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Abstract

In this work, inspired by the reality in organisms and particularly the shape of

axon of the neuron, new mathematical models of regulation of kinase activity are

presented. In the view of mathematicians, those models are diffusion equations

defined in finite cylinders but with mixed Robin boundary and Dirichlet boundary

conditions. The first part of the thesis focuses mainly on the model with the linear

mixed Robin boundary and Dirichlet boundary conditions. By use of variational

principle and eigenvalue problem, the results are provided on the existence, unique-

ness and boundedness of the weak solution ( kinase concentration ) of an abstract

elliptical equation related to the kinase activity model. For the kinase activity

model itself, the bound can be expressed as the function of relevant parameters.

Furthermore, this work also obtains the existence of the time-dependent solution to

the reaction diffusion equation generalized from this kinase activity model. Based

on those results, the time-dependent solutions are presented in integral form. This

work has shown the exponential convergence of the time-dependent solution to the

solution of its corresponding steady state equation. The second part has demon-

strated the existence and boundedness of the weak solution by use of variational

principle for the kinase model with mixed nonlinear boundary conditions. Then the

series representation of the nonzero solution is shown. Moreover, a critical equality

in bifurcation analysis is obtained. By means of this equality, when a parameter

varies, bifurcation analysis is demonstrated from the special case to the more gen-

eral case. Particularly, the critical (bifurcation) value of this biological parameter

has been determined mathematically as a function of other biological parameters.
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By use of those theoretical results, some corresponding biological explanations are

also provided. All of those have significance when considering biology signalling

and biology control.

vi



Contents

Abstract v

1 Introduction 1

2 Model Formulation and Preliminary 4

2.1 Kinase Activity and Cell-signalling Dynamics . . . . . . . . . . . . 4

2.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Notations and Mathematical Background . . . . . . . . . . . . . . . 15

2.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Mathematical Assumptions . . . . . . . . . . . . . . . . . . 18

2.3.3 Definitions, Inner Products, and Norms . . . . . . . . . . . 19

3 Linear Elliptical Equations on a Finite Cylinder and Related Eigen-

computations 22

3.1 Fundamental Theory on the General Elliptical Equation . . . . . . 23

3.2 Robin Eigenproblem and Spectral Representation of Solutions . . . 26

3.3 Steklov Eigenproblem and Spectral Representation of the Solution 32

3.4 Computations on Steklov Eigenproblem of the Steady State Model 35

vii



4 Time-dependent Model on the Finite Cylinder 44

5 Solution Properties of the Kinase Activity Model on the Finite

Cylinder 50

5.1 Solution Properties of the Kinase Activity Model on the Finite

Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Time-dependent Kinase Activity Model with Nonlinear Boundary

Conditions - Direct Analysis 55

7 Weak Solution of the Steady State Model with Nonlinear Bound-

ary Conditions 58

7.1 Existence of the Weak Solution . . . . . . . . . . . . . . . . . . . . 58

7.2 Boundedness of the Weak Solution . . . . . . . . . . . . . . . . . . 63

8 Bifurcation Analysis and Series Representation of Solutions of the

Kinase Activity Model 65

8.1 Bifurcation on the Kinase Activity Model with Infinite Diffusion -

Extreme Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.2 Bifurcation on the Kinase Activity Model with Finite Diffusion -

Case of Center Symmetry . . . . . . . . . . . . . . . . . . . . . . . 71

8.3 Series Representation of the Solution on the Kinase Activity Model

with Finite Diffusion - Case of Axial Symmetry . . . . . . . . . . . 73

8.4 Bifurcation on the Kinase Activity Model with Finite Diffusion -

Case of Axial Symmetry . . . . . . . . . . . . . . . . . . . . . . . . 79

viii



9 Parameter Analysis and Biological Implications 89

10 Discussions and Future Directions 92

Appendix 94

Bibliography 105

ix



Chapter 1

Introduction

In this thesis, the goal is to provide the mathematical study of the regulation

of kinase activity in a finite cylindrical cell. This work, in which the solution

representation theory in Sobolev is employed and also the bifurcation analysis

with corresponding computation is used, examines the solution properties and

their biological implications. Those models are all formed in the three-dimensional

space related to the mixed boundary conditions which are linear or nonlinear. The

models and the biological principles, which in this thesis shall be referred to, were

firstly introduced by Brown [1] and Kholodenko [2] and Kazmierczak and Lipniacki

[3, 4]. The mathematical tools used here have just generalized the technique of

series representation of solutions in Sobolev Space developed by Auchmuty [5-9],

and also borrow some analytical tricks in bifurcation analysis to get the critical

value of the parameter.

Some biological background, the model formulation and fundamental prelimi-

naries are given in Chapter 2. In this chapter, the basic biological principles for
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CHAPTER 1. INTRODUCTION

presenting the mathematical model are mentioned. And the fundamental mathe-

matical assumptions are provided.

In Chapter 3, by means of solution representation and analysis of eigenprob-

lem, the goal is to develop the theoretical results on linear elliptical equation with

nonhomogeneous mixed boundary conditions, which is generalized from our kinase

activity model (2.4). Those theoretical results are the generalization of Auch-

muty’s work [5]. Then, based on the application of those results to the kinase

activity model (2.4), concrete computations are also provided for the eigenvalue

and eigenfunction related to the steady state biogical model (2.4) on the finite

cylinder.

Chapter 4 aims to get the well-posedness of the reaction-diffusion model (2.5)

generalized from the kinase activity model (2.3). By considering the existence and

uniqueness of the solution to model (2.4) at first and using the result developed

in Chapter 3, the well-posedness of (2.5) and the representation of its solution

are obtained. Besides, the results have shown the exponential convergence of the

solution of (2.3) to the solution of the corresponding steady state.

Chapter 5 provides the mathematical properties of the solutions and the bio-

logical significance with respect to the kinase activity models (2.3) and (2.4).

All above chapters are the first part of this thesis, in which the linear mixed

boundary conditions are concerned. The second part of the thesis consists of

Chapter 6 to Chapter 9, which are related to the nonlinear boundary conditions

in the kinase activity model.

In Chapter 6, some properties of the solution related to (2.9) are directly an-

alyzed. The result tells that the solution to (2.9) will be restricted into some

2



CHAPTER 1. INTRODUCTION

bounded region near the solution of its steady state equation.

In Chapter 7, we present the theoretical results on the existence and bound-

edness of the weak solution for the steady state biological model (2.10), which

can ensure the computation practicable in the next chapter. In this chapter, the

convexity and the weak convergence on the Sobolev space are used.

In Chapter 8, the bifurcation problem related on the model (2.9) and (2.10) is

considered. This part of work starts with considering the extreme case, i.e., the

diffusion coefficient approaching infinity. In this extreme case, the biological model

(2.1) (2.2) and (2.8), which is just the original model of (2.9), will change into an

ordinary differential equation system. Then the critical value bcrit2 of the parameter

b2 is obtained in the case of axial symmetry for model (2.9) by investigating the

solution of (2.10). An important equality is employed, which can be used to give

bifurcation analysis about other biological parameters.

The conclusion shows that when 0 < b2 < bcrit2 there exist the trivial solution

and a positive stable solution of (2.10) and when b2 > bcrit2 , there is only the stable

trivial solution having the physical meaning.

In Chapter 9, the biological implications of the results related to (2.9) and

(2.10) are demonstrated.

In Chapter 10, discussions and research directions are provided.
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Chapter 2

Model Formulation and

Preliminary

2.1 Kinase Activity and Cell-signalling Dynam-

ics

Cells respond to external cues using a limited number of signalling pathways that

are activated by plasma membrane receptors, such as G protein-coupled receptors

( GPCRs ) and receptor tyrosine kinases (RTKs). Those pathways do not only

transmit but they also process, encode and integrate internal and external signals

[1]. Recent reports show that distinct spatio-temporal activation profiles of the

same repertoire of signalling proteins result in different gene-expression patterns

and diverse physiological responses [1-4, 10]. These observations indicate that piv-

otal cellular decisions, such as cytoskeletal reorganization, cell-cycle checkpoints

and cell death ( apoptosis ), depend on the precise temporal control and relative
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2.1 KINASE ACTIVITY AND CELL-SIGNALLING DYNAMICS

spatial distribution of activated signal transducers [1]. And the mathematical mod-

els on those biological phenomena provide insights into the complex relationships

between the stimuli and the cellular response, and reveal the mechanisms that

are responsible for signal amplification, noise reduction and generation of many

dynamical characteristics [1].

Activation of cell-surface receptors and their downstream targets leads to the

spatial relocation of multiple proteins within the cell. During evolution, cells have

developed not only means to control the temporal dynamics of signalling networks,

but also mechanisms for precise spatial sensing of the relative localization of sig-

nalling proteins. The regulation of signalling within the cellular space is pivotal for

several physiological process, such as cell division, motility and migration, which

lead to cell self-organization during the evolution [1].

Among above signalling and activities, many cellular proteins undergo cycles of

phosphorylation and dephosphorylation by protein kinases and phosphatases and

this protein phosphorylation is one of the main ways by which protein activities are

regulated in the cell [1]. Various protein kinases and phosphatases are localized to

different components of the cell ( e.g., the cell membrane, the cytosol, intracellular

membranes, the nucleus ) and may change their distribution in different conditions.

The kinases and phosphatases of a particular protein are often located in different

compartments. This kind of spatial segregation of opposing reactions is just the

basic prerequisite for signalling gradients in universal protein-modification cycle.

Thus, the specificity of cellular responses to receptor stimulation is encoded

by the spatial and temporal dynamics of downstream signalling networks. Those

coupled spatial and temporal dynamics guide pivotal intracellular processes and

5



2.1 KINASE ACTIVITY AND CELL-SIGNALLING DYNAMICS

Figure 2.1: Multi-molecular Structure

tightly regulate signal propagation across a cell. It is apparent that the diffusion is

unavoidable in the regulatory networks and when they process cellular signalling.

Kazmierczak and Lipniacki [3, 4] have provided some analysis of the kinase

activity on the spherical cells mainly by means of numerical simulations. However,

the spherical cell is factually only one of cases. In reality, there are many cells

in the shapes of a finite cylinder, an ellipse and even a rugby ball. And the

solutions to those models built on those cells probably show much difference with

that to the model on spherical cells. New analysis becomes necessary and different

conclusions probably arise. For example, there exists the difference between series

forms of solutions in the spherical cell and in the finite cylindrical cell. Therefore,

in order to obtain more universal conclusions, it is significant to investigate the

kinase activity on different cells with the different shapes and to check what are

the different or similar conclusions among those different situations.

What is more, research on the diffusion equation on the finite cylinder has

played an important role in some topics of the geophysics and also in geochem-

6



2.1 KINASE ACTIVITY AND CELL-SIGNALLING DYNAMICS

istry ( say, in geophysics, consider the change of fluid or Helium pressure on the

cylinder ) where the analytical solutions and concrete results are more interesting

to geochemists and physical scientists.

Naturally, the question coming into the focus is that what are the boundary

conditions when the kinase activity on the finite cylindrical cell is considered since

the region that equations lie in is different ?

And once the new boundary conditions are presented, what are the correspond-

ing changes about the solution and the method to obtain the solution of those new

models? In this work, it is shown that although the shapes of cells are different the

basic conclusions are similar. The more mathematical supports are demonstrated

to the reasonable conjecture that under certain biological principles in cells, what-

ever the shapes are, kinase activity modes are similar.

Motivated by the aspects mentioned above and bacterial cell and the case of

a kinase bound to a supra-molecular structure [1], several mathematical models

of kinase activity are considered in this work ( See next section ). They model

finite cylinders with mixed boundary conditions. In those models, the flux in the

curvilinear boundary is assumed to be zero when considering cases of bacterial

cells and the cylinders as part cut off from supra-molecular structure ( See Figure

2.1 ).

Kholodenko [1] points out that signalling gradients can not be built solely by

diffusion but requires the spatial segregation of opposing enzymes. Brown and

Kholodenko [2] have analyzed and shown that in a simple system, in which kinase

molecules are phosphorylated at the cell membrane and dephosphorylated by a

phosphatase molecules located homogeneously in the cell cytosol, small diffusion

7



2.2 MODEL FORMULATION

implies high gradient and low kinase activity in the cell centor. Kazmierczak and

Lipniacki [3,4] have studied mathematical models related to the kinase activity

on the spherical cells and provided some analysis and treatment by numerical

simulation with respect to the cases of spherical symmetry. Zhao et al [11] have

also considered a reaction-diffusion model related to the kinase activity, restricted

to one-dimensional spatial space, via numerical simulations.

All above authors mainly treated the problems from the view of a biologist or

an engineer. They have not provided a strict mathemtical treatment. The thesis

just describes some mathematical results about this kinase activity model.

The mathematical results are based on the technique of series representation of

the solution, which is developed by Auchmuty [5-9] and related to representations

of solutions using expansions in series of Steklov eigenfunctions. By those results,

the properties of the solutions of main models can be obtained. Basic theorems

on the bifurcation and tricks in bifurcation analysis are also used when the critical

vaule of parameter is obtained.

2.2 Model Formulation

The cell will be modeled geometrically as a finite cylinder Ω with hight 2h and the

center at the origin of the coordinate system ( Refer to the notation following the

model equations provided below). Here the biological quantities will be represented

by the following functions:

u = u(t, x) the concentration of the active kinase at time t and

a point x = (x1, x2, x3) in the cell

8



2.2 MODEL FORMULATION

Q = const the total concentration of the kinase on the whole cell, which

is assumed to be 1

R = R(t) the surface concentration of the active receptors

P = const the total surface concentration of the ligand bound receptors

( active and inactive)

φ = φ(t, x) the flux of the active kinase through the cell surface.

Generally the active kinase concentration satisfies the following reaction diffu-

sion equation

∂u

∂t
= d1∆u− b1u (2.1)

where reaction coefficient d1 > 0, and the parameter b1 > 0 is the kinase dephos-

phorylation rate due to the action of uniformly distributed phosphatases. The flux

φ of the active kinase results from its phosphorylation by receptors on the top disc

implying the Robin type boundary condition

φ = a1R(Q− u) = d1Dνu (2.2)

where ν is the outward normal unit vector on the boundary, Dνu denotes the dot

product of ν and the gradient of u. And on the other parts of the boundary φ = 0.

In the first part of this work, the basic biological preconditions consist of three

aspects: The first, the membrane receptors bind extracellular ligand which leads

to cascade of processes and receptor activation. The second, a steady state surface

concentration of ligand-bound receptors on the top disc is uniform. The third, all

ligand-bound receptors are active. In this case, R = R(t) = const. Then letting

9



2.2 MODEL FORMULATION

s = d1t, c = b1/d1, α = a1R/d1 (but we still use t in stead of s to denote the time

parameter ), (2.1) and (2.2) can give the following reaction diffusion model on the

finite cylinder ( See Figure (2.2) in the next page )



∂u

∂t
= ∆u− cu, (t, x1, x2, x3) ∈ [0,∞)× Ω

Dνu+ αu = α, (t, x1, x2, x3) ∈ [0,∞)× Σtop,

Dνu = 0, (t, x1, x2, x3) ∈ [0,∞)× (Σbot ∪ Σ1),

u(0, x) = u(x), (x1, x2, x3) ∈ Ω

(2.3)

where c, α are all strictly positive time-independent constants, ν is the outward

normal unit vector on the boundary, Dνu is the dot product of the normal vector

ν and the gradient ∇u at the boundary, i.e., Dνu = ν · (∇u), and Ω is the finite

cylinder defined as

Ω = {(x1, x2, x3) : x2
1 + x2

2 < 1,−h < x3 < h} ⊂ R3

with its boundary ∂Ω = Σtop∪Σbot∪Σ1. Σtop = {(x1, x2, x3) : x2
1 +x2

2 < 1, x3 = h}

is the upper circular face, Σbot = {(x1, x2, x3) : x2
1 + x2

2 < 1, x3 = −h} is the lower

circular face and Σ1 = {(x1, x2, x3) : x2
2 + x2

2 = 1,−h < x3 < h} is the curvilinear

boundary. Simply, part of the boundary is also denoted as Γ =: Σbot ∪ Σ1 later

and x = (x1, x2, x3) or just (x, y, z) denote the points in Ω since they lie in three-

dimensional space.

10



2.2 MODEL FORMULATION

Figure 2.2: Kinase Activity Model in the Cell of Finite Cylinder

In chapter 4, it has been proved that solutions of above system (2.3) will con-

verge exponentially to solutions of the steady state system



−∆u+ cu = 0, x ∈ Ω

Dνu+ αu = α, x ∈ Σtop,

Dνu = 0, x ∈ Σbot ∪ Σ1.

(2.4)

However, for the convenience and generality, the results on the abstract model

generalized from (2.3) are firstly developed, which can be used directly to get the

conclusions on (2.3). This abstract model is composed of a parabolic initial value

11



2.2 MODEL FORMULATION

problem with mixed Robin and Dirichlet boundary conditions



∂u

∂t
= ∆u− cu+ f, (t, x) ∈ [0,∞)× Ω

Dνu+ ᾱu = ḡ, (t, x) ∈ [0,∞)× ∂Ω

u(0, x) = u0(x).

(2.5)

with Ω as that in model (2.3) &(2.4), ᾱ = α when x ∈ Σtop, ᾱ ≡ 0 when x ∈ Γ

( Refer to (2.12) ), and ḡ = g = g(t, x) as (t, x) ∈ [0,∞) × Σtop while ḡ ≡ 0 as

(t, x) ∈ [0,∞)× Γ, the initial value u0(x) belonging to the Sobolev space H1(Ω).

In our investigation, above system (2.5) is considered as the sum of the following

two systems ( i.e the solution of (2.5) is regarded as the sum of solutions of the

following two systems ).

One is a parabolic equation with homogeneous boundary conditions



∂u

∂t
= ∆u− cu+ f, (t, x) ∈ [0,∞)× Ω

Dνu+ ᾱu = 0, (t, x) ∈ [0,∞)× ∂Ω

u(0, x) = u0(x), x ∈ Ω.

(2.6)

12



2.2 MODEL FORMULATION

Figure 2.3: Kinase Activity with Feedback

and the other is the elliptic equation with non-homogeneous boundary conditions



−∆u+ cu = 0, (t, x) ∈ [0,∞)× Ω

Dνu+ ᾱu = ḡ, (t, x) ∈ [0,∞)× Σtop

Dνu|∂Ω = 0, (t, x) ∈ [0,∞)× Γ.

(2.7)

What is more, biological principles suggest that the limiting step during the

formation of the active receptor complex is its phosphorylation by the kinase and

in turn the active receptors may activate kinase molecules [3]( Refer to Figure 2.3

). In this case, the equation for their concentration R(t) on Σtop is

dR

dt
= a2u(P −R)− b2R (2.8)

where the reaction rate coefficients a2 > 0 and b2 > 0.

13



2.2 MODEL FORMULATION

If d1 is finite and strictly positive, by the transformation s = d1t and the new

notations ( See (2.11) below ), above equation (2.8), combining (2.1) and the flux

equation (2.2), gives the following model with u(0, x) = u0(x) ∈ H1(Ω).



∂u

∂t
= ∆u− cu, (t, x) ∈ [0,∞]× Ω

dR

dt
= −bR + qu(P −R), (t, x) ∈ [0,∞)× ∂Ω

Dνu− βR(1− u) = 0, (t, x) ∈ [0,∞)× Σtop,

Dνu = 0, (t, x) ∈ [0,∞)× Γ.

(2.9)

The steady state of this system is



−∆u+ cu = 0, x ∈ Ω

Dνu−
αu(1− u)

τ + u
= 0, x ∈ Σtop,

Dνu = 0, x ∈ Γ.

(2.10)

Here the parameters

c =
b1

d1

, b =
b2

d1

, q =
a2

d1

, β =
a1

d1

, α = βP =
a1P

d1

, τ =
b

q
=
b2

a2

(2.11)

are all finite strictly positive constants, and the region Ω and its boundary are the

same to those in (2.3)& (2.4). This system will be studied in Chapter 6, Chapter

14



2.3 NOTATIONS AND MATHEMATICAL BACKGROUND

7, and Sections 8.2, 8.3, 8.4.

2.3 Notations and Mathematical Background

2.3.1 Notations

If X is a Banach space, a subset U of X is a convex set if x, y ∈ U imply

(1− t)x+ ty ∈ U,∀t ∈ [0, 1]. When θ denotes any quantity and θ ≥ 0, it is called

positive, if θ > 0, it is called strictly positive.

Notations σ and dσ will represent Hausdorff (N-1)-dimensional measure and in-

tegration with respect to this measure, respectively. This measure is called surface

area. When the following condition (B1) holds, there is an outward unit normal ν

defined at σ-almost everywhere ( a.e. ) point of ∂Ω.

A function/functional ψ : E → (−∞,∞] is said to be convex if

ψ(tx+ (1− t)y) ≤ tψ(x) + (1− t)ψ(y), ∀x, y ∈ E, ∀t ∈ (0, 1),

it is said to be strictly convex if above inequality holds when ” ≤ ” changes into

” < ” for any x 6= y in E, t ∈ (0, 1). A functional ψ is (weakly) lower semi-

continuous at x0 if xm converges to x0 (weakly) implies F (x0) ≤ lim
m→∞

inf F (xm).

Suppose that H is a linear space. A bilinear form a : H × H → R is said

to be continuous bilinear form if there exists a positive constant c such that

|a(u, v)| ≤ c|u||v| for any u, v ∈ H, and it is said to be coercive if there is a

constant α > 0 such that a(v, v) ≥ α|v|2 for any v ∈ H.

Assume that X and Y are Hilbert spaces, and X∗ is the dual space of X. A

15



2.3 NOTATIONS AND MATHEMATICAL BACKGROUND

sequence fn ∈ X∗ converges weakly-∗ to f , written as fn ⇀
∗ f , if fn(x)→ f(x)

for every x ∈ X. An operator K : X → Y is compact if the image of any set N0,

which is bounded in X, has compact closure in Y i.e., K(N0) is compact in Y for

all bounded N0 ⊂ X.

The region Ω ∈ RN (N ≥ 2) is a non-empty, connected, open subset of

RN . Ω denotes its closure and ∂Ω = Ω\Ω represents its boundary. A Lipschitz

domain/surface is a domain in Euclidean space whose boundary is sufficiently

regular in the sense that it can be thought of as locally being the graph of a

Lipschitz continuous function. A point in Ω is denoted as x = (x1, x2, · · · , xN)(

Sometimes (x, y, z) ) in Cartesian coordinates. In our main model of this work, the

region Ω as the finite cylinder will be represented using polar cylindrical coordinate

in the form

Ω = {(ρ, θ, z) : 0 ≤ ρ < 1, 0 ≤ θ ≤ 2π,−h < z < h} (2.12)

with boundary Σtop = {(ρ, θ, z) : 0 ≤ ρ < 1, 0 ≤ θ ≤ 2π, z = h}, Σbot = {(ρ, θ, z) :

0 ≤ ρ < 1, 0 ≤ θ ≤ 2π, z = −h} and curvilinear boundary Σ1 = {(ρ, θ, z) : ρ =

1, 0 ≤ θ ≤ 2π,−h < z < h}, respectively.

Lp(Ω) and Lp(∂Ω, dσ) (1 ≤ p ≤ ∞) are the real Lebesgue spaces defined in

the standard manner with the usual norm ||u||p and ||u||p,∂Ω, respectively. The

L2-inner products are written as

[u, v] = (u, v) :=

∫
Ω

u(x)v(x)dx , [u, v]∂ = (u, v)∂ :=

∫
∂Ω

u(y)v(y)dσ (2.13)

16



2.3 NOTATIONS AND MATHEMATICAL BACKGROUND

with the induced norms respectively as below

||u|| := ||u||2 = (

∫
Ω

u2dx)
1
2 , ||u||∂ = (

∫
∂Ω

u2dx)
1
2 . (2.14)

H1(Ω) is the usual Sobolev space composed of all Lebesgue measurable func-

tions f on Ω which has weak derivative Dif ( the derivative to xi, i = 1, 2, · · · , N

) satisfying f,Dif ∈ L2(Ω) and has the standard inner product and induced stan-

dard norm ||u||1,2,

[u, v]1 =

∫
Ω

[∇u · ∇v + u · v]dx, ||u||1,2 = [u, u]
1
2
1 (2.15)

where ∇u stands for the gradient of u and u · v means the dot product of two

vectors.

H1
R(Ω) := {w : w ∈ H1(Ω), Dνw + ᾱw = 0, ∀x ∈ ∂Ω}, where

ᾱ =

 α if (x1, x2, x3) ∈ Σtop

0, if (x1, x2, x3) ∈ Γ = Σbot ∪ Σ1 .
(2.16)

For any function g defined on Σtop, ḡ is defined as

ḡ =

 g if (t, x1, x2, x3) ∈ [0,∞)× Σtop

0, if (t, x1, x2, x3) ∈ [0,∞)× Γ.
(2.17)

When considering the time-dependent equations, V may be simply used to

represent H1(Ω) itself or a linear subspace. The time-dependent solution u =

u(t, x) is regarded as functions u(t) ( or write as ut(·) ) defined on Ω for a.e. each
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2.3 NOTATIONS AND MATHEMATICAL BACKGROUND

t ≥ t0. I (usually (0, T ), [0, T ] or [0,∞) ) is an interval and X represents some

Banach space, such as L2(Ω) and H1(Ω).

C0(I,X) consists of all the functions u(t) : I → X such that u(t) → u(t0) as

t→ t0.

Lp(I,X) (1 ≤ p ≤ ∞) denotes the Lebesgue space consisting of all those

functions u(t) that take values in X for a.e. t ∈ I such that the Lp norm of

||u(t)||X is finite. This space can also be defined as the completion of C0(I,X)

with respect to the norm

||u||Lp(I,X) = (

∫
Ω

||u(t)||pXdt)
1/p.

Simply we write it as Lp(0, T ;X). We can also define the Sobolev spaces in this

time-dependent setting , for example, we say u ∈ H1(0, T ;L2(Ω)) if u and Du are

both in L2(0, T ;L2(Ω)).

2.3.2 Mathematical Assumptions

For the region Ω, there are the fundamental assumptions

(B1) Ω is a bounded region in RN and its boundary ∂Ω is the union of a

finite number of disjoint closed Lipschitz surface and each surface having the finite

surface area.

(B2) The region Ω is said to satisfy Rellich’s theorem if the imbedding of

H1(Ω) into Lp(Ω) is compact for 1 ≤ p < Ps where Ps(N) := 2N/(N − 2) when

N ≥ 3, or Ps(2) =∞ when N = 2.

(B3) The region Ω is said to satisfy a compact trace theorem if the trace
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2.3 NOTATIONS AND MATHEMATICAL BACKGROUND

mapping T : H1(Ω)→ L2(∂Ω, dσ) is compact.

And for the reaction-diffusion equation (2.5), the following conditions are sat-

isfied

(C1) When N ≥ 3, c ∈ Lp(Ω) for some p ≥ N/2 with c ≥ 0 a.e. on Ω. When

N = 2, p > 1 and c ≥ 0 a.e. on Ω.

(C2) When N ≥ 3, f and f/
√
c ∈ L2(0,∞;Lp(Ω)) for some p ≥ 2N/(N+2) and

ḡ ∈ L2(0,∞;Lq(∂Ω, dσ)) for some q ≥ 2(N − 1)/N). When N = 2 , p > 1, q > 1.

Comments

The condition (C2) implies that the linear functional associated with integra-

tion against f/
√
c is in the dual space of L2(0,∞;H1(Ω)) and with ḡ is in the dual

space of L2(0,∞;H1(Ω)). This is used in our proof of main results in Chapter 3

and Chapter 4. About f and f/
√
c, the condition can be relaxed as that they are

in the space L∞loc(0,∞;Lp(Ω)).

Particularly, in our models, c is strictly positive constant, N = 3, take p = q =

2. They satisfy both conditions (C1) and (C2) ( Readers can refer to the section

2 of Ref. [8] for more comments on the condition similar to (C2) ).

2.3.3 Definitions, Inner Products, and Norms

Definitions

1). G-derivative. When F : H1(Ω) → (−∞,∞] is a functional, then F is

said to be G-differentiable at a point u ∈ H1(Ω) if there is a continuous linear
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2.3 NOTATIONS AND MATHEMATICAL BACKGROUND

functional F ′(u) acting on H1(Ω) such that

lim
t→0

F(u+ tv)−F(u)

t
= F ′(u)(v), ∀v ∈ H1(Ω).

In this case, F ′(u) is called the G-derivative of F at u.

2). Exponential stability. If a solution u(t) of the Eq. (2.3), such that

there are strictly positive constants ε and β obeying

||u(t)− uss||1,2 ≤ βe−εt,

where uss is the solution of the steady state equation (2.4), then we say that the

solution is exponential stable. If all solutions have this property, then system (2.3)

is said to be exponentially stable.

3). Inner Products, Norms and Functionals.

For any u, v ∈ H1(Ω), define the inner product [u, v]c by

[u, v]c := (Au, v) =

∫
Ω

∇u · ∇vdx+

∫
Ω

cuvdx+

∫
∂Ω

ᾱuvdσ, (2.18)

with induced norm denoted as ||u||c, where c and ᾱ are defined in (2.16) and (2.17)

same as those in (2.5) and satisfies the mathematical assumptions in Section 2.3.2.

In the biological models (2.3) and (2.9), c and ᾱ are constants.

Define quadratic forms D0, D and Q on H1(Ω)as

D0(u) =

∫
Ω

|∇u|2dx+

∫
Ω

cu2dx+

∫
∂Ω

ᾱu2dσ, (2.19)
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2.3 NOTATIONS AND MATHEMATICAL BACKGROUND

D(u) = D0(u)− 2

∫
Ω

fudx− 2

∫
∂Ω

ḡudσ, Q(u) = q(u, u) =

∫
Ω

u2dx (2.20)

Denote subset K of H1(Ω) as

K = {u ∈ H1(Ω) :

∫
Ω

|∇u|2dx+

∫
Ω

cu2dx+

∫
∂Ω

ᾱu2dσ ≤ 1} (2.21)

Lemma 2.1. Assume (B1)-(B3) and (C1)-(C2) hold, then the norm || · ||c induced

by (2.18) is equivalent to the standard norm || · ||1,2 in (2.15) on H1(Ω). That is,

there are strictly positive constants c1, c2 such that

c1||u||1,2 ≤ ||u||c ≤ c2||u||1,2. (2.22)

Proof. The method is very similar to that in Auchmuty’s work, it is omitted here,

please refer to the theorem 3.1 in Reference [8].

As for other basic definitions, notations, and terminology in time-dependent

systems, this work will follow Auchmuty [8], Evans&Gariepy [12], and Temam

[13].
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Chapter 3

Linear Elliptical Equations on a

Finite Cylinder and Related

Eigencomputations

This chapter provides the important theoretical results on the more general linear

elliptical model (3.1) generalized from (2.7) defined on the finite cylinder and also

deals with the spectral representation of solutions and the relevant computation

on the Steklov eigenproblem with mixed boundary conditions. Now consider the

following model


−∆u+ cu = f̃ , (t, x) ∈ [0,∞)× Ω

Dνu+ ᾱu = ḡ, (t, x) ∈ [0,∞)× ∂Ω.

(3.1)
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3.1 FUNDAMENTAL THEORY ON THE GENERAL ELLIPTICAL
EQUATION

with the temporary assumption of f̃ , ḡ independent of the time in the following

Sections 3.1 to 3.3.

3.1 Fundamental Theory on the General Ellipti-

cal Equation

At first, the following equation is investigated

∫
Ω

[∇u∇vdx+ cuv]dx+

∫
∂Ω

ᾱuvdσ =

∫
Ω

f̃vdx+

∫
∂Ω

ḡvdσ, v ∈ H1(Ω) (3.2)

which is the weak form of the elliptic partial differential equation (3.1).

Lemma 3.1. Assume (B1)-(B3) and (C1)-(C2) hold for Eq.(3.1), then there is

a unique minimizer ũ of D(u) on H1(Ω). Moreover this minimizer satisfies (3.2)

and there are constants k1, k2 such that the following estimate holds

||ũ||1,2 ≤ k1||f̃ ||p + k2||ḡ||q,∂Ω. (3.3)

where D(u) is defined in (2.20), p, q are the same as those in (C2) and particularly

in model (2.3) they can both equal 2.

Proof. Conditions (C1)implies that D0 defined in (2.19) is continuous, strictly con-

vex and coercive on H1(Ω) from the properties of the norm, the Sobolev imbedding

theorem and inequality (2.22). When Rellich’s theorem and the trace theorem hold,

then the condition (C2) implies that the last two terms in the right-hand side of
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(3.2) define two continuous linear functionals on H1(Ω) when p, q are the same in

(C2). Hence D is continuous and has a unique minimizer ũ on H1(Ω).

The functional D is G-differentiable and the derivative D′(u) is given by

〈D′(u), v〉 = 2

∫
Ω

[∇u∇v + (cu− f̃)v]dx+ 2

∫
∂Ω

(ᾱu− ḡ)vdσ.

A minimizer ũ of D will satisfy 〈D′(ũ), v〉 = 0 for all v ∈ H1(Ω), so ũ satisfies

(3.2).

Take u = v = ũ in (3.2), then one has

∫
Ω

|∇ũ|2dx+

∫
Ω

cũ2dx+

∫
∂Ω

ᾱũ2dσ =

∫
Ω

f̃ ũdx+

∫
∂Ω

ḡũdσ

Thanks to condition (C1) and then apply Holder inequality to the right hand side,

||ũ||2c ≤ ||f̃ ||p||ũ||p′ + ||ḡ||q,∂Ω||ũ||q′,∂Ω

where p′, q′ are the conjugate indices to p, q respectively.

If the inequality (2.22) is used to the left-hand term and Rellich’s theorem and

compact trace theorem are applied to the right-hand terms, the inequality (3.3) is

obtained. Thus, the proof is completed.

Lemma 3.2. Assume (B1)-(B3) and (C1)-(C2) hold, then there is a unique so-

lution ũ of (3.2) in H1(Ω) and there exist constants k1, k2 such that the inequality

(3.3) holds.

Proof. Lemma 3.1 shows that there is a solution ũ of (3.2) and it is the unique
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minimizer of D on H1(Ω). If there is another solution û ∈ H1(Ω) of (3.2), then û

would be also a critical point of D on H1(Ω). Since D0 is strictly convex, here it

must hold û = ũ.

Remark 3.3. The inequality (3.3) provides an estimate for the continuous depen-

dence of the solutions on the data f̃ and ḡ. This result implies that the problem

of weak solutions of (3.2) in H1(Ω) is well-posed provided that the source terms

f̃ , ḡ satisfy the condition (C2), the boundary satisfies (B1)-(B3) and the equation

satisfies (C1). Also the following conclusions are reached.

Corollary 3.4. Assume (B1)-(B3) and (C1)-(C2) hold, then there are continuous

linear transformations GI : Lp(Ω) → H1(Ω) and GB : Lq(∂Ω, dσ) → H1(Ω) such

that the unique solution ũ of (3.2) in H1(Ω) has the following representation

ũ(x) = (GI f̃)(x) + (GBḡ)(x).

Furthermore, GI is a compact linear mapping when p > 2N/(N + 2) and GB is a

compact linear mapping when q > 2(1−N−1). Particularly, in our kinase activity

model, N = 3 and p, q can both be 2.

Proof. The techniques of the proof are similar to those in the work of Auchmuty,

please refer to [Corollary 4.3, 8].

What are the concrete representations of GI and GB ? They are given in the

following sections after the related theoretical results are obtained.

25



3.2 ROBIN EIGENPROBLEM AND SPECTRAL REPRESENTATION OF
SOLUTIONS

3.2 Robin Eigenproblem and Spectral Represen-

tation of Solutions

Consider the corresponding Robin eigenproblem


−∆u+ cu = λu, x ∈ Ω

Dνu+ ᾱu = 0, x ∈ ∂Ω

with ᾱ and c as those in (2.5) or (2.3). The weak form of this is to find non-trivial

solutions of

∫
Ω

∇u · ∇vdx+

∫
Ω

cuvdx+

∫
∂Ω

ᾱuvdσ = λ

∫
Ω

uvdx = 0, ∀ v ∈ H1(Ω). (3.4)

Consider the variational principle (ζ1) of maximizing Q on K and let

µ1 := sup
u∈K

Q(u)

where Q and K are defined in (2.20) and (2.21), respectively.

Theorem 3.5. Assume (B1)-(B3) and (C1)-(C2) hold, then there are maximizers

±e1 of Q on K and µ1 is finite. The maximizers satisfy (3.4) and ||e1||c = 1. The

corresponding eigenvalue λ1 is the least strictly positive eigenvalue of (3.4) and

µ1 = λ−1
1 . Here the norm || · ||c is induced by the inner product in (2.18).

Proof. Since the norms ||.||c and the standard norm in H1(Ω) are equivalent (

Lemma 2.1 ), K is weakly compact in H1(Ω). Since Q(·) is weakly continuous on
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H1(Ω), it attains its supremum on K at a point e1 and this supremum is finite.

If ||e1|| < 1, then there exists η > 1 such that ηe1 ∈ K and then

Q(ηe1) = η2Q(e1) > Q(e1).

This contradicts the maximality of e1 , one must have ||e1||c = 1.

A Lagrangian functional for the problem µ1 := sup
u∈K

Q(u) is L : H1(Ω)×[0,∞]→

R defined by

L(u, µ) := µ[

∫
Ω

|∇u|2dx+

∫
Ω

cu2dx+

∫
∂Ω

ᾱu2dσ − 1]−
∫

Ω

u2dx

The problem of maximizing Q on K is equivalent to finding an inf-sup point of

L on its domain because of

sup
µ≥0
L(u, µ) =


−
∫

Ω

u2dx, if ||u||c ≤ 1

∞ otherwise

and

inf
u∈H1(Ω)

sup
µ≥0
L(u, µ) = inf

||u||c≤1
−
∫

Ω

u2dx = − sup
||u||c≤1

∫
Ω

u2dx.

Any such maximizer of Q will be a critical point of L(·, µ) on H1(Ω), so it is a

solution of

µ[

∫
Ω

∇u · ∇vdx+

∫
Ω

cuvdx+

∫
∂Ω

ᾱuvdσ]−
∫

Ω

uvdx = 0, ∀v ∈ H1(Ω). (3.5)

When µ > 0, then above equation gives the form (3.4) with λ = µ−1.
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When µ = 0, then (3.5) implies sup
u∈K

Q(u) = 0. This is a contradiction since

here u is the maximizer.

Thus, (3.4) holds at the maximizer.

If e1 is such a maximizer, then the corresponding eigenvalue λ1 in (3.4) satisfies:

||e1||2c = 1 = λ1Q(e1).

Put u = v = e1 in (3.5), then µ1 = λ−1
1 .

If λ1 is not the least positive eigenvalue of (3.4), there will be a nonzero ũ

in H1(Ω) satisfying (3.4) and the corresponding eigenvalue λ̃ such that λ̃ < λ1.

Normalize ũ to have c-norm 1, then (3.4) implies 1 = λ̃Q(ũ), Q(ũ) = λ̃−1 > λ−1 =

µ1. This contradicts with that µ1 is the supremum of Q(·). so λ1 is minimal. The

proof is finished.

Given the first J eigenvalues and corresponding c-orthonormal eigenfunctions,

we now consider how to find the next eigenvalue λJ+1 and a corresponding nor-

malized eigenfunctions. Assume the first J eigenvalues are 0 < λ1 ≤ λ2 ≤ · · · ≤ λJ

and {e1, e2, · · · , eJ} is the corresponding family of c-orthonormal eigenfunctions.

This implies that

[ej, ek] = λ−1
j δjk, ∀j, k ∈ {1, 2, · · · , J},

here the Kronecker symbol δjk = 1 when k = j and δjk = 0 when k 6= j.
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For J ≥ 1, define

KJ := { u ∈ K : [u, ej] = 0, ∀j ∈ {1, 2, · · · , J} }.

Consider the variational problem (ζJ+1) of maximizing Q(·) on KJ and let

µJ+1 := sup
u∈KJ

Q(u)

Theorem 3.6. Assume (B1)-(B3) and (C1)-(C2) hold. Then KJ is a bounded

closed convex set in H1(Ω), µJ+1 is finite and there exist maximizers ±eJ+1 of Q

on KJ . These maximizers satisfy ||eJ+1||2c = λJ+1||eJ+1||22 = 1 with µJ+1 = λ−1
J+1

and [eJ+1, ej]c = [eJ+1, ej] = 0, ∀j ∈ {1, 2, · · · , J}. Moreover, λJ+1 is the smallest

eigenvalue of this problem greater than or equal to λJ .

Proof. Φj(u) = [u, ej], j = 1, 2, · · · , J , are continuous on H1(Ω) since (C2) and

trace theorem hold.

Hence KJ is a bounded closed convex subset of H1(Ω) similar to the set K.

The next steps just follows the procedure described in the proof of Theorem 3.5.

Readers can refer to Ref. [5] for remarks on more detailed steps of the proof, we

omit them here.

Remark 3.7. Iterate the preceding process, one can obtain an increasing sequence

{λj : j ≥ 1} of eigenvalues and a corresponding c-orthonormal sequence of eigen-

functions {ej : j ≥ 1}. Suppose wj(x) := λ
1/2
j ej for each j ≥ 1, then {wj : j ≥ 1}

will be an L2-orthonormal subset of H1(Ω) and D0(wj) = λj for each j ≥ 1. With-

out confusion, we will still use {ej : j ≥ 1} to denote this L2-orthonormal subset
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in stead of {wj : j ≥ 1}.

Theorem 3.8. Assume (B1)-(B3) and (C1)-(C2) hold, then each eigenvalue λj

of (3.4) has finite multiplicity and λj →∞ as j →∞. Moreover, the correspond-

ing eigenfunction family {e1, e2, · · · , en, · · · } is a maximal c-orthonormal subset of

H1(Ω), which is also a basis of the linear subspace H1
R(Ω) defined over (2.16).

Proof. Suppose the eigenvalue sequence is bounded above by a finite λ̂, the corre-

sponding sequence of eigenfunctions is a pairwise c-orthogonal set in H1(Ω). So it

converges weakly to zero. Then Q(ej)→ 0, but

Q(ej) ≥ λ̂−1 > 0, ∀j ≥ 1.

This is a contradiction. Therefore, no such λ̂ exists and the first statement in

theorem holds.

Now suppose {e1, e2, · · · , en, · · · } is not maximal, then there is an eigenfunction

w with ||w||c = 1 and [ej, w]c = 0, ∀j ≥ 1.

If Q(w) > 0, then there exists J such that

Q(w) > µJ+1 = λ−1
J+1

by the first statement. This is a contradiction.

If Q(w) = 0, then it contradicts with ||w||c = 1 since ||w||2c = λ0||w||22, where

λ0 is the corresponding eigenvalue to w.

Now it is the time to consider the weak solution of (3.1) with case of ḡ ≡ 0 on
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∂Ω and its weak form

∫
Ω

∇u · ∇vdx+

∫
Ω

cuvdx+

∫
Σtop

αuvdσ =

∫
Ω

f̃vdx, v ∈ H1(Ω) (3.6)

By Remark 3.7 and Theorem 3.8, any solution u of (3.6) can be expressed by

u =
∞∑
i=1

cjej (3.7)

where

cj = [u, ej], ∀ j = 1, 2, 3, · · ·

and this inner product is defined in (2.13).

Put v = ej in (3.6), then the solution u satisfies

[u, ej]c =

∫
Ω

f̃ ejdx := f̂j, ∀j = 1, 2, 3, · · · .

Substitute (3.7) into above equality, then (3.4) and the orthogonality yield

λjcj = [u, ej]c = f̂j, ∀j = 1, 2, 3, · · · . (3.8)

That is,

u(x) =
∞∑
i=1

λ−1
j f̂jej(x), f̂j :=

∫
Ω

f̃ ejdx,

and furthermore, it is rewritten as

u(x) =

∫
Ω

GI(x, y)f̃(y)dy, GI(x, y) :=
∞∑
j=1

λ−1
j ej(x)ej(y). (3.9)
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Equation (3.9) is called Robin eigen-expression of the solution to (3.6).

3.3 Steklov Eigenproblem and Spectral Repre-

sentation of the Solution

In this section, we will consider the following Steklov eigenproblem

∫
Ω

∇u · ∇vdx+

∫
Ω

cuvdx+

∫
∂Ω

ᾱuvdσ = δ

∫
∂Ω

κuvdσ, ∀v ∈ H1(Ω) (3.10)

which is the weak form of
−∆u+ cu = 0, x ∈ Ω

Dνu|∂Ω + ᾱu = δκu, x ∈ ∂Ω.

where ᾱ is defined in (2.16), α is the same as that in (2.3) (2.4) and

κ =


1

π
, when x ∈ Σtop

0, when x ∈ Γ := Σbot ∪ Σ1 ,

By means of the same procedure in [5], let

W = {w ∈ H1(Ω) : [w, v]c = 0, ∀ v ∈ H1
0 (Ω)} (3.11)
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where the inner product [·, ·]c defined in (2.18) is an equivalent inner product to

the standard inner product on H1(Ω). Then there holds

H1(Ω) = H1
0 (Ω)⊕cW

where ⊕c indicates a c-orthogonal direct sum. Similar to [5], there is the following

theorem.

Theorem 3.9. Under the assumptions (B1)-(B3) and (C1)-(C2), for N ≥ 2, the

Steklov eigenproblem (3.10) has a sequence of real eigenvalues

0 < δ1 ≤ δ2 ≤ · · · ≤ δj ≤ · · · → ∞, j →∞,

each eigenvalue has a finite-dimensional eigenspace. The eigenfunctions ẽ1, ẽ2, · · ·

corresponding respectively to these eigenvalues form a maximal orthonormal (under

the norm induced by inner product [·, ·]c ) family in W , which is also orthogonal in

L2(∂Ω).

The functions in W are weak solutions of

−∆u+ cu = 0. (3.12)

Consider the problem of finding weak solution of

∫
Ω

∇u · ∇vdx+

∫
Ω

cuvdx+

∫
∂Ω

ᾱuvdσ =

∫
Σtop

gvdσ, ∀v ∈ H1(Ω). (3.13)

It means that the functions in W satisfying (3.13) are weak solution of (3.11)
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subject to

Dνu+ αu = g, x ∈ Σtop, Dνu = 0, x ∈ Γ. (3.14)

That is, (3.13) is the weak form of (3.12) and (3.14)

Therefore any solution w of (3.12) subject to (3.14) has the series representation

w =
∞∑
i=1

wj ẽj (3.15)

with wj = [w, ẽj]c for any j = 1, 2, · · · . Plug this solution of series form into the

weak form (3.13)

∫
Ω

[∇w∇vdx+ cwv]dx+

∫
Σtop

αwvdσ =

∫
Σtop

gvdσ, v ∈ H1(Ω)

and take v = ẽj successively, the following is obtained

wj = [w, ẽj]c =

∫
Σtop

gẽjdσ

Thus the solution w of (3.12) and (3.14) is expressed as

w =

∫
Σtop

GB(x, y)g(y)dσ(y),

where

GB(x, y) :=
∞∑
j=1

ẽj(x)ẽj(y), (3.16)

and w is just the solution of (2.7).
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3.4 COMPUTATIONS ON STEKLOV EIGENPROBLEM OF THE STEADY
STATE MODEL

In summary, from the results in sections 3.1, 3.2 and this section, define

(GI f̃)(x) =

∫
Ω

GI(x, y)f̃(y)dy, (GBḡ)(x) =

∫
∂Ω

GB(x, y)ḡ(y)dσ(y),

then these operators are just those mentioned in Corollary 3.4, where the notation

ḡ is given by (2.17) and the kernels are defined in (3.9) and (3.16), respectively.

Remark 3.10. The results and deductions in Section 3.1 to Section 3.3 still hold

when f̃ and ḡ are time-related in (3.1). In this situation, they can be denoted as

f̃t and ḡt and regarded as just another different functions from f̃ and ḡ respec-

tively. The coefficients in (3.7) and (3.15) will be time-related. And the related

convergence for the series can be reached by use of the well-known Banach-Steihaus

theorem under the standard norm || · ||1,2 in (2.15).

3.4 Computations on Steklov Eigenproblem of

the Steady State Model

Assume in the cylindrical coordinate

s = ψ(ρ, θ)Z(z), (3.17)

is the eigenfunction where ψ = ψ(ρ, θ) is defined on the unit disc

B1 = {(ρ, θ) : 0 ≤ ρ < 1, 0 ≤ θ ≤ 2π}. (3.18)
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Put δ̃ = δ/π − α and write (3.10) in cylindrical coordinates by

∫
Ω

(∇s · ∇v + csv)dxdydz = δ

∫ 1

0

∫ 2π

0

svρdρdθ, ∀ v ∈ H1(Ω). (3.19)

But we will still denote the eigenvalue by use of δ in stead of δ̃ in the following,

then the classical form of (3.10) is explicitly expressed as below



−∆s+ cs = 0, (ρ, θ, z) ∈ Ω

∂s

∂z
= δs, 0 ≤ ρ < 1, z = h,

∂s

∂z
= 0, 0 ≤ ρ < 1, z = −h,

∂s

∂ρ
= 0, ρ = 1,−h < z < h,

(3.20)

Plug (3.17) into the first equation in (3.20), the following are obtained

−[∆ψ(ρ, θ)]Z(z)− ψ(ρ, θ)
∂2Z(z)

∂z2
+ cψ(ρ, θ)Z(z) = 0.

Divide the two sides of above equation by ψ(ρ, θ)Z(z), and then

−∆ψ(ρ, θ)

ψ(ρ, θ)
− Z ′′(z)

Z(z)
+ c = 0.

Put

Z ′′(z)

Z(z)
− c = λ,
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then there holds

Z ′′(z)− (λ+ c)Z(z) = 0 (3.21)

and

−∆ψ(ρ, θ) = λψ(ρ, θ), (ρ, θ) ∈ B1. (3.22)

Checking the boundary conditions in (3.20), the following is reached

∂ψ

∂ρ
= 0, at ρ = 1. (3.23)

The equations (3.22) or (3.23) just give the Neumann eigenproblem on the unit

disc (3.18) in the two-dimensional space. And the weak form is

∫
B1

∇ψ∇wdxdy = λ

∫
B1

ψwdxdy

or in the cylindrical coordinate

∫
B1

∇ψ∇wρdρdθ = λ

∫
B1

ψwρdρdθ. (3.24)

If λ = 0, then ψ = 1 is the corresponding eigenfunction of (3.22) with (3.23).

If λ > 0 ( in fact, (3.24) can imply λ ≥ 0 ), then let

ψ = φ(ρ)L(θ), (ρ, θ) ∈ B1

where B1 is the disc defined in (3.18).
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Thanks to (3.22), the following is obtained

φ′′(ρ)L(θ) +
1

ρ
φ′(ρ)L(θ) +

1

ρ2
φ(ρ)L′′(θ) = −λφ(ρ)L(θ).

Divide the two sides of above equation by φ(ρ)L(θ) respectively, there is

φ′′(ρ)

φ(ρ)
+

1

ρ

φ′(ρ)

φ(ρ)
+

1

ρ2

L′′(θ)

L(θ)
= −λ

i.e

ρ2[
φ′′(ρ)

φ(ρ)
+

1

ρ

φ′(ρ)

φ(ρ)
] +

L′′(θ)

L(θ)
= −λρ2.

Put

L′′(θ)

L(θ)
= −µ,

the following are obtaind

L′′(θ) + µL(θ) = 0, L(0) = L(2π), L′(0) = L′(2π) (3.25)

and

φ′′(ρ) +
1

ρ
φ′(ρ) + (λ− µ

ρ2
)φ(ρ) = 0, φ′(ρ)|ρ=1 = 0. (3.26)

The following are just the solutions for (3.25)

L(θ) = Am cos(mθ) +Bm sin(mθ), µ = m2, m = 1, 2, · · ·

For the equation (3.26 ), notice that µ = m2 and by Ref. [p183, 14], the solutions
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are presented as

φ(ρ) = Jm(ρxmn), λ = λmn := (xmn)2 (3.27)

where xmn is the nth nonnegative root of

J ′m(x) = 0 (3.28)

provided that the order of roots is from the smaller to the larger, and Jm(·)

and J ′m(·) are the standard Bessel function and the derivative function defined

at [(3.2.10), 14].

So the Neumann eigenfuctions are

ψ(ρ, θ) = Jm(ρxmn)(Am cos(mθ) +Bm sin(mθ)), m = 1, 2, · · · (3.29)

corresponding to the strictly positive eigenvalue

λ = (xmn)2, n = 1, 2, · · ·

where xmn are those in (3.27).

Now it is the time to solve (3.21)

Z ′′(z)− (λ+ c)Z(z) = 0

with boundary condition

Z ′(z)|z=−h = 0.
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Since λ+ c = (xmn)2 + c ≥ 0, the solution can be obtained as

Z(z) = Ee
√
λ+c z + Fe−

√
λ+c z

and

Z ′(z) =
√
λ+ c(Ee

√
λ+c z − Fe−

√
λ+c z).

Plug above into the equation of boundary condition, it becomes

Z ′(h) =
√
λ+ c(Ee−h

√
λ+c − Feh

√
λ+c) = 0

Solving it, the parameter relation is

E = Fe2h
√
λ+c.

And so

Z(z) = F (e
√
λ+c(z+h) + e−

√
λ+c(z+h)) =

F

2
cosh((z + h)

√
(xmn)2 + c) (3.30)

Therefore, the solutions to the first equation in (3.20) under the boundary

condition

∂s

∂z
= 0,

∂s

∂ρ
= 0

show as

s(ρ, θ, z) = Jm(ρxmn)[Am cos(mθ) +Bm sin(mθ)] cosh((z + h)
√

(xmn)2 + c)
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with m = 1, 2, · · · and xmn is the nth positive zero of (3.28).

Then from the boundary equation i.e the second equation of (3.20)

∂s

∂z
= δs, z = h (3.31)

From (3.31), there holds the equality

sinh((z + h)
√
x2
mn

+ c) = δ cosh((z + h)
√
x2
mn

+ c), at z = h

which gives

δm,n = ((xmn)2 + c)
1
2 tanh(2h

√
(xmn)2 + c)

with xmn ≥ 0 and satisfying the equation (3.28).

In summary, from (3.29) and (3.31), the Steklov eigenvalue for (3.20) or ( 3.19)

is

δmn = (x2
mn

+ c)
1
2 tanh(2h(x2

mn
+ c)

1
2 ) (3.32)

and the corresponding Steklov eigenfunction is

smn = Jm(ρxmn)(Am cos(mθ) +Bm sin(mθ)) cosh((z + h)(x2
mn

+ c)
1
2 ) (3.33)

where m = 1, 2, · · · and xmn is the nth strictly positive zero of (3.28) with zeros

in order from the smaller to the bigger and Jm are the Bessel functions [(3.2.10),

14]. Here one can take Am = Bm = 1 or other concrete constants. ( Here n can

also take the value of zero, in this case, xm0 = 0 ).
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In the case of m = 0, the solution is the axially symmetric case. Similar to

(3.32) and (3.33), it has the simpler form

sn = J0(ρxn) cosh((z + h)(x2
n + c)

1
2 ) (3.34)

with corresponding eigenvalue

δn := δ0n = (x2
n + c)

1
2 tanh(2h(x2

n + c)
1
2 ) (3.35)

where xn := x0n is the n-th positive zero of

J ′0(x) = 0.

And more particularly, corresponding to λ = 0 and x0 = 0, the first nonnegative

Steklov eigenvalue and the Steklov eigenfunction are respectively

δ1 =
√
c tanh(2h

√
c), s1(ρ, z) = cosh((z + h)

√
c), ρ ∈ [0, 1], z ∈ [−h, h] (3.36)

Here for convenience of the reader, the following are provided: the Bessel func-

tion J0(x) ( respectively in series form and integral form )

J0(x) = 1 +
∞∑
n=1

(−1)nx2n

22n(n!)2
, J0(x) =

1

2π

∫ π

−π
cos(x cos(θ))dθ (3.37)
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and J1(x) ( Refer to [P185& P192, 14] )

J1(x) =
∞∑
n=0

(−1)nx2n+1

22n+1(n!)2(n+ 1)
, J1(x) =

1

2π

∫ π

−π
sin(x cos(θ)) cos(θ)dθ (3.38)

and the first six strictly positive zeros of J ′0(x), i.e roots of (3.26) ( more of

them appear in Appendix C )

x1 = 3.831705970207512315614, x2 = 7.015586669815618753539,

x3 = 10.17346813506272207719, x4 = 13.32369193631422303239

x5 = 16.47063005087763281255, x6 = 19.61585851046824202113
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Chapter 4

Time-dependent Model on the

Finite Cylinder

In this chapter the results in previous are needed.

Now in order to consider model (2.5), the time-dependent model (2.6) is firstly

considered, which is copied as below (4.1)



∂u

∂t
= ∆u− cu+ f, (t, x) ∈ [0,∞)× Ω

Dνu+ ᾱu = 0, (t, x) ∈ [0,∞)× ∂Ω

u(0, x) = u0(x).

(4.1)

This chapter just demonstrates the existence and uniqueness of the time-dependent

solution for (4.1) under the weak sense.

Naturally, a solution u(t, x) of (4.1) is considered as a trajectory in some infinite-
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dimensional phase space. In other word, u(t, x) is regarded as a family of functions

ut(·) or denoted as u(t), each member of which is defined on Ω.

Since the eigenfunctions e1, e2, · · · , en, · · · ( Refer to Theorem 3.6 and Remark

3.7 ) are L2-orthogonal in V = H1(Ω), the finite-dimensional subspace is denoted

as

Vn := span {e1, e2, · · · , en}.

Any u ∈ L2(Ω) projects to space Vn as

Pnu =
n∑
j=1

unjej, unj = [u, ej], ∀ j ≥ 1

If f ∈ V ∗, 〈Pnf, v〉 := 〈f, Pnv〉, ∀v ∈ V . This makes sense since v ∈ V ⊂

L2(Ω).

Define Qn = I − Pn, Qnu =
∞∑

j=n+1

unjej, unj = [u, ej], ∀j ≥ n+ 1.

Thus for the solution u(t) of (4.1), the Galerkin approximation sequence un(t)

is employed, where

un(t) =
n∑
j=1

unj(t)ej, unj(t) = [u(t), ej], 1 ≤ j ≤ n, n ≥ 2 (4.2)

and each member un(t) of the sequence solves

(
dun
dt

, ej) + (Aun, ej) = 〈f, ej〉,

( See (2.18) for the linear operator A ) with (un(0), ej) = (u0, ej), and 〈f, ej〉 makes

sense since ej ∈ V for any j ≥ 1.
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Note that the inner product [u, v] in L2(Ω) is defined by (2.13). And also there

holds unj = [un(t), ej], (
dun
dt

, ej) =
dunj
dt

and (Aun, ej) = λjunj ( Refer to the

definition of A in (2.18) and the equalities (3.4) and (3.8) ).

Therefore a set of n ODEs is obtained for the components unj:

dunj
dt

+ λjunj = 〈f(t), ej〉. (4.3)

It can be rewritten concisely as

dun
dt

+ Aun = Pnf, (4.4)

where un is the one in (4.2).

The Theorem A1 and Theorem A2 in Appendix A guarantee that there is a

unique solution of (4.4) for the unj, at least in some time interval [0, Tn]. Then the

time interval can be extended to infinity if it is known that the unj are bounded.

Note that if un is regarded as an n-component vector, it still needs to show that∑n
j=1 u

2
nj remains bounded. Using the idea of Robinson [15], the proofs on those

conclusions are provided in Appendix A.

In brief, the general result can be attained which is presented in the following

theorem.

Theorem 4.1. ( Well-posedness ) Under the conditions (B1-B3) and (C1)(C2),

the time-dependent weak solution of (4.1) is unique and continuously depends on

initial data.

Proof. Suppose that there are two solutions u and ū of (4.1), then, by linearity of
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the equation, the difference of these two solutions, y(t) = u− ū satisfies

dy

dt
+ Ay = 0.

Using Theorem A5, we can taking the appropriate inner product of this equation

with y, it produces

1

2

d

dt
||y||2 + ||y||2c = 0,

whence

d

dt
||y||2 ≤ 0.

It follows that

||y(t)|| ≤ ||y(0)||,

which demonstrates continuous dependence on initial data, and in the case when

u(0) = ū(0) ( i.e., y(0) = 0 ), uniqueness.

Combining the result in Chapter 3 related to (2.7), the well-posedness of (2.5)

can be obtained

Note that the equations (4.3) can be solved in integral form

lnj = e−λjtlnj (0) +

∫ t

0

eλj(s−t)〈f(s), ej〉ds

(here we use lnj to denote unj instead ).
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Therefore any solution v of (4.1) can be written down in integral form as

v =
∞∑
j=1

lnj ej =
∞∑
j=1

e−λjtlnj (0)ej +

∫ t

0

eλj(s−t)〈f(s), ej〉ejds

Notice that

〈f(t), ej〉 =

∫
Ω

f(t, x)ej(x)dx ∀f ∈ L2([0,∞)× Ω)

and the notation in the beginning of Subsection 3.2,

lnj (0) = [u(0), ej] =

∫
Ω

u(0, x)ej(x)dx

Inspired by results in Chapter 3, define the kernel

G(τ, x, y) =
∞∑
j=1

e−λjτej(x)ej(y), (τ, x, y) ∈ [0,∞)× Ω× Ω (4.5)

then the solution v of (4.1) reads

v(t, x) =

∫
Ω

G(t, x, y)u(0, y)dy +

∫ t

0

∫
Ω

G(t− s, x, y)f(s, y)dyds

Then the sum U of the solution w in section 3.3 ( i.e., the solution of (2.7) ) and

the solution v of (4.1) ( i.e., the solution of (2.6) ) is the solution of (2.5) and equal

to

∫
Σtop

GB(x, y)g(y)dσ(y) +

∫
Ω

G(t, x, y)u(0, y)dy +

∫ t

0

∫
Ω

G(t− s, x, y)f(s, y)dyds
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where the kernels are defined at (3.16) and (4.5), respectively.
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Chapter 5

Solution Properties of the Kinase

Activity Model on the Finite

Cylinder

By the result in Chapter 3 and Chapter 4, the time-dependent solution (2.3) has

the unique time-dependent solution which corresponds to the case of (2.5) with

f ≡ 0 and ḡ = ᾱ.

Notice the following equality arising in Section 3.2

λjcj = [u, ej]c, i.e, cj = [u, ej] = λ−1
j [u, ej]c (5.1)

then there is ∫
Ω

e2
jdx = λ−1

j .
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Thus for the solution of kinase model (2.3), it can read

U = α

∫
Σtop

GB(x, y)dσ(y) +

∫
Ω

G(t, x, y)u(0, y)dy

under the kernels given by (3.16) and (4.5). Therefore it is known that

|
∫

Ω

G(t, x, y)u(0, y)dy| = |
∫

Ω

∞∑
j=1

e−λjtej(x)ej(y)u(0, y)dy|

≤
∞∑
j=1

e−λ1t|ej(x)| |
∫

Ω

ej(y)u(0, y)dy| ≤
∞∑
j=1

e−λ1t|ej(x)| ||ej||2||u(0, y)||2

≤
∞∑
j=1

λ−1
1 e−λ1t|ej(x)| ||u(0, y)||2 → 0 , when t→∞

under the || · ||2 norm, where the second inequality is obtained by the Hölder

inequality and the third inequality is obtained by (5.1).

So the time-dependent concentration of the kinase will exponentially converge

to its steady state solution. Thus, investigation on the solution properties of steady

state kinase activity model (2.4) is sufficient to know the solution properties of

(2.3).

For the steady state model (2.4), the following conclusions are obtained

5.1 Solution Properties of the Kinase Activity

Model on the Finite Cylinder
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Existence and Uniqueness. The solution of (2.4) exists and is unique.

This is implied by results in Chapter 3 and above analysis.

Boundedness. The solution of (2.4) is bounded under the || · ||1,2 norm.

Proof. Concretely, by the result in Section 3.3 and Ref. [5], it is known that for

any u ∈ H1(Ω), the trace inequality holds

δ1

∫
Σtop

u2dσ ≤
∫

Ω

|∇u|2dx+

∫
Ω

cu2dx

where δ1 is the least strictly positive Steklov eigenvalue in (3.19) or (3.20), i.e., the

one in (3.36).

Thus from the weak form of (2.4),

∫
Ω

[∇u∇vdx+ cuv]dx+

∫
Σtop

αuvdσ =

∫
Σtop

αvdσ, v ∈ H1(Ω), (5.2)

and by taking v = u in above equation, the following is obtained

||u||21,2 ≤ max{1, c−1}
∫

Ω

[|∇u|2 + cu2]dx ≤ max{1, c−1}
∫
∂Ω

αudσ

Continuously, by Holder inequality,

||u||21,2 ≤ max{1, c−1}δ−1/2
1 α|Σtop|1/2 max{1, c}1/2||u||1,2.

Thus, there holds

||u||1,2 ≤ max{1, c−1}δ−1/2
1 α|Σtop|1/2 max{1, c}1/2 := B,
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where

B =


α(πδ−1

1 )
1
2 c

1
2 , if c ≥ 1

α(πδ−1
1 )

1
2 c−1, if 0 < c < 1 ,

and δ1 is the least strictly positive Steklov eigenvalue shown in (3.36).

Positivity of the Solutions. If the solution of (2.4) is continuous on Ω,

then it is positive on Ω ( the finite cylinder )

Proof. For the solution u to (2.4), by its weak form (5.2), the following holds

∫
Ω

[|∇u|2 + cu2]dx+

∫
Σtop

αu2dσ =

∫
Σtop

αudσ, u ∈ H1(Ω). (5.3)

Then there holds

u ≥ 0, for x ∈ Ω, (5.4)

since α and c are strictly positive.

If (5.4) is not true, then one can assume an open subset Θ1 ⊂ Ω such that

|Θ1| > 0 and

u < 0, x ∈ Θ1 .

Put v = 0 when x ∈ Ω\Θ1 and v = u when x ∈ Θ1, then v ∈ H1(Ω). Plug this v

into the weak form (5.2), one can get

∫
Θ1

[|∇u|2 + cu2]dx = 0

which implies that u = 0 for all x ∈ Θ1. This is a contradiction.
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Note that u is continuous to the boundary, hence (5.4) is proved.

On the other hand, when the solution of (2.4) is continuous, (5.3) can be also

rewritten as ∫
Ω

[|∇u|2 + cu2]dx =

∫
Σtop

αu(1− u)dσ,

which, combining (5.4) and by the same procedure in proof of (5.4), implies

0 ≤ u ≤ 1, for x ∈ ∂Ω.

Remark 5.1. In (5.3) and (5.4), the strict positivity and boundedness of the so-

lutions are obtained mathematically, but in the article [3], the authors have only

acquired the boundedness and positivity through the physical background but not

from mathematical perspective.
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Chapter 6

Time-dependent Kinase Activity

Model with Nonlinear Boundary

Conditions - Direct Analysis

In this chapter, the time-dependent model (2.9) is investigated by direct analysis

on the solution with initial value (u(t0, x), R(t0, x)) = (u(0, x), R(0, x)) = (u0, R0).

Let (u∗, R∗) represents the steady state solution, and in the second equation

we use u∗ to replace u. Then there holds

d

dt
R + (b+ qu∗)R = qPu∗, so

d

dt
[e(b+qu∗)tR] = qPu∗e(b+qu∗)tR .

This has the solution

R(t, x) = R0e
−(b+qu∗)t +

qPu∗

b+ qu∗
(1− e−(b+qu∗)t)
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which means that in this case of substitution, the R(t, x) will exponentially ap-

proach its steady state

R∗ =
qPu∗

b+ qu∗
. (6.1)

Now substitute (6.1) into the third equation i.e., the boundary condition and then

integrate the first equation by use of Gaussian theorem. Then there is

1

2

d

dt

∫
Ω

u2dx =

∫
∂Ω

(Dνu)udσ −
∫

Ω

|∇u|2dx−
∫

Ω

c|u|2dx

with

Dνu = β[R0e
−(b+qu∗)t +

qPu∗

b+ qu∗
(1− e−(b+qu∗)t)](1− u)

Note that u(1− u) ≤ 1/4, then there holds the inequality

1

2

d

dt

∫
Ω

u2dx+

∫
Ω

|∇u|2dx+

∫
Ω

c|u|2dx ≤ 1

4
β

∫
Σtop

(R∗ + (R0 −R∗)e−γt)dσ

where R∗ shown in (6.1) and γ := b+ qu∗ . Above inequality further implies

d

dt

∫
Ω

u2dx+ 2

∫
Ω

c|u|2dx ≤ 1

2
β

∫
Σtop

R∗dσ +
1

2
βe−γt

∫
Σtop

(R0 −R∗)dσ.

Multiply the two sides of above inequality by e2ct and integrate the results from 0

to t respectively, then there holds

∫
Ω

|u|2dx ≤ e−2ct

∫
Ω

|u0|2dx+

∫
Σtop

[
β

4c
(1−e−2ct)R∗+

β

2γ − 4c
(e−2ct−e−γt)(R0−R∗)]dσ
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which means

∫
Ω

|u|2dx ≤ β

4c

∫
Σtop

R∗dσ + e−2ct[

∫
Ω

|u0|2dx+
β

|4c− 2γ|

∫
Σtop

(R0 −R∗)dσ] (6.2)

for any t ≥ 0. From (6.2), take limits as t→∞, then

∫
Ω

|u∗|2dx ≤ β

4c

∫
Σtop

qPu∗

b+ qu∗
dσ, when c > 0

by notice of the equality (6.1).

That is, the spatial average of the active kinase concentration is bounded by

the summation of some constants, i.e the spatial average of the concentration of

initial active kinase, and certain weighted average of the initial active receptor

concentration.

This result also implies that for the time-dependent model, the concentration

will be restricted in some region near the steady state solutions.
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Chapter 7

Weak Solution of the Steady

State Model with Nonlinear

Boundary Conditions

7.1 Existence of the Weak Solution

Consider the steady state equation below which is modified a little from (2.10)


−∆u+ cu = 0, x ∈ Ω

Dνu− g+(u) = 0, x ∈ Σtop.

Dνu = 0, x ∈ Γ

(7.1)

and define the functional

E(u) =
1

2

∫
Ω

[|∇u|2 + cu2]dx−
∫

Σtop

G(u)dσ, u ∈ H1(Ω) (7.2)
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7.1 EXISTENCE OF THE WEAK SOLUTION

with the general case
∂G(u)

∂u
= g+(u), and in our model, for the convenience in

proof, the function g+(u) is redenoted from g by

g+(u) =


g(u), when u ≥ 0

0, when u < 0 .

and g(u) =
αu(1− u)

τ + u
(7.3)

since the physical meaning of kinase concentration requires u ≥ 0.

The variational principle (ζNonl) for the equation with mixed boundary condi-

tion is to minimize E(u) on H1(Ω).

The G-derivative of E(u) is the linear operator ∇E(u) with

(∇E(u), v) =

∫
Ω

[∇u∇v + cuv]dx−
∫

Σtop

g+(u)vdσ, ∀v ∈ H1(Ω).

The critical point of E(u) satisfies

(∇E(u), v) = 0, ∀v ∈ H1(Ω)

which is equivalent to

∫
Ω

[∇u∇v + cuv]dx−
∫

Σtop

g+(u)vdσ = 0, ∀v ∈ H1(Ω). (7.4)

We are interested in finding solutions of Eq.(7.4) which is the weak form of the

system (7.1). This is proved using variational methods. Consider the functional

E(u) : H1(Ω)→ R defined by (7.2).

59
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Theorem 7.1. When g+ is given in (7.3) , then there are minimizers of E on

H1(Ω). These minimizers satisfy (7.4) ( which are just the weak solutions of

(2.10) )

Proof. From (7.3), we can obtain

g+(u) = −αu+ α(τ + 1)− ατ(τ + 1)

u+ τ
.

And it has anti-derivative denoted as G(u), then when u ≥ 0, G(u) has the form

G(u) = −ατ(τ + 1) ln τ − 1

2
αu2 + α(τ + 1)u− ατ(τ + 1) ln(1 +

u

τ
)

which can be rewritten as

G(u) = −1

2
αu2 + α(τ + 1)u− ατ(τ + 1) ln(1 +

u

τ
)

since the constant term does not play an important role in the derivative. When

u < 0, G(u) is a constant which case is easy to treat. In the following, the case of

u ≥ 0 is treated exclusively.

Then, corresponding to model (2.10), the E(u) is rewritten as

E(u) =
1

2

∫
Ω

[|∇u|2 + cu2]dx+
1

2

∫
Σtop

αu2dσ −
∫

Σtop

G(u)dσ,

=
1

2

∫
Ω

[|∇u|2 + cu2]dx+
1

2

∫
Σtop

αu2dσ

+

∫
Σtop

α(τ + 1)[τ ln(1 +
u

τ
)− u]dσ
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and the weak form (7.4 ) becomes

∫
Ω

[∇u∇v + cuv]dx+

∫
Σtop

αuvdσ −
∫

Σtop

α(τ + 1)(1− τ

u+ τ
)vdσ = 0, (7.5)

for any v ∈ H1(Ω).

In the next, our goal is to prove that E(u) can attain its minimum value on

H1(Ω)

On the one hand, the following can be obtained

E(u) ≥ 1

2

∫
Ω

[|∇u|2 + cu2]dx+
1

2

∫
Σtop

αu2dσ −
∫

Σtop

α(τ + 1)udσ.

And for any ε > 0, there holds

α(τ + 1)u ≤ ε

2
u2 +

(ατ + α)2

2ε

Thus, the following holds

E(u) ≥ 1

2

∫
Ω

[|∇u|2 + cu2]dx+
1

2

∫
Σtop

(α− ε)u2dσ −
∫

Σtop

(ατ + α)2

2ε
dσ

Take one ε small enough such that α− ε > 0, the functional

F(u) := E(u) +

∫
Σtop

(ατ + α)2

2ε
dσ

defined on H1(Ω) is coercive. And when u < 0, by definition in (7.2) the conclusion

also holds .

On the other hand, for sequence um → u ( weakly ) in H1(Ω) , it implies that
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7.1 EXISTENCE OF THE WEAK SOLUTION

T (um)→ T (u) ( weakly ) ( Refer to Section 2.3.2 ) in L2(∂Ω, dσ) by the compact

trace theorem.

Those imply that the functional

∫
Σtop

α(τ + 1)[τ ln(1 +
u

τ
)− u]dσ

is ( weakly ) continuous in L2(∂Ω, dσ) ( therefore on H1(Ω) ) since the function

ln(1 + u) is continous for u > 0. Thus E(u) and therefore F(u) are weakly lower

semi-continuous on H1(Ω).

By theorems in [p511-513, 16], F(u) can attain its minimum, say, at u1 in

H1(Ω). This also implies that E(u) attains its minimum at u1 since the difference

between E(u) and F(u) is only the constant

∫
∂Ω

(ατ + τ)2

2ε
dσ .

Therefore, therefore existence of weak solution of (7.5) ( i.e., the solution of (2.10)

) is proved .

Proposition 7.2. Under certain ranges of the parameters α, τ , there is at least

one nonzero positive minimizer of E(u).

In fact, the trivial function u = 0 is certainly a solution of (7.1) and E(0) = 0.

By a counterexample, one can show that under certain value of parameters, there

exists at least one positive minimizer of E(u). For example, if α = 3, τ = 2
3
, one
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7.2 BOUNDEDNESS OF THE WEAK SOLUTION

can take u1 = 1
4

in H1(Ω), there holds

E(u1) < π[
1

16
− α

32τ
+
α(τ + 1)

3 · 64τ 2
] = π[

1

16
− 9

64
+

3.75

64
] < 0

which means that there must exist one nonzero positive minimizer of E(u). Fur-

thermore, this tells that under some ranges of parameters α and τ ,there exists at

least one nonzero positive solution of (7.1), where

α =
a1P

d1

, τ =
b2

a2

provided in (2.11).

Comments

Here theorem 7.1 and proposition 7.2 do not provide the concrete ranges of α

and τ to ensure the nonzero positive minimizer of E(u). So it is necessary to give

some bifurcation analysis to this model in the following Chapter 8 under classical

sense since any classical solution to (2.10) is just one of its weak solutions.

7.2 Boundedness of the Weak Solution

Theorem 7.3. If the weak solutions of (2.10) are also continuous on Ω, then they

are bounded under the norm || · ||1,2 . This bound depends on α and τ .

Proof. Assume that u is a solution of (2.10 ). In the weak form of (2.10 ),

∫
Ω

[∇u∇v + cuv]dx−
∫

Σtop

αu(1− u)

τ + u
vdσ = 0, ∀v ∈ H1(Ω),
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7.2 BOUNDEDNESS OF THE WEAK SOLUTION

taking v = u, the following is obtained

∫
Ω

[|∇u|2 + cu2]dx =

∫
Σtop

αu2(1− u)

τ + u
dσ ≥ 0,

which, by the same procedure in the last proposition of Section 5.1, implies that

(1− u)(τ + u) ≥ 0, x ∈ Σtop.

Thus

−τ < u ≤ 1, x ∈ Σtop.

In the physical meaning, u is the concentration of the kinase, so it is nonnega-

tive. Then if u 6= 0, the following inequality holds

∫
Ω

[|∇u|2 + cu2]dx <
α

τ

∫
Σtop

u2dσ <
α

τ
π,

which gives

||u||1,2 < (
α

min{1, c}τ
)
1
2 ||u||2,Σtop < (

α

min{1, c}τ
)
1
2 .

where the norms are defined in that over (2.13) and in (2.15), respectively.
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Chapter 8

Bifurcation Analysis and Series

Representation of Solutions of the

Kinase Activity Model

In this Chapter 8, the focus is on the model (2.9) with its steady state equation

(2.10), but we start the work just from the original biological model.

8.1 Bifurcation on the Kinase Activity Model

with Infinite Diffusion - Extreme Case

By use of the substitution s = b1t and notations

d =
d1

b1

, a =
a1

b1

, b =
b2

b1

, q =
a2

b1

, (8.1)
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8.1 BIFURCATION ON THE KINASE ACTIVITY MODEL WITH INFINITE
DIFFUSION - EXTREME CASE

the reaction-diffusion equation (2.1), flux equation (2.2) and receptor-kinase acti-

vation equation (2.8) together give the following model ( here again use t in stead

of s to denote the time parameter )



∂u

∂t
= d∆u− u, (t, x) ∈ [0,∞)× Ω

dR

dt
= qu(P −R)− bR, (t, x) ∈ [0,∞)× ∂Ω

dDνu− aR(1− u) = 0, (t, x) ∈ [0,∞)× Σtop

(8.2)

with Dνu = 0, as (t, x) ∈ [0,∞)× Γ and the initial value u(0) = u0, x ∈ Ω̄, where

a, b, d, q, P are all positive constants, Ω is the finite cylinder defined in (2.12).

In (8.2), noticing (8.1), let

d→∞, i.e., in (2.1) d1 →∞,

then the active kinase concentration is uniform and the model becomes an ordinary

differential system instead.

Integrating the first equation of (8.2) on the finite cylinder Ω, there holds the

equation ∫
Ω

∂u

∂t
dx =

∫
Ω

d∆udx−
∫

Ω

udx.

Then by Gaussian theorem and boundary conditions, the following equalities

are obtained

(2hπ)
du

dt
=

∫
Σtop

dDνudσ − (2hπ)u =

∫
Σtop

(aR(1− u))dσ − (2hπ)u,
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where dσ is the integration with respect to the boundary measure, i.e., dxdy or

dρdθ on the unit disc. In further,

(2hπ)
du

dt
= π(aR(1− u))− (2hπ)u,

and it can be simplified as

du

dt
=
aR

2h
− (1 +

aR

2h
)u.

Thus in the case of infinite diffusion, the model degenerates to an ordinary

differential system



du

dt
=
aR

2h
− (1 +

aR

2h
)u, t ∈ [0,∞)

dR

dt
= qu(P −R)− bR, t ∈ [0,∞)

u(0) = u0, R(0) = R0

(8.3)

Now consider the steady state solution. Let

qu(P −R)− bR = 0

and combine it with

π(aR(1− u))− (2hπ)u = 0.
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DIFFUSION - EXTREME CASE

Then, two steady state solutions are obtained

us1 = 0, Rs
1 = 0, and us2 =

qaP − 2hb

q(aP + 2h)
, Rs

2 =
qaP − 2hb

aq + ab
. (8.4)

There exists a strictly positive steady state if and only if qaP > 2hb which implies

b1b2 <
a1a2P

2h
, i.e., 2b1b2h < a1a2P . (8.5)

Theorem 8.1. Under the case of infinite diffusion, if (8.5) is satisfied, there exist

a strictly positive solution (us2, R
s
2) and the trivial solution (us1, R

s
1) of (8.2), which

are shown in (8.4), the solution (us2, R
s
2) is asymptotically (exponentially) stable

while the trivial solution is unstable. If the inequality in (8.5) holds in the opposite

direction, then there is only trivial solution and no positive solution.

Proof. Denote

F (u,R) =
aR(1− u)

2h
− u

and

G(u,R) = qu(P −R)− bR,

then the Jacobian matrix is computed as

J =
∂(F,G)

∂u∂R
|(us2,Rs

2) =


−aR

2h
− 1

a

2h
(1− u)

q(P −R) −qu− b


(us2,R

s
2)

68
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That is,

J =



−q(aP + 2h)

2h(q + b)

a(q + b)

q(aP + 2h)

q(aP + 2h)b

a(q + b)

−aP (q + b)

aP + 2h


.

Compute the eigenvalue of J, that is, put |λI − J | = 0, where I is the identity

matrix, and solve the values of λ.

From |λI − J | = 0, the following is obtained

λ2 + [
q(aP + 2h)

2h(q + b)
+
aP (q + b)

aP + 2h
]λ+

aPq(aP + 2h)(q + b)

2h(q + b)(aP + 2h)
− b = 0 (8.6)

Consider

Λ = [
q(aP + 2h)

2h(q + b)
+
aP (q + b)

aP + 2h
]2 − 4[

qaP

2h
− b]

≤ [
q(aP + 2h)

2h(q + b)
+
aP (q + b)

aP + 2h
]2, since 2hb < qaP

and on the other hand it can be also rewritten as

Λ = [
q(aP + 2h)

2h(q + b)
− aP (q + b)

aP + 2h
]2 + 4b > 0,

which implies that
√

Λ > |q(aP + 2h)

2h(q + b)
− aP (q + b)

aP + 2h
|.

Thus, by above two inequality results, the roots of (8.6) are

λ1 = −1

2

q(aP + 2h)

2h(q + b)
− 1

2

aP (q + b)

aP + 2h
+

1

2

√
Λ < 0,
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and

λ2 = −1

2

q(aP + 2h)

2h(q + b)
− 1

2

aP (q + b)

aP + 2h
− 1

2

√
Λ < 0,

Therefore, according to fundamental theorems in ODE, the positive steady

state (us2, R
s
2) is asymptotically stable when (8.5) is satisfied.

But for the Jacobian matrix in (u,R) = (0, 0), the following form is obtained

J =
∂(F,G)

∂u∂R
|(us1,Rs

1) =


−1

a

2h

qP −b


which has two eigenvalues

λ̄1 = −b+ 1

2
−

√
qaP

2h
− b+ (

b+ 1

2
)2, λ̄2 = −b+ 1

2
+

√
qaP

2h
− b+ (

b+ 1

2
)2.

Obviously when (8.5) is satisfied, λ̄1 < 0 and λ̄2 > 0, then the steady state (0, 0)

is unstable.

Remark 8.2. If the inequality (8.5) becomes the equality 2b1b2h = a1a2P , then it

will give the critical value for related parameters. For example, take the parameter

b2 as the varying parameter, then the critical value bcrit2 will be given by

bcrit2 =
a1a2P

2b1h
(8.7)

which is a transcritical bifurcation point when a1, a2, b1, and h are finite and

strictly positive constants.
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8.2 Bifurcation on the Kinase Activity Model

with Finite Diffusion - Case of Center Sym-

metry

In the case of finite diffusion, (8.2) can transform into (2.9). Then the steady state

equation (2.10) is considered again but under the classical sense so as to give more

detailed analysis.

In this case, we mean that the kinase concentration is only related to the

argument z but not to ρ and θ. Then with the notation

u′′ =
d2u

dz2
,

the equation becomes

u′′ − cu = 0.

By the result [Equation 130, 17], the solution is

u = c1e
α0z + c2e

−α0z, α0 =
√
c. (8.8)

Then, the boundary conditions are rewritten as

Dνu−
α

u+ τ
u(1− u) = 0, z = h, Dνu = 0, z = −h.

And from the later one, i.e.,

u′(−h) = 0.
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DIFFUSION - CASE OF CENTER SYMMETRY

the following can be reached

α0c1e
−α0h − α0c2e

α0h = 0, i.e c1 = c2e
2α0h.

Plug the result into u, there holds

u = c2e
α0h[eα0(z+h) + e−α0(z+h)]

Then by use of the boundary condition

Dνu−
α

u+ τ
u(1− u) = 0, z = h.

there is

c2 =
(α− τα0)e2α0h + (α + τα0)e−2α0h

(e3α0h + e−α0h)[(α + α0)e2α0h + (α− α0)e−2α0h)]

Thus the solution is obtained

u(z) =
(α− τα0)e2α0h + (α + τα0)e−2α0h

[(α + α0)e2α0h + (α− α0)e−2α0h] cosh(2α0h)
cosh(α0(z + h))

From above expression, put

(α− τα0)e2α0h + (α + τα0)e−2α0h = 0

which gives

α

τ
=
α0(e2α0h − e−2α0h)

e2α0h + e−2α0h
=
α0(e4α0h − 1)

e4α0h + 1
.
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ACTIVITY MODEL WITH FINITE DIFFUSION - CASE OF AXIAL
SYMMETRY

And referring to (2.11) and (8.8) for the notations, we get the following equality

d1b2 =
a1a2P√

b1
d1

(1 +
2

−1 + e
4h

√
b1
d1

). (8.9)

Denote

bcrit2 =
a1a2P

d1

√
b1
d1

(1 +
2

−1 + e
4h

√
b1
d1

). (8.10)

Theorem 8.3. When other parameters are finite and strictly positive, there exists

a critical value bcrit2 for parameter b2 defined in (8.10). For model (2.10), when

b2 < bcrit2 , there exist the trivial solution which is unstable and a strictly positive

solution which is stable, and when b2 > bcrit2 , mathematically there exist the trivial

solution which is stable and a strictly negative solution ( no biological meaning )

which is unstable.

This is a special case of the result in next section 8.4.

8.3 Series Representation of the Solution on the

Kinase Activity Model with Finite Diffusion

- Case of Axial Symmetry

Since the boundary conditions in model (2.10) are independent of the argument θ

in cylindrical coordinates, then it is enough to consider only the axially symmetric

solution. That is, the solution of (2.10) is only the function of cylindrical coordinate

arguments ρ and z but not that of θ.
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ACTIVITY MODEL WITH FINITE DIFFUSION - CASE OF AXIAL
SYMMETRY

Consider the model (2.10) copied below



−∆u+ cu = 0, x ∈ Ω

Dνu−
αu(1− u)

τ + u
= 0, x ∈ Σtop,

Dνu = 0, x ∈ Γ.

(8.11)

Obviously, the trivial function u ≡ 0 is a solution.

If u 6= 0 almost everywhere, then by the definition of space W in (3.11), this

solution will lies in W . And by Theorem 3.9, it can be represented in series form

of Steklov eigenfunctions. That is, by (3.16) and (3.34), the solution of (8.11) has

the following expression

u(ρ, z) =
∞∑
n=1

CnJ0(xnρ) cosh[
√
x2
n + c(z + h)] (8.12)

where xn is the nth nonnegative root of J ′(x) = 0 ( Refer to (3.28) ) and if let

C∗n = J0(xn)2
√
x2
n + c sinh[2h

√
x2
n + c ], the coefficient Cn in (8.12) has the form

Cn = 2(C∗n)−1

∫ 1

0

αu(ρ, h)(1− u(ρ, h))

τ + u(ρ, h)
J0(xnρ)ρdρ (8.13)

which in fact can be approximately computed in classical form by employing the

nonlinear boundary conditions in (8.11).

Next step is to consider and determine the relation among coefficients in (8.12)

by use of relevant tricks and the boundary conditions in the second equation of

74



8.3 SERIES REPRESENTATION OF THE SOLUTION ON THE KINASE
ACTIVITY MODEL WITH FINITE DIFFUSION - CASE OF AXIAL
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(8.11).

The boundary equation in (8.11) can be rewritten as

τDνu− αu+ (Dνu)u+ αu2 = 0

and after rearrangement of the terms, it reads

(Dνu)u+ αu2 = αu− τDνu. (8.14)

Notice that

d

dx
cosh(x) = sinh(x);

d

dx
sinh(x) = cosh(x).

And plug (8.13) into (8.14), the following is obtained

(
∞∑
n=1

J0(xnρ)x̃nCn sinh(2x̃nh))(
∞∑
n=1

J0(xnρ)Cn cosh(2hx̃n))

+ α(
∞∑
n=1

CnJ0(xnρ) cosh(2x̃nh))2

=
∞∑
n=1

J0(xnρ)Cn[α cosh(2hx̃n)− τ x̃n sinh(2hx̃n)].

(8.15)

here conveniently x̃n =
√
x2
n + c for any n = 0, 1, 2, · · ·

Note the following properties of Bessel functions [Proposition 3.2.6, 15]

1∫
0

Jm(ρxn1)Jm(ρxn2)ρdρ = 0, for n1 6= n2,
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1∫
0

Jm(ρxn)2ρdρ =
1

2
Jm+1(xn)2, for β = 0

and

1∫
0

Jm(ρxn)2ρdρ =
[x2
n −m2 + cot2(β)]Jm(xn)2

2x2
n

, for 0 < β ≤ π

2

In our case, β = π/2, m = 0, thus the following holds

1∫
0

J0(ρxn1)J0(ρxn2)ρdρ = 0, for n1 6= n2, (8.16)

and
1∫

0

J0(ρxn)2ρdρ =
1

2
J0(xn)2. (8.17)

Multiplying the two sides of (8.15) by ρ respectively and then integrating about

argument ρ from 0 to 1, by use of (8.16) and (8.17), the following is obtained

∞∑
n=1

1

2
J0(xn)2[x̃n sinh(2hx̃n) cosh(2hx̃n) + α cosh2(2hx̃n)]C2

n

=
∞∑
n=1

(

1∫
0

J0(xnρ)ρdρ)[α cosh(2hx̃n)− τ x̃n sinh(2hx̃n)]Cn .

(8.18)

Then above equation (8.18) on infinite series just determines the values of

coefficients {Cn} of the solution (8.12).

It is almost impossible to get the accurate value of those coefficients.

However, in practice, the method of Galerkin approximation by Steklov expan-

sion can be used to get the approximate value, which needs to solve some system
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related to n-parameters C1, C2, · · · , Cn directly.

That is, the expression

uM(ρ, z) =
M∑
j=1

Cjsj(ρ, z) (8.19)

approximates and replaces the true solution u in the model. Then there holds



−∆uM + uM = 0, x ∈ Ω

DνuM −
αuM(1− uM)

τ + uM
= 0, x ∈ Σtop,

Dνu = 0, x ∈ Γ.

(8.20)

Multiplying two sides of the first equation by si in above system and then

integrating each terms on Ω, the following is obtained

∫
Ω

−
M∑
j=1

Cj∆sjsidx+

∫
Ω

M∑
j=1

Cjsjsidx = 0.

By Gaussian theorem, in further, there holds

∫
Ω

−DνuMsidx+

∫
Ω

M∑
j=1

Cj∇sj∇sidx+

∫
Ω

M∑
j=1

Cjsjsidx = 0.

Then thanks to the boundary condition and the c-norm orthogonality of {sj}∞j=1
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the equality becomes

Ciδi

∫
Σtop

ρsi(ρ, h)2dρdθ =

∫
Σtop

αuM(ρ, h)(1− uM(ρ, h))

τ + uM(ρ, h)
si(ρ, h)ρdρdθ

It is simplified again as

Ciδi

∫ 1

0

ρsi(ρ, h)2dρ =

∫ 1

0

αuM(ρ, h)(1− uM(ρ, h))

τ + uM(ρ, h)
si(ρ, h)ρdρ (8.21)

By the property (8.17) and results in (3.34) (3.35) (3.36)

sn = J0(ρxn) cosh((z + h)(x2
n + c)

1
2 ), δn = x̃n tanh(2hx̃n),

the previous equations (8.21) become

Ci =
2

J0(xi)2 cosh(2x̃ih)2δi

∫ 1

0

αuM(ρ, h)(1− uM(ρ, h))

τ + uM(ρ, h)
si(ρ, h)ρdρ (8.22)

with x̃i = (x2
i + c)

1
2 and {δi}i=1,2,··· ,M computed in (3.35). Above equations consist

of M equations with M unknown variables {Cj}Mj=1. To solve above equations fur-

ther, the numerical method can be used to compute the integral in the right-hand

side of (8.22) since the Bessel functions are developed in the software Mathematica.

Another way is to use the finite series form to replace the integrand approxi-

mately if the parameter τ−1 < 1, i.e., q/b < 1.

The first linear approximation to the integrand is αuM/τ . When q/b << 1 ,

this approximation will have certain accuracy. And the equations (8.22) will be-

come the linear algebra equations about M unknown parameters C1, C2, · · · , CM .
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The second approximation is replacing the integrand by

α

τ
uM −

α(1 + τ)

τ 2
u2
M ,

since

αu(1− u)

τ + u
=
α

τ
u− α(1 + τ)

τ 2
u2 +

∞∑
n=3

α(1 + τ)τ−n(−1)n−1un

In this case, there will appear the quadratic terms of Ci, i.e., C2
i .

8.4 Bifurcation on the Kinase Activity Model

with Finite Diffusion - Case of Axial Sym-

metry

As the results in previous sections show, there probably exists a positive nontrivial

solution represented in series for the equation with nonlinear boundary conditions.

In this section, the investigation is put on the critical value of the biology param-

eters in (2.10). It is enough to analyze the linearized steady state equation to give

the critical value bcrit2 of b2, which is pointed out by Kazmierczak & Lipniacki [4].

That is, the following linearized equation of (2.10) in general case ( axially sym-

metric case) is considered so as to obtain the critical values related to biological

parameters,
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−∆u+ cu = 0, (x, y, z) ∈ Ω

Dνu−
α

τ
u = 0, (x, y, z) ∈ Σtop,

Dνu = 0, (x, y, z) ∈ Γ,

(8.23)

where the parameters satisfy ( Refer to (2.11) )

α

τ
=
a1a2P

d1b2

, c =
b1

d1

(8.24)

Definition

The value bcrit2 is called the critical value of b2 when it is the smallest value for

which the steady-state solution of (8.23) is unstable.

If the relevant linear operator has all positive eigenvalues, then the solution

of (8.23) is stable, which tells that by considering the smallest eigenvalue of the

operator in (8.23) the critical value can be obtained.

Consider the eigenvalue problem under the classical sense



−∆u+ cu = δu, (x, y, z) ∈ Ω,

Dνu−
α

τ
u = 0, (x, y, z) ∈ Σtop,

Dνu = 0, (x, y, z) ∈ Γ.

(8.25)

80
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Figure 8.1: Diagram on Parameter b2

the following theorem in term of original biological parameters is obtained.

Theorem 8.4. There exists a critical bifurcation value bcrit2 defined in (8.26) for

parameter b2. When b > bcrit2 , then the zero solution to (2.10) is the asymptotically

stable state for the corresponding evolutionary equation (2.9). When 0 < b2 < bcrit2 ,

the zero solution of (2.10) has lost the stability and there exists at least one strictly

positive solution u+ which can have the series form as shown in (8.12).

bcrit2 =
a1a2P (1 + e

4h
√

b1
d1 )

d1

√
b1
d1

(−1 + e
4h

√
b1
d1 )

(8.26)

Proof. As usual, suppose there is the nonzero solution of separable variable as

u(ρ, z) = Φ(ρ)Z(z) . Plug into first equation and separate the variables, and use

the transformation of rectangular coordinate into cylindrical coordinate

x = ρ cos(θ), y = ρ sin(θ), z = z

81
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with the domain

0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, − h ≤ z ≤ h.

Then the first equation in (8.25) can be written as

Φ′′(ρ)Z(z) +
1

ρ
Φ′(ρ)Z(z) + Φ(ρ)Z ′′(z)− cΦ(ρ)Z(z)− δΦ(ρ)Z(z) = 0,

that is,

Φ′′(ρ)

Φ(ρ)
+

1

ρ

Φ′(ρ)

Φ(ρ)
+
Z ′′(z)

Z(z)
− c− δ = 0. (8.27)

By separating of variables, the following two equations are obtained

Z ′′(z)

Z(z)
= −v,

which is equivalent to

Z ′′(z) + vZ(z) = 0. (8.28)

and

Φ′′(ρ) +
1

ρ
Φ′(ρ) + (δ − v − c+

0

ρ2
)Φ(ρ) = 0. (8.29)

Comparing (8.29) with Eq.(3.2.1) of [14], the parameters corresponding to those

in [14] can be listed as

d = 2, λ = δ − c− v, m =
√
µ = 0, γ = m = 0.
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If λ = δ − c− v > 0, according to the result in [14], the solution is

R(ρ) = J0(
√
λρ) = a0(1 +

∞∑
n=1

(−1)n(
√
λρ)2n

22n(n!)2
)

Denote xn =
√
λ and by the second boundary condition Dνu = 0 when (x, y, z) ∈

Σ1, xn should be the nonnegative zeros of

cos(β)J0(xn) + sin(β)xnJ
′
0(xn) = 0, β =

π

2
. (8.30)

( Refer to Proposition 3.2.6 of [14] ). And {J0(xn)} forms a basis in the space

C(0, 1) composed of continuous or piecewise continuous functions defined in [0, 1].

For other boundary conditions, they are on Z(z) of (8.28). The equations

become 

Z ′′(z) + vZ(z) = 0,

Z ′(z) = 0, z = −h,

Z ′(z)− α

τ
Z(z) = 0, z = h

(8.31)

where v = δ − x2
n − c.

Then it can be separated into three cases. Case 1, if v = 0, easily known from

the boundary condition, it can not happen. Case 2, if v > 0, then it can be known

that δ > 0 always holds. In this case, it is impossible to say anything about the

critical value. Thus, it is only needed to consider the case of v < 0. In this case,

with boundary condition in the second equation of (8.31), the solution to the first
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equation of (8.31) has the form as

Z(z) = c2e
x̃nh(ex̃n(z+h) + e−x̃n(z+h)) = D cosh(x̃n(z + h)), (8.32)

where x̃n =
√
x2
n + c− δ.

Then now the boundary condition in the third equation is employed to deter-

mine the relation of parameters.

Plug (8.32) into the third equation of (8.31), the equation is obtained

(x̃n − η)e2hx̃n = (x̃n + η)e−2hx̃n (8.33)

or its another form

e4hx̃n = 1 +
2η

x̃n − η
(8.34)

where

c =
b1

d1

, η =
α

τ
=
a1a2P

d1b2

(8.35)

(Refer to (2.11) ) and x̃n =
√
x2
n + c− δ. In fact, the equation (8.34) should be

written as

e4h
√
x2n+c−δn = 1 +

2η√
x2
n + c− δn − η

(8.36)

to show the correspondence of δn to xn. More explicitly, (8.36 ) becomes

e
4h

√
x2n+

b1
d1
−δn = 1 +

2a1a2P

d1b2

√
x2
n + b1

d1
− δn − a1a2P

(8.37)

In the following deductions, only the least nonnegative value x1 and δmin = 0 play

the critical role.
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Note that from (8.34) and the Implicit Function Theorem it is known that there

is a unique strictly positive solution of x̃n which is a function of η. And by the

formula of differentiation in the implicit function, the following is obtained

if η = 0 then x̃n = 0, and
dx̃n
dη

= [e4hx̃n +
2η

(x̃n − η)2
]−1 2x̃n

(x̃n − η)2
> 0 as x̃n > 0,

which means that x̃n is a strictly increasing function of η. In the following, x̃n is

explicitly expressed as x̃n(η).

On the other hand, once x̃n is determined, the equality holds

δ = x2
n + 1− x̃2

n(η).

The focus is the smallest eigenvalue δ which of course corresponds to the least

strictly positive root denoted as x0 of J ′0(x) = 0 . That is,

δmin = x2
1 + c− x̃2

1(η). (8.38)

If δmin > 0, then the solution is stable. So the critical value happens at δmin = 0

and a critical value of η can be obtained and denoted as ηcrit.

Plug δmin = 0 and parameters in (8.35) into (8.34), by the known Implicit

Function Theorem, the following is reached

e4h
√
x21+c = 1 +

2aPq

b
√
d
√
x2

1 + c− aPq
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which gives the critical value of b2 as

bcrit2 =
a1a2P (1 + e4h

√
x21+c)

d1

√
x2

1 + c(−1 + e4h
√
x21+c)

=
a1a2P (1 + e4h

√
c)

d1

√
c(−1 + e4h

√
c)

(8.39)

which is just similar to the formula (8.10) since the least root of (8.30) is x1 = 0.

And it should be noted that δmin > 0 in (8.38) implies

x̃2
1(η) < x2

1 + 1

which further implies η < ηcrit since x̃1(η) is the increasing function of η and

b2 > bcrit2 by noting (8.35).

Thus the conclusions in the theorem are attained.

Remark 8.5. Furthermore, if denote ε = d−1
1 and consider δmin as the function

of ε by Implicit Function Theorem. From (8.37), one can obtain

(1) when ε→ 0, δmin → 0, this is, δmin(0) = 0

(2) when ε→ 0,

δmin(ε)

ε
→ b1 −

a1a2P

2b2h

which implies that

δ′min(ε)|ε=0 = b1 −
a1a2P

2b2h
.

(3) this fact shown by (1) and (2) tells that

b1 −
a1a2P

2b2h
= 0

is the critical equation under the condition that d1 is infinite.
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When

b1 −
a1a2P

2b2h
< 0, i.e b2 <

a1a2P

2b1h
,

δmin is a decreasing function of ε. That is, when 0 < d1 < ∞, δmin < 0 and the

trivial solution is unstable and there must exist a strictly positive solution. And

when

b1 −
a1a2P

2b2h
> 0, i.e b2 >

a1a2P

2b1h
,

δmin is an increasing of ε. That is, when 0 < d1 <∞, δmin > 0, the trivial solution

is stable.

In other words, when b2 < a1a2P/(2b1h) and d1 large enough, the equation (2.9)

has the trivial solution which is unstable and a strictly positive solution u+ which

is stable. When d1 →∞, the equation (2.9) degenerates to an ordinary differential

system and it also has the unstable trivial solution and a positive stable solution.

when b2 > a1a2P/(2b1h) and d1 large enough, the equation (2.9) has only one

sensible trivial solution which is stable and there is no strictly positive solution.

When d1 → ∞, the equation (2.9) degenerates to an ordinary differential system

and it also has only one sensible trivial solution which is stable.

Those results just conform to the conclusions in Theorem 8.1 and Remark 8.2.

Remark 8.6. Note that b2 is the receptor dephosphorylation coefficient which con-

trols the receptor inactivation and is referred to as phosphatase activity. Intuitively,

the higher is the phosphatase activity the lower is cell activity, and for sufficiently

high b2 ( and other parameters fixed ) cell may not be activated [3-4]. Our results

in Theorem 8.4 have just mathematically verified this intuition.

Remark 8.7. The equation (8.37) plays a crucial role in the bifurcation analysis
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near the trivial solution, from which one can employ the bifurcation about any one

of other parameters and even the combined bifurcation about two parameters. One

can give the bifurcation results when varying the parameter h ( which measures

the size of the cell ) based on the equation (8.37). In this respect, Auchmuty has

provided treatment in detail, please refer to his article [18].

Remark 8.8. In Theorem 8.1, Theorem 8.3 and Theorem 8.4, the explicit critical

values bcrit2 have been provided mathematically as a function of other parameters.

However in article [4], the authors have only provided the critical value in the

spherically symmetric solution of the kinase activity model with only single type of

boundary conditions.

Remark 8.9. The results above show that the bifurcation direction is similar to

those in [4] even though the shapes of the cells are different and the boundary

conditions are different. Thus our results together with the existing work in [3]

and [4] can give the partial support of the conjecture that for any shape of cells,

say even the cell in shape of an ellipse or a rugby ball, the kinase activity modes

should be similar. That is, they will have the same properties of the kinase diffusion

and share similar bifurcation diagram on the solution of the models.
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Chapter 9

Parameter Analysis and

Biological Implications

In this chapter, the parameter analysis is provided based on the results of Theorems

8.1, 8.3 and 8.4 in previous chapters.

Proposition 9.1. For the finite diffusion case, by (8.10) and (8.39), bcrit2 is a

decreasing function on the diffusion parameter d1 and bcrit2 →∞ when d1 → 0.

This means that as the diffusion becomes weaker, if the initial concentration

is strictly positive, then the active kinase has a higher probability to converge to

a strictly positive steady state on the whole cell ( i.e all the chemical reaction

will enter an equilibrium state for this kind of active kinases ) and has a lower

probability to go to the trivial steady state ( i.e., zero concentration ). This

observation also means that if one wants to weaken or stop some biochemical

reaction related to this active kinase, one just makes the diffusion stronger.
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Proposition 9.2. In the axially symmetric case, the critical value of b2 is a de-

creasing function of the cylinder height 2h.

Proof. It is easy to get

dbcrit2

dh
< 0.

In biology, this observation in our model implies that when the cell length is

short, the active kinase concentration can keep a higher probability to converge to

a strictly positive steady state.

Proposition 9.3. bcrit2 is the growing function of the polarity coefficient i if the

receptor has the distribution in the top plate as below

P = Pi(ρ) =

 (1 + i)(1− ρ)i, 0 ≤ ρ ≤ 1 if z = h

0, if − h ≤ z < h.

( This kind of distribution gives the total amount of receptors, which is fixed

and equals to π and more receptors lie in the center of the plate. )

Proof. From (8.30), it can be found that

bcrit2 =
a1a2Pi(ρ)(1 + e4h

√
c)

d1

√
c(−1 + e4h

√
c)

Take the maximum of Pi = 1 + i, we have

bcrit2 =
a1a2(i+ 1)(1 + e4h

√
c)

d1

√
c(−1 + e4h

√
c)

As i→∞, bcrit2 will increase to infinity.
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This implies that as the polarity increases there is more possibility of the active

kinase to diffuse, particularly in the neighbourhood of top plate center and it

attains a strictly steady state when it goes to the other endpoint or the cell center.
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Chapter 10

Discussions and Future Directions

In this thesis, the representation of the solution to the kinase activity model in

the cell of finite cylinder is considered . This kind of series representation can give

a thorough treatment of the properties on the concentration of the active kinase

with mixed boundary conditions. And also certain bifurcation analysis is provided

with the critical value. By knowing this value, the kinase concentration in the cell

can be controlled by adjusting the environment of the cell.

Because the models in this work are related to three dimensions, the qualitative

analysis to them has certain challenge. Currently, there is a little work to give the

direct bifurcation analysis in mathematics when the boundary conditions are mixed

and nonlinear. Most of them are applying the numerical methods to consider the

bifurcation. The work in this thesis just has given an attempt to present the

strict mathematical investigation of this kind of models. The results have shown

the similar bifurcation diagram but the solution has more complicated form than

those in the spherical cell.
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In the future, the strict bifurcation analysis is needed to consider when other

parameters vary. And also it will be very interesting to consider the model when

the cell has the shape of the ellipse and even the rugby ball.
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Appendix

APPENDIX A

Theorem A1 Assume that f(x) satisfies the Lipschitz condition, i.e

|f(x)− f(y)| ≤ L(B)|x− y|,∀x, y ∈ B,

where B is a bounded set . Then there exists a T = T (x0) such that the equation

dx

dt
= f(x), x(0) = x0

has a unique solution on [0, T ].

Theorem A2 Let f(x) be a continuous function. Then there exists a T > 0

such that the equation

dx

dt
= f(x), x(0) = x0

has at least one solution on [0, T ].

The proof of this lemma can be obtained if the solution is approximated by a

sequence of solutions of uniformly Lipschitzian equations, for which the Theorem

A1 guarantees a solution ( Refer to [13] ).

Theorem A3 (Alaoglu weak-∗ compactness). Let X be a Banach space and

let fn be a bounded sequence in X∗. Then fn has a weakly-∗ convergent subse-
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quence . Particularly, if X is a reflexive Banach space and xn is a bounded sequence

inX, then xn has a subsequence that convergent weakly inX (Refer to Yosida [14]).

Theorem A4 ([6, 14]) Let V be a Hilbert space and V ∗ its dual. If g ∈

Lp(0, T ;V ∗), (1 ≤ p <∞), then the following two statements are equivalent:

(i) g = 0 in Lp(0, T ;V ∗)

(ii) For ∀ v ∈ V , 〈g(t), v〉 = 0 for almost every t ∈ [0, T ].

Theorem A5 Suppose that u ∈ L2(0, T ;V ), and
du

dt
∈ L2(0, T ;V ∗), then u is

continuous (or except a set of zero measure) from [0, T] into L2(Ω), with

sup
t∈[0,T ]

|u(t)| ≤ C(||u||L2(0,T ;V ) + ||du
dt
||L2(0,T ;V ∗)),

and

d

dt
|u|2 = 2〈du

dt
, u〉

for almost every t ∈ [0, T ], that is,

|u(t)|2 = |u0|2 + 2

∫ t

0

〈du
dt

(s), u(s)〉ds.

About this theorem, please refer to Temam [6, 15].

Theorem A6 ( Riesz Representation Theorem) For any Hilbert space H, the

dual space H∗ ' H can be obtaind. Particularly, for every x ∈ H, lx(y) = (x, y)

is bounded and has norm ||lx||H∗ = ||x|| . Furthermore, for every bounded lin-
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ear functional l ∈ H∗, there exists a unique xl ∈ H such that for all y ∈ H

l(y) = (xl, y), and ||xl|| = ||l||H∗ . It follows that l 7→ xl is continuous. Please refer

to [16] or [17].

Proofs on the existence of the solution of (4.1) related to the steps

from (4.2) to (4.4)

UNIFORM BOUNDS ON {un}

Take the inner product of (4.4) with un to get

(
dun
dt

, un) + (Aun, un) = 〈Pnf, un〉.

Then note that (Aun, un) = a(un, un) = ||un||2c and

〈Pnf, un〉 = 〈Pnf/
√
c,
√
cun〉 ≤ ||Pnf/

√
c||∗||
√
cun||.

Those can give

1

2

d

dt
|un|2 + ||un||2c ≤ ||Pnf/

√
c||∗||
√
cun||

≤ 1

2
(||Pnf/

√
c||2∗ + ||/

√
cun||2) ≤ 1

2
(||Pnf/

√
c||2∗ + ||un||2c).

(A.1)

Thus (A.1) further implies that

d

dt
|un|2 + ||un||2c ≤ ||Pnf/

√
c||2∗ (A.2)
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Integrate (A.2), the following holds

|un(T )|2 +

∫ T

0

||un(t)||2cdt ≤ |un(0)|2 +

∫ T

0

||Pnf(t)/
√
c||2∗dt

By the assumptions, f/
√
c ∈ L2

loc(0,∞;V ∗)( i.e., f ∈ L2(0, T ;V ∗), ∀T < ∞)

( Refer to the Comments under condition (C2) ) and ( by Lemma B1 in Appendix

B )

|un(0)| = |Pnu0| ≤ u0, ||Pnf/
√
c||∗ ≤ ||f/

√
c||∗ . (A.3)

The inequality holds as

|un(T )|2 +

∫ T

0

||un(t)||2cdt ≤ |u(0)|2 +

∫ T

0

||f(t)/
√
c||2∗dt, (A.4)

a bound that is uniform in n.

Those two bounds contained in (A.4) tell that {un} is uniformly bounded re-

spectively in the two space

L∞(0, T ;L2(Ω)) and L∞(0, T ;V ), ∀T > 0

To show that u is continuous into L2(Ω), using Theorem A5, it is needed to

obtain a bound on
du

dt
in L2(0, T ;V ∗). Therefore the work with

dun
dt

is needed to

show that a uniform bound can be found for this sequence. In fact,

dun
dt

= −Aun + Pnf.

It is known that Pnf ∈ L2(0, T ;V ∗) and Aun ∈ L2(0, T ;V ∗) too, since un ∈
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L2(0, T ;V ) and A is a bounded linear map from V into V ∗. Thus, the following is

obtained

dun
dt

is uniformly bounded in L2(0, T ;V ∗)

EXTRACTION OF AN APPROPRIATE SUBSEQUENCE

In next steps, the Alaoglu compactness theorem and its corollary ( Theorem

A3 ) are used to extract a subsequence ( which will be relabeled un that converges

in various different sense ).

A). First, un is uniformly bounded in L2(0, T ;V ), so by extracting a sequence,

it can be ensured that

un ⇀ u in L2(0, T ;V ).

B). Also, a uniform bound on
dun
dt

in L2(0, T ;V ∗) is obtained, so by extracting

a second subsequence it can be guaranteed that

dun
dt

⇀∗ u̇ in L2(0, T ;V ∗)

It is written as u̇ because it is not immediately obvious that in fact u̇ =
du

dt
(

the weak time derivative ).

However, thanks to the definition of the weak-* convergence of
dun
dt

to u̇, the

following limit is obtained

∫ T

0

dun
dt

(t)ψ(t)dt→
∫ T

0

u̇(t)ψ(t)dt, ∀ψ ∈ L2(0, T ;V ).

Now, if ψ(t) ∈ C∞c (0, T ;V ) , then the left-hand side can be integrated by parts
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to get ∫ T

0

dun
dt

(t)ψ(t)dt = −
∫ T

0

un(t)
dψ

dt
(t)dt→ −

∫ T

0

u(t)
dψ

dt
(t)dt

by use of the weak convergence of un to u, since
dψ

dt
∈ C∞c (0, T ;V ) ⊂ L2(0, T ;V ).

Then the following holds

∫ T

0

u̇(t)ψ(t)dt = −
∫ T

0

u(t)
dψ

dt
(t)dt, ∀ψ ∈ C∞c (0, T ;V )

and so u̇ =
du

dt
as required. It is known that

dun
dt

(t) ⇀∗
du

dt
, in L2(0, T ;V ∗).

C). To draw the same convergence of Aun, A as a bounded linear operator from

V into V ∗ is employed, so the weak convergence of un to u in L2(0, T ;V ) implies

weak-* convergence of Aun to Au in L2(0, T ;V ∗):

∫ T

0

〈Aun, ψ〉dt =

∫ T

0

〈un, Aψ〉dt→
∫ T

0

〈u,Aψ〉dt =

∫ T

0

〈Au, ψ〉dt, ∀ψ ∈ L2(0, T ;V ).

D) Finally, to show that Pnf ⇀∗ f in L2(0, T ;V ∗), it would be noted that

functions of the form

ψ =
k∑
j=1

ψjθj, ψj ∈ V, θj ∈ L2(0, T ;R)
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are dense in L2(0, T ;V ). For such ψ

∫ T

0

〈Pnf(t), ψ(t)〉dt =

∫ T

0

〈f(t), Pnψ〉dt =

∫ T

0

k∑
j=1

〈f(t), Pnψj〉θj(t)dt .

Now because Pnψj → ψj in V for each j ( see Lemma B1 in Appendix ), the

last term in above equality converges to

∫ T

0

k∑
j=1

〈f(t), ψj〉θj(t)dt =

∫ T

0

k∑
j=1

〈f(t), ψ〉dt.

This gives weak-* convergence of Pnf to f in L2(0, T ;V ∗) , and so weak-* con-

vergence holds in L2(0, T ;V ∗) of all the terms in (4.5).

MORE PROPERTIES OF THE WEAK SOLUTION

It has been obtaind that

du

dt
+ Au = f (A.5)

as an equality in L2(0, T ;V ∗), and Theorem A4 shows that this is equivalent

to

〈du
dt
, v〉+ a(u, v) = 〈f, v〉, for every v ∈ V and almost every t ∈ [0, T ]

Since the limit value u has

u ∈ L2(0, T ;V ) and
du

dt
∈ L2(0, T ;V ∗).
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thanks to Theorem A5, u is actually continuous into L2(Ω) : u ∈ C([0, T ];L2(Ω)).

Now, it is still needed to show that u(0) = u0.

By choosing a function φ ∈ C1([0, T ];V ) with φ(T ) = 0 , in the limit equation

(A.5), and integrating from 0 to T and then the first integral by parts is done to

obtain ∫ T

0

−(u, φ′) + a(u, φ)ds =

∫ T

0

〈f, φ〉ds+ (u(0), φ(0)) (A.6)

Then it can be done the same in the Galerkin equation (4.4) to obtain

∫ T

0

−(un, φ
′) + a(un, φ)ds =

∫ T

0

〈Pnf, φ〉ds+ (un(0), φ(0)).

Then taking the limits in all the terms in above equation, the following equality

holds ∫ T

0

−(u, φ′) + a(u, φ)ds =

∫ T

0

〈f, φ〉ds+ (u0, φ(0)). (A.7)

since un(0) → u0. Noting that φ(0) is arbitrary and compare (A.6) and (A.7),

u(0) = u0 is obtained as required.

APPENDIX B

Lemma B1 If X = H1(Ω) = V,H1
R(Ω) L2(Ω), X = V ∗, or (H1

R(Ω))∗ , then

||Pnu||X ≤ ||u||X and Pnu→ u in X

Proof. It only needs to prove the case that X = V ∗ since other cases are easily
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drawn from the definition of the projection operator.

In V ∗, the norm bound is expressed as

||Pnf ||V ∗ = sup
||v||≤1

|〈Pnf, v〉| = sup
||v||≤1

|〈f, Pnv〉| ≤ sup
||ω||≤1

|〈f, ω〉 = ||f ||V ∗

Notice that each linear functional f ∈ V ∗ corresponds to an element ϕ ∈

V by use of the Riesz representation theorem (Theorem A6), so that 〈f, v〉 =

((ϕ, v)), ∀v ∈ V , here ((·)) is the inner product defined on V . Now,

〈Pnf, v〉 − 〈f, v〉 = 〈f, Pnv − v〉 = ((ϕ,Qnv)) = ((Qnϕ, v))

Thus,

|〈Pnf, v〉 − 〈f, v〉| ≤ ||Qnϕ||||v||.

Therefore,

sup
||v||=1

|〈Pnf − f, v〉| ≤ ||Qnϕ||

and so tends to zero as n→∞ since the left-hand side term does.

This lemma is used in (A.3) and other steps in Chapter 4.

APPENDIX C List of zeros for J ′0(x) = 0 from x7 to x80 in precision of 29
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digits :

22.7600843805927718980530051561, 25.9036720876183826254958554469

29.0468285349168550666478198838, 32.1896799109744036266229841045

35.3323075500838651026344790226, 38.4747662347716151120521975577

41.6170942128144508858635168051, 44.7593189976528217327793527132

47.9014608871854471212740087225, 51.0435351835715094687330346332

54.1855536410613205320999662145, 57.3275254379010107450905042438

60.4694578453474915593987498084, 63.6113566984812326310397624179

66.7532267340984934153052597500, 69.8950718374957739697305364355

73.0368952255738348265061175691, 76.1786995846414575728526146235

79.3204871754762993911844848725, 82.4622599143735564539866106488

85.6040194363502309659494254934, 88.7457671449263069037359164349

91.8875042516949852805536222145, 95.0292318080446952680509981872

98.1709507307907819735377591609, 101.312661823038730137141056389

104.454365791282760071363428140, 107.596063259509172182670364278

110.737754780899215108608652888, 113.879440847594998134884174928

117.021121898892425027576494601, 120.162798328149003758119407829

123.304470488635718016760032069, 126.446138698516595697794480496

129.587803245103996753741417841, 132.729464388509615886774597352

135.871122364789000591801568219, 139.012777388659704178433546136

142.154429655859029032700908100, 145.296079345195907232422150855

148.437726620342230395939277026, 151.579371631401427992783504222
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154.721014516285953524766555652, 157.862655401930297805094669609

161.004294405361993463893415409, 164.145931634649635402132526780

167.287567189744083803564847858, 170.429201163226632347745497420

173.570833640975928630367040863, 176.712464702763757455297737341

179.854094422788384845084902906, 182.995722870152966084084373095

186.137350109295508020239848095, 189.278976200376014093225800679

192.420601199625705421771131555, 195.562225159662582430782935604

198.703848129777052126118106579, 201.845470156190882304999817435

204.987091282292344144358734230, 208.128711548850059081487246522

211.270330994207766614462791410, 214.411949654461969828700270850

217.553567563624189401784790510, 220.695184753769359744812910283

223.836801255171728740291553510, 226.978417096429471788480187955

230.120032304579098647624769557, 233.261646905200615354346306241

236.403260922514301208673422951, 239.544874379469870581258857164

242.686487297828709585129820356, 245.828099698239807107552062085

248.969711600309937162352516633, 252.111323022668594001034945379
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