimizers of (3.11) with boundary potentials Ψ(1) and Ψ(2)

satisfy MU (1)
= P(1)

and MU (2)
= P(2)

respectively. So MU (1)
+MU (2)

= P(1)
+P(2)

.

And hence U (1)
+U (2)

is a minimizer of (3.11) with boundary potential Ψ(1)+Ψ(2).
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With the use of two lemmas above and formula (3.11) we conclude that

υ
(1)
ij =

1

2

{
mΓ∑
l=1

σl
2

[
(U il + U jl )− (Ψi

l + Ψj
l )
]2

+
1

2

m∑
l=1

∑
g∈Ml

σlg
2

[
(U il + U jl )− (U ig + U jg )

]2
−

mΓ∑
l=1

σl
2

[
(U il − U

j
l )− (Ψi

l −Ψj
l )
]2 − 1

2

m∑
l=1

∑
g∈Ml

σlg
2

[
(U il − U

j
l )− (U ig − U jg )

]2}
,

where U il is the lth entry of vector U i, with U i being a minimizer of (3.11) when Ψi

is given by the ith function from (3.15).

3.3.2.2 Compute entries υ
(2)
ij

Consider 〈ϕi ± ϕj,Λ0(ϕi ± ϕj)〉 and recall that Λ0 is the DtN map of the reference

medium with uniform conductivity σ = 1. Similarly to (3.8), quadratic form is

defined by

〈ϕi ± ϕj,Λ0(ϕi ± ϕj)〉 =

∫
Ω1

|∇u(x)|2 dx,

where u is a solution to

−∇ · [∇u(x)] = 0, x ∈ Ω1,

with Dirichlet boundary condition u = ϕi±ϕj on ∂Ω1. It is known that the solution

u to this problem in a disk could be found explicitly. Integration of the gradient of

u yields

υ
(2)
ij =


kπ, if i = j,

0, otherwise.
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3.3.2.3 Compute entries υ
(3)
ij

Last, we treat values υ
(3)
ij . In our case all gaps between inclusionsDi and the boundary

Γ are identical, i.e. δi = δ1. Therefore, Ri,k = R1,k for i = 1, . . . ,mΓ, and is defined

by (3.12). With that υ3
ij simplifies to

υ
(3)
ij = mΓ

K∑
k=0

R1,k

(
aika

j
k + bikb

j
k

)
+ 2mΓ

K∑
k=0

R1,k

∑
q∈Z+

e−qm
Γ
√

2Rδ1
L 1[0,K](k + qmΓ)[

aika
j
k+qmΓ + ajka

i
k+qmΓ + bikb

j
k+qmΓ + bjkb

i
k+qmΓ

]
,

where aik, b
i
k stands for kth coefficients in a truncated Fourier series for function

ϕi. Note that because of the choice of basis functions first term contributes nonzero

values only to the diagonal elements υ
(3)
ii .

3.4 Modification of the Schur complement system

and numerical illustrations

3.4.1 Modification of the Schur complement system (3.4)

With matrix Λ described in a previous section, ΛuΓ is an approximation for normal

derivative on the interface Γ. Then PΛuΓ is an approximation for the weak normal

derivative on Γ, where P is the matrix corresponding to the integral over the interface.

With that

PΛuΓ = λ
(1)

Γ ,
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where λ
(1)

Γ is an approximation of weak normal derivative on Γ introduced in section

3.2.2. We use relation (3.6) to modify Schur complement system (3.4) to obtain the

following linear system

(PΛ + S(2))uΓ = g
(2)
Γ , (3.18)

with the preconditioner S(2).

3.4.2 Matrix Λ and its properties

As a test problem to build matrix Λ, the domain Ω1 is chosen to be a disk of radius

L = 1. Insert m = 19 inclusions inside the domain Ω1. All inclusions are identical

disks of radii R = 0.198. Inclusions are evenly distributed in the domain, see Fig.

3.2. The smallest distance between neighboring inclusions is δij = 0.004, while the

distance between inclusions and the boundary ∂Ω1 = Γ is δi = 0.002.

Figure 3.2: The domain Ω1 with highly conducting inclusions Di of fours groups

Discretize the boundary Γ with M points selected in a prescribed way. First, the

closest points on Γ to the boundary neighboring inclusions are required to be in a

discretization set of the points. Second, select points equidistantly over Γ. Following

the procedure described in section 3.3.2 we obtain matrix Λ ∈ RM×M .

The resulted matrix Λ is symmetric and positive definite. Also, the diagonal

elements of Λ are periodic with the same frequency as the points of discretization

match the closest points on Γ to the boundary neighboring inclusions.
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Finally, three regimes of parameters R, δ and k are distinguished in [11]. When

the boundary function ψ has low oscillations, the resistor network gets excited and

determines the leading order of the energy. If the boundary potential ψ is very

oscillatory, the network plays no role, because it is not excited. In this case, the

energy is approximately equal to that in the reference medium. The resonant term

Rk plays an important role in the approximation of energy when k gets intermediate

values. Table 3.1 shows numerical illustration on how much influence each term has

when boundary potential is given by a single Fourier mode ψ = cos kθ.

k Enet 〈ψ,Λ0ψ〉 Rk

1 17.72 6.28 0.23

10 9.51 31.42 32

50 0.6 157.08 57.39

100 0.02 314.16 44.14

200 1.88 · 10−5 628.32 25.42

500 1.8 · 10−14 1570.8 5.28

Table 3.1: Energy terms for ψ = cos kx

3.4.3 Numerical results

Figure 3.3: The domain Ω partitioned into subdomains

To perform domain decomposition method, the domain Ω1 is embedded in a disk

of radius L̃ = 3, see Fig. 3.3. Conductivity σ outside of Ω1 is equal to 1. Function
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f of the right hand side of (3.1) satisfies the compatibility condition. Number of

discretization points on the interface M = 912.

The standard pcg function of MATLAB® with the preconditioner S(2) is used

to solve (3.18). The initial guess u0
Γ is a zero vector. The stopping criteria is the

relative error

‖(PΛ + S(2))ukΓ − g
(2)
Γ ‖2

‖g(2)
Γ ‖2

being less than 10−6. PCG algorithm converges to a solution with the desired toler-

ance in 24 iterations.

Because an analytical solution of (3.1) is not available, we compare the solution

uDD
Γ obtained by the domain decomposition method to the solution uPL

Γ , produced

by the technique from Chapter 2. We run experiments for different functions f ,

see Fig. 3.4, Fig. 3.5 and Fig. 3.6. Table 3.2 shows the CPU time for both

domain decomposition (DD) and preconditioned Lancsoz (PL) methods. Reported

time corresponds to iterative procedure itself, and does not include processioning

steps.

f DD PL

y3 0.36 931.28

x 0.34 915.45

x3 + y5 0.29 793.78

Table 3.2: CPU time in seconds for domain decomposition (DD) and preconditioned

Lancsoz (PL) methods
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Once solutions on the interface are found we retrieve internal components of

the solution. Solution uDD
2 is defined by (3.5) with i = 2. Solution inside domain

Ω1 is found as a linear interpolation of constant potentials on the inclusions Ui for

i = 1, . . . ,m given by (3.11). Since uDD
Γ and uPL

Γ are close and the matrix of system

(3.2) is positive definite, internal solutions uDD
i and uPL

i in corresponding subdomains

are close.

Figure 3.4: Solutions uDD
Γ and uPL

Γ for f = y3

Figure 3.5: Solutions uDD
Γ and uPL

Γ for f = x

Figure 3.6: Solutions uDD
Γ and uPL

Γ for f = x3 + y5

3.5 Conclusions

This chapter focuses on a construction of the efficient numerical scheme that can

be used to solve high-contrast PDEs of the type (3.1). A typical FEM discretiza-

tion yields an ill-conditioned matrix when the mesh size h becomes very small in

the gaps between inclusions. We propose an approximation for Schur complement

matrix in Ω1, which is built using the discrete DtN map. The numerical illustration

shows that the proposed algorithm gives qualitatively accurate solution while, being

computationally efficient.
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