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Abstract

Recent advances in high-resolution fluorescence microscopy have enabled the system-

atic study of morphological changes in large populations of cells induced by chemical and

genetic perturbations, facilitating the discovery of signaling pathways underlying diseases

and the development of new pharmacological treatments. In these studies, though, quantifi-

cation and analysis of morphological features are for the vast majority processed manually,

slowing data processing significantly and limiting the information gained to a descriptive

level. As an example, automated identification of the primary components of a neuron and

extraction of its features are essential steps in many quantitative studies of neuronal net-

works. Recent advances in applied harmonic analysis, especially in the area of multiscale

representations, offer a variety of techniques and ideas which have potential to impact this

field of scientific investigation. Motivated by the properties of directional multiscale rep-

resentations, the focus of this thesis is to introduce a new notion, directional ratio, which

is a multiscale quantitative measure, capable of distinguishing isotropic from anisotropic

structures and the characterization of local isotropy.

Another part of the dissertation illustrates the application of directional ratio. In partic-

ular, we present an algorithm for automated soma extraction and separation of contiguous

somas. Our numerical experiments show that this approach is reliable and efficient to detect

and segment somas.
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Chapter 1

Background and Motivation

1.1 Introduction

Foundations of wavelet theory were laid in the 1980’s to provide sparse representa-

tions for functions with point discontinuities [37]. The concept of sparsity in representa-

tions predates wavelets. In the context of wavelets and similar representations, the key to

sparsity is that discontinuities and other types of singularities affect the magnitude of the

transform locally and not globally. Moreover, smooth regions result in only a few coarse-

scale significant non-zero transform coefficients. The basic idea at the core of this approach

is to generate a family of waveforms ranging over several scales and locations through the

actions of dilation and translation operators on a fixed ‘mother’ function. Despite their

useful properties in one dimension, wavelet transforms in higher dimension spaces have

poor directional sensitivity, therefore, they do not provide much information about the ge-

ometry of the singularities of a function defined on a multidimensional domain. In many

applications, edge-type discontinuities are frequently the most significant features and it is

desirable not only to identify their locations but also capture their orientations. To over-
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1.1 INTRODUCTION

come this limitation, a new class of improved multiscale methods emerged, including most

notably curvelets and shearlets [5, 31], which combine the advantages of multiscale analy-

sis with the ability to efficiently encode directional information. Thanks to their ability to

capture the geometry of data, this new generation of multiscale methods can be particularly

useful for the extraction of intrinsic geometric features of images. In particular, we have

shown in [40, 33, 41] one can use directional transforms such as shearlet transform to study

local directional patterns in images. Despite these results demonstrating the impressive ge-

ometric capabilities of these new multiscale transforms, there are still many outstanding

theoretical problems that need to be addressed in order to harness the full power of these

ideas to the complex data like neuronal images. Such outstanding problems include:

• Restrictive assumptions on generating functions: Assumptions on generating func-

tions may be too restrictive or even impossible to satisfy in discrete applications. Is it

possible to weaken these assumptions? In particular, is it possible to use compactly

supported analyzing functions with small supports in directional transforms?

• Asymptotic vs non-asymptotic estimates: All results about detection and separation

of singularities are formulated as asymptotic estimates: They hold only in the limit

when scale tends to zero or to its finest asymptotic limit. This is a serious limitation in

numerical applications, where only a finite range of scales is available and asymptotic

estimates are clearly impractical. How can we go beyond asymptotics?

Our investigation is motivated by the need to develop a new generation of data anal-

ysis tools to handle the complex and massive biomedical imaging data made available by

recently emerged technologies. High-content screenings (HCS), for instance, require the

identification and extraction of multiple morphological features of neurons, such as soma

shape and volume, neurite length, and branching properties [34, 18]. Such complex infor-

2



1.1 INTRODUCTION

mation, usually compiled from multi-channel fluorescence images, necessitates automated

processing methods to handle large batches of data and establish a confident statistical basis

for a reliable prediction model. With an increase in the use of HCS in basic science set-

tings, automated detection of cell compartments from fluorescent images is an area of very

active research. Since, automated identification of the primary components of a neuron and

extraction of its sub-cellular features are essential steps in quantitative studies.

The challenges to address go beyond the difficulty of dealing with large amounts of

data. Fluorescent images of neurons are typically dominated by complex 3D structures

with features of interest varying significantly in scale and shape. Thus, the automated de-

tection of sub-cellular components is very challenging in biomedical imaging where the

objects of interest are frequently very complex, have a large variability in size and the im-

ages contrast is often highly irregular. Of all sub-cellular components of a neuron, somas

are among the most difficult to detect automatically in fluorescence images, due to the lack

of robust markers and the uneven distribution of fluorescence signals. Automated soma/cell

detection methods in many image analysis packages rely on contrast enhancement and im-

age intensity thresholding which aid the identification of somas by creating binary masks.

In neuronal cultures, somas are usually visible with the aid of biological markers, neither

of which are soma-selective. They are diffusely distributed in the somato-dendritic com-

partment and, as a result, masks obtained with these markers consists of both somas and

dendrites. Nuclear staining, on the other hand, targets only nuclear DNA and excludes the

cytoplasmic region of the soma surrounding the nucleus.

To address these challenging data analysis problems, in this thesis, we discuss the iden-

tification of certain anatomical characteristics in images of neuronal networks acquired

using laser scanning microscopy. Indeed, we developed innovative analytic and compu-

tational tools combining the power of harmonic analysis, multiscale methods, and varia-
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1.1 INTRODUCTION

tional methods for the automated detection and accurate segmentation of somas from high-

resolution confocal images of cultured neurons. As each neuron consists of a blob-like

cell body, called the soma, and many elongated components called the neurites (including

one axon and multiple dendrites). The first essential imaging task is to distinguish two

classes of shapes: a class of rather isotropic shapes associated with the somas and a class

of highly anisotropic shapes associated with the neurites. There have been some meth-

ods proposed for shape classification problems such as blob detection methods to detect

blob-like objects and vesselness methods to provide a vesselness measure for tubular ob-

jects [35, 14, 36, 45, 16, 17]. These methods use LOG (Laplacian of Gaussians), DOG

(Difference of Gaussians) and the eigenvalues of the Hessian of filter intensities [22]. The

common drawback of these methods is the sensitivity to the irregularities of fluoresence

distribution in the images. One of groundbreaking ideas introduced in [25] uses geomet-

ric moments. Since then, moment techniques have been established to be used as shape

descriptors. A remarkable example is Zernike moments [51]. They are rotational invari-

ant and could be made to be translation and scale invariant as well. These mathematical

properties of Zernike moments make them excellent features to be used as shape descrip-

tors. The features generated by Zernike moments are used in a classifier to classify the

images [24]. Our problem is to segment somas from dendrites and axons (tubular struc-

tures) in binary images of neurons. In those images, dendrites, axons, and somas form one

or more connected components, but somas are not connected components on their own.

Therefore, we don’t have a problem just recognizing a shape which corresponds to a soma,

but we want to segment somas as connected sub-components of connected components. Let

alone, we have to segment colluded somas as well. This makes our problem different than

the ones where Zernike moments have been successfully used. Even though our approach

is different than Zernike moment techniques, they share the common invariant properties
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1.1 INTRODUCTION

which make both approaches very useful as shape descriptors. On the other hand, vessel-

ness methods are not suitable for our problem since as we described before our problem

has colluded somas and this approach is not applicable for segmentation of colluded so-

mas. We will close this discussion with the use of anisotropic filters in other applications.

Anisotropic filters have been studied and used in several application domains. Among them

are shearlets [31], curvelets [5], and other parabolic or alpha-molecules for which direc-

tional ratio can be defined. In fact, we discuss the shearlet-based directional ratio in the next

chapter. In our current work, we study a more general concept of directional ratio based

on parabolic molecules. Anisotropic filters have also been used for anisotropic difussion,

e.g. [53, 30, 56]. After the Perona and Malik paper [43] which introduced this method, a

very long series of papers followed proposing various anisotropic filters and applications

of the method. Anisotropic diffusion is a variational method and in that sense it bares some

similarities with the level set method we use for soma segmentation. This method smooths

connected regions without smearing their boundaries. This is why it is widely used in im-

age denoising applications [19, 53, 57]. In order to distinguish anisotropic objects, such as

vessel-like structures, from isotropic ones, e.g disk-like shaped objects, we introduce the

notion of Directional Ratio which is a precise measure of anisotropy of a structure within a

certain scale. One of the most interesting features of Directional Ratio is the ability to en-

hance the directional sensitivity of the underlying directional transform by comparing the

magnitude of the local directional content (i.e. local isotropy and anisotropy properties) of

a function over the two orientations where the behavior is most dissimilar. Local isotropy

and anisotropy are properties tied to a range of scales. The ideas introduced in this section

open a new avenue for the detection of singularities organized in space as boundaries of

isotropic or vessel-like structures at a certain range of scales. The advantage of this novel

point of view is that it bypasses asymptotic analysis in image models and is the backbone
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1.2 NOTATION AND DEFINTIONS

of our work, ‘Quantification of phenotypic characteristics in neuronal images’, where our

objects of interest include blob-like (somas) and vessel-like structures (neurites) of various

sizes.

1.2 Notation and Defintions

It is useful to introduce some notations and definitions.

1. �
A

(x) =

8
>><

>>:

1 if x 2 A,

0 if x /2 A

2. ˆf denotes the Fourier transform of f.

3. f_ denotes the inverse Fourier transform of f.

4. sinc(x) := sin(2⇡x)
⇡x

=

�
�[�1,1]

�_
(x) with x 2 R.

5. T
x

f(y) = f(y � x) is the translation operator.

6. ⇢(R)f(x) = f(Rx) is the rotation operator, where R is a rotation matrix.

7. Dj

A

↵,�

f(x) = | detA
↵,�

|j/2f(Aj

↵,�

x) is the dilation operator where A
↵,�

is an anisotropic

expanding matrix such that

A
↵,�

=

0

B@
a 0

0 a�

1

CA (1.1)

a > 1 and 0 < � < 1.

9. B(x, r) is the open ball of radius r centered at x in R2
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1.3 THE SHEARLET TRANSFORM

1.3 The Shearlet Transform

For appropriate admissible functions  (h), (v) 2 L2
(R2

) and matrices

M
as

=

⇣
a �

p
as

0
p
a

⌘
, N

as

=

⇣ p
a 0

�
p
as a

⌘
,

we define the horizontal and vertical (continuous) shearlets by

 
(h)
a,s,t

(x) = | detM
as

|� 1
2 (h)

(M�1
as

(x� t)), a > 0, s 2 R, t 2 R2,

and

 
(v)
a,s,t

(x) = | detN
as

|� 1
2 (v)

(N�1
as

(x� t)), a > 0, s 2 R, t 2 R2,

respectively. The reason for choosing two systems of analyzing functions is to ensure a

more uniform covering of the range of directions through the shearing variable s. Indeed,

rather than using a single shearlet system where s ranges over R, we will use the two

systems of shearlets defined above and let s range over a finite interval only.

To define our admissible functions  (h), (v), for ⇠ = (⇠1, ⇠2) 2 R2, let

ˆ (h)
(⇠1, ⇠2) = ˆ 1(⇠1) ˆ 2(

⇠2

⇠1
), ˆ (v)

(⇠1, ⇠2) = ˆ 1(⇠2) ˆ 2(
⇠1

⇠2
),

where ˆ 1, ˆ 2 2 C1
(R) and satisfy the following conditions:

Z 1

0

| ˆ 1(a!)|2da
a

= 1, for a.e. ! 2 R, and supp ˆ 1 ⇢ [�2,�1
2 ] [ [

1
2 , 2];

k 2k2 = 1 and supp ˆ 2 ⇢ [�
p
2
4 ,

p
2
4 ].
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1.3 THE SHEARLET TRANSFORM

Observe that, in the frequency domain, a shearlet  (h)
a,s,t

has the form:

ˆ 
(h)
a,s,t

(⇠1, ⇠2) = a
3
4 ˆ 1(a ⇠1) ˆ 2(a

�1/2
(

⇠2

⇠1
� s)) e�2⇡i⇠·t.

This shows each function ˆ 
(h)
a,s,t

has the following support:

supp ˆ 
(h)
a,s,t

⇢ {(⇠1, ⇠2) : ⇠1 2 [� 2
a

,� 1
2a ] [ [

1
2a ,

2
a

], | ⇠2
⇠1
� s|  p

a}.

That is, the frequency support of ˆ 
(h)
a,s,t

is a pair of trapezoids, symmetric with respect to the

origin, oriented along a line of slope s.

The horizontal and vertical shearlets form a collection of functions ranging not only

over various locations and scales, like the elements of a traditional wavelet system, but

also over various orientations controlled by the variable s, and with frequency supports

becoming highly anisotropic at fine scales (a ! 0). In space domain, these functions

are not compactly supported but their supports are essentially concentrated on orientable

rectangles with side-lengths a,
p
a and orientation controlled by s. The support becomes

increasingly thin as a ! 0. The frequency supports of some representative horizontal

shearlets are illustrated in Figure 1.1.

Using the horizontal and vertical shearlets, we define the (fine-scale) continuous shear-

let transform on L2
(R2

) ( [31] ) as the mapping

f 2 L2
(R2 \ [�2, 2]2)_ ! SH

 

f(a, s, t), a 2 (0, 14 ], s 2 [�1,1], t 2 R2,

8



1.3 THE SHEARLET TRANSFORM

HHY
(a, s) = (

1
32 , 1)@

@@R

(a, s) = (14 , 0)

6

(a, s) = (

1
32 , 0)

⇠1

⇠2

Figure 1.1: Frequency supports of the horizontal shearlets ˆ 
(h)
a,s,t

for different values of a
and s.

given by

SH
 

f(a, s, t) =

8
>><

>>:

SH(h)
 

f(a, s, t) = hf, (h)
a,s,t

i, if |s|  1

SH(v)
 

f(a, 1
s

, t) = hf, (v)

a,

1
s

,t

i, if |s| > 1.

(1.2)

In the above expression, we adopt the convention that the limit value of SH
 

f(a, s, t) for

s = ±1 is set equal to SH(v)
 

f(a, 0, t).

The term fine-scale refers to the fact that the shearlet transform, SH
 

f , given by (1.2),

is only defined for the “fine scales” scale variable a 2 (0, 1/4].

The discrete shearlet transform is obtained by sampling (1.2) at a = 2

�2j , s = 2

�j`,

t = B2�j

`

A2�2jk, for j, ` 2 Z, k 2 Z2. In this case, with an abuse of notation, we write the

discrete shearlet transform as the mapping

f ! SH
 

f(j, `, k) = hf, 
j,`,k

i, j, ` 2 Z, k 2 Z2.

This transform inherits some useful analytic properties from its continuous counterpart and

9



1.3 THE SHEARLET TRANSFORM

can be implemented by fast wavelet-like algorithms.
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Chapter 2

Directional Ratio

This chapter presents ideas published in our prior work [40, 33].

2.1 Motivation

One of the main problems in image analysis is the extraction of shape characteristics.

Understanding complex shapes can be a very challenging problem especially in the domain

of natural images where the variety of shapes can easily be overwhelming. However, our

analysis is focused on a certain type of images which by all means are not natural in the

usual sense. The class of images of interest are images of clusters of neurons acquired with

laser scanning microscopes. Thus, the problem of extraction of shape characteristics is

presented in a simpler way because we want to distinguish two classes of shapes: Tubular

from non-tubular, or more generally anisotropic shapes from isotropic ones. In images of

clusters of neuronal cells where, acquired with laser scanning microscopes, the only objects

that are present are dendritic branches, axons, and somas. The former are tubular structures,

thus, anisotropic, while the latter express anisotropy to much lesser degree. Needless to

11
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say, any notion of isotropy vs. anisotropy depends on the scale at which the structures of

interest are being considered. For instance, a thick tube can be regarded within a relatively

small image patch as an isotropic structure, but, if it is seen as a part of a relatively larger

patch, its anisotropy becomes evident. In the course of our presentation, another feature

akin to the data representation filters, the local aspect ratio, will be emerge as a factor for

the robust performance of the anisotropy quantification metric. As a last note, we remark

that a second shape characteristic of the imaged structure plays a significant role: the local

directionality of the structure, which can be intuitively described as the orientation of its

”principal” axis, if any, of the restriction of the structure within a certain image patch.

Again, intuitively speaking, all these features taken together can be used to characterize

anisotropy. Although, one can easily understand why scale and local directionality can

influence the detection of the presence of anisotropy, this is not necessarily true with local

aspect ratio since this is a property of the data representation filters.

Thus, in order to distinguish anisotropic objects, such as tubular-like, structures, from

isotropic ones, e.g disk-like shaped objects, we define the notion of Directional Ratio which

is a measure of anisotropy of a structure. The presence of this new concept can be defined

for every transform or analysis operator induced by families of directional atoms.

2.2 Directional Ratio for Haar-like Functions

We begin by introducing the concept of directional ratio with a class of very simple

analyzing functions. We present the development of this novel concept in a way that reflects

the timeline of the development of this concept which constitutes the main topic of this the-

sis. The parameters determining this family clarify how scale, aspect ratio, and orientation

affect the values of directional ratio. Although, the following presentation of concepts and

12
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development of the theory is for 2-D, all of it extends verbatim to 3-D. Directional ratio can

be computed for any image. However, our theoretical analysis of the behavior of this new

concept considers cartoon images which are of the form �
A

, where A is a subset of R2.

Definition 2.1. Let A ⇢ R2. If x 2 A we say that x is a point of local isotropy of A at scale

s > 0 if B(x, s/2) ✓ A.

Obviously, the scale at which the isotropy is observed is not unique. For example, let

A be a ball of radius S > 0. Then, the ball at its center is locally isotropic at any radius up

to scale 2S. This definition attempts to establish a first connection between the geometric

property of the radius of a ball and scale. Recall, that scale is a property of the physical

domain defined in the Fourier domain in terms of dyadic decompositions introduced by

Littlewood and Paley [7]. Intuitively speaking, the spatial extend of an object dictates its

“essential support” in the frequency domain which can be thought of as the subset of the

frequency domain supporting the main part of the Fourier transform of the characteristic

function of this isotropic patch.

As the point of interest moves closer to the boundary, the scale of isotropy is being

reduced, as expected. On the antipodal end, suppose that we have a tubular structure and,

in particular, a cylinder of radius r then, at any point of its centerline the tubular structure

has local isotropy of scale up to 2r, but that property seizes to be true for scales greater

than 2r. Furthermore, at a relatively small scale and in every structure with non-empty

interior, an interior point can be regarded as a point of local isotropy. These observations

underpin the relationship with anisotropy and scale. They also help us understand how a

traditional topological property, that, of a point being in the interior of a set, in this new

framework of local isotropy at a certain scale introduced by Definition 2.1, is in the heart

of the apparatus which we are building in order to detect the presence of an anisotropic

13
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or isotropic structure at a certain scale. This apparatus is a simple thresholding operation

applied on new function called Directional Ratio. The definition below (Eq. 2.2) is our

first attempt to develop this concept and uses a family of Haar-like functions inspired by

the Radon transform: Let, 0 < r < s. Define

�
s,r

:= �[� s

2 ,
s

2 ]⇥[� r

2 ,
r

2 ]
(2.1)

and take the family of all of its rotations ⇢(R)�
s,r

. In practice, we consider only a finite

set of rotations. The next result gives some rise to a quantity we call Directional Ratio,

D
s,r

, for a real valued function f at scale s and at point x defined by

D
s,r

f(x) =
inf

R

{| hf, T
x

⇢(R)�
s,r

i | : R 2 SO(2)}
sup

R

{| hf, T
x

⇢(R)�
s,r

i | : R 2 SO(2)} , (2.2)

where 0 < r < s.

Figure 2.1: Illustration of the main idea of the definition of the function D
s,r

given by
(2.2). At an appropriate scale by rotating Haar-like functions (in this case the characteristic
function of the blue rectangle), we can distinguish whether a point is an interior point of an
isotropic object or of an anisotropic object.

Next, we establish the existence of a threshold enabling the detection of the presence

of an anisotropy or isotropy in a structure at a certain scale in cartoon-like images which
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serve as a simple mathematical model of natural images.

A simple cartoon-like image example is f = �
A

where A is a subset in R2. Then the

directional ratio for �
A

at scale s and at point x is

D
s,r

�
A

(x) =
inf

R

{| h�
A

, T
x

⇢(R)�
s,r

i | : R 2 SO(2)}
sup

R

{| h�
A

, T
x

⇢(R)�
s,r

i | : R 2 SO(2)} ,

where x is an interior point of A (see Figure 2.2). Note, that when x is an interior point of A

the quantity D
s,r

�
A

(x) is well defined for every scale s > 0. In any image, since even the

finest structures have non-empty interior of width of at least one pixel/voxel, every point in

the image is interior to some structure. So the function D
s,r

�
A

can be computed for every

pixel/voxel.

Figure 2.2: Illustration of the main idea of the proof of Proposition 2.2. As r ! 0 the
parallilepiped [� s

2 ,
s

2 ]⇥ [� r

2 ,
r

2 ] is almost contained in B(x, s/2) if x is a point of isotropy
of A at scale s, forcing D

s,r

�
A

(x) = 1 as r goes to 0.

Proposition 2.2. Suppose that A is a compact subset of R2 and that x is point of local

isotropy of A at scale S. Then, lim
r!0 Ds,r

�
A

(x) = 1 for every 0 < s  S. Moreover,

D
s,r

�
A

is locally rotationally invariant at scale s and it also obeys a simple covariance

rule under the action of rigid motions:

1) For any rigid motion Q, the directional ratio of Q(A) at Qx at any scale is equal to
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directional ratio of A at x at the same scale.

2) Last, D
s,r

�
A

obeys a simple scale covariance rule: For every closed subset A and

scale s, the directional ratio for aA at ax, D
as,r

�
aA

(ax) is equal to the directional

ratio for A at x D
s,r

�
A

(x)

Proof. If x is a point of local isotropy of A at scale S then the ball B(x, S/2) is contained

in A. Then, for a fixed s  S and any rotation R we have

lim

r!0

⌦
�
A\B(x, S/2), Tx

⇢(R)�
s,r

↵
= 0 . (2.3)

Moreover, the radial symmetry of B(0, S/2) implies that for every 0 < r < s we have
⌦
�
B(x,S/2), Tx

⇢(R)�
s,r

↵
=

⌦
�
B(0,S/2), ⇢(R)�

s,r

↵
=

⌦
�
B(0,S/2), �s,r

↵
. The right-hand side

of the previous equation depends only on r. So,

inf

R

{| h�
A

, T
x

⇢(R)�
s,r

i | : R 2 SO(2)}
sup

R

{| h�
A

, T
x

⇢(R)�
s,r

i | : R 2 SO(2)} =

inf

R

{| ⌦�
B(0,S/2), ⇢(R)�

s,r

↵
+

⌦
�
A\B(x,S/2), Tx

⇢(R)�
s,r

↵ | : R 2 SO(2)}
sup

R

{| ⌦�
B(0,S/2), ⇢(R)�

s,r

↵
+

⌦
�
A\B(x,S/2), Tx

⇢(R)�
s,r

↵ | : R 2 SO(2)}

which due to Eq. (2.3) implies

lim

r!0

inf

R

{| h�
A

, T
x

⇢(R)�
s,r

i | : R 2 SO(d)}
sup

R

{| h�
A

, T
x

⇢(R)�
s,r

i | : R 2 SO(d)} = 1 .

Now, we turn our attention to the proof of the second statement of Proposition 2.2. By

local rotational invariance, we mean an invariance with respect to a rotation centered at x.

Such a rotation is the composition, first, of a shift by �x moving the origin to x, then of a
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rotation and finally of a shift by x. Thus, the action of a local rotation centered at x on A is

expressed by the action of the corresponding operators on �
A

. Therefore, the characteristic

function of the set A transformed under the action of the local rotation centered at x is

equal to T
x

⇢(Q)T�x

�
A

, where Q is rotation matrix. Thus, for all s, r we have

hT
x

⇢(Q)T�x

�
A

, T
x

⇢(R)�
s,r

i = hT�x

�
A

, ⇢(Q)

⇤⇢(R)�
s,r

i = h�
A

, T
x

(⇢(Q)

⇤⇢(R))�
s,r

i .

Since, QT

(SO(2)) = SO(2), we infer that the directional ratio of A at scale s and of A

transformed under the action of the local rotation are equal. In a similar fashion, we derive

the rotational covariance rule: For any Q 2 SO(2), the directional ratio of Q(A) at Qx at

any scale is equal to the directional ratio of A at x at the same scale. The rule follows easily

after observing ⇢(Q)T
Qx

= T
x

⇢(Q) and

h⇢(Q)

⇤�
A

, T
Qx

⇢(R)�
s,r

i = h�
A

, T
x

(⇢(Q)⇢(R))�
s,r

i ,

for all s, r > 0. The covariance rule for shifts is derived by adopting the previous steps

for rotations. Finally, to prove scale covariance first take a > 0, a scaling factor. Define a

dilation operator D
a

f(y) = f(y
a

), y 2 R2. Observe, D⇤
a

T
ax

= T
x

D⇤
a

. Next, for r < s

h�
aA

, T
ax

⇢(R)�
as,ar

i = hD
a

�
A

, T
ax

⇢(R)�
as,ar

i = h�
A

, T
x

⇢(R)D⇤
a

�
as,ar

i = h�
A

, T
x

⇢(R)�
s,r

i

The previous equations imply that for every scale s, the directional ratio for aA at ax,

D
as,r

�
aA

(ax), is equal to the directional ratio for A at x, D
s,r

�
A

(x), for every A.

Next, we discuss if the converse statement of Proposition 2.2 is true. In particular, let
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us assume that if x is an interior point of A and the measure of B(x, S/2)\Ac is non-zero.

If A is the ball B(x, S/4), obviously �(B(x, S/2)\Ac

) > 0, but still, due to the rotational

invariance of B(x, S/4) the directional ratio at x and at scale S is still equal to 1, but x is

not a point of isotropy for B(x, S/4) at this scale.

Example 2.3. Consider a rectangle A with width R > 0 and finite length. Assume that

analyzing function is the characteristic function of a rectangle with width 2a such that

0 < 2a < R and length 2b such that 0 < 2b < R and a < b. Then the directional ratio of

boundary points on A is equal to 1 with any scale s up to R. However, boundary points are

not a point of isotropy for any scale s. The proof is entirely geometric and it is illustrated

in Figure 2.3

This example suggests that directional ratio alone is not sufficient to characterize points

of isotropy of closed sets in 2D. However, with a bit of additional information, it is feasible

to obtain a partial converse of the first assertion of Proposition 2.2.

Proposition 2.4. Assume that A is a compact set with non-empty interior and x is an

interior point of A. Moreover, assume that there exists S > 0 and a rotation R such that

x + RT

([�S

2 ,
S

2 ] ⇥ [� r

2 ,
r

2 ]) ✓ A for some 0 < r  S. If lim
r!0 DS,r

�
A

(x) = 1, then x is

a point of isotropy of A at scale S.

Proof. Let Q be an arbitrary rotation and 0 < p  r, then we observe

| h�
A

, T
x

⇢(Q)�
S,p

i | = k�
A\(x+Q

T ([�S

2 ,
S

2 ]⇥[� p

2 ,
p

2 ]))
k  Sp (2.4)

Hence,

inf

Q

{| h�
A

, T
x

⇢(Q)�
S,p

i | : Q 2 SO(2)}  Sp
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Area =

8
<

:
2a(b� a tan ✓ + b+ a tan ✓)/2 = 2ab 0  ✓ <

⇡

2

2ab ✓ =
⇡

2

Figure 2.3: Illustration of the main idea of Example 2.3. As the angle ✓ (i.e. the direc-
tion of the analzing function) changes, the area contained in A doesn’t change, forcing
D

s,r

�
A

(x) = 1 where x is a point on the boundary of A and s is a scale up to R.
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On the other hand, the assumption x+RT

([�S

2 ,
S

2 ]⇥ [� r

2 ,
r

2 ]) ✓ A for some 0 < r  S

and some rotation R implies, due to (2.4),

sup

Q

{| h�
A

, T
x

⇢(Q)�
S,p

i | : Q 2 SO(2)} = Sp .

To complete the proof, we need to establish B(x, S/2) ✓ A. Assume, that the contrary

is true. Let y 2 B(x, S/2) \ Ac. Since A is closed, there exists 0 < p0 < r such that

B(y, p0) ⇢ B(x, S/2) \ Ac. Since D
S,r

�
A

(x) = 1 as r goes to 0, for any given ✏ > 0 and

every 0 < p < p0, where p0 < p0/2 we have

inf

Q

{| h�
A

, T
x

⇢(Q)�
S,p

i | : Q 2 SO(2)}
sup

Q

{| h�
A

, T
x

⇢(Q)�
S,p

i | : Q 2 SO(2)} � 1� ✏ .

Figure 2.4: Illustration of the main idea of the proof of Proposition 2.4
.

The previous inequality is also valid for an orientation Q0 2 SO(2) which moves the

axis of the slab x + RT

([�S

2 ,
S

2 ] ⇥ [� r

2 ,
r

2 ]) to the line segment connecting x and y. Then,
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inside the ball B(y, p0) we can find a smaller slab

y +QT

0

⇣h
�p0

2

,
p0
2

i
⇥
h
�p

2

,
p

2

i⌘
.

This slab resides inside the bigger slab x + QT

0 ([�S

2 ,
S

2 ] ⇥ [�p

2 ,
p

2 ]). However, the smaller

slab is not contained in A but it is contained in Ac. Therefore,

Sp� p0p

Sp
� | h�

A

, T
x

⇢(Q0)�S,p

i |
Sp

=

inf

Q

{| h�
A

, T
x

⇢(Q)�
S,p

i | : Q 2 SO(2)}
sup

Q

{| h�
A

, T
x

⇢(Q)�
S,p

i | : Q 2 SO(2)} � 1� ✏ .

Consequently, if we select ✏ < p0/S, then we arrive at a contradiction. This argument

completes the proof of this proposition.

Example 2.5. Consider a rectangle A with width R > 0 and finite length. Assume that

the analyzing function is the characteristic function of a rectangle with width a such that

0 < a < R and length b such that 4R < b and a < b. Then the directional ratio of any

point x in A is less than ⌧ such that ⌧ << 1 with any scale s greater than R. The claim is

geometrically explained in Figure 2.5.

The next theorem uses more general functions in order to characterize local isotropy.

We now introduce a more general concept of directional ratio. The role of scaling is now

defined via dilation operators and not as in the previous definition. The assumptions on the

function  are very general.

D
j

f(x) =
inf

R

{|hf, T
x

⇢(R)Dj

M

 i| : R 2 SO(2)}
sup

R

{|hf, T
x

⇢(R)Dj

M

 i| : R 2 SO(2)}
where T

x

f(y) = f(y � x) is translation operator, ⇢(R)f(x) = f(Rx) is rotation operator
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A1 =
b.a

2

>
4Ra

2

= 2Ra A2 = aR

Directional Ratio <
A2

A1
<

aR

2aR
=

1

2

<< 1

Figure 2.5: Illustration of the main idea of the example 2.5. As the angle ✓ (i.e. the
direction of the analzing function) changes, the area contained in A changes significantly,
forcing D

s,r

�
A

(x) << 1 where x is a point of A and s is a scale greater than R.
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and Dj

M

f(x) = | detM |j/2f(M jx) where M is anisotropic expanding matrix such that

M =

0

B@
a 0

0 a�

1

CA

and a > 1, 0 < � < 1.

Theorem 2.6. Let S be a compact set with nonempty interior and  be a measurable

function such that | (x)|  C

(1 + kxk)N where N � 1 + �, � > 0 and
R

R2  (x)dx = 1.

If x
o

is a point of local isotropy and ✏ > 0, then there exists a scale j > 0 such that

D
j

�
S

(x
o

) > 1� ✏.

An example of such a function which satisfies the requirements of the previous theorem

is the Haar-like function, defined as (2.1)

Proof. Let us set for convenience Dj

M

 (x) = !(x). We start with the following observa-

tion:

|h�
S

, T
x

o

⇢(R)Dj

M

 i| = |hT ⇤
x

o

�
S

, ⇢(R)!i| = |hT�x

o

�
S

, ⇢(R)!i|

=

����
Z

R2

�
S

(x+ x
o

)!(Rx)dx

����

We set y = Rx, then we observe :

����
Z

R2

�
S

(x+ x
o

)!(Rx)dx

���� =
1

| det(R)|
����
Z

R2

�
S

(R>y + x
o

)!(y)dy

����

Since ⇢ : SO(n) ! B(L2
(Rn

)) is continuous and SO(n) is compact, there exist
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rotations R
m

and R
M

such that

min

R

{|h�
S

, T
x

o

⇢(R)!i| : R 2 SO(n)} = |h�
S

, T
x

o

⇢(R
m

)!i|

and

max

R

{|h�
S

, T
x

o

⇢(R)!i| : R 2 SO(n)} = |h�
S

, T
x

o

⇢(R
M

)!i|

Note that if min exists then inf exists and it is equal to min. Same arguments holds true for

max and it is equal to sup. So,

D
j

�
S

(x
o

) =

|h|�
S

, T
x

o

⇢(R
m

)!i|
|h�

S

, T
x

o

⇢(R
M

)!i| =
1

| det(R
m

)|

��R
R2 �S

(R>
m

y + x
o

)!(y)dy
��

1
| det(R

M

)|

��R
R2 �S

(R>
M

y + x
o

)!(y)dy
��

Since in SO(2) the determinant is equal to 1, we have

D
j

�
S

(x
o

) =

��R
R2 �S

(R>
m

y + x
o

)!(y)dy
��

��R
R2 �S

(R>
M

y + x
o

)!(y)dy
��

We start investigating the numerator. Since x
o

is a point of local isotropy, there exists a

ball B = x
o

+B(0, r
o

) ⇢ S.

����
Z

R2

�
S

(R>
m

y + x
o

)!(y)dy

���� =
����
Z

R2

(�
B

(R>
m

y + x
o

) + �
B

c\S(R
>
m

y + x
o

))!(y)dy

����

Now we estimate the two integrals resulting from the right-hand side of the previous equa-

tion.

����
Z

R2

�
B

(R>
m

y + x
o

)!(y)dy

���� =

����
Z

kykr

o

| detM |j/2 (M jy)dy

����
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= | detM |j/2
����
Z

kykr

o

 (M jy)dy

����

For the second summand the estimate is

����
Z

R2

�
B

c\S(R
>
m

y + x
o

)!(y)dy

���� =

����
Z

B(0,r
o

)c\R
m

(�x

o

+S)

| detM |j/2 (M jy)dy

����

 | detM |j/2
Z

kyk�r

o

| (M jy)|dy

Let � = a1/2 which is the minimum of the diagonal entries of the matrix M and set v =

M jy then we observe:

| detM |j/2
Z

kyk�r

o

| (M jy)|dy  | detM |�j/2

Z

kvk>�j
| (v)|dv

with the assumption made on  , we see that

| detM |�j/2

Z

kvk>�j
| (v)|dv  | detM |�j/2

Z

kvk>�j

C

(1 + kvk)N dv

and

| detM |�j/2

Z

kvk>�j

C

(1 + kvk)N dv = | detM |�j/2

Z 1

�

j

C

(1 + r)N
dr

=

| detM |�j/2C(�+ 1)

1�N

N � 1

Similarly, we estimate the denominator. All arguments are the same for the denominator

since ball is rotation invariant.

25



2.2 DIRECTIONAL RATIO FOR HAAR-LIKE FUNCTIONS

Note that,

D
j

�
S

(x
o

) =

��R
R2(�B

(R>
m

y + x
o

) + �
B

c\S(R
>
m

y + x
o

))!(y)dy
��

��R
R2(�B

(R>
M

y + x
o

) + �
B

c\S(R>
M

y + x
o

))!(y)dy
��

Therefore,

D
j

�
S

(x
o

) �
| detM |j/2

���
R
kykr

o

 (M jy)dy
���� | detM |�j/2C(�+ 1)

1�N

N � 1

| detM |j/2
���
R
kykr

o

 (M jy)dy
���+

| detM |�j/2C(�+ 1)

1�N

N � 1

=

| detM |j/2
✓���
R
kykr

o

 (M jy)dy
���� C(�+ 1)

1�N

(N � 1)| detM |j
◆

| detM |j/2
✓���
R
kykr

o

 (M jy)dy
���+

C(�+ 1)

1�N

(N � 1)| detM |j
◆

If we select the scale j sufficiently large so that
R
kykr

o

 (M jy)dy >
3

4

and

C(�+ 1)

1�N

(N � 1)| detM |j  ✏

4

then we obtain

D
j

�
S

(x
o

) >
3� ✏

3 + ✏
� 1� ✏

Note that the assumption,
R

Rn

 (x)dx = 1, plays a key role in the above proof. Since in

order to estimate a lower bound for the directional ratio, we select the scale, j, sufficiently

big so that
R
kykr

o

 (M jy)dy >
3

4

because as j ! 1,
R
kykr

o

 (M jy)dy ! 1. Otherwise,

we may end up dividing small numbers which may render the lower estimate of D
j

�
S

(x
o

)

uncontrollable.
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2.3 Directional Ratio for Shearlets

The concept of directional ratio can be defined by means of the continuous shearlet

transform. Now, the role of rotations is replaced by shearings. Also, the scale is now

implicitly defined via the Fourier transform and not directly as in the previous section. The

discussion of the shearlet-based directional ratio is confined in 2-D, although, we believe

that it can be extended to 3-D with the appropriate modifications.

The shearlet-based Directional Ratio of f at scale a > 0 and location t 2 R2 is given

by

D
a

f(t) =
inf

s

{|SH
 

f(a, s, t)|}
sup

s

{|SH
 

f(a, s, t)|} , f 2 L2
(R2

), (2.5)

and measures the strength of directional information at scale a and location t. The next the-

orem predicts consistent responses of directional ratio on the anisotropic part of a cartoon

neuron S which we define in the statement of the next result.

Theorem 2.7. Let S be a cylinder with radius r > 0 and finite length in the direction of the

positive y-half axis. Moreover, assume that  is a shearlet defined by  1 and  2 satisfying

the following properties :

1. the Fourier transforms of both  1 and  2 are C1 and even;

2. the wavelet function  1 has two “plateaus” in the frequency domain: ˆ 1(⇠) = 1 for

all 3/4  |⇠|  3/2;

3. the “bump” function  2 satisfies ˆ 2(⇠) = c > 0 for all |⇠|  1/4

and
R

R

�R

 2(x)dx > 1 with R > r > 0.

Then, for 4r  a  1/4, there exists a threshold ⌧ < 1/3 such that the shearlet-based
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Directional Ratio of �
S

, given by (2.5), satisfies:

D
a

�
S

(y)  ⌧ y = (y1, y2) sufficiently inside S. (2.6)

With no loss of generality, we can shift the cylinder so that its vertical axis coincides

with the y-axis. By “y = (y1, y2) being sufficiently inside S” we mean that the rectangle

C = [�r, r] ⇥ [y2 � R, y2 + R] ⇢ S. We also remark that the constant, c, above must

exceed 1 because the support of ˆ 2 is the interval [�
p
2
4 ,

p
2
4 ] and || 2||2 = 1. Also, with no

loss of generality, we can assume that ˆ 2(0) = 1.

Proof. We begin by making clear that the sinc-function is given by

sinc(x) :=
sin(2⇡x)

⇡x
=

�
�[�1,1]

�_
(x) with x 2 R.

With no loss of generality we can shift the origin in order to have y2 = 0. Now, we have:

D
a

f(y) =

inf

s

{|SH
 

f(a, s, y)|}
sup

s

{|SH
 

f(a, s, y)|}
 |SH

 

f(a,1, y)|
|SH

 

f(a, 0, y)|
=

|SH
 

f (v)
(a, 0, y)|

|SH
 

f (h)
(a, 0, y)|

=

|hf, (v)
a,0,yi|

|hf, (h)
a,0,yi|

. (2.7)

The absolute integrability of shearlets implies that, for any ✏ > 0, there exists a square with

side of length 2R0, such that

Z

([�R0,R0]⇥[�R0,R0])c
| (v)

1,0,0(x, y)|dxdy < ✏.
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and Z

([�R0,R0]⇥[�R0,R0])c
| (h)

1,0,0(x, y)|dxdy < ✏.

For technical reasons, we will assume R0 > 1/2. Later in the proof, we will determine ✏.

The above inequality implies that, for both the vertical and horizontal shearlets, we have

Z

([�a

1/2
R0,a

1/2
R0]⇥[�aR0,aR0])c

| (v)
a,0,0(x, y)|dxdy < a3/4✏, (2.8)

and Z

([�aR0,aR0]⇥[�a

1/2
R0,a

1/2
R0])c

| (h)
a,0,0(x, y)|dxdy < a3/4✏.

Our strategy is to show that the numerator in the fraction (2.7) is significantly smaller than

the denominator. We begin by estimating the latter.

We stress that we have not specified the quantity ✏ yet, thus, R0 still needs to be de-

termined. However, we postpone this task until the end of the analysis of the behavior of

directional ratio on the tubular part of the cartoon-like neuron.

We will also add the assumption, R > R0. Of course, this additional hypothesis should

technically be part of the explanation of the statement “y is sufficiently inside S”, but any

earlier reference to it would have been hard to appreciate. Note that
R

R 2(x)dx = 1 and  2

takes positive and negative values and oscillates to infinity. Therefore, regardless how big

R0 is, we can find R > R0 to satisfy assumption 3 of Theorem 2.7. Our assumptions on R0

and on the scale a imply aR0 � 2r. Consequently, both rectangles �y+ [�r, r]⇥ [�R,R]

and [�aR0, aR0]⇥[�a1/2R0, a
1/2R0] are contained in the rectangle [�aR0, aR0]⇥[�R,R].

We observe that

hf, (h)
a,0,yi = hT�y

f,�[�aR0,aR0]⇥[�R,R] 
(h)
a,0,0i+ hT�y

f,�([�aR0,aR0]⇥[�R,R])c 
(h)
a,0,0i,
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which, if combined with aR0 � 2r, allows us to take y1 = 0 and to conclude that

|hf, (h)
a,0,yi| > |hf�[�aR0,aR0]⇥[�R,R], 

(h)
a,0,0i|� a3/4✏.

Note that �
S

multiplied with �[�aR0,aR0]⇥[�R,R] is equal to �[�r,r]⇥[�R,R] Thus,

|hf, (h)
a,0,yi| > |h�[�r,r]⇥[�R,R], 

(h)
a,0,0i|� a3/4✏.

We also observe that

|h�[�r,r]⇥[�R,R], 
(h)
a,0,0i|

=

�����

Z

1
2a<|⇠1|< 2

a

Z

| ⇠2
⇠1

|<
p
2a
4

a3/4rRsinc(r⇠1)sinc(R⇠2) ˆ 1(a⇠1) ˆ 2

✓
⇠2p
a⇠1

◆
d⇠2 d⇠1

�����

= 2a3/4

�����

Z

1
2a<⇠1<

2
a

rsinc(r⇠1) ˆ 1(a⇠1)

 Z

|⇠2|
⇠1

<

p
2a
4

Rsinc(R⇠2) ˆ 2

✓
⇠2p
a⇠1

◆
d⇠2

!
d⇠1

����� ,

where we drop the absolute value of ⇠1 due to the symmetry of the integrand with respect

to the ⇠2-axis. First, we estimate the inner integral. To do so, we set ⌘ =

⇠2p
a⇠1

. Then we

observe:

Z

|⇠2|
⇠1

<

p
2a
4

R sinc(R⇠2) ˆ 2

✓
⇠2p
a⇠1

◆
d⇠2 =

Z

|⌘|<
p
2

4

p
a⇠1R sinc(R

p
a⇠1⌘) ˆ 2(⌘)d⌘.

Note that

�[�R

p
a⇠1,R

p
a⇠1] ⇤  2(0) =

Z
R

p
a⇠1

�R

p
a⇠1

 2(x)dx.

Since c =

ˆ 2(0) =

R1
�1  2(x)dx, the scale a does not exceed 1

4 , and 1
2a < ⇠1, and
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R
R

�R

 2(x)dx > 1 we conclude
R

R

p
a⇠1

�R

p
a⇠1
 2(x)dx > 1. In conclusion,

Z

|⇠2|
⇠1

<

p
2a
4

Rsinc(R⇠2) ˆ 2

✓
⇠2p
a⇠1

◆
d⇠2 > 1. (2.9)

Next, we examine the outer integral

Z 2
a

1
2a

rsinc(r⇠1) ˆ 1(a⇠1)d⇠1 =

Z 2

1
2

r

a
sinc

⇣r
a
⇠
⌘

ˆ 1(⇠)d⇠ .

The selection of the scale a implies 0  r

a

⇠1  1
2 for every value of ⇠1 in the interval of

integration. Since the sinc function takes positive values in the open interval (12 , 2) and

ˆ 1(⇠) = 1 for all ⇠ 2 [

3
4 ,

3
2 ], using (2.9), we finally conclude that

|hf, (h)
a,0,yi| > 2a3/4

3

4

sin(

3r⇡
a

)

3r⇡
2a

� a3/4✏ � 2a3/4
3

4

sin(

3⇡
4 )

3⇡
8

� a3/4✏ = a3/4
2

p
2

⇡
� a3/4✏.

(2.10)

Now, we turn our attention to the numerator of (2.7); we need to show that it is relatively

much smaller than the denominator. We have that

hf, (v)
a,0,yi = hT�y

f,�R⇥[�R,R] 
(v)
a,0,0i+ hT�y

f,�(R⇥[�R,R])c 
(v)
a,0,0i

= hT�y

(f�R⇥[�R,R]), 
(v)
a,0,0i+ hT�y

(f�(R⇥[�R,R])c), 
(v)
a,0,0i

Regardless of how y1 varies between �r and r, the rectangle [�p
aR0,

p
aR0]⇥[�aR0, aR0]

always stays inside the strip R⇥[�R,R], so |hT�y

(f�(R⇥[�R,R])c), 
(v)
a,0,0i|  a3/4✏. We also

observe that �
S

multiplied with �R⇥[�R,R] is equal to �[�r,r]⇥[�R,R] Therefore, we have that

|hf, (v)
a,0,yi|  |hT�y

�[�r,r]⇥[�R,R], 
(v)
a,0,0i|+ a3/4✏. (2.11)

31



2.3 DIRECTIONAL RATIO FOR SHEARLETS

Note that

hT�y

�[�r,r]⇥[�R,R], 
(v)
a,0,0i =

a3/4
Z

1
2a<|⇠2|< 2

a

Z

| ⇠1
⇠2

|<
p
2a
4

Rrsinc(r⇠1)sinc(R⇠2)e2⇡i⇠1y1 ˆ 1(a⇠2) ˆ 2

✓
⇠1p
a⇠2

◆
d⇠1 d⇠2.

Since ˆ 2 is even, we obtain that the latter double integral is equal to

a3/4
Z

1
2a<|⇠2|< 2

a

Z p
2a|⇠2|
4

�
p
2a|⇠2|
4

ˆ 1(a⇠2)Rsinc(R⇠2)e2⇡i⇠1y1rsinc(r⇠1) ˆ 2

✓
⇠1p
a|⇠2|

◆
d⇠1d⇠2.

(2.12)

We now estimate the inner integral. First, using the change of the variable ⌘ =

⇠1p
a|⇠2| , we

obtain that the inner integral in (2.12) is equal to

Z p
2
4

�
p
2

4

e2⇡i⌘
p
a|⇠2|y1r

p
a|⇠2|sinc(r

p
a|⇠2|⌘) ˆ 2 (⌘) d⌘ = �[�r

p
a|⇠2|,r

p
a|⇠2|] ⇤  2(

p
a|⇠2|y1)

=

Z p
a|⇠2|y1+r

p
a|⇠2|

p
a|⇠2|y1�r

p
a|⇠2|

 2(x)dx.

By applying the Cauchy-Schwartz inequality to  2, which has L2 norm equal to 1, we

deduce || 2||1  || ˆ 2||1 < 1. Therefore, the inner integral in (2.12) is bounded above

2r
p
a|⇠2|. Thus, the absolute value of the integral in (2.12) is bounded above by

a3/4
Z

1
2a<|⇠2|< 2

a

R|sinc(R⇠2) ˆ 1(a⇠2)|2r
p
a|⇠2|d⇠2 = 2a3/4

Z 2
a

1
2a

R
| sin(2⇡R⇠2)|

⇡R⇠2
2r
p
a⇠2d⇠2

 12ra3/4

2⇡
p
a

 3

p
aa3/4

2⇡
,

where the last inequality follows from our assumption on the scale a. Using (2.11) and the
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last inequality, we obtain that

|hf, (v)
a,0,yi| 

3

p
aa3/4

2⇡
+ a3/4✏.

Next, using (2.10), we derive the following upper bound for D
a

f(y):

D
a

f(y) 
3
p
a

2⇡ + ✏
2
p
2

⇡

� ✏
.

Taking ✏ = 1
10⇡ , we get that D

a

f(y) < ⌧ :=

15
p
a+1

20
p
2�1

< 1/3, for all y 2 B.

Remark 2.8. Now, we turn our attention to the set of points of local isotropy. Let us

consider the ball A, centered at the origin. We will show that the behavior of the shearlet

transform in isotropic regions is not the same as in tubular regions. Morover, if ✏ > 0 is an

arbitrary positive number, then, for every y 2 
✏

A, orientation s and sufficiently fine scale

a, where 0 < 
✏

< 1, we have |SH
 

�
A

(a, s, y)| < ✏.

Since the ball A is centered at the origin, it is enough to prove the statement for hori-

zontal shearlets only. As we did in the first part of the above proof, for each arbitrary ✏ > 0,

we can find a square with side of length 2R0,✏ such that

Z

([�R0,✏,R0,✏]⇥[�R0,✏,R0,✏])c
| (h)

1,0,0(x, y)|dxdy < ✏.

The shearing parameter s varies between �1 and 1 and, as it does so, it “shears” the

square Q := [�R0,✏, R0,✏]⇥ [�R0,✏, R0,✏]. Therefore, if the scale is sufficiently fine, it is not
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hard to see that there exists 0 < 
✏

< 1 such that

y +M
as

(Q) ⇢ A,

for every y 2 
✏

A. Now, let �1  s  1. Then |SH
 

�
A

(a, s, y)| = |h�
A

, 
(h)
a,s,y

i|. However,
R

R

R
R 

(h)
a,s,y

= 0. Thus,

h�
A

, (h)
a,s,y

i =
Z

R2

(�
A

� 1) 
(h)
a,s,y

=

Z

(y+M

as

(Q))c
(�

A

� 1) 
(h)
a,s,y

,

because y +M
as

(Q) ✓ A. Therefore, we conclude that

|SH
 

�
A

(a, s, y)| <
Z

(y+M

as

(C))c
|�

A

� 1|| (h)
a,s,y

| < 2a3/4✏ < ✏.

This remark illustrates the behavior of the shearlet transform in isotropic regions. We

don’t have to take the ✏ very small because, as the scale becomes finer and finer, the quantity

2a3/4✏ decreases as well. In any case, the main implication of the previous observation is

that the shearlet transform will attain very small values everywhere in the isotropic part

of the cartoon-like neuron, as long as the location variable of the transform is away from

the boundaries. As a result, the values of the Directional Ratio D
a

�
A

will vary wildly

in isotropic regions and, consequently, the Directional Ratio is not useful to detect such

regions.

Remark 2.9. Our observation show that, if f = �
S

and y is located inside the rectangular

region then, for some suitable scale a > 4r, there exists a fixed ⌧ such that D
a

f(y) < ⌧ and

the threshold ⌧ does not depend on y (Theorem 2.7). This behavior, which is no longer true

when y is inside the ball of radius R, follows from the fact that there are two orientations
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at y, one parallel to the axis of the rectangle and the other perpendicular to it, such that

the magnitude of the shearlet transform attains a relatively big value for the former and a

small value for the latter. This observation is consistent with the asymptotic behavior of

the shearlet transforms as a ! 0. However, the remarkable new concept in this result is

that the scale a does not need to be very small, but it has to be comparable with the width

of the rectangular structure. In fact, the proof of this result reveals that the rectangle is

seen as a thick line of singularity points. The thinner the tubular structure, the finer the

scale a should be, but the two quantities should maintain qualitatively the relation a > 4r,

indicating that Directional Ratio can detect singularities without having to force the scale

a ! 0.

Figure 2.6: Values of directional ratio (color-coded) computed at various discrete scales;
from left to right: 2�4

2

1
4 , 2�3

2

1
4 , and 2

�1
2

1
4 . As the scale becomes coarser, the values of

the directional ratio in the interior of neurites become consistently more uniform and do
not exceed a certain low threshold, whose existence is predicted by Theorem 2.7. In the
interior of the soma and of thicker neurites, the values of directional ratio vary wildly, once
again as predicted, see Remark 2.8
.

Proposition 2.10 below indicates that the function D
a

is weakly differentiable.

Let us now turn our attention to the weak differentiability of the directional ratio of

f 2 L1
(R2

) \ L2
(R2

), f can be a cartoon-like image. Without loss of generality, we take
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||f ||1 = 1. To establish that D
a

f , given by the ratio (2.5), satisfies a Lipschitz condition,

it is enough to verify this property for the numerator and the denominator of that ratio. To

control how small the denominator can become, we assume that in an open set, ⌦, there

exists ↵ > 0 such that |SH
 

f(a, s, y)| > ↵ for all y 2 ⌦. Select y 2 ⌦ and a vector h such

that y + h 2 ⌦. Using the triangle inequality, we have

|hf, T
y+h

 
(v)
a,s,0i|  |hf, T

y

 
(v)
a,s,0i|+ |hf, (T

h

� I) 
(v)
a,s,0i|,

for every scale a and shear variable s. A similar inequality holds for horizontal shearlets.

We will assume ⌦ to be convex. Since the Fourier transforms of  (v) and  (h) are C1 and

compactly supported, the  (v) and  (h) are in the Schwartz space. Hence, all of their partial

derivatives are uniformly bounded.

By applying the Mean Value Theorem of differential calculus, we obtain that

|hf, (T
h

� I) 
(v)
a,s,0i| =

����
Z

R2

f(x)( 
(v)
a,s,0(x� h)�  

(v)
a,s,0(x))dx

����


Z

R2

|f(x)|| (v)
a,s,0(x� h)�  

(v)
a,s,0(x)|dx

 C||f ||1khk,

where C is a constant derived by the L1-bounds of the partial derivatives of the horizontal

and vertical shearlets. Since the shear variable s is taken in [�1, 1], the constant C holds

uniformly in s. Therefore, for every s 2 [�1, 1] we have that

|hf, T
y+h

 
(v)
a,s,0i|  sup

s

{|hf, T
y

 
(v)
a,s,0i|}+ C||h||  sup

s2R
{|SH

 

f(a, s, y)|}+ Ckhk.
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By combining horizontal and vertical shearlets, we deduce that

sup

s2R
{|SH

 

f(a, s, y + h)|}  sup

s2R
{|SH

 

f(a, s, y)|}+ Ckhk.

By swapping the points y and y + h in the previous inequality, we obtain that

| sup
s

{|SH
 

f(a, s, y)|}� sup

s

{|SH
 

f(a, s, y + h)|}|  Ckhk

On the other hand, a similar argument establishes that

| inf
s

{|SH
 

f(a, s, y)|}� inf

s

{|SH
 

f(a, s, y + h)|}|  Ckhk

Combining these two observations, we derive the following result.

|D
a

f(y + h)�D
a

f(y)|

=

����
inf

s

{|SH
 

f(a, s, y + h)|}
sup

s

{|SH
 

f(a, s, y + h)|} � inf

s

{|SH
 

f(a, s, y)|}
sup

s

{|SH
 

f(a, s, y)|}
����

 | inf
s

{|SH
 

f(a, s, y + h)|}� inf

s

{|SH
 

f(a, s, y)|}|
sup

s

{|SH
 

f(a, s, y + h)|}
+

| sup
s

{|SH
 

f(a, s, y)|}� sup

s

{|SH
 

f(a, s, y + h)|}|
sup

s

{|SH
 

f(a, s, y + h)|}
inf

s

{|SH
 

f(a, s, y)|}
sup

s

{|SH
 

f(a, s, y)|}

✓
C

↵
+

C

↵

◆
khk.

The above discussion yields the next statement:

Proposition 2.10. Assume that, for every point y in the open and convex set ⌦ ⇢ R2,

there exists ↵ > 0 such that |SH
 

f(a, s, y)| > ↵. Then the shearlet-based Directional

Ratio, D
a

f , at scale a, restricted on ⌦, satisfies a Lipschitz condition and, thus, it is weakly

differentiable on ⌦.
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The weak differentiability of D
a

f follows from the fact that D
a

f is absolutely continu-

ous since it satisfies a Lipschitz condition.
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Chapter 3

Applications and Numerical

Experiments

This chapter presents ideas, methods and results published in our prior work [41].

The ability of neurons to form mature synapses and functional connections in culture

is a fundamental property that has allowed the first milestone studies in molecular neuro-

science. In recent years, improved neuronal culturing techniques combined with sophis-

ticated fluorescence microscopy have significantly expanded the initial scope of in vitro

studies. They are now instrumental tools for large-scale studies of cultured neuronal net-

works used to identify phenotypic changes induced by chemical or biological agents in the

context of brain disease models. Yet, such revolution in the field has not been paralleled

by adequate quantitative methods for neuronal feature detection, extraction, and analysis,

limiting the potential throughput of in vitro models.

Automated identification of the primary components of a neuron and extraction of its

sub-cellular features are essential steps in such quantitative studies. High-content screen-

ings (HCS), for instance, require the identification and extraction of multiple morphological
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features of neurons, such as soma shape and volume, neurite length, and branching proper-

ties. Such complex information, usually compiled from multi-channel fluorescence images,

requires automated processing methods to handle large batches of data and establish a con-

fident statistical basis for a reliable prediction model. With the rapid and widespread rise

in the use of HCS in basic science settings, automated detection of cell compartments from

fluorescent images is an area of very active research [34, 18, 26, 8].

In this chapter, we concentrate on the automated detection of soma location and surface

morphology in fluorescent images of cultured neurons, a challenging problem that has spe-

cial importance for several reasons. In particular, in vitro phenotypic screenings of large

scale neuronal cultures for drug-discovery and biomarker identification frequently require

to quantify spatial distribution and expression levels of analytes of interest inside the soma

[47, 48]. In addition, the detection of soma locations is a critical step to compute the center-

line trace and extract the graph representation of each individual neuron, since the location

of the soma is the main vertex of such a graph [2, 1]. Furthermore, accurate extraction of

soma’s surface morphology is one of the most important characteristics for discriminating

different types of neurons [50].

Of all sub-cellular components of a neuron, somas are among the most challenging to

detect and segment automatically in fluorescence images, due to the lack of robust markers

and the uneven distribution of fluorescence signals. Clearly both problems pose different

challenges. Detection is easier than segmentation because it involves an identification of a

subset of a soma region. Automated soma/cell detection methods in many image analysis

packages rely on contrast enhancement and image intensity thresholding [42, 54] and at-

tempt the identification of somas by generating binary masks. These methods can be quite

effective in phase-contrast microscopy [54, 13], but extension of these methods to images

captured by other types of microscopy is difficult. In fluorescence imaging, the signal-to-
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noise ratio is typically much lower. Furthermore, in neuronal cultures, somas are usually

visible with the aid of the microtubules associated protein 2 (MAP2) antibody staining

or nuclei markers (such as DAPI (4’,6-diamidino-2-phenylindole) or TROPO-3), neither

of which are soma-selective. The MAP2 protein is diffusely distributed in the somato-

dendritic compartment and, as a result, MAP2 masks include both somas and dendrites.

Nuclear staining, on the other hand, targets only nuclear DNA and excludes the cytoplas-

mic region of the soma surrounding the nucleus.

This limited combination of biological markers akin to somas and fluorescent mi-

croscopy channels dictate the need to develop image specific methods. Thus, several meth-

ods have been proposed to process images in which somas and other structures exist in

the same fluorescence channel. Some of these methods use combinations of smoothing and

morphological operators [2, 21, 52] or specialized filters such as the Laplacian-of-Gaussian

(LOG) [3] and can be rather effective to detect somas in 2D. However, these types of meth-

ods have varying performance since they are very sensitive to the irregularities of the flu-

orescence signal and have proven to be either impractical or inefficient to extend to 3D.

In particular, the use of LOG to detect local maxima of the fluorescence intensity signal,

can lead to a high degree of false positives due to the irregular intensity profiles, causing

detection of more than one soma candidate within a given neuron. To address these limita-

tions, several ideas have been proposed, such as the detection of the soma area in the three

2D orthogonal projection images of the original 3D image stack using 2D morphological

closing [1]. Notably, the algorithm recently proposed by [58] that, in addition to combining

smoothing, morphological operators, and adaptive thresholding to detect the soma volume

from the 2D orthogonal projection images, applies an ingenious variant of the Rayburst

sampling method [44] to capture the surface of the soma.

None of those methods, though, are directly applicable to the type of imaging data
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which are the preferred platform for HCS. Confocal images of neuronal cultures used for

HCS typically consist of stacks containing 15-30 images, so that the ‘data cube’ is very thin

along one of its axes: only 15-30 pixels are available along the z-direction, as compared

with the x and y directions where the typical length can be 512 pixels or more. As a

result, it is inefficient or even impossible to process these sets of data as true volumes

using conventional 3D filters or adapting some of the ideas mentioned above. For example,

the 2D orthogonal projections into the planes containing the z axis would not be very

informative for the detection of the soma volume, due to the lack of a sizeable z dimension.

An additional challenge is that, due to the acquisition process, in cultured neuronal images,

the contrast changes significantly along the stack and reduces very rapidly on the optical

slices that are farther away from the light source.

To address these challenges, in this chapter, we introduce an innovative method for the

automated detection and accurate segmentation of somas from high-resolution confocal

images of cultured neurons. Our approach includes an algorithm for the 2D analysis. How-

ever, this approach could be adapted for the 3D analysis. Due to the difficulty in processing

confocal imaging data as true volumes, it is customary to convert the MAP2-stained confo-

cal image stacks into 2D images by projecting the stacks along the z-axis. Consistently, our

soma detection algorithm is designed to deal with these types of 2D images. Our approach

includes an SVM-based segmentation routine to separate the neurons from the background,

followed by a dedicated routine to separate the somas from the neurites. The routine com-

bines the concept of Directional Ratio presented in Chapter 2 with variational methods.

This approach enables very accurate detection of the somas in 2D, including the separation

of clustered or contiguous somas.
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3.1 2D Soma Segmentation

Our algorithm for 2D soma detection is applied on 2D images obtained by projecting

a confocal image stack (comprising typically about 15-30 optical sections) along the axis

perpendicular to the image plane (the z axis). This 3D-to-2D conversion is common in

manual or semi-manual analysis of neuronal cultures. The most common projections are

the average intensity projection (AIP) that outputs an image, wherein, each pixel stores

average intensity over all images in the stack at a corresponding pixel location and the

maximum intensity projection (MIP), that creates an output image where each of the pixels

contains the maximum value over all images in the stack at the particular pixel location.

Our algorithm follows the procedure shown in Figure 3.1 and consists of the following

steps: (1) a preprocessing routine to denoise the image; (2) a segmentation routine to sepa-

rate the neurons from the background and to prepare the data for the next processing steps;

(3) a routine that extracts the somas from the segmented images and includes Directional

Ratio and level set routines; (4) a routine to separate those somas that are clustered together.

The sections below will describe each one of these steps.

Image Preprocessing

The design of a highly efficient data preprocessing module is essential to take full

advantage of the capabilities of instrumentation and enable accurate and robust processing

of the acquired data. The preprocessing algorithm that we use in our image preprocessing

step addresses the major source of degradation of confocal images: the noise introduced by

the random nature of the photon-counting process at the detector, which can be modeled as

a Poisson-distributed random process. To remove the noise, we apply the shearlet shrink-

age denoising algorithm from [10, 38] that consists, essentially, of computing the shearlet
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Figure 3.1: Proposed algorithm for 2D soma detection.
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transform of the images, then applying a band-dependent threshold to the samples of the

output values and, finally, computing the inverse shearlet transform. This algorithm is a

refinement of the celebrated wavelet shrinkage algorithm and takes advantage of shearlets,

a directional multiscale approach, that has optimally sparse representation properties for a

large class of images [20, 31]. Thanks to these sparsity properties, this method is particu-

larly efficient to remove noise without blurring edges [10, 12]. Overall, the boundaries of

the structures in an image look sharper after the application of this denoising method.

Segmentation

In segmentation, we separate the neurons from the background. For this task, we

adopted an algorithm recently developed by Jiménez et al. [27] that is based on support

vector machines (SVMs) and whose main novelty is the use of features generated by a set

of multiscale shearlet filters and isotropic Laplacian filters acting as self-steerable filters

for a quick and efficient binarization of the axonal and dendritic structure [28, 29]. As is

customary for many algorithms of this type, the proper classification stage of the algorithm

is preceded by a training stage of the classifier. This is the most computationally-intensive

part of the algorithm but needs to be run only once as long as the segmentation algorithm

is applied to images of same type (e.g., same cell type and microscope setting). Then, the

entire procedure is fully automated. We refer the reader to the references cited above for

more details about the algorithm.

Soma Extraction

Our method to identify the soma within the segmented neuron uses the mathemati-

cal framework explained in Chapter 2. We use the result proven in Theorem 2.6. This
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suggests that we can identify the somas with respect to the neurites, if we compute the Di-

rectional Ratio inside the already segmented neuronal structure at an appropiate scale. For

the discrete implementation, we use a Haar-like function as an analyzing function which

is compactly supported in a rectangle whose length is controlled by the scaling parameter

and orientation is controlled by the rotation parameter.

Figure 3.2: Application of level-set method to detect soma area. The figure shows a
detail from a segmented image of a neuron (MIP) where colors correspond to the values of
the Directional Ratio values and range between 1 (=red) and 0 (=blue). The application of
the threshold value 0.9 identifies a region strictly inside the soma, with boundary curve �

(in the left panel). The level set method evolves the boundary curve � with a velocity in the
normal direction (indicated by the arrows in the right panel) that depends on the magnitude
of the gradient of the Directional Ratio.

As we will show below in our numerical tests, when we compute the discrete Direc-

tional Ratio on segmented images of neuronal cultures, we observe very low values in-

side the neurites and much larger values (close to 1) inside the soma.(See Theorem 2.6)

However, near the boundary of the soma, the Directional Ratio is low, due to the strong

directionality induced by the boundary. As a result, the application of a threshold will al-

low us to identify a region strictly inside the soma, but not the entire soma. To detect the

46



3.1 2D SOMA SEGMENTATION

entire soma including the region close to the boundary, we need to ‘expand’ the region we

discovered using the method of the Directional Ratio. To achieve this, we apply a classical

level-set method [39, 46].

Recall that the level set method is a variational approach introduced to track evolution of

curves and shapes without having to parameterize these objects. The main idea is to identify

a curve (or interface) � as the zero level set of a three-dimensional level set function � and

to follow the changes of � = {(x, y) : �(x, y) = 0} from the evolution of �. The motion

of � is determined by the level-set equation

@�

@t
= v|r�|,

where v is the speed of propagation of � in the normal direction. In our numerical tests, we

will use the boundary curve of the region found by the Directional Ratio approach inside

the soma as the initialization curve � of the level set evolution equation. We will set the

speed of propagation of � in the normal direction proportional to M � |r (D
a

f) |, where

r (D
a

f) is the gradient of the Directional Ratio, pointing to the direction of the interior of

the soma, and M is the maximum of the magnitude of the gradient of the Directional Ratio.

This way, � evolves outwards, in the direction of the boundary of the segmented region

(see Figure 3.2) and the velocity of evolution becomes slower and eventually stops when �

reached the boundary of the segmented region. Note that, for our numerical implementa-

tion of the level-set method, we have adapted the implementation of Sumengen [49] based

on [39].
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3.1 2D SOMA SEGMENTATION

Figure 3.3: Illustration of the pipeline of the 2D soma detection algorithm (A) Denoised
image, obtained using a shearlet-based denoising routine [10, 38]. (B) Segmented binary
image. (C) Directional Ratio plot; the values range between 1, in red color (corresponding
to more isotropic regions), and 0, in blue color (corresponding to more anisotripc regions);
note that the Directional Ratio is only computed inside the segmented region, i.e., inside the
red region in Panel B.(D) Soma detection, obtained by applying the level set method with
the initialization curve determined by the boundary of points of local isotropy in each soma
shown in Panel F.(E) Application of the level set method; showing soma region growing.
(F) Detection of initial soma region, obtained by applying the threshold 0.9 to the values
of the Directional Ratio in Panel C.
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Figure 3.4: Separation of clustered somas. The figure illustrates the application of the
multiscale Directional Ratio in combination with the level-set method to separate contigu-
ous somas on the MIP of a confocal image of a neuronoal network culture. (A) Segmented
image (detail). (B) Directional Ratio plot using directional filters of length 20 pixels (note
that the diameter of a soma is about 40 pixels). (C) The blue region shows the points where
the Directional Ratio exceeds the threshold 0.9, identifying the more isotropic region. (D)
Directional Ratio plot using a directional filters of length 40 pixels; note that the larger val-
ues of the Directional Ratio are now concentrated within a smaller set inside the blob-like
regions. (E) The blue region shows the points where the new Directional Ratio exceeds
the threshold 0.9, identifying the more isotropic region; note that now there are two re-
gions. (F): Soma detection obtained from the application of the level-set method, using the
initialization curves determined by the boundary of the initial soma region in (E).
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Separation of Clustered Somas

The method described above to separate somas from neurites in the segmented im-

ages of neuronal cultures may inadvertently segment multiple contiguous somas as a single

soma. To address this issue, we designed a refinement of the soma extraction routine that

proceeds as follows. After running our soma extraction routine, if the resulting soma area

is too large (according to a criterion that we will describe below), we re-compute the Direc-

tional Ratio at a coarser scale, that is, by changing the scale parameter s
�

in such a way that

the support of the analyzing functions are longer. By measuring the strength of the direc-

tional coherence at a coarser scale, the application of a threshold on the Directional Ratio

will produce some smaller regions contained in the inner part of the segmented area. This

is illustrated in Fig. 3.4, panel E. Next, similar to the above procedure, we apply the level-

set method by using the boundary curves of these inner regions as the initialization curves

of the level-set evolution equation. As the numerical test below will show, by propagating

these curves until they touch each other, we are able to separate contiguous somas.

We still need to clarify how to determine whether the soma area detected by the algo-

rithm is too large. This situation is interpreted as an indication that multiple somas appear

in the MIP of the image as one contiguous soma region. In fact, we assume that somas

in these images have similar surface areas (obviously, not similar shapes in general) and

this observation applies to primary neuronal cultures which have fairly homogeneous pop-

ulations. For instance, in our examples below the vast majority of neurons in the cultures

derive from pyramidal-like principal cells. To separate these large regions into multiple

contiguous somas, we assume that soma areas are normally distributed. In practice, we

applied the Kolmogorov-Smirnov test to validate this assumption on a representative set

of confocal images of neuronal cultures and found that our assumption is correct. Based

50



3.1 2D SOMA SEGMENTATION

on this observation, we have used the 3� rule as a criterion to identify regions containing

multiple somas. That is, if the detected area differs from the expected soma area more than

three times the estimated standard deviation, then we will conclude that the area contains

two somas. Similarly, for the case of multiples contiguous somas, we can argue that if a de-

tected area differs from N times the expected soma area more than three times the standard

deviation, then we will conclude that the area contains N + 1 somas. In practice, however,

we found that it is extremely rare to find more than two contiguous somas in typical fluo-

rescence images of neuronal cultures. Yet, as we observed, the method that we described

can be applied to multiple contiguous somas.

3.1.1 2D Soma Segmentation Matlab Algorithm

In this section, we present the 2D Soma Segmentation Matlab Algorithm to illustrate

an application where we use the directional ratio concept in order to segment blob-like

regions automatically. The input image of this step is the binary segmentation where the

foreground structure (somas, dendritic branches, and axons) was separated from the back-

ground. We consider here 2D images computed as maximum projections of the original

confocal image stacks (typically 10-20 slices). As shown in Flowchart 3.1, soma extrac-

tion is implemented in two steps: After computing the directional ratio for a certain scale

and thresholding it (e.g. keep points whose directional ratio value is greater than 0.9), we

derive a region inside the soma whose boundary is used to initialize a level-set routine. This

area contains points of local isotropy at a certain scale. To find those regions, we apply a

threshold close to 1 as predicted by Theorem 2.6, because these contain the points of local

isotropy inside each soma at a given scale. Once somas are segmented the remaining part

of the foreground corresponds to neurites (dendrites and axons). The identification inside
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Figure 3.5: Example of 2D soma detection and separation of clustered somas on large
field-of-view image. (A) Tiled and stitched confocal fluorescent image (MIP view) of a
neuronal culture. Image size=1894 x 1894 pixels (1 pixel = 0.28 x 0.28µm). (B) Segmented
binary image. Soma detection and separation of contiguous somas. Segmented neurites are
shown in red color. Detected somas are shown in light blue; in case of contiguous somas,
the separated somas appear in green and orange colors.
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the foreground of regions of local isotropy at a certain scale also facilitate soma detections.

To compute directional ratio, we need to set the parameters used to generate the direc-

tional filters (molecules) �
s,r

in Algorithm 1. The algorithm is available at

www.math.uh.edu/⇠bozcan/research.html. First, we choose the support size

of directional filters according to the given segmented image. The images we consider

are cultured neurons acquired under similar conditions. Therefore, their soma sizes have

dimensions of the same order of magnitude and we can use a single scale to generate

the directional filters. After some experimentation, we observed that choosing the correct

length/scale s/2 and aspect ratio of the directional filters �
s,r

plays a crucial role in the

accuracy of soma segmentation. If we choose s/2 less than the approximate radius of soma

regions, we notice that the regions connecting soma and dendrites have high Directional

Ratio. This increases false positives. On the other hand, if we choose s/2 larger than ap-

proximate radius of the soma regions, we notice that the size of the regions which have high

directional ratio shrink excessively in a way that prevents the level set routine to properly

identify soma boundaries. Therefore, we manually choose the directional filters to have a

length equal to the approximate diameter of the soma in a segmented image. The radii of

the somas in the images we experimented with is approximately equal to 20 pixels. Hence,

we set the support size of the directional filters to be equal to 20 pixels. The main diagonal

of each filter with the horizontal axis forms an angle equal to a multiple of ! selected to

satisfy tan(!) = r/s, the aspect ratio of the Haar-like filter. This equation determines the

number of rotations of those directional filters because we set ! =

⇡

2N
. We select a num-

ber of rotations, N , sufficient enough to cover a 90-degree angle. Since, as we increase the

number of rotations, we better approximate the perpendicular filter to �
s,r

, we set aspect

ratio to be equal to 0.1. Hence, we set the number of rotations to be equal to a least integer

number exceeding ⇡

2 arctan(r/s) . For the aspect ratio 0.1, N is approximately equal to 15.
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The advantage of a small aspect ratio is that the more the number of the rotations of the

Haar-like filter, the better the approximately perpendicular filter to �
s,r

. This improves the

sensitivity of Directional Ratio to the presence of tubular structures at the appropriate scale,

because the numerator of D
s

�
S0 achieves its minimum value when the axis of the tubular

structure is perpendicular to the orientation of the Haar-like filter. After these remarks, we

can present the soma segmentation in Algorithm 2.

Algorithm 1 Generate Haar-like Directional Filters and their Rotations
Require:

Set support size of directional (molecules) filters S and number of rotations N
Ensure:

Create filters
1: Calculate directions: ✓

k

=

k⇡

N where k = 0, 1, ..., (N � 1)

For each direction:
2: Calculate coordinates of four points: p1 = (

S
2 cos((k � 1

2)
⇡

N),
S
2 sin((k � 1

2)
⇡

N)) and
p2 = (

S
2 cos((k +

1
2)

⇡

N),
S
2 sin((k +

1
2)

⇡

N)) and the reflections of p1 and p2 with respect
to origin.

3: Create a rectangular mask: set the corner points of the rectangle points determined in
the previous step. The filter is the indicator (characteristic) function of the rectangle.

To segment somas, we produce the gradient of directional ratio and we apply a standard

level-set routine [49]. The next proposition proves why such a gradient exists in a weak

sense for shearlets. The initial condition for this level-set problem is determined by the

boundary of each region containing the points of local isotropy in each soma, that is, the

points for which the Directional Ratio for a given scale take a value greater than 0.9.

Note that, in our implementation of the algorithm, the soma detection and separation

of contiguous somas are processed automatically, without external intervention. Following

the computation of Directional Ratio with filters of length 20 pixels (about 1/2 of a typical

soma’s diameter), if the criterion indicated above signals the presence of areas containing

two somas, then the Directional Ratio is re-computed using the filter length of 40 pixels
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Algorithm 2 Detect and Segment Somas
Require:

Haar-like directional molecule (filter) F and segmented image I
Ensure:

Find soma regions
1: Convolve image I with filter F and with rotations of filter F

r

, call Output = I ⇤ M
where M = {F, F

r

}
2: Calculate directional ratio D := min Output / max Output
3: Create a mask with points that have directional ratio D > 0.9
4: Apply the level set method routine [49] to get complete soma regions

Item list which we use as input in level set method routine:
Take the x-derivative of the directional ratio of the segmented image I , D, computed
in step 2, set as xderivative.
Take the y-derivative of the directional ratio of the segmented image I , D, computed
in step 2, set as yderivative.
set M := max(sqrt(xderivative.2 + yderivative.2))
FORCE := M � sqrt(xderivative.2 + yderivative.2)
CURVE to evolve := the boundary points of mask we generate in step 3
stopping criteria : stop if rate of growth is less than 0.2.

(about the diameter of a typical soma). This is illustrated in Figure 3.4.

3.2 Numerical Results

In this section, we illustrate the application of our soma detection algorithms on sev-

eral confocal image stacks of neuronal cultures. For our tests, we considered several ’stan-

dard’ field-of-view images in low-density neuronal cultures, as commonly used in pheno-

typic screenings of analytes for drug-discovery or biomarker identification. These images

contain a relatively small number of neurons, typically about 5-10. We show below that

our algorithm can automatically extract soma locations from any such image in about 40

seconds. However, processing time heavily depends on the efficiency of the level-set evo-

lution routine. Faster routines will greatly improve the processing time. Note that a large
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number of such images, usually 50-100 or more, need to be analyzed in studies like those

in the cited literature. As we further explain later, our algorithms are scalable and can be

applied without changes to larger images of neuronal cultures containing more neurons. To

illustrate this capability we also show the application of the soma detection algorithm on a

tiled and stitched large field-of-view image containing more than 40 neurons, Figure 3.5.

3.2.1 2D Soma Segmentation Results

We considered twelve image stacks with different sizes to test our 2D algorithm for

soma detection. The stacks we considered comprise between 10 and 25 images each and

contain a variable number of neurons, ranging between 1 and 8. From each stack, we gen-

erated the Maximum Intensity Projection (MIP) images. The resulting 2D images were

processed by the algorithm as described in Section 3.1. Some representative results are

shown in Figures 3.6 and 3.7. These figures illustrate the proprocessing, segmentation, and

soma detection on images of size 512 ⇥ 512 pixels containing seven and eight somas, re-

spectively. Figure 3.7 also illustrates the capability of the algorithm to separate contiguous

somas.

3.2.2 2D Algorithm Validation

For the validation of the algorithm, we first tested the ability to identify the correct

somas and separate the contiguous ones. The results are reported in Table 3.1 and show

that the algorithm is able to correctly identify and separate the somas in all 12 confocal

image stacks we used.

To quantitatively validate the performance of our algorithm on soma segmentation, we

employed standard statistical measures of the performance of a binary classification test [4]
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Figure 3.6: Example of 2D soma detection. (A) Original image, obtained by comput-
ing the maximum projection on the image stack. (B) Denoised image, obtained using a
shearlet-based denoising routine. (C) Segmented binary image. (D) Directional Ratio plot;
the values range between 1, in red color (corresponding to more isotropic regions), and 0,
in blue color (corresponding to more anisotripc regions); note that the Directional Ratio
is only computed inside the segmented region, i.e., inside the red region in Panel C. (E)
Detection of initial soma region, obtained by applying a threshold to the values of the Di-
rectional Ratio in Panel D. (F) Soma detection, obtained by applying the level set method
with the initialization curve determined by the boundary of the initial soma region in Panel
E.
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Figure 3.7: Example of 2D soma detection. (A) Denoised image, obtained using a
shearlet-based denoising routine. (B) Segmented binary image. (C) Directional Ratio plot;
the values range between 1, in red color (corresponding to more isotropic regions), and 0,
in blue color (corresponding to more anisotripc regions); note that the Directional Ratio
is only computed inside the segmented region, i.e., inside the red region in Panel B. (D)
Detection of initial soma region, obtained by applying a threshold to the values of the Di-
rectional Ratio in Panel C. (E) Soma detection, obtained by applying the level set method
with the initialization curve determined by the boundary of the initial soma region in Panel
D. (F) Separation of contiguous somas; two regions from Panel E are recognized as too
large and hence divided using the level set method.
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whose definitions are as follows. The True Positive Rate TPR (also called Sensitivity)

measures the proportion of correctly identified soma pixels with respect to the total number

of true soma pixels, which are manually identified by a domain-expert . That is, denoting

by TP (= true positive) the number of correctly identified soma pixels and by FN (= false

negative) the number of true soma pixels incorrectly rejected, we define:

TPR =

TP

TP + FN
.

The False Positive Rate FPR measures the proportion of pixels incorrectly identified as

soma pixels with respect to the total number of true soma pixels. That is, denoting by FP

(= false positive) the pixels incorrectly selected as soma pixels, we adopt a special rate for

the purposes of this work defined by

FPR =

FP

TP + FN
.

This rate is a penalty akin to wrong soma pixel detections. When our FPR is compared

with the traditional FPR given by

FPR =

FP

TN + FP
.

we realize that the commonly used FPR is destined to be practically equal to zero be-

cause false soma detections are always in order-of-magnitudes less than the number of

background voxels due to the inherent sparsity neuronal tissue in these images. Hence, we

decided to introduce a new metric which express false soma detections as a percentage of
0The expert user manually identifies the somas in each image stack without knowledge of the algorithm

results.
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Stack Soma number Correct detection False detection Contiguous Soma Presence
Stack 1 7 7 0 No
Stack 2 6 6 0 Yes
Stack 3 7 7 0 Yes
Stack 4 8 8 0 Yes
Stack 5 4 4 0 No
Stack 6 7 7 0 No
Stack 7 5 5 0 No
Stack 8 1 1 0 No
Stack 9 2 2 0 No
Stack 10 2 2 0 No
Stack 11 4 4 0 No
Stack 12 5 5 0 No

Table 3.1: Validation of soma detections

soma volume measured in pixels/voxels. Finally, the Dice Coefficient DC (also called F1

score), that is used to compare the similarity between two samples or measures, is

DC =

2TP

2TP + FN + FP
.

Note that the denominator 2TP + FN + FP = TP + FP + FN + TP is the sum of the

detected pixels and the true soma pixels.

The results reported in Tables 3.2, 3.3, 3.4, 3.5 show the True Positive Rate, False

Positive Rate and Dice Coefficient for the somas shown in Figures 3.14 , 3.15. The results

in the tables show that our method yields average TPR equal to 0.94, indicating that we get

a very high proportion of true soma pixels; the value of the average FPR is 0.13, indicating

that our approach tends to err on the side of false positives (i.e. we tend to over-segment).

The average Dice coefficient is 0.90, indicating that the automated soma detection is very

close to the manual segmentation overall.

To illustrate the capabilities of our approach on a larger field-of-view image, we applied
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Figure 3.8: Illustration of soma detections given in Table 3.1
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Figure 3.9: Illustration of soma detections given in Table 3.1
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Figure 3.10: Illustration of soma detections given in Table 3.1
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Figure 3.11: Illustration of soma detections given in Table 3.1
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Figure 3.12: Illustration of soma detections given in Table 3.1
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Figure 3.13: Illustration of soma detections given in Table 3.1

66



3.2 NUMERICAL RESULTS

Figure 3.14: Performance of soma segmentation. Performance metric for the segmen-
tation of the somas contained in these image are illustrated in Tables 2 and 3. (A - B)
2D-segmentation and soma detection on the MIP images of Figures 3.6 and 3.7, respec-
tively.

Figure 3.15: Performance of soma segmentation. Performance metric for the segmen-
tation of the somas contained in these image are illustrated in Tables 4 and 5. (C-D) 2D-
segmentation and soma detection on a similar MIP image.
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Soma TPR FPR DC
1 0.83 0.04 0.88
2 0.95 0.06 0.94
3 0.97 0.09 0.94
4 0.84 0.08 0.87
5 0.97 0.05 0.96
6 0.98 0.06 0.96
7 0.85 0.09 0.87

average 0.92 0.07 0.92

Table 3.2: Performance metrics results on soma segmentation of Figure 3.14, panel A.

Soma TPR FPR DC
1 0.98 0.14 0.92
2 0.79 0.12 0.82
3 0.92 0.08 0.92
4 0.99 0.14 0.92
5 1 0.6 0.76
6 0.94 0.3 0.83
7 0.99 0.18 0.91

average 0.94 0.22 0.87

Table 3.3: Performance metrics results on soma segmentation of Figure 3.14, panel B.

Soma TPR FPR DC
1 0.97 0.09 0.94
2 0.99 0.12 0.93
3 0.99 0.49 0.79
4 0.99 0.15 0.92
5 0.94 0.28 0.84
6 1 0.31 0.86
7 0.98 0.25 0.88

average 0.98 0.24 0.88

Table 3.4: Performance metrics results on soma segmentation of Figure 3.15, panel C.
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Soma TPR FPR DC
1 0.86 0.16 0.85
2 0.90 0.03 0.93
3 0.92 0.02 0.94
4 0.98 0.13 0.91

average 0.91 0.08 0.91

Table 3.5: Performance metrics results on soma segmentation of Figure 3.15, panel D.

our 2D soma-detection algorithm on a tiled and stitched large field-of-view image of size

1894 ⇥ 1894 pixels containing about 45 neurons. The soma detection and segmentation

result is reported in Figure 3.5. The figure shows that our algorithm can reliably detect

essentially all somas also in this larger image. Note that the soma detection algorithm is

not expected to work for the somas overlapping the border of the image, as their shapes

may be inconsistent with the model used by our method based on Directional Ratio. Our

method is also very effective in separating contiguous somas, even though it fails in some

cases. About the center of the Figure 3.5, three contiguous somas are correctly separated

(shown in light blue, green and orange colors); however, in the top right region, where there

is another set of three contiguous somas, the algorithm is only able to separate two of them.

This is because the fact two of the three soma are rather small and the area they occupy is

not recognized as a location of multiple somas.

3.3 Discussion

Methods we proposed for the automated detection of soma location and morphology in

confocal images of neuronal cultures can be easily applied to image stacks larger than those

considered in this thesis. The computational cost of our algorithms depends linearly on the

size of the data, which is reasonable for most applications. Several standard methods can
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be applied for speed improvement and management of larger data sets within the proposed

framework.

The routines for denoising, in particular, rely on the discrete shearlet transform and

their computational cost grows log-linearly with the data size [10, 55]. Recently, a par-

allel implementation of the discrete shearlet transform that uses a Graphic Processor Unit

(GPU) was introduced and it was reported to achieve a 20-30 times speed improvement

over the Matlab implementation used for the results reported in this thesis [15]. This im-

plementation can easily be adapted to our algorithm since it implements the same shearlet

decomposition used in this thesis and the code is publicly available.

The main computational cost of our algorithms is due to the routine for the soma seg-

mentation that applies a level set method and it requires the numerical solution of a partial

differential equation. Also for this routine, a GPU implementation was proposed [6] that

could be adapted to achieve computational speed improvement.

Parallelization is also a valuable strategy for reducing computational time in our al-

gorithm. The level-set method can be applied in parallel for each soma, following the

application of the Directional Ratio routine. However, the Directional Ratio routine must

be computed for each image in a stack, in order to identify soma locations and possible

contiguous somas.

The performance of our algorithms critically depends on the segmentation routine since

the soma area is found within the segmented region. Any pixels discarded during the seg-

mentation will not be classified as soma pixels. Despite this potential weakness, we found

that the segmentation routine is very reliable for the type of data we consider, as one can

conclude by observing the performance metric results showing consistently high values for

the True Positive Rate. Consequently, we consistently identify pixels in neurites with high

accuracy during segmentation. On the other hand, the performance metric tables show that
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even with respect to the very penalizing FPR used, we score reasonably low values of False

Positives. However, in some cases, this penalizing FPR tends to be relatively as high as

24% of the soma spatial extend indicating that, in general, we tend to positively identify a

non-negligible number of pixels that are not in the soma. We attribute the main cause of

this type of error to the level-set method and, more precisely, the to fact that the level-curve

propagated by the evolution equation does not always stop within the soma. For example

in the detection of soma 5 in Figure 3.14, Panel B and soma 3 in Figure 3.14, Panel C, we

measure large values of FPR because the level-set curve is propagated beyond the soma

and partially inside the neurites. Note that, in these cases, the shape of the somas are not

very round and the neurites emerging from the somas are not very thin, making the it rather

difficult to establish where soma ends and neurites start. Nevertheless, we think that it is

possible to refine the algorithm in order to control this error in future work. For example,

we could introduce a constraint or a penalty term in the level-set routine to ensure that the

detected soma region does not become too elongated.

Even though our algorithms were designed with the goal to process confocal images

of neuronal cultures, some of our ideas are applicable to other types of imaging data. In

particular, the segmentation routine was already tested on other confocal image stacks [28]

and it is expected to work on brightfield microscopy images as well. Similarly the method

of Directional Ratio is expected to work with other types of imaging data, even though we

did not conduct specific tests.

3.4 Computational Efficiency, Hardware and Software

We implemented the numerical codes for the proposed method using MATLAB 7.12.0

(R2011a). The tests for the 2D soma-detection were performed using a MacBook with
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Intel Core i7 2.66 GHz and 4 GB RAM. Even though we did not optimize the computa-

tional efficiency of the routines, the computation times were very reasonable. On a 2D

image of size 512 ⇥ 512 pixels, the average computational time for the shearlet-based

denoising is approximately 11 seconds; the average computational time for the 2D seg-

mentation routine is approximately 8 seconds; the computational time of the Directional

Ratio routine that is used to initialize the soma detection depends slightly on the choice

of parameters (number of directional bands and filter length) and it ranges between 0.2

and 0.6 seconds; the average computational time for the level-set method implementation

and completion of soma segmentation is about 30 seconds. In our tests, we used 12 di-

rectional filters. Matlab routines for shearlet denoising and Directional Ratio are available

at www.math.uh.edu/⇠dlabate/software.html. As mentioned above, we use

the level-set method implementation of Sumengen [49].

3.5 Conclusion

We have introduced a novel method for the automated detection of soma location and

morphology in confocal images of neuronal cultures. In addition to the usual difficulties as-

sociated with processing fluorescent images, this problem presents the additional challenge

that this type of confocal image stacks usually contain a small number of images (about

15-25). Consequently, only a small number of pixels is available along the z-direction and

the use of standard 3D filters to process the data volume is inefficient or impractical. The

approach we developed addresses these challenges by relying on a number of innovative

ideas and techniques ranging from Fourier Analysis and differential equations to statistics

and computer vision. Accurate extraction of the somas in MIP images is achieved using an

SVM-based segmentation routine combined the Directional Ratio algorithm and a level-set
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method. This approach is also applied to reliably and efficiently separate contiguous somas

in MIP images.

Automated detection and segmentation of somas in confocal images of neuronal cul-

tures is a fundamental analytical tool not only for the identification and discrimination of

neurons but more generally for the detection, analysis and profiling of complex phenotypes

from cultured neuronal networks. Methods proposed and illustrated in this thesis will fa-

cilitate the development of a high-throughput quantitative platform for the study of neural

networks for applications including High Content analysis which our group is currently

pursuing.
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