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Abstract

Extension theory in the study of C*-algebras has been important in many aspects.

For that reason, a theory of extensions of operator algebras, with as direct a link as

possible to the C*-algebras theory, will be developed. In large part the theory will

be developed via the natural C*-algebras generated by any operator algebra. The

underlying structure used will be a generalization of Busby’s theory of extensions

of C*-algebras and results concerning universal completions for particular diagrams

of Eilers, Loring, and Pedersen. Examples of our contributions as a result of this

approach are a definition of the amalgamated free product of operator algebras, as

well as a Tietze extension theorem for σ-unital operator algebras.
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Chapter 1

Introduction

1.1 Description of Results and Background

Extensions of C*-algebras have been widely studied and have proven to be a valu-

able tool in understanding C*-algebras. However, many of the properties that are

automatic for ∗-homomorphisms require additional hypotheses for general completely

contractive morphisms. In Chapter 2, Lemma 2.1.2 will give a sufficient condition for

the restriction of a complete quotient morphism to be a complete quotient morphism

is given. Lemma 2.1.2 will be used in relating completely contractive morphisms

to ∗-homomorphisms between C*-covers, which are automatically complete quotient

morphisms onto their ranges. Since every two-sided ideal is the kernel of a complete

quotient morphism, Lemma 2.1.2 has many consequences. Most importantly it will

be used to relate an ideal of an operator algebra to the corresponding C*-covers

formed in a containing C*-algebra.
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The four diagrams of [17] are shown below. Diagram I is also used in [10].

Diagram I Diagram II

0 // ◦ //___

²²
Â
Â
Â ◦ //___

²²
Â
Â
Â C1

ν

²²

// 0

0 // A
α // B

β
// C // 0

0 // A1

µ

²²

//___ ◦

²²
Â
Â
Â

//___ ◦

²²
Â
Â
Â

// 0

0 // A
α // B

β
// C // 0

Diagram III Diagram IV

0 // A
α //

µ

²²

B

²²
Â
Â
Â

β
// C //

²²
Â
Â
Â 0

0 // A1
//___ ◦ //___ ◦ // 0.

0 // A
α //

²²
Â
Â
Â B

²²
Â
Â
Â

β
// C //

ν
²²

0

0 // ◦ //___ ◦ //___ C1
// 0

In 1968 Busby published his work on extensions of C*-algebras [10]. In this

dissertation, results concerning non-selfadjoint operator algebras will be obtained

using classic Busby extension theory as it applies in the non-selfadjoint situation.

This generalization of Busby theory to general operator algebras will be developed

in Chapter 3. As with C*-algebras, Busby theory relates to what are called Diagram

I completions in [17]. An additional hypothesis will be that the first algebra of an

extension have a cai, or contractive approximate identity. Many of the necessary

applications of the multiplier algebras critical in C*-algebra extension theory require

that the related algebra have a cai. The results of Chapter 4 for sub-extensions

will be used to develop the theory of covering extensions in Chapter 5. A covering

extension will be defined to be a C*-algebra extension which contains an extension of

generating operator algebras as a sub-extension. Most of the results in Chapters 2-5

have appeared in a joint paper [6] with my advisor.
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In Chapter 6 the remaining diagrams of [17] are discussed and will be general-

ized to operator algebras with modest additional hypotheses. Primary among the

hypotheses is that the kernel of a complete quotient morphism has a cai which co-

incides with the same hypothesis in the extension theory of Chapter 2. The first

vertical ∗-homomorphisms of a completion of a diagram of [17] is often required to

be proper. This gives a natural requirement for a general operator algebra diagram

completion, that is the first algebras have a cai. It will be necessary to investigate

in detail one main tool used in [10] and [17]. That is the pullback algebra from [10].

Another tool is what will be termed covering extensions in Chapter 5.

Two of the primary results that are developed in the non-selfadjoint case are

Tietze extension results in Chapter 7. The C*-algebra Tietze Extension Theorem for

σ-unital C*-algebras was first proved in 1973 by Akemann, Pederson, and Tomiyama

[1] viewing C*-algebras as noncommutative topology. The first Tietze result in this

dissertation does not require a σ-unital hypothesis and so increases the class of ∗-
homomorphisms that extend surjectively to the multiplier algebras. The second

result gives a sufficient condition for the extension of a complete quotient morphism

between σ-unital operator algebras to extend surjectively to the multiplier algebras.

1.2 The Non-selfadjoint Setting

An operator algebra will mean a possibly non-selfadjoint closed subalgebra of the

bounded operators on a Hilbert space H. This category, with morphisms the com-

pletely bounded homomorphisms, will be designated by OA. A subcategory, AUOA

3



includes operator algebras that are approximately unital. A given operator algebra

A will be said to be approximately unital if it has a two-sided approximate identity.

This is a net designated (et)t with ‖et‖ ≤ 1 for all t, and given an a ∈ A, aet → a

and eta → a in the norm topology. Generally it will not be assumed that an operator

algebra is in the category AUOA unless specified.

A morphism π : A → B will mean a homomorphism between operator algebras

that is linear and respects the operations of addition and multiplication. A proper

morphism will be a morphism which takes a cai of A to a cai of B. It has been

shown that the appropriate morphisms for the category of operator algebras are the

completely bounded morphisms. As in [5, 1.2.1], a morphism π : X → Y is completely

bounded if for each nth amplification of π, ‖πn‖ ≤ r for some real number r. In this

case

‖π‖cb = sup{‖[π(xij)]‖n : ‖[xij]‖ ≤ 1, for all n ∈ N}.

A completely contractive morphism is one that is norm decreasing at all matrix levels.

Two types of completely bounded morphisms of particular interest are the complete

quotient morphisms and complete isometries. A complete quotient morphism is a

surjective completely contractive morphism which takes ball(A) onto ball(B) at all

matrix levels. Here ball(A) = {a ∈ A : ‖a‖ < 1}. The closed ball is denoted

Ball(A) = {a ∈ A : ‖a‖ ≤ 1}. A complete isometry is an isometric morphism

which is also an isometry at all matrix levels. See [5, 1.2.1]. Two objects, A and

B, in the category of operator algebras will be considered isomorphic if there exists
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a completely isometric isomorphism between A and B, and in this case we write

A ∼= B.

The multiplier algebra of an operator algebra A is well defined when A has a cai

[5, Theorem 2.6.2 and Section 2.6.7]. Additionally, there are important morphisms

between multiplier algebras that can be formed in certain cases. A completely con-

tractive morphism π : A → M(B), where A is approximately unital, will be called

multiplier-nondegenerate if for every element b ∈ B and any cai (et)t of A, bπ(et) → b

and π(et)b → b. Here A is approximately unital and, of course, M(B) is unital. An

important result [5, Theorem 2.6.12] says that if B is also approximately unital,

then π extends to a unital completely contractive morphism π̂ : M(A) → M(B).

Even in the case that A is not approximately unital, if A ⊂ B as a two-sided ideal,

then there is a canonical completely contractive morphism, which will be designated

σ : B →M(A), that takes an element b ∈ B to m ∈ M(A) where σ(b)a = ma and

aσ(b) = am. This is the unique such morphism which will be the identity morphism

on A.

A C*-cover of an operator algebra A consists of a pair (D, i) where D is a

C*-algebra and i : A → D is a completely isometric map with the property that

i(A) generates D as a C*-algebra. There are two C*-covers of particular interest.

The maximal C*-cover of A, denoted C*
max(A), has the universal property that any

completely contractive morphism π : A → B, where B is a C*-algebra, extends

to a morphism ϕ : C*
max(A) → B. The C∗-envelope of A, designated C*

e(A), can

be defined if A is unital as the C*-algebra generated by A in its injective envelope

5



(I(A), j). For unital operator algebras, the injective envelope is the smallest injec-

tive C*-algebra containing A completely isometrically isomorphically with j a unital

homomorphism [5, Corollary 4.2.8]. If A is not unital, but contains a cai, then any

injective envelope for A1 is also an injective envelope for A [5, Corollary 4.2.8]. In the

approximately unital case, the C∗-envelope is defined as the C*-algebra generated

by A in C*
e(A

1) where A1 is a unitization of A [5, §4.3.4]. The universal property of

C*
e(A) is that given any other C*-cover (D, j) of A, there exists a necessarily unique

surjective ∗-homomorphism π : D → C*
e(A) such that π ◦ j = i where i : A → C*

e(A).

The C*-covers will be important in Chapter 5.

We will discuss other operator algebraic constructions throughout the paper as

we need them.

6



Chapter 2

Approximately Unital Ideals and

C*-covers

In this chapter A,B, and C will represent operator algebras with A containing a

cai. Algebras represented by a scripted letter may represent C*-algebras, but will be

clearly defined as such in those cases. The morphism θ will always be a complete

quotient morphism, which of course is a homomorphism. All other morphisms are

completely contractive homomorphisms unless otherwise specified. The morphism σ

will always map into the multiplier algebra of an operator algebra which has a cai.

7



2.1 The Restriction of a Complete Quotient Mor-

phism

Among the most useful properties of C*-algebras is that ∗-homomorphisms are open

maps, or equivalently that they have closed range, and when factoring by the kernel

necessarily induce complete isometries. For the more general case of possibly non-

selfadjoint operator algebras neither property is necessarily true. To see this, the

following example is constructed using [5, Proposition 2.2.11].

Example. A completely contractive morphism in AUOA that is not a complete

quotient morphism.

If E is any Banach space, then an operator space structure can be imposed on

E by viewing E as a subspace of the commutative C*-algebra, call it C, of the

continuous functions on the ball of E∗. Taking C ⊂ B(H) for a Hilbert space H, E

can be viewed as an operator subalgebra of M2(B(H)) as follows:

U(E) =








λ1I x

0 λ2I


 : x ∈ E, λ1, λ2 ∈ C, I the identity operator on H





.

From the matrix multiplication it is clear that any two elements of E inside

U(E) have zero product under this embedding. If α : E → E1 is any contractive

linear map from E into another Banach space E1 with nonclosed range, then E1

can be given a similar structure, U(E1), as the subspace of a C*-algebra C1. From

[5, Proposition 2.2.11] it can be see that α can be made into a unital completely
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contractive operator algebra homomorphism with nonclosed range. This can then

be extended to a completely contractive homomorphism α′ : U(E) ⊕∞ C → U(E1)

as follows.

α′




λ1I x 0

0 λ2I 0

0 0 λ3




=




λ1I α(x)

0 λ2I


 .

Here α′ is unital with Ker(α′) also unital, but not having closed range.

The next lemma is well known, but the result is used several times in the paper

and so is given now with a proof.

Lemma 2.1.1. Let E and F be two operator algebras. Suppose that θ is a complete

quotient morphism from E onto F such that D = Ker(θ). Then Ker(θ∗∗) = D⊥⊥ ∼=
D∗∗.

Proof. Since θ is a complete quotient morphism, F can be taken to be E/D. The

second dual morphism θ∗∗ : E∗∗ → (E/D)∗∗ is the unique weak∗ continuous exten-

sion of θ and is also a complete quotient morphism [5, Section 1.4.3]. By Banach

space theory, (E/D)∗∗ ∼= E∗∗/D⊥⊥. With ran(θ∗∗) ∼= E∗∗/D⊥⊥, and unraveling these

identifications yields that Ker(θ∗∗) = D⊥⊥.

For this section it will be assumed the operator algebras are in the category of

general operator algebras not necessarily containing an approximate identity unless

9



otherwise stated. The following lemma gives a condition that will be sufficient for the

restriction of a complete quotient morphism to also be a complete quotient morphism.

Lemma 2.1.2. Let E and F be two operator algebras. Suppose that θ is a complete

quotient morphism from E onto F . Furthermore suppose that B is a closed subalgebra

of E and either (1) B contains a cai for the kernel of θ, or (2) the kernel of θ

contains a cai whose weak∗ limit is contained in B⊥⊥. Then θ(B) is closed and θ|B
is a complete quotient morphism onto its range. Indeed θ(Ball(B)) = Ball(θ(B))

and at all matrix levels. Additionally θ(B) ∼= B/Ker(θ|B) ∼= B/Ker(θ) ⊂ E/Ker(θ)

completely isometrically isomorphically.

Proof. Let Ker(θ) = D and A = Ker(θ|B), making each an ideal in E and B re-

spectively. First it will be shown that condition 1 is equivalent to condition 2. It is

obvious that if B contains a cai for D, then D contains a cai whose weak∗ limit is

contained in B⊥⊥. Now assume the weak∗ limit of a cai of D is contained in B⊥⊥, call

it p. Let θ∗∗ : E∗∗ → F∗∗ be the unique weak∗ continuous extension of θ. Let (et)t

be a cai for D. Since D = Ker(θ), θ(et) = 0 for all t. This implies that θ∗∗(p) = 0.

Using the definition from [4], that is p is open in E if p ∈ (pE∗∗p ∩ E)⊥⊥, it will be

shown that p is open in E∗∗. Since p is the weak∗ limit of a net in D, p ∈ D⊥⊥. This

gives

D = Ker(θ) = pE∗∗p ∩ E , p ∈ (pE∗∗p ∩ E)⊥⊥

and p is open in E∗∗. Also with A ⊂ D, for all a ∈ A, aet → a and eta → a so

that A ⊆ (pB⊥⊥p ∩ B) ⊆ Ker(θ|B) = A. If E is contained in a unital C*-algebra,

10



call it C, with unit 1. That p is open with respect to C can be see by a similar

argument to the one above. By [4, Theorem 2.3], with B a closed subalgebra of C,

p is open with respect to B. The orthogonal projection to p, namely 1− p, is closed

so that by [22, Theorem 4.2] A = pB⊥⊥p ∩ B has a cai. Call this cai (fs)s. Let

I = {x ∈ E : fsx → x and xfs → x}, which is a hereditary subalgebra of E by [4,

Corollary 2.2]. As a hereditary subalgebra, by [4, Proposition 5.2] I is an inner ideal.

Since fs → p in the weak∗ topology in E∗∗, and since D = pE∗∗p∩ E , I ⊂ D. For the

other inclusion, since fs → p, for all d ∈ D, fsd → d weak∗. With I an ideal, for all

s, fsd ∈ I implying d ∈ I⊥⊥. With D ⊂ I⊥⊥ and in E , D ⊂ I⊥⊥ ∩ E = I and D = I

giving (fs)s is a cai for both A and D.

From the above, A and D share a common cai and are ideals in B and E re-

spectively. With p the weak∗ limit of this common cai in the second dual, clearly

p ∈ B⊥⊥ ∼= B∗∗ as well as p ∈ E∗∗. As an open projection, p is the (central)

support projection of both A and D in B⊥⊥ and E∗∗ respectively. Suppose E is

contained in a unital operator algebra with unit 1, then E∗∗(1− p) ⊂ E∗∗ as well as

B⊥⊥(1 − p) ⊂ B⊥⊥. Indeed the map q : E∗∗ → E∗∗(1 − p) defined by η → η(1 − p)

is a completely contractive projection on E∗∗ and as well as when the above map is

restricted to B⊥⊥. This projection is also a weak∗ continuous homomorphism and

its kernel is D⊥⊥ since E∗∗ ∼= D⊥⊥ ⊕ E∗∗(1 − p). It can be deduced further from

Lemma 2.1.1 that

D∗∗ ∼= D⊥⊥ = E∗∗p, F∗∗ ∼= E∗∗/D⊥⊥ ∼= E∗∗(1− p),

11



with

E∗∗ = E∗∗p⊕∞ E∗∗(1− p) ∼= D∗∗ ⊕∞ F∗∗ = Ker(θ∗∗)⊕∞ θ∗∗(E∗∗).

Similarly,

A∗∗ ∼= A⊥⊥ = B∗∗(1− p), (B/A)∗∗ ∼= B⊥⊥/B⊥⊥p ∼= B⊥⊥(1− p).

Noting that B/D ⊂ E/D, the composition of the completely contractive morphism

taking B/A → B/D with the canonical complete isometry taking E/D → E∗∗(1− p)

agrees with the canonical complete isometries taking B/A → B⊥⊥(1− p) ⊂ E∗∗(1−
p). This implies that B/A ∼= B/D and further that B/D is closed. Let θ̃ be

the induced complete isometry from E/D → F . Forming the composition taking

B/A → B/D → F with the last arrow representing θ̃ restricted to B/D, it is easy to

see this composition takes A/B onto X = θ(B) and is a complete isometry. Hence X

is a closed subalgebra of F . It follows that this composition can be considered to be

θ̃|B , a complete isometry induced by θ|B making θ|B a complete quotient morphism.

That θ(Ball(B)) = Ball(θ(B)) follows from both A and D being proximinal ([5]

and [21]) as M -ideals in B and E respectively. As a complete quotient morphism it

is the case that θ(ball(B)) = ball(θ(B)). For the closed ball, let z ∈ Ball(θ(B)) such

that ‖z‖ = 1. With A proximinal in B, there exists b ∈ B with ‖b‖ = 1 and θ(b) = z

indicating that each such z ∈ Ball(θ(B)) has in its inverse image under θ an element

in B of norm one, giving θ(Ball(B)) = Ball(θ(B)).

12



The next two corollaries will have implications for extensions of operator algebras,

in particular the second one dealing with corona algebras.

Corollary 2.1.3. Let E be an operator algebra with D, B, and A closed subalgebras

such that D is an ideal of E and A is an ideal in B. If D and A share a common

cai, then B/A ⊂ E/D completely isometrically isomorphically.

Proof. Let θ be the canonical quotient morphism taking E → E/D. With D and A

sharing a common cai, the first of the two equivalent conditions of Lemma 2.1.2 is

satisfied giving that the restriction of θ to B is a complete quotient morphism. The

rest follows as in the proof of Lemma 2.1.2.

Corollary 2.1.4. If A is a closed subalgebra of an operator algebra B and suppose

that they share a common cai, then Q(A) ⊂ Q(B) completely isometrically isomor-

phically.

Proof. Let ι be the inclusion map of A into B which extends to a unital completely

isometric isomorphism ι̂ : M(A) → M(B) as in the introduction. This then in-

duces a map ι̃ : Q(A) → Q(B) which have A and B respectively as kernels. By

Corollary 2.1.3 M(A)/A ⊂ M(B)/B, or Q(A) ⊂ Q(B) completely isometrically

isomorphically.

2.2 Approximately Unital Ideals and C*-covers

Studying ideals of an operator algebra is integral to the theory of extensions. The

results from the C*-algebra theory are well known and as a way to connect the general

13



case to the C*-algebra case, it will be helpful to compare ideals of operator algebras

with ideals in the C*-algebras they generate. This will be accomplished in the next

several results.

Lemma 2.2.1. Suppose that A and B are closed subalgebras of a C*-algebra E with

A approximately unital and an ideal in B. Then the C*-algebra generated by A is an

ideal in the C*-algebra generated by B.

Proof. Designate the C*-algebra generated by A as A and the C*-algebra generated

by B as B. It is enough by linearity of multiplication to show that for all a ∈ A and

b ∈ B, all mixed products of the form a∗b∗, ab∗, b∗a, and ba∗ are contained in A. By

hypothesis A contains a cai, call it et. By [5, Lemma 2.1.6] a∗et → a∗ and eta
∗ → a∗

giving that a∗b = limt a
∗etb ∈ A∗A. Similarly for the other mixed terms.

Lemma 2.2.2. If A is a closed approximately unital subalgebra of an operator algebra

B such that A is an ideal in B, then C*
e(A) is an ideal in C*

e(B), in the sense that

the C*-algebra generated by A in C*
e(B) is a C*-envelope of A.

Proof. It can be assumed that B is unital since, if not, C*
e(B) ⊂ C*

e(B
1) is the

C*-algebra generated by B in C*
e(B

1) by [5, Section 4.3]. Suppose first that B

contains a central projection p such that A = Bp. As a central projection pp = p

so p ∈ A and A is unital. It will be the case that B splits as A ⊕∞ B(1 − p)

where 1 is the unit of B. This gives that the C*-algebra generated by A in C*
e(B)

is C*
e(B)p. Let (I(B), j) be an injective envelope of B which is a unital C*-algebra

by [5, Corollary 4.2.8]. By [5, Theorem 4.6.3], I(B) contains an injective envelope

of A which again is a unital C*-algebra. Let e and e′ be the units of I(B) and I(A)

14



respectively. Evidently I(B) = I(A) ⊕∞ I(B)(e − e′). With A contained in I(A),

then A = I(A) ∩ B = Be ∩ B = Bp. This then means C*
e(B)p is the C*-algebra

generated by A in I(A) and so is C*
e(A). By Lemma 2.2.1, C*

e(A) is an ideal in

C*
e(B).

More generally it will be necessary to go to the second dual algebras. Given a

C*-envelope of B∗∗, the C*-algebra generated by B inside C*
e(B

∗∗) is a C*-envelope of

B by [4, Lemma 5.3]. Let p be the support projection of A inside B∗∗. With A⊥⊥ a

direct summand of B∗∗ and thus an ideal, by the first paragraph the C*-algebra gen-

erated by A⊥⊥ is a C*-envelope of A⊥⊥. Again, using [4, Lemma 5.3], the C*-algebra

generated by A in C*
e(A

⊥⊥) ∼= C*
e(A

∗∗) is a C*-envelope of A. That C*
e(A) is contained

in C*
e(B) is clear since the C*-algebra generated by A is contained in the C*-algebra

generated by B. Apply Lemma 2.2.1 to see that C*
e(A) is an ideal in C*

e(B).

Remark. Although it will not be used, there is an interesting fact that follows

from the last result. If A and B are as in the above result with A and B both

approximately unital, then the injective envelope of A, I(A) (whose theory may be

found in e.g. [10, 24]), may be viewed as a subalgebra of I(B). In fact there is a

projection designated above by e ∈ I(B) with I(A) = eI(B)e. This projection is the

unit of I(A). To see this, apply the last result with [20, Theorem 6.5] and the fact

I(·) = I(C∗
e (·)).

When A is an ideal in B there is a canonical completely contractive morphism

σ : B → M(A) which takes b ∈ B to m ∈ M(A) such that σ(b)a = a′ = ma and

aσ(b) = a′′ = am. It is clear that σ is the identity on A if A is approximately unital.

If σ is a complete isometry, the ideal will be said to be completely essential. As in the
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C*-algebra theory this property can be characterized in terms of the Busby invariant,

which will be discussed later. The next lemma gives equivalent characterizations

indicating when an ideal is completely essential.

Proposition 2.2.3. Let A be an approximately unital closed two sided ideal in an

operator algebra B. The following are equivalent:

(i) A is a completely essential ideal in B.

(ii) Any complete contraction with domain B is completely isometric if and only if

its restriction to A is completely isometric.

(iii) There is a C*-cover E of B such that the C*-subalgebra J of E generated by A

is an essential ideal in E.

(iv) Same as (iii), but with E = C*
e(B).

(v) If j : B → I(B) is the canonical map into the injective envelope of B, then

(I(B), j|A) is an injective envelope of A.

If B is nonunital, these are equivalent to

(vi) A is a completely essential ideal in the unitization B1.

Proof. First it will be shown that (i) is equivalent to (vi). That (vi)⇒ (i) is trivial and

(i) ⇒ (vi) follows from Meyer’s unitization [5, Theorem 2.1.15], i.e. since σ : B →
M(A) is a complete isometry it extends to a completely isometric unital morphism

from B1 into M(A).

16



For the last few implications below it will be helpful to assume that B is approx-

imately unital. For this, note that if B is not unital then one may appeal to (vi) and

use the fact C∗
e (B) is the C*-algebra generated by B in C∗

e (B1) (see [5, 4.3.4]).

(ii) ⇒ (i) Since the restriction of canonical morphism σ to A is the identity on A

as noted above, by assuming (ii), σ is a complete isometry on B.

(iii) ⇒ (i) The hypothesis that J is a completely essential ideal in E means the

canonical ∗-homomorphism taking E →M(J) is one-to-one and a complete isometry.

If ρ is the restriction to B, ρ is a complete isometry. This implies σ is a complete

isometry as seen by letting (et) be a common cai for A and J and following the proof

in [5, 2.23]

‖[bij]‖ = ‖[ρ(bij)]‖ = sup
t
‖[bijet]‖ = ‖[σ(bij)]‖, [bij] ∈ Mn(B).

(i) ⇒ (iv) It is supposed that σ : B → M(A) is a complete isometry. View

C*
e(A) ⊂ C*

e(B) as in Lemma 2.2.2 and consider the canonical ∗-homomorphism

σ′ : C*
e(B) → M(C*

e(A)). Since C*
e(A) and A share a common cai, the setting is

similar to the last displayed equation and the restriction ρ of σ′ to B is a complete

isometry. This indicates that M(C*
e(A)) contains a C*-cover of B. By the essential

property of C*
e(B) (see e.g. 4.3.6 in [5]), σ′ is a complete isometry.

(iv) ⇒ (v) Follows from the C∗-algebraic case from [23] together with the fact

that the injective envelope of an operator algebra is the same as the injective envelope

of its C*-envelope.

(v) ⇒ (ii) Suppose that θ is a completely contractive homomorphism from B into
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B(H) such that the restriction to A is a complete isometry. Extend θ to a complete

contraction θ̂ : I(B) = I(A) → B(H) by the injectivity of B(H). By the essential

property of I(A) (see e. g. [5, Section 4.2]), θ̂ is a complete isometry indicating

θ = θ̂|B is a complete isometry.

Lemma 2.2.4. Let A be an approximately unital ideal in an operator algebra B,

and if D is the C*-algebra generated by A inside of C*
max(B), then D is a maximal

C*-cover of A. Additionally the quotient algebra C*
max(B)/D is a maximal C*-cover

for B/A.

Proof. Let D be the C*-algebra generated by A inside C*
max(B). It will be shown that

D has the necessary universal property. Let θ : A → B(H), for some Hilbert space H,

be a completely contractive nondegenerate homomorphism. By [5, Theorem 2.6.2]

there is a completely isometrically isomorphic copy of M(θ(A)) inside B(H). With θ

completely isometric and taking a cai of A to a cai of θ(A), there is a unique extension

of θ by [5, Proposition 2.6.12] θ̂ : M(A) →M(θ(A)). Also with A an ideal in B, there

is a canonical morphism σ : B →M(A). Form the composition θ̂ ◦ σ : B → B(H),

which extends to a ∗-homomorphism C*
max(B) → B(H). Restricting this to D gives

a ∗-homomorphism extending θ.

Turning to the second assertion, first note by the above paragraph C*
max(B)/D ∼=

C*
max(B)/ C*

max(A). Now appealing to Corollary 2.1.4, there exists a subalgebra C of

C*
max(B)/D with B/A ∼= C completely isometrically isomorphically and so B/A will

be identified with C. It is easy to see that B/A generates C*
max(B)/ C*

max(A) and

so is a C*-cover. Let ϕ : C*
max(B) → C*

max(B)/ C*
max(A) be the canonical surjective

18



∗-homomorphism due to C*
max(A) being an ideal in C*

max(B). Since ϕ is surjective,

if η ∈ C*
max(B)/ C*

max(A), then there is a pre-image under ϕ for η, call it ζ. With

C*
max(B) a C*-cover of B, ζ can be approximated by a finite sum of finite products

in B and B∗ = {b∗ : b ∈ B}, the adjoint algebra of B. Let ε > 0 and ξ a finite sum

of finite products of elements from B and B∗ such that ‖ζ − ξ‖ < ε. Then

‖ϕ(ζ − ξ)‖ = ‖ϕ(ζ)− ϕ(ξ)‖ = ‖η − ϕ(ξ)‖ < ε.

With ϕ a ∗-homomorphism, ϕ(ξ) is a finite sum of finite products in ϕ(B) and ϕ(B∗).

This makes C*
max(B)/ C*

max(A) a C*-cover for B/ C*
max(A). Since B/ C*

max(A) ∼= B/A,

C*
max(B)/ C*

max(A) is a C*-cover for B/A.

It will be shown that C*
max(B)/ C*

max(A) has the universal property of C*
max(B/A).

Let ω : B/A → E be a completely contractive morphism. Note that if θ is the

canonical complete quotient morphism taking B to B/A, then ω ◦ θ : B → E .

By the universal property of C*
max(B), ω ◦ θ extends to a ∗-homomorphism ω̃ ◦ θ

with domain C*
max(B). By construction it is clear that C*

max(A) is a subset of

the kernel of this extension implying a ∗-homomorphism γ can be uniquely con-

structed from C*
max(B)/ C*

max(A) → E by the Factor Theorem. Let q : C*
max(B) →

C*
max(B)/ C*

max(A) be the canonical morphism and by the Factor Theorem, γ ◦ q =

ω̃ ◦ θ. Let η̄ ∈ C*
max(B)/ C*

max(A) and by definition γ(η̄) = ω̃ ◦ θ(η) which agrees

with ω on B/A.

19



2.3 Tensor Products and C*-covers

The following results use the language of operator algebra tensor products. (See [5,

§6.1])

Lemma 2.3.1. If B is any C*-algebra, and if A is any approximately unital operator

algebra, then C*
max(B ⊗max A) = B ⊗max C*

max(A). If B is in addition a nuclear

C*-algebra, then C*
max(B ⊗min A) = B ⊗min C*

max(A).

Proof. By [5, 6.1.9] it is the case that B ⊗max A ⊂ B ⊗max C*
max(A) completely

isometrically isomorphically. Clearly B ⊗ A generates the latter C*-algebra. It will

be shown that B ⊗max A ⊂ B ⊗max C*
max(A) has the necessary universal property.

Let θ : B ⊗max A → B(H) be a completely contractive homomorphism. By [5,

Corollary 6.1.7] there are two completely contractive homomorphisms π : B → B(H)

and ρ : A → B(H) with commuting ranges such that θ(b⊗ a) = π(b)ρ(a). Now π is

forced to be a ∗-homomorphism by [5, 1.2.4] and π(B) commutes with the extension

ρ̃ to C*
max(A). To see this, first note that π(B) has commuting range with the adjoint

morphism on the adjoint algebra of A, namely ρ∗ : A∗ → B(H). For all b ∈ B and

a ∈ A:

π(b)ρ∗(a∗) = ((π(b)ρ∗(a∗))∗)∗ = (ρ(a)π(b∗))∗ = (π(b∗)ρ(a))∗ = ρ∗(a∗)π(b).

The second to last equality is due to the commuting ranges of π and ρ. This leads to

π(B) having commuting range with a dense subset of ρ̃(C*
max(A)) and by continuity

20



of multiplication by a single element of π(B), extends to ρ̃(C*
max(A)). This then gives

a ∗-homomorphism θ̃ : B ⊗max C*
max(A) → B(H) with

θ̃(b⊗ a) = π(b)ρ̃(a) = π(b)ρ(a) = θ(b⊗ a), a ∈ A, b ∈ B,

proving the first assertion.

Now suppose B is nuclear. By [5, 6.1.15], B ⊗max A = B ⊗min A. By above

C*
max(B⊗min A) = B⊗max C*

max(A) = B⊗min C*
max(A) by definition of nuclearity.

Lemma 2.3.2. If A,B are approximately unital operator algebras then B ⊗min A is

a completely essential ideal in B1⊗min A1. Here A1 is the unitization, set equal to A

if A is already unital and similarly for B1.

Proof. Let σ : B1 ⊗min A1 → M(B ⊗min A) be the canonical morphism which is a

complete contraction on B1 ⊗min A1 and a complete isometry on B ⊗min A. Assume

A and B are nondegenerately represented on Hilbert spaces K and H respectively.

Then B1 ⊗min A1 can be regarded as a unital subalgebra of B(H ⊗2 K). Let u ∈
B1 ⊗min A1, η ∈ Ball(H ⊗2 K), and {fs}S, {et}T be approximate identities for B

and A respectively, the following relationships exist:

‖σ(u)‖ ≥ ‖σ(u)σ(fs ⊗ et)‖ = ‖(σ(u(fs ⊗ et))‖ = ‖u(fs ⊗ et)‖ ≥ ‖u(fs ⊗ es)η‖.

Taking the limit of the contractive approximate identity for B ⊗min A it follows

that for all η ∈ Ball(H ⊗K) that ‖σ(u)‖ ≥ ‖uη‖, so that ‖σ(u)‖ ≥ ‖u‖ and σ is an
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isometry. The calculation follows at all matrix levels making σ a complete isometry

as seen below:

‖[σ(uij)]‖ ≥ ‖[uij(fs ⊗ et)]‖ ≥ ‖[uij(fs ⊗ et)]ηn‖,

[uij] ∈ Mn(B1 ⊗min A1), ηn ∈ Ball((H ⊗2 K)n).

Again taking the limit of the contractive approximate identity it follows that for all

ηn ∈ Ball((H ⊗2 K)n) that ‖[σ(uij)]ηn‖ ≥ ‖[uij]ηn‖. As in the above calculation

‖[σ(uij)]‖ ≥ ‖[uij]‖ and σ is a complete isometry.

Theorem 2.3.3. If A and B are two unital operator spaces, or two approximately

unital operator algebras, then C*
e(B ⊗min A) = C*

e(B)⊗min C*
e(A).

Proof. First assume that A and B are unital. The result is proved in [20, Theo-

rem 6.8] for operator systems. With A and B unital it can be assumed that A and

B are operator spaces by replacing A with A + A∗, and similarly for B. The result

follows since the C∗-envelope is the same for A and A + A∗. A more modern proof

is given in [6, Theorem 2.10].

Next, suppose that A and B have cais. Let J be a boundary ideal (see [5, p.99])

for B⊗A in C*
e(B)⊗minC*

e(A). Again appealing to [5, p.99], (C*
e(B)⊗minC*

e(A))/J ∼=
C*

e(B⊗minA) so that (B⊗minA)/J ∼= B⊗minA. By Lemma 2.3.2, C*
e(B)⊗minC*

e(A) is

a completely essential ideal in C*
e(B)1⊗min C*

e(A)1 and so let ι : C*
e(B)⊗min C*

e(A) →
C*

e(B)1⊗min C*
e(A)1 be the inclusion morphism. This indicates that J is also an ideal

in C*
e(B)1⊗min C*

e(A)1. By Lemma 2.3.2, (B⊗min A) is a completely essential ideal in
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B1⊗min A1. Let q : C*
e(B

1)⊗min C*
e(A)1 → (C*

e(B)1⊗min C*
e(A)1)/J be the canonical

morphism. This is a complete isometry on B ⊗min A so that by Proposition 2.2.3

(B1 ⊗min A1)/J ∼= B1 ⊗min A1. It is easy to see that for any approximately unital

operator algebra C, C*
e(C)1 ∼= C*

e(C
1) since C*

e(C) is the C*-algebra generated by C

in C*
e(C

1). With B1 ⊗min A1 a unitization of B ⊗min A, by the previous paragraph

C*
e(B)1⊗min C*

e(A)1 ∼= C*
e(B

1⊗min A1). With (C*
e(B)1⊗min C*

e(A)1)/J a C*-cover for

B1 ⊗min A1, there is a canonical surjective morphism π : (C*
e(B)1 ⊗min C*

e(A)1)/J →
C*

e(B)1 ⊗min C*
e(A)1, indicating J = 0.

In the above proof it was shown that C*
e(A)1 = C*

e(A
1). The next result shows it

is also the case for C*
max(A).

Lemma 2.3.4. Let A be an operator algebra. Then C*
max(A

1) ∼= C*
max(A)1 for any

unitization of A.

Proof. Let A1 be a unitization of A. If 1 is the unit adjoined to A, then 1 can be taken

to be the identity element of B(H) for some Hilbert space H and is independent of

H. The unitization is A1 = span{A, IH}. Similarly, if C*
max(A)1 is a unitization of

C*
max(A), then the unit is the identity of B(K) for some Hilbert space K. By [5,

2.1.16], a unitization of A can be taken to be A1 = span{A, IK}. Since the two

unitizations are completely isometrically isomorphic, C*
max(A)1 ∼= C*

max(A
1).

A review of cones and suspensions for an approximately unital operator algebra

will be given. Let C(A) denote the cone and S(A) denote the suspension of A, defined

as follows:
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C(A) = C0((0, 1], A) ∼= C0((0, 1])⊗min A, where

C0((0, 1], A) = {f : [0, 1] → A : f is continuous and f(0) = 0}.

C(A)1 = {f : [0, 1] → A, f is continuous and f(0) ∈ C 1A if A is unital}.

S(A) = C0((0, 1), A) ∼= C0((0, 1))⊗min A, where

C0((0, 1), A) = {f : [0, 1] → A : f(0) = f(1) = 0}.

S(A)1 = {f : [0, 1] → A1, f is continuous and f(0) = f(1) ∈ C 1A, f(t) ∈ A + λ1A}.

Corollary 2.3.5. The cone and suspension operations both commute with C*
e and

C*
max for approximately unital operator algebras.

Proof. First, the above result will be proved for C(C*
e(C)) for an approximately

unital algebra C. By the identification of C(A) ∼= C0((0, 1]) ⊗min A, C(C*
e(C)) ∼=

C0((0, 1])⊗min C*
e(C). Applying Theorem 2.3.3, then

C0((0, 1])⊗min C*
e(C) ∼= C*

e(C0((0, 1])⊗min C) ∼= C*
e(C(C)).

A similar calculation shows that S(C*
e(C)) ∼= C*

e(S(C)).

To prove the results for both C(C*
max(C)) ∼= C*

max(C(C)) and S(C*
max(C)) ∼=

C*
max(S(C)), begin by perform calculations similar to those above. Then, combine

the calculations with the fact that both C((0, 1]) and C0((0, 1)) are nuclear and use

Lemma 2.3.1.
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With the understanding that C*
e(A)1 ∼= C*

e(A
1) and C*

max(A
1) ∼= C*

max(A)1, the

unitization of the cone and suspension commutes with C*
e and C*

max.
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Chapter 3

Theory of Extensions of Operator

Algebras

In this chapter there are several important algebras and morphism designations that

carry through the chapter. The homomorphism α : A → B will be a completely iso-

metric morphism that is the embedding of an approximately unital operator algebra

A as an ideal in B. The homomorphism β : B → C will be a complete quotient mor-

phism. As in the previous chapter, σ will be a completely contractive homomorphism

which takes an operator algebra, usually B, into the multiplier algebra of an approx-

imately unital operator algebra, usually A. It will usually be the case in this chapter

that σ will extend to a completely contractive homomorphism σ̂ : M(B) →M(A).

As a convention, anytime a completely contractive morphism extends to the multi-

plier of the domain, the hat notation will be used. For instance, often the completely

contractive morphism µ : A1 → A will extend to µ̂ : M(A) → M(A1). The Greek
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letter τ will be reserved for a specific completely contractive homomorphism from

an operator algebra into the corona algebra of an approximately unital operator al-

gebra which will be shown to have properties similar to the Busby invariant from

C*-algebra theory. The completely contractive morphism π : M(A) → Q(A) will be

the canonical one taking the multiplier algebra of an approximately unital multiplier

algebra onto its corona algebra.

3.1 The Pullback Construction

In developing the theory of extensions for C*-algebras, the pullback construction has

been crucial. Given three objects in a category, and morphisms α : A → C and

β : B → C, which are called the linking morphisms, the pullback of A and B along

α and β, denoted A ⊕C B is the sub-object of the direct sum A ⊕∞ B defined as

the ordered pairs (a, b) such that α(a) = β(b). This will be denoted PB. There are

canonical morphisms, γ : PB → A and δ : PB → B, which are the projections of

each coordinate into the associated object.

Given another object in the category with morphisms µ and ν from D into A

and B respectively, these morphisms will be called coherent if when composed with

α and β they agree in C, or more precisely, α ◦ µ = β ◦ ν. The pullback has the

universal property that given such an object D and coherent morphisms µ and ν,

there exists a unique morphism from D into the pullback satisfying the following

universal commutative diagram.
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A
α

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

C A⊕C B

γ

ddHHHHHHHHH

δ

zzvvvvvvvvv
D

µ

iiTTTTTTTTTTTTTTTTTTTT

ν

uujjjjjjjjjjjjjjjjjjjj
θ
oo_ _ _

B

β
__????????

The morphism θ can be defined for d ∈ D as θ(d) = (µ(d), ν(d)), which by the

coherency of µ and ν, maps d into PB. For given linking morphisms α and β the

pullback is unique up to completely isometric isomorphism as can be seen using the

above diagram. Suppose there is another pullback, call it E with morphisms γ′

and δ′ that make the above diagram commute. Then γ′ and δ′ would necessarily

be coherent giving θ : E → PB defined for all η ∈ E by θ(η) = (γ′(η), δ′(η)).

Alternately with E also a pullback, by the universal property of the pullback there

is a morphism, θ′ : PB → E that makes the above diagram commute. This requires

that θ((a, b)) = d with a = γ(d) and b = δ′(d) by commutativity. This shows that

θ′ = θ−1 and θ
′−1 = θ giving that θ is an isomorphism. Once it is shown below that

both θ and θ′ are complete contractions, then θ would be a completely isometric

isomorphism.

In the category of operator algebras the pullback is closed by the continuity of

the linking morphisms. Suppose (at, bt) is net in PB converging to (a, b) ∈ A⊕∞ B.

By definition α(at) = β(bt) for all t. By continuity of α and β, α(a) = β(b) so

that (a, b) ∈ PB. The morphisms α, β, µ and ν are required to be completely

contractive homomorphisms of operator algebras. This then makes θ a completely

contractive morphism. One way to prove this, which also shows the interaction with
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C*-algebra theory, is to use the universal property of the maximal C*-cover for each

algebra. Given a commutative diagram as at the beginning of this chapter, then each

morphism extends to the maximal C*-cover as below:

C*
max(A)

α′

yyrrrrrrrrrr

C*
max(C) C*

max(A)⊕C*
max(C) C*

max(B)

γ′

iiSSSSSSSSSSSSSSS

δ′

uukkkkkkkkkkkkkkk
C*

max(D)

µ′
mmZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

ν′
qqddddddddddddddddddddddddddddddddddddddddddddddddddd

θ′oo_ _ _ _ _ _ _ _ _

C*
max(B)

β′
eeLLLLLLLLLL

Here the morphisms are the canonical extensions of each to the respective maximal

C*-covers, except perhaps θ′. It is easy to see that in fact it is by the manner in which

θ′ is defined. First let i : A → C*
max(A), j : B → C*

max(B), and k : D → C*
max(D). By

definition for all η ∈ C*
max(D), θ′(η) = (µ′(η), ν ′(η)). With µ′ and ν ′ the extensions of

ν and µ, then µ′◦k = i◦µ and ν ′◦k = j ◦ν so that (θ′◦k)(d) = ((i◦µ)(d), (j ◦ν)(d)).

With α′ and β′ the extensions of α and β to the respective maximal C*-covers,

(a, b) ∈ A⊕C B if and only if (i(a), j(b)) ∈ C*
max(A)⊕C*

max(C) C*
max(B). Let ι : A⊕C

B → C*
max(A)⊕C*

max(C) C*
max(B) by ι((a, b)) = (i(a), j(b)) which is clearly a complete

isometry since it is a complete isometry in each component. Then θ′ ◦ k = ι ◦ π and

θ is a completely contractive morphism.

Unfortunately it is not the case that the pullback constructed from three objects

in the category AUOA stays in that category, as in the following example.

Example 3.1.1. A Pullback that is not approximately unital.
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Consider the following unital 3× 3 matrices.

A =




∗ ∗ ∗
0 ∗ ∗
0 0 ∗




, B =




∗ 0 0

0 0 0

0 0 0




, C =




∗ ∗ 0

0 ∗ 0

0 0 0




.

Let α and β be the obvious maps from A and B respectively into C. The kernel

of α contains the matrices with zero entries except in the last column. The linking

morphisms only agree on the 1-1 entry and the last column, so that the pullback is

of the form:







x 0 ∗
0 0 ∗
0 0 ∗




,




x 0 0

0 0 0

0 0 0







which is clearly not unital. Conditions on the linking morphisms will be given later

in Lemma 3.4.1 so that the pullback will have an approximate unit if A, B, and C

have one.

3.2 Extensions

If A and C are nontrivial operator algebras with A approximately unital, then (fol-

lowing the C*-algebra theory) an extension of C by A will be defined as a short exact
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sequence, denoted for convenience by E,

E : 0 → A
α−→ B

β−→ C → 0

where α is a completely isometric homomorphism, so that B contains a completely

isometrically isomorphic copy of A, and α(A) is the kernel of β. This makes α(A)

an ideal in B. Often for simplicity it will be assumed that A ⊂ B with α the

inclusion morphism. Additionally the morphism β will be required to be a complete

quotient morphism, which is of course a homomorphism, so that C ∼= B/A completely

isometrically isomorphically in the general case. In the C*-algebra case these last few

conditions are automatic by the properties of ∗-homomorphisms. In extending the

other elements of the C*-algebra theory to general operator algebras will typically

require additional hypothesis. The requirement that A has a cai is necessary for

several reasons including using the theory developed concerning morphisms between

multiplier algebras for approximately unital operator algebras as well as the results

concerning ideals in the previous chapter.

A unital extension is an extension in which the middle algebra B is unital. A split

extension or split exact extension is one in which there exists a morphism γ from the

third algebra into the second algebra such that β ◦γ = IC , the identity morphism on

C. A trivial extension is one in which the middle algebra is an infinity direct sum of

the first and third algebras and where α is a the inclusion morphism into one factor

and β is the projection morphism onto the other factor. As discussed in Chapter 1,

an ideal A in B is completely essential if the canonical morphism taking B →M(A)
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is a complete isometry. An ideal is essential if the canonical morphism is one-to-one.

An essential (respectively completely essential) extension is one in which α(A) is an

essential (respectively completely essential) ideal in B as in the following diagram.

A //
q´

""FF
FF

FF
FF

F B

||x
x

x
x

x

M(A)

We shall show the largest completely essential extension with first term A is the

corona extension

0 → A →M(A) → Q(A) → 0.

Define E ′ ≤ E if there exist completely contractive morphisms from each successive

algebra of E into each successive algebra of E ′ as below:

E : 0 // A
α //

µ

²²

B
β

//

δ
²²

C

ν

²²

// 0

E ′ : 0 // A′ α′ // B′ β′
// C ′ // 0.

To see this applies to the corona algebra, note that the multiplier algebra of A is

the largest unital algebra containing A as an essential ideal. If E ′ is another com-

pletely essential extension of C by A, the middle algebra, call it X, contains A as

a completely essential ideal. The injection morphism ι : A → M(A) extends to

X canonically, which by Proposition 2.2.3 is a complete isometry. For the first two
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algebras of the two extensions we have A = A and X ⊂ M(A) completely isomet-

rically isomorphically. That C ⊂ Q(A) completely isometrically isomorphically, an

appeal will be made to Lemma 2.1.2. Since A has a cai, the restriction to X of the

canonical quotient morphism from M(A) → Q(A) is a complete quotient morphism

and X/A ∼= C by definition of exact sequence giving the third complete isometry.

If the third algebra is C, then the middle algebra is A1, the canonical unitization

of A [5, Section 2.1.11]. The exact sequence can be given as below:

0 → A → A1 β−→ C→ 0.

The unitization is defined as Span{A, 1H} for A ⊂ B(H) for some H and contains

A as an ideal. Then A1/A ∼= C showing the above line fits the definition of exact

sequence.

Working in the category AUOA, it is desirable to know that if an exact sequence

extension exists of C by A of two given operator algebras A and C, then the middle

term necessarily stays in the same category. The following proposition shows this is

in fact the case. It also shows that an extension of C*-algebras stays in that category

in a similar fashion.

Proposition 3.2.1. Given an extension of operator algebras in which A has a cai

0 → A
α−→ B

β−→ C → 0,
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the algebra B is approximately unital if and only if C is approximately unital. Also,

A and C are C*-algebras if and only if B is a C*-algebra.

Proof. By definition of an exact sequence of operator algebras above, A is assumed

to have a cai. Suppose that C is approximately unital. By definition of an exact

sequence C ∼= B/A. Let B ⊂ D, where D is a unital operator algebra with unit

1. Also, view A ⊂ B completely isometrically isomorphically. If p is the support

projection of A in B∗∗, as in the proof of Lemma 2.1.2, B∗∗ = B∗∗p⊕∞ B∗∗(1− p) ∼=
A∗∗⊕∞C∗∗, which is unital since both A and C are approximately unital. Appealing

to [5, Proposition 2.5.8], B has a cai. For the other direction, it is obvious that a

complete quotient morphism takes a cai to a cai, so C will be approximately unital

assuming B is approximately unital.

Suppose B is a C*-algebra. With A an ideal in B, A is self-adjoint by [11,

Theorem 4.3 p.245], and is a C*-algebra by [5, A.5.1]. By [5, Theorem A.5.9] the

range of β = C, C is a C*-algebra. Suppose A and C are C*-algebras. Looking at

the second dual B∗∗ ∼= A∗∗ ⊕∞ C∗∗ as in the proof of Lemma 2.1.2, the right side is

a C*-algebra. By [5, Lemma 7.1.6] B is selfadjoint; that is, B is a C*-algebra.

3.3 Morphisms Between Extensions

If a commutative diagram between two extensions can be formed as below,
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0 // A1
α1 //

µ

²²

B1
β1

//

δ
²²

C1

ν

²²

// 0

0 // A2
α2 // B2

β2
// C2

// 0

(3.3.1)

with µ, δ, and ν completely contractive morphisms, it will be termed a morphism

between extensions. The existence of the two outer morphisms will not guarantee the

existence of the middle morphism. This may be the case even with C*-algebras. The

middle morphism will be shown to exist uniquely under certain hypotheses including

that the left vertical arrow is proper.

If the first and third algebras of each extension are the same, namely A and C,

with µ and ν the identity morphisms, the existence of the middle morphism can

be regarded as giving a partial ordering on the set of extensions of C by A in the

following sense. If the middle morphism is also a surjective complete isometry such

that the above diagram commutes, the two extensions will be said to be strongly

isomorphic as in the C*-algebra case. The set of equivalence classes of strongly

isomorphic extensions of C by A will be denoted Ext(C, A).

It will be the case that Diagrams I, II, III, and IV of [17] work in the setting of

this thesis similar to the way they work in [17], although stronger hypotheses will

sometimes be required. For example the pullback algebras of the universal Diagram II

completion may not stay in the category AUOA even if all algebras of the diagram

are in that category.

Looking at more general morphisms between extensions, it is of interest when

all the vertical arrows are also complete quotient morphisms or completely isometric
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isomorphisms. A variant of the “five lemma” from algebra will be given below, and it

is necessary since these characteristics of ∗-homomorphisms cannot be automatically

assumed in the general operator algebra case. Two lemmas will be required first.

Lemma 3.3.1. Let E be an extension of C by A with middle algebra B. If A is

unital, then B ∼= A ⊕∞ C completely isometrically isomorphically. Indeed, E is

strongly isomorphic to a trivial extension.

Proof. Let e = 1α(A) which is easy to see is a central projection in B. Indeed, if b ∈ B,

then be ∈ α(A) and eb ∈ α(A). As the identity of α(A), then e(be) = be, (be)e =

be, and e(eb) = eb. As a central projection, and hence an orthogonal projection,

by standard operator theory, B = Be⊕∞ B(1− e) where 1 represents a unitization

of B. This gives α(A) = Be and C ∼= B/α(A) ∼= B/Be ∼= B(1 − p). Now define

a morphism δ : B → B/α(A) in the canonical way. With B a complete quotient

morphism, define ξ : C → B/A by ξ(c) = b+α(A) such that β(b) = c, which, by the

Factor Theorem, is a complete isometry. The composition δ−1 ◦ ξ : C → B such that

β ◦ (δ−1 ◦ γ) is the identity on C. Let γ = δ−1 ◦ ξ. From the above, it is clear that

B = Be ⊕∞ B(1 − p) = α(A) ⊕∞ γ(C). The obvious map ρ : α(A) ⊕∞ γ(C) → B,

for (a, c) ∈ α(A) ⊕∞ γ(C) given by ρ(a, c) = α(a) + γ(c), is a completely isometric

isomorphism, as shown above.

Lemma 3.3.2. If extension E of C by A with middle algebra B exists, there is an

induced extension, denoted E∗∗ of C∗∗ by A∗∗ with middle algebra B∗∗. Additionally

this extension of C∗∗ by A∗∗ is strongly isomorphic to a trivial extension.

Proof. Suppose an extension of C by A exists with middle algebra B. Let α : A → B
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be the complete isometry and β : B → C a complete quotient morphism with

Ker(β) = A giving the exact sequence. Then α∗∗ is a complete isometry taking

A∗∗ → A⊥⊥ ⊂ B∗∗ and β∗∗ is a complete quotient morphism onto C∗∗. By Lemma

2.1.1, Ker(β∗∗) = A⊥⊥ and there exists an extension of C∗∗ by A∗∗ with middle

algebra B∗∗. To see the extension E∗∗ is strongly isomorphic to a trivial extension,

apply Lemma 3.3.1.

Lemma 3.3.3. Given a morphism between extensions as in Diagram 3.3.1 with

all algebras approximately unital, the middle morphism will be a completely isomet-

ric isomorphism (respectively, complete quotient morphism) if both the outer two

morphisms are completely isometric isomorphisms (respectively, complete quotient

morphisms).

Proof. First, it can be assumed that each algebra is unital by going to the second dual

extension. This means the extensions are trivial by Lemma 3.3.1. The morphism

between extensions with this assumption is given below.

0 // A1
α1 //

µ

²²

A1 ⊕∞ C1
β1

//

δ
²²

C1

ν

²²

// 0

0 // A2
α2 // A2 ⊕∞ C2

β2
// C2

// 0

The morphisms αi can be taken to be the injection map into Ai⊕∞0 and the complete

quotient morphism β can be taken to be βi(a, c) = c ∈ Ci, i = 1, 2. Any such middle

morphism, in order to be linear, would be of the form δ(a, c) = (µ(a) + λ(c), ν(c) +

ρ(a)) where λ and ρ are completely contractive morphisms. To see that λ = 0 = ρ,
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first note that both µ and ν must be unital since they are surjective morphisms if

they are either completely isometric isomorphism or complete quotient morphisms.

It is easy to see that δ will also be surjective since it would be surjective in each

component. Since δ, as a morphism, must be unital:

(1A2 , 1C2) = δ(1A1 , 1C1) = (1A2 + λ(1C1), 1C2 + ρ(1A1)).

Evidently λ(1C1) = 0 and ρ(1A1) = 0 giving that λ and ρ are zero on C1 and A1

respectively.

Suppose that both µ and ν are completely isometric isomorphisms (respectively,

complete quotient morphisms). Then as shown above, δ((a, c)) = (µ(a), ν(c)) is

a completely isometric isomorphism (respectively, complete quotient morphism) in

each component and so is a completely isometric isomorphism (respectively, complete

quotient morphism).

The following is a case where the middle morphism between two extensions does

not exist. Let A = K the compact operators on `2, B = B = B(`2) and C be the

Calkin Algebra B/K. The morphism β : B → C is the canonical complete quotient

morphism onto the Calkin Algebra.

0 // A // B
β

//

γ

²²

C // 0

0 // A // A⊕∞ C // C // 0

It is well known that the inverse image of the Calkin algebra under β is not an ideal
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in B. If γ existed, by Lemma 3.3.3 it would be a ∗-isomorphism. In that case γ

would have an inverse which would necessarily take an ideal to an ideal. By the

second line 0 ⊕∞ C is an ideal in γ(B), but its image under γ−1, that is the Calkin

algebra, would not be an ideal.

3.4 Diagram I Completions and the Busby Invari-

ant

The next tool to consider is referred to as Diagram I in [17] and is also a key con-

struction in Busby’s original paper. Given the following commutative diagram of a

morphism between extensions with the ν a complete contraction,

0 // ◦ //___

²²
Â
Â
Â ◦ //___

²²
Â
Â
Â C ′

ν

²²

// 0

0 // A
α // B

β
// C // 0

the completion of the diagram consists of algebras and morphisms A′, B′, α′, β′, µ

and δ forming an extension of operator algebras on the top line such that the diagram

commutes. In the universal completion the first top algebra is A and the middle top

algebra is constructed as a pullback of B and C ′ along β and ν as discussed in the

beginning of this chapter. To see this is the universal completion, suppose there is

another completion consisting of an extension of C ′ by A1 which makes the following

diagram commutative:
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0 // α(A) α′ //

α−1

²²

PB
β′

//

δ

²²

C ′

ν

²²

// 0

0 // A1

α◦µ

ggPPPPPPPPPPPPPP

µ

||yyyyyyyyyyyyyyyyyy

α1 // B1
β1

//

γ

~~||
||

||
||

||
||

||
||

|

ffN N N N N N N
C ′

NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

ν

}}{{
{{

{{
{{

{{
{{

{{
{{

{
// 0

0 // A
α // B

β
// C // 0

A morphism needs to be defined for the dotted arrow from B1 into PB. From

the definition of a Diagram I completion, the bottom face commutes showing that

γ and β1 are coherent morphisms with β and ν. Using the universal property of

the pullback, the middle morphism exists as a completely contractive morphism

making the second half of the rectangular diagram commute. Call this morphism

λ. As discussed earlier, for all b ∈ B1, λ(b) = (γ(b), β1(b)). The only part that is

not obviously commutative is the left half of the top face. It needs to be shown that

α′◦(α◦µ) = λ◦α1. Let a ∈ A1. Then (α′◦(α◦µ))(a) = α′((α◦µ)(a)) = ((α◦µ)(a), 0).

For the other direction, (λ◦α1)(a) = λ(α1(a)) = ((γ ◦α1)(a)), 0). By commutativity

of the bottom face, α ◦ µ = γ ◦ α1 showing the desired commutativity.

Surprisingly, as will be shown in the next lemma, the universal completion will

necessarily be in the category AUOA if A, B, C and C ′ are in this category.

Lemma 3.4.1. Let B, C ′ and C be approximately unital operator algebras with

β : B → C a complete quotient morphism such that Ker(β) has a cai and ν : C ′ → C

a completely contractive morphism. Then B⊕CC ′ along β and ν will be approximately

unital and there will exist an extension of C ′ by Ker(β) with the pullback algebra,
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B ⊕C C ′, being the middle algebra.

Proof. Let A = Ker(β) and form a Diagram I completion shown below with B ⊕C

C ′ = {(b, c) : b ∈ B, c ∈ C ′ and β(b) = ν(c)}.

0 // A
ι // B ⊕C C ′ q

//

δ
²²

C ′

ν

²²

// 0

0 // A
α // B

β
// C // 0

The top row is an extension as defined above with A the kernel of β giving that

ι(A) = A⊕ 0 ⊂ B⊕C C ′ is an ideal in B⊕C C ′ since (a, 0)(b, c) = (a′, 0) ∈ ι(A). The

morphism q is the projection of the second coordinate onto C ′ making ι(A) = Ker(q).

That q is surjective is due to the subjectivity of β. To see q takes the ball(B ⊕C C ′)

onto ball(C ′), first it is observed that if c′ ∈ ball(C ′), with β a complete quotient

morphism, there exists b ∈ ball(B) such that β(b) = ν(c′). In fact, (b, c′) ∈ ball(B⊕C

C ′). Similarly, at all matrix levels this would be the case, with q being a complete

quotient morphism and ν being a completely contractive morphism. This gives a

pre-image under q for c′ in the ball(B⊕C C ′), indicating q(ball(B⊕C C ′)) = ball(C ′).

By Proposition 3.2.1 the pullback will be approximately unital.

If the bottom row of a Diagram I completion is the corona extension, then the

universal diagram I completion is of particular interest and has the following form:
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0 // A
α // M(A)⊕Q(A) C

β
//

σ

²²

C

τ

²²

// 0

0 // A // M(A) π // Q(A) // 0.

The middle term is shown as a pullback, which exists by the above discussion. Here

τ is what will be shown to be the Busby invariant for the category AUOA and will

be assumed to be a completely contractive morphism. Traditionally the term Busby

invariant is associated with C*-algebras, but in the chapter on covering extensions the

use of the term in this setting will be justified. As shown above, σ is the projection

of the first coordinate of the pullback algebra.

In a more general setting, for instance an extension of C by A with middle algebra

B, a morphism between extensions can be constructed with the corona extension.

This is the purpose of the next lemma.

Lemma 3.4.2. Given an extension of C by A there exists a morphism between

extensions as follows:

0 // A
α // B

β
//

σ
²²

C

τ
²²

// 0

0 // A // M(A) π // Q(A) // 0.

(3.4.1)

Proof. The morphism σ will be taken to be the canonical morphism defined as

σ(b)a = σ(b(α(a))) and aσ(b) = α(a)b. With A an ideal in B this defines a multiplier

σ(b) on A ⊂M(A). This is a completely contractive morphism since ‖ba‖ ≤ ‖b‖‖a‖
for all a ∈ A and at all matrix levels.
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The necessary definition of τ which makes the diagram commutative is τ(β(b)) =

σ(b)+A. Besides making the diagram commutative, it can be shown that τ as defined

in this way is a complete contraction. To makes the calculations more transparent,

define β̃ : B/A → C to be the canonical completely isometric isomorphism induced by

virtue of β being a complete quotient morphism and τ̃ : B/A → Q(A) by τ̃(b+A) =

σ(b) + A. To see τ̃ is well defined, first note that for b, b′ ∈ B, b, b′ ∈ b + A if

and only if b − b′ ∈ A and if and only if σ(b) − σ(b′) ∈ A (by linearity of σ) giving

σ(b) + A = σ(b′) + A. With A containing a cai, it is proximinal and for every coset

x + A ∈ B/A, there exists a b ∈ B such that ‖x + A‖ = ‖b‖ and b + A = x + A. For

that b,

‖b + A‖ = ‖b‖ ≥ ‖σ(b)‖ ≥ ‖σ(b) + A‖ ∈ M(A)/A = Q(A).

With σ being a complete contraction and Mn(A) also in AUOA, the above rela-

tionship can be redone at all matrix levels indicating τ̃ is a completely contractive

morphism. As defined above, τ = τ̃ ◦ β̃−1 and is a completely contractive mor-

phism.

Suppose that τ : C → Q(A), is a completely contractive morphism. Then

the middle algebra of an extension of C by A can be constructed as a pullback

PB = M(A)⊕Q(A) C along π and τ as above. This is called the pullback extension

constructed from τ , and will be denoted by Eτ . The first concern is that this com-

pletion stays in the category AUOA when A and C are in this category. However,

as above by Proposition 3.2.1 this will be the case. The next two theorems show
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that as in the C*-algebra case there is a bijective relationship between completely

contractive morphisms from C into Q(A) and strongly isometric extensions of C by

A.

Theorem 3.4.3. Let τ be a completely contractive morphism from C → Q(A) mak-

ing the following diagram commute.

0 // A
α // B

β
//

σ
²²

C

τ
²²

// 0

0 // A // M(A) π // Q(A) // 0

Then there exists a completely isometric isomorphism ϕ from B onto PB, the pull-

back construction discussed above, making this extension strongly isomorphic to Eτ .

Proof. A morphism between extensions with middle term B on the top line and

pullback extensions constructed from τ on the bottom line will be constructed as

follows:

0 // A
α // B

β
//

ϕ

²²

C // 0

0 // A // PB
γ

// C // 0.

Evidently A and C will be the first and third algebras in each extension, and it

will be enough by Lemma 3.3.3 that a morphism from B → PB exists. Using the

universal property of the pullback, it only needs to be seen that in the following

diagram τ ◦ β = π ◦ σ.
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C
τ

zzuuuuuuuuuu

Q(A) M(A)⊕Q(A) C

γ

ggPPPPPPPPPPPPP

δ

wwooooooooooo
B

β

llXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

σ

ssfffffffffffffffffffffffffffffffffϕ
oo_ _ _ _ _ _

M(A)

π
ddHHHHHHHHH

By assumption the top line is an exact sequence, and by the commutative Dia-

gram 3.4.1 from Lemma 3.4.2, τ ◦ β(b) = π ◦ σ(b). This gives the existence of ϕ as

defined in the discussion of the pullback and its universal property. By Lemma 3.3.3,

ϕ is a completely isometric isomorphism.

The next theorem follows closely with [25, Theorem 1.2.11]. In the beginning

of Section 2.2 a definition of split extension was given. That is, if there exists a

completely contractive morphism γ : C → B such that β ◦ γ = IC , the identity

morphism on C, the extension is defined to be split. The map τ in the next theorem

is called the Busby invariant of the extension.

Theorem 3.4.4. There is a bijection between Ext(C, A) and Mor(C,Q(A)), the set

of completely contractive morphisms τ : C → Q(A). When C is unital this restricts

to a bijection between unital extensions, in which the middle algebra is unital, and

unital morphisms, those taking 1 to 1, from C → Q(A). There is also a bijective

correspondence between the morphisms γ : C → B associated with classes of split

extensions and elements η ∈ Mor(C,M(A)) for which π ◦ η = τ where π : M(A) →
Q(A). In addition an extension is trivial if and only if it is split with τ = 0.
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Proof. Define θ1 : Mor(C,Q(A)) → Ext(C,A) by θ(τ) = [Eτ ], the equivalence class

of extensions strongly isomorphic to Eτ where Eτ is the pullback extension. By

Theorem 3.4.3, this mapping is well defined since all extensions of C by A with τ

as the Busby invariant are strongly isomorphic to the pullback extension. To see

θ1 is surjective, given an extension of C by A a morphism from C → Q(A) will be

constructed using the following diagram.

0 // A
α // B

β
//

σ
²²

C

²²
Â
Â
Â

// 0

0 // A // M(A) π // Q(A) // 0

The obvious way to define τ is by τ(β(B)) = σ(b)+A, as discussed at the beginning

of this section. It was pointed out that this is a completely contractive morphism,

showing that θ1 is surjective. To see θ1 is injective, note that if θ1(τ1) = θ1(τ2),

then [Eτ1 ] = [Eτ2 ]. Note that if (m, c) ∈ PBi, then τi(c) = π(m), i = 1, 2, where

π : M(A) → Q(A). This gives that τ1(c) = π(m) = τ2(c) and τ1 = τ2.

For the unital case, if B is unital, then C ∼= B/A is unital since 1B + A ∈ B/A.

The completely contractive morphism τ is defined to take 1C → σ(1B) + A which is

the unit of Q(A). This gives that if B is unital, τ is unital. Conversely, if τ is unital

then let 1C ∈ C such that τ(1C) = 1A + A = π(1A), the unit of M(A). This means

(1A, 1C) ∈ PB and there is an element x ∈ B such that σ(x) = 1A and β(x) = 1C .

Let J = Ker(σ) and, by the Factor Theorem, let σ̃ : B/J →M(A) be the canonical

morphism which is one-to-one and a complete contraction. Since σ̃ is multiplicative,

it is clear x + J is a unit for B/J . If b ∈ B, then if b + J ∈ B/J , x(b + J) = b + J so

46



xb− b ∈ J . Alternately taking C = B/A for clarity, β(x)(b+A) = b+A implies that

xb− b ∈ A. Since σ is the identity morphism on A, A∩ J = 0. With xb− b ∈ A and

xb − b ∈ J xb − b ∈ A ∩ J = 0 so that xb = b and similarly for right multiplication

giving x is a unit for B.

Working with the second assertion, define θ2 : Mor(C,B) → Mor(C,M(A)) for

γ ∈ Mor(C, B) by θ2(γ) = σ ◦ γ = η. It needs to be shown that this definition

of θ2 yields a morphism from C → M(A) such that τ = π ◦ η. Let E be a split

extension and γ a right inverse of β which is not necessarily unique. For a given γ,

θ2(γ) = σ ◦ γ = η using the diagram below.

0 // A // B
β

//

σ
²²

C

τ
²²

//
γ

oo

η

zztttttttttt 0

0 // A // M(A) π // Q(A) // 0

With η = σ ◦ γ, then τ(c) = π ◦ (σ ◦ γ)(c) = (π ◦ η)(c) for all c ∈ C so that η

satisfies the requirement in the hypothesis. This definition of η is unique for a given

γ by the uniqueness of σ giving that θ2 is well defined. To see it is injective, suppose

that θ2(γ1) = θ2(γ2) = σ ◦ γi, i = 1, 2. Let bi = γi(c) for c ∈ C. This means

c = β(b1) = β(b2) so that b1 − b2 ∈ α(A), call this difference α(a). However, with

η1 = η2, σ(b1) = m = σ(b2) and

(σ ◦ α)(a) = σ(b1 − b2) = σ(b1)− σ(b2) = 0.

With σ a complete isometry on α(A), the above indicates b1 = b2 giving γ1 = γ2.
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Next it will be shown that θ2 is onto. Suppose that there exists a η : C →M(A)

such that π◦η = τ . Notice that (η(c), c) ∈ PB, the pullback construction from above.

Let δ : C → PB be the completely contractive morphism defined as δ(c) = (η(c), c).

If ξ : PB → B is the inverse of the canonical completely isometric isomorphism from

B → PB discussed above, then ξ((σ(b), β(b))) = b. Now define γ : C → B for all

c ∈ C by γ(c) = (ξ ◦δ)(c). As the composition of a completely contractive morphism

and a complete isometry, γ is a completely contractive morphism from C to B. To

see β ◦ γ = IC , it needs to be shown that if b = γ(c), then β(b) = c. Let c ∈ C

with b = γ(c) = ξ ◦ δ(c). Then δ(c) = (η(c), c) = (σ(b), τ(b)) for some b ∈ B since

(η(c), c) ∈ PB. Looking at the second coordinate, τ(b) = c, completing the proof of

this assertion.

Now suppose τ = 0. As above, (A, 0) ∈ PB since A = Ker(π). Similarly (0, C) ∈
PB since C = Ker(τ). This gives a splitting of the extension with γ : C → (0, C).

The pullback PB = A⊕∞ C since for all a ∈ A and all c ∈ C, π(a) = 0 = τ(c).

Remarks. 1) By the above bijection, elements of Mor(C,Q(A)) will be referred

to as extensions of C by A.

2) If an extension has Busby invariant the trivial morphism, i.e. τ = 0, then

the middle algebra has the form A ⊕∞ C. If both A and C are unital, this is the

only extension of C by A since Q(A) = 0. This agrees with Lemma 3.3.1, which was

proved using the Busby invariant of an extension of maximal C*-covers.

3) A split extension will be called strongly unital if γ can be chosen to be unital.

A unital extension results when the middle algebra has a unit. From the above
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diagram it is clear that γ is unital if and only if η is unital. However, even if τ is

unital ζ could take the unit of C to an element of M(A) equivalent via π to the unit

in Q(A).

3.5 Proper Morphisms Between Extensions

A morphism between two algebras A and A1 in AUOA will be called a proper mor-

phism if it takes a cai from A to a cai in A1. It will be necessary to connect this

concept with that of multiplier nondegenerate morphisms, [5, §2.6.11], which are de-

fined as β : A → M(A1) such that A1 is a nondegenerate module with respect to

the natural module action of A on A1 via β. This will be done in the next lemma.

Lemma 3.5.1. Let A and A1 be in the category AUOA. A morphism µ : A → A1 is

proper morphism if and only if it is multiplier nondegenerate.

Proof. First suppose µ is proper so that if (et) is a cai for A, then (µ(et)) = (ft) is

a cai for A1.Then for any b ∈ A1, bft → b implying b is nondegenerately expressed

with respect to the right module action of µ(A) on A1. A similar calculation shows

nondegeneracy with respect to the left module action. Viewing A1 ⊂M(A1), µ can

be considered to map into M(A1) and by definition, µ is multiplier nondegenerate.

Now suppose that µ is multiplier nondegenerate. Then A1 can be considered to

be a nondegenerate µ(A)-module. By Cohen’s Factorization Theorem, every element

of a1 ∈ A1 can be written as a1 = µ(a)y for some µ(a) ∈ µ(A) and y ∈ A1. With

µ continuous, then µ(et)µ(a)y = µ(eta)y → µ(a)y. This means µ(et)a1 → a1 and
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(µ(et))t is a cai for A1.

A theorem from [5] was used in the previous chapter, but will be used frequently

throughout the rest of this thesis. It is stated below and will be referenced in this

form.

Theorem 3.5.2. [5, Theorem 2.6.12] If A,B are approximately unital operator alge-

bras, and if σ : A →M(B) is a multiplier-nondegenerate morphism then σ extends

uniquely to a unital completely contractive homomorphism σ̂ : M(A) → M(B).

Moreover σ̂ is completely isometric if and only if σ is completely isometric.

Returning to the notion of morphisms between extensions, if µ in the diagram

below is proper,

0 // A
α1 //

µ

²²

B
β1

//

δ
²²

C

ν
²²

// 0

0 // A1
α2 // B1

β2
// C1

// 0

then µ extends to a unital morphism µ̂ : M(A) → M(A1) by Theorem 3.5.2. To

further take this extension of µ and apply it to the two corona algebras of A and A1

requires using the Factor Theorem.

Lemma 3.5.3. Let µ be a proper completely contractive morphism from A → A1.

Then there exists a unital completely contractive morphism µ̃ : Q(A) → Q(A1)

induced by the extension of µ to the multiplier algebras. Additionally if µ̂ : M(A) →
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M(A1) is surjective, then µ̃ will be also. If µ is a complete isometry, then µ̃ will be

also. Lastly, if µ̂ : M(A) → A1 is a complete quotient morphism, then µ̃ will be also.

Proof. The natural way to define µ̃ for m + A ∈ Q(A) is µ̃(m + A) = µ̂(m) + A1.

To show this is a completely contractive morphism, first define ϕ : M(A) → Q(A1)

by ϕ = π1 ◦ µ̂. Here π1 is the canonical morphism taking M(A1) → Q(A1) and µ̂

as in the above discussion. As the composition of two complete contractions, ϕ is a

complete contraction. Using the Factor Theorem and noting A ⊂ Ker(ϕ), ϕ descends

to a morphism ϕ̃ : M(A)/A = Q(A) → Q(A1) with completely bounded norm no

larger than that of ϕ. That is ‖ϕ̃‖ ≤ 1. It is clear that ϕ̃(m+A) = µ̂(m)+A1. This

agrees with the above described morphism µ̃, so that ‖µ̃‖ ≤ 1.

For the last assertions, let π1 : M(A) → Q(A) and π2 : M(A1) → Q(A1) be

the canonical morphisms. If µ̂ is surjective, then it is clear µ̃ will be (since each

m1 ∈ M(A1) has a pre-image in M(A) under µ̂, so that m1 + A1 will have a pre-

image under µ̃). Now suppose µ is a complete isometry which would make µ̂ a

complete isometry Theorem 3.5.2. With µ proper, µ(A) shares a cai with A1 so that

the restriction of π to µ̂(M(A)) is a complete quotient morphism by Lemma 2.1.2

making µ̂(M(A))/µ̂(A) ∼= µ̂(M(A))/A1. With µ̂ a complete isometry, it has an

inverse. This shown that π1 ◦ µ̂−1 is a complete quotient morphism with Ker(π1 ◦
µ̂−1) = µ̂(A). By the factor theorem there is a completely isometric isomorphism

from µ̂(M(A))/µ̂(A) → Q(A). Putting this together, Q(A) ∼= µ̂(M(A))/µ̂(A) ∼=
µ̂(M(A))/A and µ̃ is a complete isometry.

Suppose µ̂ : M(A1) → M(A) is a complete quotient morphism. There is the
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following commutative diagram.

M(A1)
π1 //

µ̂
²²

Q(A1)

µ̃

²²

M(A)
π2 // Q(A)

With π2 ◦ µ̂ a complete quotient morphism, then µ̃ ◦ π1 must be also, implying µ̃ is

a complete quotient morphism since π1 is a complete quotient morphism.

Continuing with determining a criterion for the existence of the middle morphism

in the general diagram of a morphism between extensions, the development follows

from [17] with proof the same as in the C*-algebra case with details added.

Lemma 3.5.4. Given a commutative diagram with the horizontal morphisms the

embedding of ideals and µ proper,

A1
α1 //

µ

²²

X1

δ
²²

A
α // X

and letting

σ : X →M(A), σ1 : X1 →M(A1), and µ̂ : M(A1) →M(A),

then
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σ ◦ δ = µ̂ ◦ σ1.

Proof. The proof will show the following expanded diagram commutes.

A1
α1 //

µ

²²

X1

δ

²²

σ1 // M(A1)

µ̂
²²

A
α // X

σ // M(A)

By assumption µ is proper, so that for a cai of A1, (et)t say, then µ((et)t) is a

cai for A. If a1 ∈ A1 and a ∈ A, equivalently the elements of the form µ(a1)a are

dense in A. The above assertion for left multiplication needs to only be proved for

manner in which the multiplier algebra M(A) acts on elements of this form as a

(possibly not closed) subalgebra of A. Right multiplication can be demonstrated in

a symmetric manner.

Recall that canonical morphisms σ(x)a = σ(xα(a)) and σ1(x1)a1 = σ1(x1α1(a1)).

In other words, the composition σi ◦ αi is the identity on Ai, i = 1, 2. By commu-

tativity of the left square of the above diagram, δ ◦ α1 = α ◦ µ on A1. Looking at

the manner in which elements of µ̂(M(A1)) act on elements of the form µ(a1)a ∈ A,

and in particular σ1(x1) for x1 ∈ X1:

(µ̂ ◦ σ1)(x1)µ(a1)a = (µ̂ ◦ σ1)(x1)(µ̂ ◦ σ1 ◦ α1)(a1)a = (µ̂ ◦ σ1)(x1α1(a1))a =

µ(σ1(x1)a1)a = (σ ◦ δ)(x1α1(a1))(a) = σ ◦ δ(x1)(σ ◦ δ ◦ α)(a1)a =
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(σ ◦ δ)(x1)(σ ◦ α ◦ µ)(a1)a = (σ ◦ δ)(x1)µ(a1)a.

Putting the first expression with the last expression gives the result.

Again the proof of the next theorem follows the proof of [17, Theorem 2.2] using

Lemma 3.5.3 above.

Theorem 3.5.5. Given two extensions as in the diagram above and morphisms µ

and ν with µ proper, then the completely contractive morphism δ exists if and only if

µ̃◦τ1 = τ2◦ν where τ1 and τ2 are the associated Busby invariants of the two extensions.

Furthermore, δ is the unique such completely contractive morphism which makes the

diagram commutative.

Proof. The three-dimensional diagram below will be used. Note that by construction

the leftmost sidewise square, top, bottom, and back faces commute. Also the pullback

algebras will be substituted as the middle algebras by Theorem 3.4.3. This will allow

an exact definition for the morphisms σ1, σ2, β1, and β2 as the projection on the

associated coordinate.
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0 // A1
//

²²

M(A1)
π1 //

µ̂

²²

Q(A1) //

µ̃

²²

0

0 // A1
α1 //

µ

²²

pppppppppppppppppppppppppp

pppppppppppppppppppppppppp
PB1

β1
//

δ

²²

σ1

77oooooooooooooooooooooooooo
C1

ν

²²

τ1

66nnnnnnnnnnnnnnnnnnnnnnnnnnnnn
// 0

0 // A2
// M(A2)

π2 // Q(A2) // 0

0 // A2
α2 //

pppppppppppppppppppppppppp

pppppppppppppppppppppppppp
PB2

β2
//

σ2

77oooooooooooooooooooooooooo
C2

//

τ2

66nnnnnnnnnnnnnnnnnnnnnnnnnnnnn
0

Suppose that δ exists so that the front faces commute. By Lemma 3.5.4, the

middle square commutes forcing the rightmost face to commute as shown in the

following equation.

µ̃ ◦ τ1(β1(b1)) = π2 ◦ µ̂(σ(b1)) = π2 ◦ σ2(δ(b1)) = τ2 ◦ β2(δ(b1)) = τ2 ◦ ν(β1(b1)).

Now suppose the rightmost sideways face commutes and a morphism δ will be

constructed. Define δ : PB1 → PB2 as δ((m1, c1)) = (µ̂(m1), ν(c1)). Assuming

this mapping can be shown to be well defined, it is clear is a completely contractive

homomorphism since the component morphisms are completely contractive homo-

morphisms. To see (µ̂(m1), ν(c1)) ∈ PB2, recall that π1(m1) = τ1(c1), which gives

the following relationships:
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π2(µ̂(m1)) = µ̃(π1(m1)) = µ̃(τ1(c1)) = τ2(ν(c1)).

3.6 Completely Essential Extensions and Quotient

Extensions

An ideal A of B was defined in Section 3.2 to be essential if the canonical morphism

σ : B → M(A) from above is one-to-one. The ideal A is completely essential is σ

is a complete isometry. To begin this section, it will be shown the associated Busby

invariant τ will, in these cases, also have the respective property of being one-to-one

or a complete isometry.

Lemma 3.6.1. An extension in the category of AUOA is essential (respectively,

completely essential) if and only if the associated Busby invariant is one-to-one (re-

spectively, a complete isometry.)

Proof. The definition of the Busby invariant gives the following morphisms of exten-

sions.

0 // A
α // B

β
//

σ
²²

C

τ
²²

// 0

0 // A // M(A) π // Q(A) // 0
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For clarity it will be assumed that A ⊂ B. For the essential case, apply the Five

Lemma from module theory. If τ is a complete isometry then by Lemma 3.3.3 σ

is a complete isometry. Suppose σ is a complete isometry. With Ker(σ) = 0, then

Ker(π ◦ σ) = A. By the Factor Theorem there exists a unique complete isometry,

call it σ̃ : B/A → Q(A). Now let β̃−1 : C → B/A be the inverse of the canonical

completely isometric isomorphism due to β being a complete quotient morpism. It

is clear that σ̃ ◦ β̃ : C → Q(A) is a complete isometry. By the uniquness of τ , it

needs to be shown that σ̃ ◦ β̃ ◦ β = π ◦ σ on B. Let b ∈ B. Then

(σ̃ ◦ β̃ ◦ β)(b) = (σ̃ ◦ β̃)(c) = σ̃(b + A) = (π ◦ σ)(b),

giving the result.

The next lemma gives a method for creating an essential or a completely essential

extension from a given extension. The Busby invariant τ determines whether this

induced extension is either essential or completely essential. Quotient extensions

will not have much application in Diagram II, III, or IV completions, or the chapter

relating operator algebra extensions to C*-algebra extension. This is because, in the

case of universal diagram completions, either the first or third algebras are repeated.

Also a complete isometry between operator algebras does not necessarily induce an

injective ∗-homomorphism between C*-covers. However, the next lemma will have

an application in situations where, in particular, a completely essential extension is

preferred.
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Before beginning the next lemma, an important morphism will be defined. Sup-

pose there is an extension of C by A with middle algebra B. Considering the canon-

ical morphisms, let J = Ker(σ) and K = Ker(τ). The morphism λ : B/J → C/K

can be defined by λ(b + J) = β(b) + K. This will be proved to be a completely

contractive homomorphism in the following proof.

Lemma 3.6.2. Suppose there is an extension of C by A with middle algebra B, all

with cais and let τ : C → Q(A) be the associated completely contractive morphism

(respectively complete quotient morphism onto its range.) If K = Ker(τ) and J =

Ker(σ), let θ1 : B → B/J and θ2 : C → C/K be the induced complete quotient

morphisms. Then there is an induced essential extension (respectively completely

essential extension) of C/K by A ∼= A /J with middle algebra B/J .

Proof. Let β : B → C be the completely contractive morphism from the extension

of C by A giving the following morphism between extensions.

0 // A // M(A) π // Q(A) // 0

0 // A // B
β

//

σ

OO

C //

τ

OO

0

First it will be shown that β(J) = K. Since σ is a complete isometry on A, it is

clear A∩ J = 0. By commutativity of the right square, π ◦ σ = τ ◦ β and β(J) ⊂ K.

Since A = Ker(β), then A = β−1(0), so let k ∈ K be nonzero requiring that τ(k) = 0

be nontrivial. If x ∈ β−1(k), and since k 6= 0, x /∈ A. With (π ◦ σ)(x) = 0, then

σ(x) ∈ A. Let σ(x) = a giving σ−1(a) = {a + j : j ∈ J}. Let x = a + j0 with j0 6= 0
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since x /∈ A. By assumption x ∈ β−1(k), so that β(a + j0) = k. Since A = Ker(π),

k = β(a + j0) = π(a) + π(j0) = 0 + π(j0) = π(j0). With j0 in the inverse image of

k under π, K ⊂ β(J) so that β(J) = K. Let θ1 : B → B/J and θ2 : C → C/K be

the canonical morphisms. Define λ : B/J → C/K by λ(b + J) = β(b) + K for all

b + J ∈ B/J . This will obviously make the following diagram commute:

B/J
λ // C/K

B

θ1

OO

β
// C

θ2

OO
(3.6.1)

With J ⊂ Ker(θ2◦β), by the Factor Theorem λ is a surjective completely contractive

morphism since θ2 ◦ β is a complete contraction onto C/K. Furthermore, λ is a

complete quotient morphism since all other morphisms in the diagram are complete

quotient morphisms. It needs to be seen that A/J = Ker(λ). Let x ∈ Ker(λ) with

y ∈ (θ1)
−1(x). If y ∈ A, then β(y) = 0 = θ2(0) giving A/J ⊂ Ker(λ). If y /∈ A, then

β(y) 6= 0 so that if θ2(β(y)) = 0, then β(y) ∈ K forcing y = a + j for some a ∈ A

and some j ∈ J . Evidently θ1(y) = x = a + J ∈ A/J and Ker(λ) = A/J . It remains

to see that A/J ∼= A. Let σ̃ : B/J →M(A) be the induced completely contractive

morphism with σ̃ ◦ θ1 = σ. With σ is a completely contractive morphism by the

Factor Theorem σ̃ is also giving ‖a + J‖ ≥ ‖σ̃(a + J)‖ = ‖σ(a)‖ = ‖a‖ for all a ∈ A

and at all matrix levels. With θ a completely contractive morphism, ‖a + J‖ ≤ ‖a‖
so that ‖a‖ = ‖a + J‖ also at all matrix levels. This gives an extension of C/K by

A/J ∼= A with middle algebra B/J .

To see this extension is essential (respectively, completely essential), the above
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induced morphism σ̃ is a complete contraction. Since J = Ker(σ), σ̃ is one-to-one

(respectively, a complete isometry) with σ̃ ◦ θ1 = σ. This means in particular that

σ̃(a + J) = σ(a) = a. Let σ′ : B/J → M(A) be the induced morphism due to the

extension of C/K by A. The complete isometry α : A → A/J must be defined by

α(a) = a + J and σ′(a + J) = a for all a + J ∈ A/J since σ ◦ α must the identity

morphism on A. Since σ̃ and σ′ agree on A, by uniqueness σ̃ = σ′. By definition the

induced extension of C/K by A is essential (respectively, completely essential).

Another way to approach the proof of the above lemma in the completely es-

sential case would be to note that τ̃ : C/K → Q(A) is a complete isometry and

form the pullback construction as a Diagram I completion. In showing the pull-

back is completely isometrically isomorphic to B/J , it would need to be shown that

β(J) = K, and by commutativity of the morphism between extensions of the orig-

inal extension, τ(c + k) = σ(b + j) + A for all j ∈ J and all k ∈ K. This leads

to the definition of λ which then gives a morphism γ : B/J → PB defined by

γ(b + J) = (σ̃(b + J), λ(b + J)). If β is a complete quotient morphism, it is straight-

forward that γ is a complete isometry. A little more work would be required in the

essential case.

Given an extension of C by A with τ a complete quotient morphism, then a more

explicit definition of the pullback due to τ which is given in the following corollary.

Corollary 3.6.3. Let E be an extension of C by A with middle algebra B with τ

a complete quotient morphism. Then B ∼= B/J ⊕C/K C along λ and θ2 completely

isometrically isomorphically.
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Proof. By Lemma 3.6.2, Ran(σ) ∼= B/J and Ran(τ) ∼= C/K via σ̃ and τ̃ respectively.

This means that all first coordinates of the pullback, PB, from the original extension

come from σ̃(B/J) and all second coordinates come from C. Define a completely

isometric isomorphism from δ : PB → B/J ⊕C/K C by δ((m, c)) = (σ̂−1(m), c) =

(b+J, c). This is well defined as long as λ(b+J) = θ2(c) since σ̂ is a complete isometry

and so is one to one. With (m, c) ∈ PB ∼= B, (m, c) = (σ(b), β(b)) for some b ∈ B.

For that b, by the way λ was defined for the commutative diagram, Diagram 3.6.1,

(λ ◦ θ1)(b) = λ(b + J) = β(b) + K = (θ2 ◦ β)(b) = θ2(c). An inverse can be defined in

the obvious way, that is δ−1((σ̂−1(m), c)) = (m, c), making δ a completely isometric

isomorphism. Composing δ with the inverse of the completely isometric isomorphism

from B onto the pullback gives a completely isometric isomorphism from B/J⊕C/K C

onto B.

3.7 Functoriality

For this section the category AUOA, denoted by A, will contain approximately unital

operator algebras with the morphisms the proper morphisms discussed above. In the

case where morphisms are not required to be proper in AUOA the functoriality is

much deeper. With Blecher we hope to present this elsewhere. The category OP,

denoted by C will contain all operator algebras with the morphisms the completely

contractive morphisms. For any operator algebra C ∈ C and any operator algebra

in A ∈ A a category consisting of the sets ext(C,A) will be regarded containing all

equivalence classes of extensions of C by A. In particular ext(C,A) will be regarded
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as a subset of ext(C,A). The morphisms will simply be the functions between sets.

Before the two families of functors can be defined below, a lemma will be required.

Lemma 3.7.1. Let µ1 : A → A1 and µ2 : A1 → A2 each be proper. Then µ2 ◦ µ1

is proper and µ̂2 ◦ µ̂1 = µ̂2 ◦ µ1 : M(A) →M(A2). Additionally µ̃2 ◦ µ̃1 = µ̃2 ◦ µ1 :

Q(A) → Q(A2).

Proof. By Theorem 3.5.2, µ̂2 ◦ µ1 is the unique morphism extending µ2 ◦ µ1. Since

µ̂2 ◦ µ̂1 does the same thing, then must agree. For the second assertion, note that

µ̃2 ◦ µ1(m + A) = µ̂2 ◦ µ1(m) + A2 = (µ̂2 ◦ µ̂1)(m) + A2 =

µ̃2(µ̂1(m) + A1) = (µ̃2 ◦ µ̃1)(m + A).

By fixing an A ∈ A, a contravariant functor can be defined for C ∈ B by RA(C) =

ext(C, A). Given any operator algebra A ∈ A, there is always the trivial extension

A⊕∞ C so that ext(C, A) is nonempty. Let ν : C1 → C be a completely contractive

morphism. For any A ∈ A, given an equivalence class of extensions Eτ : 0 →
A → B → C → 0 with τ the associated Busby invariant, a completely contractive

morphism τ ′ = τ ◦ ν : C1 → Q(A) can be formed. Designate the equivalence class of

extensions due to τ ′ by Eτ ′ . Define RA(ν)(Eτ ) = Eτ ′ . It is clear RA(ν) : RA(C) →
RA(C1) and interestingly, RA(ν) takes Eτ to the equivalence class of extensions in the

universal completion under Diagram I. This is also the mapping defined above as γ.

Suppose ν1 : C2 → C1 is a completely contractive morphism. Then ν ◦ ν1 : C2 → C
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is a completely contractive morphism. Define τ ′′ = τ ◦ (ν ◦ ν1) : C2 → Q(A). Note

that as defined, RA(ν1)(Eτ ′) = Eτ ′′ . Then

RA(ν ◦ ν1)(Eτ ) = Eτ ′′ = RA(ν1)(Eτ ′) = (RA(ν1) ◦ RA(ν))(Eτ ),

making (RA)A∈A a family of contravariant functors.

The second family of functors can be defined for all C ∈ C. Let A ∈ A and

defined LC(A) = ext(C,A). Since given any operator algebra C ∈ OP , there is

always the trivial extension A⊕∞C as before giving ext(C,A) is nonempty. Suppose

µ : A → A1 is a proper morphism between approximately unital algebras in AUOA

as defined above. Given τ : C → Q(A), there is a related equivalence class of

extensions in E ∈ ext(C, A). Form the composition µ̃ ◦ τ : C → Q(A1) which

gives an equivalence class of extensions E1 of C by A1. Let LC(µ)(E) = E1 showing

LC(µ) : ext(C,A) → ext(C,A1) and by Lemma 3.7.1,

(LC(µ) ◦ LC)(A) = E1 = LC(A1) = LC(µ(A)) = (LC ◦ µ)(A).

Now suppose that µ : A → A1 and µ1 : A1 → A2 with both morphisms proper. The

composition µ1 ◦ µ : A → A2 is proper. It is clear

LC(µ1 ◦ µ) : LC(A) → LC(A2) = LC(µ1) ◦ LC(µ).

The functor LC is a covariant functor. Fixing C and requiring µ to be proper gives a

63



functor which takes an equivalence class of extensions in ext(C,A) to an equivalence

class of the extension in ext(C, A1). This definition of LC(µ) coincides with the δ

mapping described above. In Chapter 6 Diagram III completions will be discussed

in which the first vertical arrow is required to be proper. The functor LC takes an

extension which is the first line of a Diagram III form to the equivalence class of the

second line of the universal completion. This is discussed in Section 6.2.

Before a bifunctor can be defined using the above families of functors, it needs

to be shown that for µ : A → A1 and ν : C → C1 that:

LC1(µ) ◦ RA(ν) = RA1(ν) ◦ LC(µ).

Let Eτ ∈ ext(C,A) = RA(C). By definition RA(ν)(Eτ ) = Eτ1 ∈ ext(C1, A) with

τ1 = τ ◦ ν. With µ proper, define τ2 = µ̃ ◦ τ1 = µ̃ ◦ τ ◦ ν. Then LC1(µ)(Eτ1) =

Eτ2 ∈ ext(C1, A1). Working on the other side of the above displayed equation,

LC(µ)(Eτ ) = Eτ3 ∈ ext(A1, C) with τ3 = µ̃ ◦ τ . As defined, RA1(ν)(Eτ3) = Eτ4

where τ4 = τ3 ◦ ν = µ̃ ◦ τ ◦ ν = τ2 which shows the equality of the above displayed

equation.

Now a bifunctor can be defined by F : C×A → ext(C,A) by F(C,A) = (L)C(A) =

(R)A(C) = ext(C, A). Restricting F to (C,A) is the functor LC and restricting F to

(C, A) is the functor RA.
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Chapter 4

Sub-extensions

4.1 Definition and Conditions for Existence

A sub-extension will be defined as a short exact sequence in which the following

morphism between extensions exists and all vertical arrows are inclusion morphisms

into the another short exact sequence.

0 // D α // E β
// F // 0

0 // A
?Â

OO

α|A
//

?Â

OO

B
β|B

//
?Â

OO

C //
?Â

OO

0

According to the definition of an extension, α|A must be a complete isometry, which

is obvious. Also α(A) = Ker(β|B) must contains a cai, but not necessarily a shared

cai with D. Then β|B must be a complete quotient morphism. The only remaining
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matter to check is that A = α−1(B). Let X = α−1(B) ⊂ D. This means that α(X) =

B∩α(D). This shows that (β◦α)(X) = 0 so that A ⊆ X. With both β and β|B being

complete quotient morphisms, B/α(A) ∼= C ∼= B/D. Also, X = B∩α(D) is an ideal

in B, and there is the following ordering on ideals: α(A) ⊆ α(X) ⊂ α(D). By the

Factor Theorem there are canonical morphisms π1 : B/α(A) → B/α(X), and π2 :

B/α(X) → B/α(D). Forming the composition π2◦π1 : B/α(A) → Bα(D), which is a

completely isometric isomorphism. Clearly π1 is a completely isometric isomorphism

and A = α−1(B).

Proposition 4.1.1. Let E ∈ ext(F ,D) with middle operator algebra E. Let B ⊂ E be

a nontrivial closed subalgebra. There exists a sub-extension of E with middle algebra

B if and only if α(D) ∩ B is approximately unital and β|B is a complete quotient

morphism. If B contains a cai for α(D), then both conditions are automatically

satisfied.

Proof. Suppose a sub-extension exists as in the definition implying A is approxi-

mately unital and β|B is a complete quotient morphism with Ker(β|B) = α(A). It

needs to be shown α(A) = α(D) ∩B which follows from the above discussion.

For the other direction, suppose B ⊂ E and α(D) ∩ B = α(A′) for a subalgebra

A′ of D which has a cai. Further suppose that β|B is a complete quotient morphism.

This immediately gives C = β(B) is a closed subalgebra of F . A sub-extension will

be created. If B is taken as the middle algebra and C the last algebra, it will be

demonstrated that α−1(Ker(β|B)) = A′. Let X = Ker(β|B). With β|B(X) = β(X) =

0, so that X ⊂ α(D). Since α is a complete isometry, α−1(X) is a closed subalgebra

66



of D. As the kernel of β|B , X ⊂ B, so by the definition of A′, X ⊂ α(A′). Let

α(a) ∈ α(A′). This gives β(α(a)) = 0 and α(a) ∈ Ker(β|B) = X so that X = α(A′).

For the final assertion, suppose α(A) = B ∩ α(D) and that B contains a cai for

α(D). This cai would also be contained in A by definition of α(A) indicating that

A is approximately unital. By Lemma 2.1.2 β|B is a complete quotient morphism.

Evidently both conditions are met for a sub-extension to exist.

From Proposition 4.1.1 fixing B uniquely determines A and C. It is not true

that fixing either subalgebras A or C uniquely determines the other two algebras.

Given a closed subalgebra C of F the existence of at least one sub-extension can

be guaranteed as will be seen in the next result. Determining the existence of sub-

extensions beginning with a specified subalgebra of D will be addressed later in this

section.

Lemma 4.1.2. Given E ∈ ext(F ,D) with middle term E, let C be a closed subal-

gebra of F . Then there exists at least one sub-extension with last term C which is

universal as a Diagram I type completion. In fact any other sub-extension ending

with C is a sub-extension of the universal one.

Proof. Let B = β−1(C), which is closed. It is claimed the universal sub-extension is

as follows:

0 // D α // B
β|B // C // 0

This is a sub-extension by Proposition 4.1.1 since α(D) = β−1(0) ⊂ B, and B
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trivially contains a cai for α(D). To see the above is the universal completion of the

Diagram I form below,

C_Ä

²²

0 // D α // E β
// F // 0

one must check that any sub-extension with last algebra C has a subalgebra of B as

its middle algebra and the first algebra a subalgebra of D. This is also trivial since

the middle algebra, call it B1, is a subset of β−1(C) = B. The first algebra of any

sub-extension by Proposition 4.1.1 is α−1(α(D) ∩B1) ⊂ D.

For a given closed subalgebra C of F there will generally be many sub-extensions

with last algebra C. It is also generally true that given A and C as closed subalgebras

of D and F respectively with A containing a cai, the middle algebra is not uniquely

determined. As in the proof of Lemma 4.1.2, if B1 and B2 are subalgebras of B with

D ∩ B1 = D ∩ B2, then there would be two sub-extensions with middle algebras B1

and B2, and same first and last algebras.

Looking at the situation where A ⊂ D contains a cai, by Proposition 4.1.1 the

subalgebras B of E such that D ∩ B = A and β|B is a complete quotient morphism,

are in bijective correspondence to sub-extensions with A as the first term. If further

the sub-extensions are to be characterized by A and C rather than A and B, the

situation is more complicated as seen in Lemma 4.1.2. If, however, A is required

to contain a cai for D, then such a characterization is more straightforward. This
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requirement is not without merit on its own since it would be true in the case D is a

C*-algebra generated by A, which by [5, Lemma 2.1.7] implies A and D share a cai.

Lemma 4.1.3. Let E be an extension as in Proposition 4.1.1 with τ is the Busby

invariant of E. Let A be a closed subalgebra of D which contains a common cai for D.

Denote by ĵ : Q(A) → Q(D) the canonical complete isometry from Corollary 2.1.4

which is induced by the inclusion morphism j : A → D. If C is any nontrivial closed

subalgebra of F , a sub-extension can be formed beginning with A and ending with C

if and only if there exists a completely contractive morphism τ ′ : C → Q(A) such that

τ ′ = ĵ−1◦τ|C . Additionally, given C and A, the middle algebra is uniquely determined.

By the requirement on τ ′, it will necessarily be the case that τ(C) ⊂ ĵ(Q(A)) for the

sub-extension to exist.

Proof. Suppose that τ ′ = ĵ−1 ◦ τ|C : C → Q(A) exists. This gives an exact sequence

with first term A and last term C. Let PB1 be the pullback construction due to

τ ′, with α′ and γ1 the canonical associated morphisms to the pullback. A morphism

between extensions will be constructed as follows:

0 // AÄ _

²²

α′ // PB1

²²
Â
Â
Â

γ1
// CÄ _

²²

// 0

0 // D α // E β
// F // 0

With τ ′ = ĵ−1 ◦ τ by hypothesis, Theorem 3.5.5 guarantees the existence of a

unique morphism, call it δ : PB1 → E , which is a complete isometry by Lemma 3.3.3.

Let B be the range of this complete isometry giving a sub-extension with B uniquely
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determined via the uniqueness of δ.

Suppose a sub-extension exists beginning with A and ending with C with Busby

invariant τ ′. Let δ : B → E be the middle morphism which makes the diagram

commute. Again by Theorem 3.5.5 the existence of the middle morphism requires

ĵ ◦τ ′ = τ ◦k where k is the inclusion of C into F and apparently τ ′ = ĵ−1 ◦τ|C . Using

Theorem 3.5.5, the morphism between the sub-extension and original extensions

which makes the diagram commute, is unique.

The following lemma will be helpful for the next theorem and could be considered

a corollary of Theorem 3.5.2 or Lemma 3.5.3.

Lemma 4.1.4. Suppose that A and D are in the category UAOA and A ⊂ D such

that each shares a common cai. Then M(A) ⊂ M(D) completely isometrically

isomorphically.

Proof. Let ι : A → D be the inclusion morphism which is a complete isometry and

multiplier nondegenerate since they share a common cai. By Theorem 3.5.2 this

extends to a complete isometry ι̂ : M(A) →M(D) giving the result.

Theorem 4.1.5. Given an extensions of operator algebras as follows:

E : 0 // D α // E β
// F // 0

and an approximately unital nontrivial closed subalgebra A of D such that A contains

a cai for D, then there is a bijective correspondence between the equivalence classes
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of sub-extensions of E (under strong isomorphism) beginning with A and nontrivial

closed subalgebras C of G ⊂ F defined as:

G = {c ∈ F : ∃ b ∈ E with bα(A) + α(A)b ⊂ α(A) and β(b) = c}.

Proof. First suppose there is an sub-extension of C by A with middle algebra B. As

an exact sequence, A is an ideal in B so that for all b ∈ B, bα(A) + α(A)b ⊂ α(A).

To see C ⊂ G, note that with β(B) = C, for every c ∈ C there is a b ∈ B with

b ∈ β−1(c) such that bα(A)+α(A)b ⊂ α(A). To see that this B is the unique middle

algebra in such a sub-extension, apply Lemma 4.1.3.

Now let C be a closed subalgebra of G and define

B = {b ∈ β−1(C) : bα(A) + α(A)b ⊂ α(A)}.

This is a closed subalgebra of E . Also α(A) ⊂ B since β(α(A)) = 0 and A is a

trivial ideal of itself. To see α(A) = Ker(β|B), first note that Ker(β|B) ⊂ α(D). Let

α(x) ∈ Ker(β|B) and (et) be a common cai for A and D which exists by hypothesis.

By definition of B, xet ∈ A giving that x ∈ A. By Proposition 4.1.1, there is a

sub-extension with algebras A,B and C. That this is the unique such sub-extension,

follows from the previous paragraph.

Remarks. 1.)There is a largest such sub-extension, that is

0 −→ A
α−→ {b ∈ E : bA + Ab ⊂ A} β−→ G → 0.
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It is easy to see that any other sub-extension with first algebra A would be a sub-

extension of the above extension since the above middle algebra is the largest subal-

gebra of E containing A as an ideal.

2.) If A = D the situation is covered in Chapter 2 as a Diagram I completion.

4.2 Examples

The next lemma will be used to construct examples where sub-extensions can be

used to prove certain types of extensions are split.

Lemma 4.2.1. Given an extension E as in Proposition 4.1.1 with D also a C*-algebra,

then there exists a nontrivial sub-extension of C*-algebras if and only if 4(F) :=

F ∩ F∗ is nontrivial.

Proof. It is know that a completely contractive homomorphism from a C*-algebra

into a Banach algebra has a C*-algebra as its range by [5, 2.1.2]. From this, if

E is the middle algebra of E, then α(D) ⊂ 4(E) 6= 0 since α is a one-to-one.

As an ideal in E , it is also an ideal in 4(E). Suppose 4(F) is nontrivial. From

Lemma 4.1.3 a sub-extension exists with first algebra D and last algebra 4(F)

by restricting τ to 4(F) which again is a ∗-homomorphism. By Proposition 3.2.1

the middle algebra is a C*-algebra, call it X. As in the proof of Theorem 4.1.5,

X = β−1(4(F)). It is claimed 4(E) = X. As a C*-algebra, X ⊂ 4(E). With

β(4(E)) ⊂ 4(F), 4(E) ⊂ X so X = 4(E).

Conversely, from the above discussion supposing there is a sub-extension of
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C*-algebras, then 4(F) is nontrivial.

Examples. 1.) Every extension of the upper triangular matrix algebra Tn by K is

split. To see this, suppose that we have an extension

0 // A
α // B

β
// Tn

// 0,

where A is a C*-algebra. It follows that α(A) ⊂ 4(B) = B ∩ B∗. By Lemma 4.2.1

there is a sub-extension

0 // A
α // 4(B)

β
// Dn

// 0,

where the diagonal matrix algebra Dn = 4(Tn).

If A = K, then this is just an extension of `∞n by K and the n minimal projections

in Dn can be lifted via β to n mutually orthogonal projections pi in 4(B) (see [9]).

It is common notation to define eij as the matrix with all zeros except a 1 in the i, j

position. Pick contractions Ri ∈ B with β(Ri) = ei,i+1 ∈ Tn. By replacing Ri with

piRipi+1 it can be assumed Ri = piRipi+1. Define bij = RiRi+1 · · ·Rj−1, for i < j

and bii = pi. A map, call it γ, can be defined which takes a matrix in Tn of the form

(i ≤ j) [λij] →
∑

ij λijbij ∈ B is a completely contractive homomorphism by a result

in McAsey and Muhly (see [24]). To be splitting for the extension, β ◦ γ must be the

identity on Tn. This can be shown by the following calculation:

(β ◦ λ)([λi,j]) = β(
∑
ij

λijbij) =
∑
ij

β(λijbij) =
∑
ij

λβ(bij).
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The calculation is done by showing β(bij) = eij. By the way bij is defined, this would

be the case.

2.) Every unital extension of the disk algebra, or more generally of Popescu’s

noncommutative disk algebra An (see [27]), has a strongly unital splitting. This

follows from the associated noncommutative von Neumann inequality. For example,

unital morphisms on the disk algebra are in bijective correspondence with contrac-

tions in the algebra that the morphism maps into; and if the latter algebra is a

quotient algebra then this contraction can be lifted and hence the morphism too.

By a similar argument, every nonunital extension of An by K splits. For the bidisk

algebra A(D2), the obvious argument for the disk algebra can be followed to see that

the splitting of the unital extension of A(D2) by the compacts amounts to lifting

commuting pairs of contractions in B /K to commuting pairs of contraction in B and

Ando’s theorem for such pairs ([5, 2.4.13]). It is known that some such pairs do lift,

while others do not and so there are quite nontrivial extensions in this case. However

for the tridisk algebra A(D3), and for algebras of analytic functions on other classical

domains, the argument above based on von Neumann inequalities fails, although it

is clear that one will usually get non-split unital extensions, and an Ext semigroup

which is nontrivial.

The subject of corona extendability will be treated later, but the following propo-

sition deals with a simple, but common, example of it.

Proposition 4.2.2. Given an extension E ∈ ext(C,A) with C nonunital there exists

an extension of C1 by A containing E as a sub-extension. Furthermore, if E1 ∈
ext(C1, A), then there is a sub-extension of E1 contained in ext(C, A).

74



Proof. For the first assertion, note that τ , the Busby invariant of the original exten-

sion, extends to a unital completely contractive morphism from τ1 : C1 → Q(A) as

does β1 : B1 → C1 by Meyer’s Unitization Theorem. Designate α′ : A → B1 with

α′(a) = α(a). It is clear α′(A) is an ideal in B1 and is the kernel of β1 thus giving a

morphism of extensions as follows:

0 // A
α′ // B1

β1
// C1 // 0

0 // A
α // B

β
//

?Â

OO

C //
?Â

OO

0.

Suppose there is an extension of C1 by A with middle algebra B. Since α(A) ⊂ B,

by Lemma 2.1.2, β|B is a complete quotient morphism. It is clear C ⊂ G as defined

in Theorem 4.1.5. Since β(1B) = 1C , and β−1(1C) = {1B + a : a ∈ A}, it is clear

B = β−1(C). This gives a sub-extension of C by A by Theorem 4.1.5.
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Chapter 5

Covering Extensions

5.1 Existence of Covering Extensions

Given an extension of operator algebras that contains a sub-extension of subalgebras,

the original extension will be said to be a super-extension of the sub-extension. The

question which will be considered in this chapter is given an extension of operator

algebras, can a super-extension be constructed extending the original morphisms

α and β to containing operator algebras D, E and F with the extension of β a

complete quotient morphism onto F and Ker(β) = D. In other words, can the

following diagram be formed, with α′ and β′ the extensions of α and β:

0 // A
α //

Ä _

²²

B
β

//
Ä _

²²

C //
Ä _

²²

0

0 // D α′ // E β′
// F // 0.
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One way to construct a superextension is to let F = C and employ a Diagram III

technique which will be developed later. The universal completion will require A

and D to contain a common cai. Of particular interest will be when the algebras in

the second line are the C*-algebras generated by the algebras in line one, and this

will be used in developing Diagram IV theory in particular. In this C*-cover case the

superextension will be called a covering extension. To simplify the discussion it will

sometimes be assumed A ⊂ B and C = B/A as well as considering the algebras in

the top line to be subalgebras of the respective C*-covers as shown in the following

diagram:

0 // i(A)Ä _

²²

α // j(B)
β

//
Ä _

²²

k(C) //
Ä _

²²

0

0 // (D, i) α′ // (E , j)
β′

// (F , k) // 0.

(5.1.1)

Generally for the following results the injection morphisms, namely i : A → C∗
i (A),

j : B → C∗
j (B) and k : C → C∗

k(C), will be suppressed unless needed for a specific

purpose as in the next result. This theory will now be developed starting with the

relationship of the respective Busby invariants for the original and covering exten-

sions.

Lemma 5.1.1. Given an extension of C by A and a covering extension as in Diagram

5.1.1, if τ is the Busby invariant of the original extension and τ ′ the Busby invariant

of the covering extension, then

τ ′|C ◦ k = ĩ ◦ τ
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where k : C → F and ĩ : Q(A) → Q(D) is the canonical morphism induced by i as in

Lemma 3.5.3. Additionally, if î : M(A) →M(D), σ : B →M(A), σ′ : E →M(D)

are the canonical morphisms, then σ′|B ◦ j = î ◦ σ.

Proof. Note that any cai of A is a cai of D, giving i is proper, so the first inclusion

morphism is proper. By Theorem 3.5.5, given the existence of the middle morphism,

the Busby invariants are related by ĩ ◦ τ = τ ′|C ◦ k. The second assertion follows

directly from Lemma 3.5.4 since i is proper and the first two morphisms are the

embedding of ideals.

Proposition 5.1.2. Given an approximately unital ideal A in an operator algebra

B and an extension E of C by A with middle algebra B, then there is a bijective cor-

respondence between the equivalence classes of C*-covers (E , j) of B and equivalence

classes (with respect to strong isomorphism) of covering extensions of E.

Proof. Using notation from Diagram 5.1.1, let (E , j) be a C*-cover of B. Set D to be

the C*-algebra generated by j(A) inside E which is an ideal by Lemma 2.2.1. Now set

F = E/D giving an extension of C*-algebras. It remains to see that F is a C*-cover

of C ∼= B/A. This follows in a similar manner to the second half of the proof of

Lemma 2.2.4. To see this is unique up to strong isomorphism, by Lemma 5.1.1,

τ ′|C = ĵ|A ◦ τ and with C generating, τ uniquely determines τ ′.

In Chapter 3 it was noted that the term “Busby invariant” typically applies to

the C*-algebra theory. However, by Proposition 5.1.2 the term Busby invariant for

extensions of operator algebras as defined in this thesis is appropriate since it can be
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considered the restriction of the associated C*-algebra Busby invariant for a covering

extension. This section ends with two lemmas regarding properties of a covering

extension. The second lemma could be considered a corollary of Lemma 5.1.1.

Lemma 5.1.3. In the definition of a covering extension it is unnecessary to designate

the middle C*-algebra as a C*-cover for B. This is automatic assuming D and F
are C*-covers of A and B respectively. Additionally, if the first two C*-algebras are

C*-covers, the third one will be also.

Proof. It will be assumed the following morphism between extensions exists with

either the outer C*-algebras, or the first two C*-algebras in the second line, being

C*-covers. For simplicity it will be taken that C = B/A and F = E/D as well as

suppressing the horizontal arrows in the calculations.

E1 : 0 // A

µ

²²

α // B
β

//

δ

²²

B/A //

ν

²²

0

E2 : 0 // D α′ // E β′
// E/D // 0.

First assume that D and E/D are C*-covers of A and B/A respectively and let G be

the C*-algebra generated by B inside E . The image of G under β′ must be a C*-cover

of B/A as in the proof of Lemma 3.5.3, so must be all of E/D. The ∗-homomorphism,

β′|G a complete quotient morphism, then by Proposition 4.1.1 a sub-extension of F
by D exists with middle algebra G. By Lemma 4.1.3, the middle algebra is uniquely

determined by the other two. Hence, G ∼= E .
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Now suppose that the first two C*-algebras are C*-covers. By the proof of Propo-

sition 5.1.2, E/D is a C*-cover for B/A.

Lemma 5.1.4. Let E be an extension of operator algebras of C by A with middle

algebra B, and let E∗ be a covering extension. Let (D, i) be the associated C*-cover

of A and (E , j) the associated C*-cover of B. If σ : B →M(A) and σ′ : E →M(D),

then σ′ ◦ j = î ◦ σ where î : M(A) → M(D). Also, if σ̂ : M(B) → M(A),

σ̂′ : M(E) → M(D) and ĵ : M(B) → M(E) are the canonical extensions, then

î ◦ σ̂ = σ̂′ ◦ ĵ.

Proof. With i : A → D being proper, Lemma 5.1.1 shows that σ′ ◦ j = î ◦ σ. This

gives that the right face on the diagram below commutes.

M(B) σ̂ //

ĵ

²²

M(A)

î

²²

BT4

ggOOOOOOOOOOOOO

σ
<<xxxxxxxxx

j

²²

M(E) σ̂′ // M(D)

ET4

ggOOOOOOOOOOOOO

σ′
<<xxxxxxxxx

The bottom and top faces commute based on standard extensions to the multiplier

algebras. The left side commutes as the typical embedding of M(A) ⊂M(E). It is

easy to see that the back face commutes if σ̂ and ĵ are restricted to B. This leaves

just the right face. Since î ◦ σ̂|B = σ̂′ ◦ ĵ|B , and each can extend to M(B), by the

uniqueness of the extensions we have î ◦ σ̂ = σ̂′ ◦ ĵ.
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5.2 Partial Ordering of Covering Extensions

There is an ordering on the C*-covers of an algebra in the category OA. If (j1,D1)

and (j2,D2) are C*-covers of A, then D1 ≤ D2 if and only if there exists a surjective

∗-homomorphism from π : D2 → D1 such that j1 = π ◦ j2. The next two lemmas

show this ordering on the C*-covers of the middle algebra of an extension translates

to an associated ordering on the other two C*-covers of a covering extension. The

ordering of C*-covers of B, the middle algebra of an extension of C by A, extends to

a partial ordering on the covering extensions themselves. This ordering of covering

extension will be based on the existence of a morphism between covering extensions.

Lemma 5.2.1. Given an extension

0 // A
α // B

β
// C // 0,

consider the mapping suggested in the proof of Proposition 5.1.2 of equivalence classes

C*-covers of B to the equivalence classes of C*-covers of A, and the mapping of the

equivalence classes of C*-covers of B to equivalence classes of C*-covers of C. These

mappings preserve the natural ordering of C*-covers, with the first mapping also

surjective.

Proof. Let SA be the set of equivalence classes of C*-covers of A, SB the similar set

for B and SC the similar set for C. First, consider the mapping suggested in the proof

of Proposition 5.1.2 and call it γ : SB → SA. It is clear γ((j, E)) = (j|A ,D) where D
is the C*-algebra generated by j(A) inside E . This is a C*-cover of A showing γ is
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defined for all C*-covers of B. To see γ respects the natural ordering of C*-covers, let

(j, E1) ≤ (j′, E ′) be C*-covers of B and (j|A ,D) and (j′|A ,D′) the respective C*-covers

of A inside E and E ′. Let π : E ′ → E . Clearly π restricts to a ∗-homomorphism π|D

with range D′ giving (j|A ,D) ≤ (j′|A ,D′).

To see γ is surjective, let (µ,D) be a C*-cover for A. By Corollary 2.1.4, Q(A) ⊂
Q(D) completely isometrically isomorphically. Let µ̃ be this complete isometry. If

τ is the Busby invariant of the original extension, then µ̃ ◦ τ : C → Q(D). This

extends to a ∗-homomorphism τ ∗ : C*
max(C) → Q(D) giving an extension of C*

max(C)

by D. Suppose X is the middle algebra of this extension. Since µ̃ ◦ τ = τ ∗|C , by

Theorem 3.5.5 there exists a morphism from δ : B → X, which is a complete isometry

by Lemma 3.3.3. Evidently X is a C*-cover of B by Lemma 5.1.3, containing D
completely isometrically isomorphically.

Concerning the second mapping, let λ : SB → SC . If (j, E) is a C*-cover of B it

will contain a C*-cover of A, namely D, generated by j(A). By Lemma 5.1.3, F is

a C*-cover of B/J and hence of C. To see this preserves the natural ordering, let

(i, E1) ≤ (j, E2) be C*-covers of B with π : E2 → E1 the canonical ∗-homomorphism

with π ◦ j = i, and (j|A ,D1) and (j|A ,D2) the respective C*-covers of A inside E and

E ′. There is a natural ∗-homomorphism π′ : E2/D2 → E1/D1. That is for η ∈ E2,

π′(η + D2) = π(η) + π′(D2) = π(η) + D1. Let j′ be the natural imbedding of B/A

into E2/D2, which takes b + A to j(b) + D2. Define i′ as the natural imbedding of

B/A into E1/D1 by i′(b + A) = i(B) +D1 for b + A ∈ B/A. With these definitions,

it is clear i′(b + A) = i(b) +D = π′(b +D2) = (π ◦ j′)(b + A).
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The next two examples show that the first map is not generally injective and the

second map is not generally surjective.

Example 5.2.2. That γ is not generally injective will be demonstrated by the fol-

lowing example. Let A = C and

B =




∗ 0 0

0 ∗ ∗
0 0 ∗




.

It is known C*
e(B) = C⊕∞M2 and

C*
max(B) = C⊕∞{f ∈M2(C([0, 1]) : f(0) is a diagonal matrix}

with A embedded as the 1-1 entry in each C*-algebra.

Example 5.2.3. To see that the second map in Lemma 5.2.1 is not generally sur-

jective even if A is completely essential in B, let A = K and C = T2, the upper

triangular matrices in M2. Let u be the infinite matrix with a zeroes everywhere

except as follows. There will be a one in the 1,2 entry. Thereafter the nonzero en-

tries, which equal 1, will follow the recursive formula: for n = 0, i0, j0 = 1, 2 and for

n ≥ 1, in, jn = in−1 + 4, jn−1 + 4. Let p be the projection with a one in the i − i

position if i is odd and zero if i is even. Then p⊥ is the diagonal matrix with zero

when i is odd and one when i is even. Note that uu∗ − p /∈ K and u∗u − p⊥ /∈ K
and pp⊥ = u2 = up = p⊥u = 0 and u = pu = up⊥.. Define a homomorphism

τ : C → B /K by
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τ







a b

0 c





 = aṗ + bu̇ + cṗ⊥

where ṗ, u̇ and ṗ⊥ are the corresponding elements in B /K. It is easy to see τ is

linear. To see it is multiplicative:

τ







a b

0 c





 τ







r s

0 t





 = (aṗ + bu̇ + cṗ⊥)(rṗ + su̇ + tṗ⊥) =

arṗ2 + asṗu̇ + atṗṗ⊥ + bru̇ṗ + bsu̇u̇ + btu̇ṗ⊥ + crṗṗ⊥ + csṗ⊥u̇ + ct(ṗ⊥)2 =

arṗ + (as + bt)u̇ + ctṗ⊥ = τ







ar as + bt

0 ct





 = τ







a b

0 c







r s

0 t





 .

Since τ is linear, it is bounded, but to see it is a complete contraction, we shall

look at η : C → B by

η







a b

0 c





 = ap + bu + cp⊥.

The image under η is the infinite diagonal matrix with alternating copies of




a b

0 c




and




a 0

0 c


 along the diagonal. For a diagonal matrix, the norm is the supremum

of the norms of the diagonal submatrices, so η is a complete isometry and commutes

with τ . This shows that τ is completely contractive.
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Suppose that τ were to be extended to a ∗-homomorphism τ ′ : C*
e(C) = M2 →

B /K. As a ∗-homomorphism it would need to be the case that:

τ ′







0 0

b̄ 0





 = τ







0 b

0 0







∗

= b̄u̇∗.

Let e12 and e21 be the canonically denoted matrices in M2 with the second matrix

the adjoint of the first. Clearly τ ′(e12e21) = τ ′(e11) = ṗ. By the above τ ′(e12e21) =

τ ′(e12)τ
′(e21) = u̇u̇∗. Since uu∗ − p /∈ K, then u̇u̇∗ 6= ṗ.

In proving τ above is a completely contractive morphism, it was also shown,

with the existence of η, there is a splitting of the extension by Theorem 3.4.3. Let

γ : C → PB be the morphism due to the splitting, where PB is the pullback

due to τ . Then σ : PB → B is a complete isometry. To see this, note that η is

a complete isometry, and hence so is σ ◦ γ. If X is the range of η, then γ ◦ σ :

X → C is the inverse of σ ◦ γ making each complete isometries. Consequently the

extension of C by K is completely essential. With K a C*-algebra, and the manner

in which γ is defined, indicates that C*
e(PB) is the C*-algebra generated by PB in

B. This example shows that given operator algebras A and B, the quotient of the

C∗-envelopes C*
e(B)/ C*

e(A) 6= C*
e(B/A).

The above example shows it is possible that there may be no covering extension

for given C*-covers of A and C. This motives the next proposition.

Proposition 5.2.4. Given an extension of C by A with C*-covers F and D of C

and A respectively, a covering extension will exist with D and F as the first and last
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algebras if and only if the Busby invariant, τ extends to a ∗-homomorphism τ ′ from

F into Q(D).

Proof. Suppose that τ extends to a ∗-homomorphism from τ ′ : F → Q(D). By

Theorem 3.4.4 there is an extension with first algebra D and last algebra F . By

Lemma 5.1.3 the middle algebra is a C*-cover of B giving a covering extension with

the C*-cover of B.

Now suppose there exists a covering extension with first and third algebras D
and F respectively. By Lemma 5.1.1 the Busby invariant of the extension of C by

A is associated with the Busby invariant of the covering extension by τ ′|C = ĩ ◦ τ ,

where ĩ is the complete isometry from Q(A) into Q(D). Since C generates F , the

restriction to C uniquely determines τ ′, which can be taken to extend τ .

Lemma 5.2.5. There exists a partial ordering on the equivalence classes of covering

extensions as follows. Given two covering extensions E1 and E2 of E, an extension

of operator algebras, then E1 ≤ E2 if and only if there exist a morphism of extensions

from E2 onto E1 with each vertical arrow the unique morphism from the ordering on

the C*-covers of A, B, and C as follows:

E2 : 0 // D2

µ

²²

α2 // E2
β2

//

δ
²²

F2
//

ν

²²

0

E1 : 0 // D1
α1 // E1

β1
// F1

// 0.

This is equivalent to saying E1 ≤ E2.

Proof. To show the definition of the ordering on covering extensions is equivalent
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to saying E1 ≤ E2, first, given the above morphisms of extensions, then there exists

δ : E2 → E1 fitting with the ordering on C*-covers of B. For the other direction,

given δ : E2 → E1, by Proposition 5.1.2 there exist two covering extensions with

middle C*-algebras E2 and E1. The bijection also indicates that the first C*-algebras,

say D2 and D1 respectively, can be taken to be the C*-algebras generated by A in

the respective C*-algebras of B. The third C*-algebras can be taken to be E2/D2

and E1/D1. Furthermore, by Lemma 5.2.1 the morphisms µ and ν exist and respect

the order on C*-covers of A and C respectively. It only remains to show the above

diagram would be commutative. By uniqueness of µ, that is i1 = µ ◦ i2, and the

manner in which D2 and D1 were defined in Lemma 5.2.1, µ can be taken to be the

restriction of δ to D2. This gives commutativity of the first square. For the second

square, as in the proof of Lemma 5.2.1, F1 and F2 can be considered C*-covers of

B/A. Let j1 : B → E1, j2 : B → E2, k1 : B/A → F1, k2 : B/A → F2, with

β : B → B/A from the original extension. From the definition of the ordering

on C*-covers, let δ(j2(B)) = j1(B), ν(k2(B/A)) = k1(B/A). The following diagram,

taking E1/D1, E2/D2 as the third algebras if the respective covering extensions, shows

the relationship of the these morphisms.
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B

j2

²²

β
// B/A

k2

²²

E2
β2

//

δ
²²

E2/D2

ν

²²

E1
β1

// E1D1

B

j1

OO

β
// B/A

k1

OO

Commutativity of the top and bottom squares follows by noting that both k2 ◦ β

and β2 ◦ j2 take B to B/D2. A similar argument works for the bottom square. For

the commutativity of the middle square, using the relationship between ν and the

injection morphisms,

ν ◦ β2 ◦ j2 = ν ◦ k2 ◦ β = k1 ◦ β = β1 ◦ j1 = β1 ◦ δ ◦ j2.

With B generating E1 and E2, the same holds for the ∗-homomorphisms ν ◦ β2 and

β1 ◦ δ, and the diagram commutes with the specified ∗-homomorphisms.

As discussed in [5, p.99], for any operator algebra B, if J is an ideal in C*
max(B)

such that C*
max(B)/J ∼= C*

e(B), then there is an order-reversing bijective correspon-

dence between C(B), the set of equivalence classes of C*-covers of B and the closed

ideals of J . Here the closed ideals of J relate to the universal property of the maximal

C*-cover. According to this universal property, if E is a C*-cover of B, then there

exists a necessarily surjective ∗-homomorphism π : C*
max(B) → E . If I = Ker(π),

then I ⊂ J . To see this, note that E ∼= C*
max(B)/I and by the universal property
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of the enveloping C*-cover, there exists a necessarily surjective ∗-homomorphism

π′ : C*
max(B)/I → C*

e(B). The composition of π and π′ takes C*
max(B) → C*

e(B),

so Ker(π′ ◦ π) = J showing I ⊆ J . Conversely, any closed ideal I of J gives a

C*-cover. Note that a succession of surjective ∗-homomorphisms can be formed.

That is π1 : C*
max(B) → C*

max(B)/I, and π2 : C*
max(B)/I → C*

max(J). The last arrow

exists by the Factor Theorem. Since π2 ◦ π1 is a complete isometry on B, π1 must

be a complete isometry on B. With B/I generating on C*
max(B)/I, then C*

max(B)/I

a C*-cover of B. This bijective correspondence then takes a C*-cover E → IE . From

the above discussion it can be deduced that E1 ≤ E2 if and only if IE2 ⊆ IE1 .

There is a complete lattice on the closed ideals of J with the ordering I1 ≥ I2 if

I2 ⊆ I1. This is a reverse ordering on the C*-covers of B by the last statement in the

previous paragraph. The set Ĵ , called the spectrum of J , is the equivalence classes

of irreducible representations of J . It can be given a topology, called the Jacobson

topology [13, 3.1]. With this topology, by [13, Theorem 3.2.2], there is a lattice

isomorphism from the closed two-sided ideals of J and the open sets in the Jacobson

topology on Ĵ . Relating this isomorphism to the bijection described above, there is

a lattice anti-isomorphism between the open sets in Ĵ and C(B). From Lemma 5.2.5,

there is an ordering on the covering extensions of an extension E of C by A relating

to the ordering on the C*-covers of the middle algebra B. This order can be related

to the closed ideals of J ⊂ C*
max(B). This gives a order reversing bijection from the

covering extensions and the open sets in Ĵ .

Another proof of Lemma 2.2.2 can now be offered. Without assuming C*
e(B)

contains an enveloping C*-algebra for A as an ideal, as in the proof of Lemma 5.2.1
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a covering extension for any C*-cover of A can be found using the universal property

of the maximal C*-cover. This can be done for C*
e(A) as follows:

0 −→ C*
e(A)

α−→ E β−→ C*
max(C) −→ 0.

By Proposition 5.1.2 there is a covering extension with middle C*-algebra C*
e(B).

With the ordering on covering extensions from Lemma 5.2.5, the first C*-algebra of

this covering extension dominates C*
e(A) in the ordering of C*-covers of A. Hence it

must be C*
e(A) indicating C*

e(A) is an ideal in C*
e(B).

5.3 Maximal and Minimal Covering Extensions

In Proposition 2.2.3, several equivalent conditions for an ideal A in B to be completely

essential was given. Using covering extensions, an additional equivalent expression

can be given. Recall that for C*-algebras an extension is essential if and only if the

first C*-algebra is an essential ideal in the second C*-algebra, or the morphism we

have called σ is one-to-one. A covering extension will be called an essential covering

extensions of E if it is a covering extension of E and it is essential in the C*-algebra

sense.

Proposition 5.3.1. Given operator algebras A,B and suppose that A contains a cai

and is an ideal in B. Then there is an extension of B/A by A and the following are

equivalent:

(i) A is a completely essential ideal in B.
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(ii) There exists an essential covering extension of the extension of B/A by A.

(iii) There exists an essential covering extension as in (ii) where the first two terms

are C*-envelopes.

Proof. (i) ⇒ (ii) By Proposition 2.2.3 to say A is completely essential in B is equiv-

alent to saying there exists a C*-cover of B, call it E , containing a C*-cover of A,

call it D as an essential ideal. Form the covering extension of E/D by D which is an

essential extension which is a covering extension by Proposition 5.1.2.

(i) ⇒ (iii) By Proposition 5.1.2 there is a covering extension with C*
e(A) and

C*
e(B) as the first two terms. By 2.2.3 C*

e(B) contains C*
e(A) as an essential ideal

giving that the referenced covering extension is essential.

(iii) ⇒ (ii) Obvious.

(ii)⇒ (i) Let C∗
j (B) be a C*-cover of B such that the C*-algebra generated by A in

C∗
j (B) is an essential ideal. The canonical morphism σ′ : C∗

j (B) →M(C∗
i (A)) is an

injective ∗-homomorphisms and so is a complete isometry. The restriction to B will

also be a complete isometry. Suppressing the inclusion morphisms into the C*-covers,

as a covering extension, σ′|B must agree with σ from the original extension into the

completely isometrically isomorphic copy of M(A) in M(C∗
i (A)) by Lemma 5.1.1.

This gives the restriction of B into M(A) is a complete isometry and the original

extension is completely essential.

In the statement of the following corollary the term quotient extension is used.

Since all ∗-homomorphism between C*-covers, when they exist, are surjective, these
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surjective ∗-homomorphisms are, in operator algebraic terms, complete quotient mor-

phisms. The terminology in Corollary 5.3.2 is the same as that used in Lemma 3.6.2.

Corollary 5.3.2. Given a completely essential extension

E : 0 // A
α // B

β
// C // 0

and let (D, i) be a C*-cover of A, then there exists a ‘smallest’ and ‘largest’ covering

extension with first term D:

Emin : 0 // D α // E1
β

// F // 0,

Emax : 0 // D α // E2
β

// C*
max(C) // 0.

Each covering extension has an associated universal property. The minimal covering

extension Emin is a quotient extension of any other covering extension with first

term D. Also, Emin is essential. Any other covering extension with first term D is

a quotient extension of the maximal covering extension.

Proof. With the original extension being completely essential the Busby invariant τ

is a complete isometry by Lemma 3.6.1. Composing τ with the complete isometry

µ̃ : Q(A) → Q(D) is a complete isometry taking C into Q(D). Let F be the

C*-algebra generated by (µ̃◦τ)(C) in the C*-algebra Q(D). The inclusion morphism
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taking F into F ⊂ Q(D), call it τ ′, is a complete isometry giving an essential

extension of F by D. Let E1 be the pullback C*-algebra for this extension.

Given any other covering extension with first term D and last term F ′, say, let

E ′1 be the middle algebra. Let τ1 be the Busby invariant for this extension and it is

clear τ1(C) ⊂ F with τ1 mapping F ′ into F . With this understanding, τ1 = τ ′ ◦ τ1

trivially, and by Theorem 3.5.5 there is a ∗-homomorphism γ : E ′1 → E1. As both τ ′

and γ are the canonical such morphisms, by Lemma 5.2.5 there exists a commutative

diagram with arrows being the canonical such surjective ∗-homomorphisms making

Emin a quotient extension of this (or any other) covering extension with first term

D.

For the second assertion, let (F ′, k) be a C*-cover of C such that F ′ is the third

algebra in a covering extension with first algebra D. Let τ ′ : F ′ → Q(D) be the

Busby invariant for that extension. Additionally suppose that k′ : C → C*
max(C). Let

π : C*
max(C) → F ′ and τmax : C*

max(C) → Q(D) be the canonical ∗-homomorphisms

by the universal property of C*
max(C). The second ∗-homomorphism is then the

Busby invariant for the maximal covering extension above. To use Theorem 3.5.5 it

needs to be shown that τmax = τ ′ ◦ π. Viewing C ⊂ Q(D) by virtue of the original

extension being completely essential, (τmax ◦ k)(c) = c and (τ ′ ◦ k′)(c) = c for all

c ∈ C. Combining this with the universal property of C*
max(C), namely π ◦ k = k′,

gives τmax◦k = τ ′◦π◦k. Since this is true for C which generates the two C*-covers, is

true on the C*-algebras giving the existence of a surjective ∗-homomorphism between

E and the middle algebra in the second covering extension.
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For the next corollary, the C*-algebra generated by C in Q(C*
e(A)) from the proof

of Corollary 5.3.2 will be denoted by Fmin.

Corollary 5.3.3. When A is completely essential in B the surjective mapping γ

indicated in Lemma 5.2.1 which maps the C*-covers of B onto the C*-covers of A is

injective if and only if and C*
max(C) ∼= Fmin.

Proof. Suppose C*
max(C) = Fmin. Then by Corollary 5.3.2 and Lemma 3.3.3, the

minimal and maximal covering extension with first term D, where D is a C*-cover

of A, are the ∗-isomorphic. Let E be the middle algebra of this extension. Suppose

there is another C*-cover, call it E ′ of B which contains D as an ideal. Using the

universal property of the minimal extension, there is a surjective ∗-homomorphism

from E ′ → E . Now using the universal property of the maximal extension, there is a

surjective ∗-homomorphism from E → E ′ showing E ∼= E ′.

Now suppose A is completely essential in B and the mapping is injective, meaning

there is only one extension with first term D for each C*-cover D of A. By Corol-

lary 5.3.2, the minimal and maximal covering extensions exist with third C*-algebras

Fmin and C*
max(C) respectively. Since there is only one such covering extension with

first term D, these are ∗-isomorphic and C*
max(C) ∼= Fmin.

Proposition 5.3.4. With notation as in Proposition 5.2.4, suppose D and F are

C*-envelopes (respectively, maximal C*-covers) of A and C, and if a covering exten-

sion exists with these as the first and last algebras, then the middle term will be a

C*-envelope of B (respectively, maximal C*-cover of B).
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Proof. Suppose D and F are C*-envelopes of A and C respectively and that a cov-

ering extension exists. Call this covering extension E1. By Lemma 5.1.3, the middle

algebra E is a C*-cover of B. By Proposition 5.1.2, there exists a covering extension

with middle algebra C*
e(B), call it E2. By Lemma 5.2.1 there is a morphism of ex-

tensions from E1 onto E2, which implies that the first and last C*-algebras in E2 are

the C*-envelopes of A and B respectively.

Let E1 be a covering extension of C*
max(C) by C*

max(A). By Lemma 5.1.3 there

exists a covering extension with middle algebra C*
max(B), call it E2. By Lemma 2.2.4,

C*
max(A) is an ideal in C*

max(B) and C*
max(B)/ C*

max(A) is a maximal C*-cover of B/A.

With B/A ∼= C, C*
max(B)/ C*

max(A) is also a C*-cover of C. So E2 can be considered

to have C*
max(A) as the first algebra and C*

max(B)/ C*
max(A) as the last algebra. If X

is the C*-cover of B and the middle algebra in E1, then X ≤ C*
max(B) as C*-covers

of B. By Lemma 5.2.1 there is a morphism of extensions from E2 onto E1. Since

C*
max(B)/ C*

max(A) is also a maximal C*-cover of C, the rightmost vertical arrow of the

morphism between extensions is a complete isometry. By Lemma 3.3.3, the middle

arrow of the morphism between extensions is also a complete isometry, making X a

maximal C*-cover of B.

As in the last proposition, if a covering extension exists such that all C*-algebras

are actually C*-envelopes, then it will be call a C∗-enveloping extension. The original

extension itself will be said to be C∗-enveloped. If the Busby invariant τ of an

extension of C by a C*-algebra A extends to a ∗-representation C*
e(C) → Q(A),

then the extension E is C∗-enveloped. For an extension to be C∗-enveloped it would

need to be the case that C*
e(C) ∼= C*

e(B)/ C*
e(A) which is not always the case. It is
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trivially true that any extension of a C*-algebra by a non-selfadjoint operator algebra

is C∗-enveloped.

It will always be true a covering extension of maximal C*-covers exists by the

universal properties of the maximal C*-covers. The next result shows this is driven

by the middle C*-algebra of a covering extension.

Lemma 5.3.5. If the middle C*-algebra of a given covering extension is a maximal

C*-cover, then all three of the C*-algebras are maximal C*-covers.

Proof. Suppose there is a covering extension, call it E1, with first and third C*-algebras

D and F respectively and the middle C*-algebra C*
max(B). Let α : D → C*

max(B). By

Lemma 2.2.4, the C*-algebra generated by α(A) in C*
max(B) is C*

max(A). This then im-

plies that C*
max(A) ∼= C*

max(α(A)) ⊂ α(D). This gives a morphism from C*
max(A) →

D indicating D is a maximal C*-cover of A. With F ∼= C*
max(B)/ C*

max(A), again by

Lemma 2.2.4, F is a maximal C*-cover of C.

Lemma 5.3.6. If D is a C*-algebra then there is a canonical bijection from Ext(C,D)

onto Ext(C*
max(C),D) which takes the split extensions onto the split extensions.

Proof. Define γ : Ext(C,D) → Ext(C*
max(C),D) by γ(Eτ ) = Eτ∗ where τ∗ is the

extension of τ to C*
max(C). By the uniqueness of τ∗, the mapping is well defined

on Ext(C,D). To see the mapping is bijective, let B be the middle algebra in an

extension of D by C. With D its own maximal C*-cover, by Proposition 5.3.4,

the middle algebra is necessarily a maximal C*-cover of B. Every extension in

Ext(C*
max(C),D) has this form. Given an extension in Eτ ′ ∈ Ext(C*

max(C),D),
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τ ′ restricts to C into Q(D). This gives an extension in Ext(C,D) as the pre-image

of Eτ ′ under γ as well as an inverse mapping of γ. Define γ−1(Eτ ) = Eτ|C
. For

injectivity it will be shown γ−1 ◦γ = I, the identity on Ext(C,D). This is easy since

(γ−1 ◦ γ)(Eτ ) = γ−1(Eτ∗) = Eτ∗|C
= Eτ .

To see it takes split extensions to split extensions, note that if E is a split ex-

tension in Ext(C,D) there exists a morphism γ : C → B). This extends to an

∗-homomorphism from C*
max(C) → C*

max(B) making the extension split.

Proposition 5.3.7. For any separable operator algebra C,and stable approximately

unital operator algebra A, there exists an essential split extension of C by A. The

middle term may be chosen to be nonunital if desired, or to be unital if C is unital.

Proof. Let π : C*
max(C) → B(`2) be a faithful ∗-representation which is possible since

C*
max(C) is separable. Furthermore, it can be assumed that π(C*

max(C)) ∩K = 0 by

replacing π with π ⊕ π ⊕ · · · (unital case) or by 0 ⊕ π ⊕ π ⊕ · · · (nonunital case).

Now

B(`2) = M(K) ⊂M(A⊗K) ∼= M(A),

and so a faithful completely contractive representation θ : C*
max(C) → M(A) is

obtained for which it is easy to see that θ(C*
max(C)) ∩ A = (0). Consider the maps

C*
max(C) →M(A) → Q(A) → Q(C*

max(A)).

These compose to a ∗-homomorphism, by [5, Proposition 1.2.4.] Note that if θ(x) ∈
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C*
max(A), then

θ(x) ∈M(A) ∩ C*
max(A) ⊂ A⊥⊥ ∩ C*

max(A) = A,

by [5, Lemma A.2.3(4)], so that θ(x) = 0. Thus the composition of the maps in the

last centered sequence is faithful, and so completely isometric. Hence the associated

morphisms C*
max(C) → Q(A) and C → Q(A) are completely isometric and the factor

through M(A).

Example. There are many very interesting and topical examples of C∗-enveloped

extensions, for example coming from the generalization of Gelu Popescu’s noncom-

mutative disc algebra An which have attracted much interest lately. The way in

which these are usually obtained is to find a ”Toeplitz-like’ C*-algebra E with a

quotient ’Cuntz-like’ C*-algebra F which in turn is generated by a non-selfadjoint

operator algebra A. In Popescu’s original setting the picture is:

0 // K // C∗(S1, · · · , Sn) // O // 0

0 // K // ◦ //?Â

OO

An
//

?Â

OO

0.

(When n = 1, An is just the disk algebra, and the top row is just the Toeplitz

extension by the compacts.) In any such setting, by Theorem 4.1.5, thee is a

unique completion of the diagram to a subextension. Indeed, in the example above

the missing term in the diagram is the inverse image under the top right arrow

β : C∗(S1, · · · , Sn) → O of the bottom right algebra An which is the closure in
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C∗(S1, · · · , S2) of K+An. If one can show that the top right C*-algebra (F in the

language above) is a C∗-envelope of the bottom right algebra, and doing this is

currently quite an industry (initiated by Muhly and Solel), it follows from Proposi-

tion 5.3.4 that the covering extension is C∗-enveloping.
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Chapter 6

Diagrams II, III, and IV

6.1 Diagram II

Most of what follows in this section are generalizations of results for C*-algebras in

[17]. In all Diagram completions the use of covering extensions will be helpful.

Diagram II completions have the following form:

E2 : 0 // A1

µ

²²

//___ ◦

²²
Â
Â
Â

//___ ◦

²²
Â
Â
Â

// 0

E1 : 0 // A
α // B

β
// C // 0.

With the pullback algebra critical to solving these completions, there is an added

wrinkle compared to the C*-algebra theory. That is the pullback need not stay

in the category of AUOA even when all three algebras are in this category. (See
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Example 3.1.1.) After the discussion of the universal Diagram II completion, a

criteria for this completion to stay in the same category will be given.

The universal completion of type II diagrams follows the same construction as

in the C*-algebra case. For now a typical Diagram II completion will be considered

without regard for a given pullback having a cai. Given a Diagram II form as above

with µ proper, the universal completion is accomplished by two successive pullback

constructions. The first defines C1 = C ⊕Q(A) Q(A1) by the following commutative

diagram where τ is the Busby invariant of the bottom extension and µ̃ is the unital

morphism induced by µ being proper:

C1
τ1 //

ν

²²

Q(A1)

µ̃

²²

C
τ // Q(A).

(6.1.1)

The morphisms ν and τ1, the canonical projections onto the first or second coor-

dinate respectively, both are complete quotient morphisms onto their ranges. By

commutativity of the above diagram, µ̃ is also a complete quotient morphism.

The second pullback construction is the universal one defined by the completely

contractive morphism τ1 from C1 into Q(A1) as in Theorem 3.4.3. With this con-

struction, B1 = M(A1)⊕Q(A1) C1. Assuming the pullback algebra C1 has a cai, then

B1 has a cai by Lemma 3.4.1 and so this first pullback construction will be the key

for the universal completion staying in the category AUOA. To finish the Diagram II

completion, the morphism χ exists by Theorem 3.5.5 since by design µ̃ ◦ τ1 = τ ◦ ν.
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E2 : 0 // A1

µ

²²

α1 // B1
β1

//

χ

²²

C1

ν

²²

// 0

E1 : 0 // A
α // B

β
// C // 0.

(6.1.2)

To show this completion construction is universal, assume the following is another

completion with Busby invariant η.

E3 : 0 // A1

µ

²²

α′1 // B′
1

β′1 //

χ′

²²

C ′
1

ν′

²²

// 0

E1 : 0 // A
α // B

β
// C // 0.

Given the existence of the middle morphism, by Theorem 3.5.5, ν ′ ◦ τ(c) = α̃ ◦ η(c)

for all c ∈ C ′
1. This indicates ν ′ and η are coherent morphisms with τ and µ̃ in the

construction of C1 as the first pullback. The universal property of the pullback gives

a unique morphism ν ′′ : C ′
1 → C1 such that τ1 ◦ ν ′′ = η and ν ◦ ν ′′ = ν ′ giving the

following commutative diagram:

E3 : 0 // A1

α′1 // B′
1

β′1 //

χ′′

²²

C ′
1

ν′′
²²

// 0

E2 : 0 // A1
α1 // B1

β1
// C1

// 0.

The unique morphism χ′′ exists by Theorem 3.5.5 since by above τ1 ◦ ν ′′ = η. This

shows the second completion factors through the universal one.

The following lemma gives conditions for the universal completion E1 to stay in
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the same category as E1, although the hypotheses are strong.

Lemma 6.1.1. Suppose the middle algebra of E1 above is unital, then B1 of the

universal completion shown in Diagram 6.1.1 will be unital. Also, if µ : A1 → A is a

proper complete isometry and E1 is trivial, that is B ∼= A⊕∞ C and has a cai, then

B1 will have a cai.

Proof. First suppose B is unital. With β a complete quotient morphism, it must take

a unit of B to a unit of C making C unital. Then if τ, σ, and π are the canonical

morphisms associated with an extensions, τ ◦ β = π ◦ σ, with the latter composition

of morphisms necessarily unital, meaning Y = Ran(π ◦ σ is a subalgebra of Q(A)

with a unit, then τ is unital. The unit of C1 is (1C , 1Y ) and C1 is unital. Since

τ : C1 → Q(A1) would then be unital, by Theorem 3.4.4 B1 is unital.

Now suppose that B ∼= A ⊕∞ C and that B is approximately unital and µ is a

proper complete isometry. For B to have this form requires that τ = 0. In this case,

C1 = C ⊕Q(A) Q(A1) = C ⊕∞ Ker(µ̃). With µ a proper complete isometry, then

Ker(µ̃) = 0 so that C1
∼= C and has a cai.

The following proposition is from [17]. Another proof is offered.

Proposition 6.1.2. In the universal solution of Diagram 6.1.2, the square

B1
σ1 //

χ

²²

M(A1)

µ̂
²²

B
σ // M(A).
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is a pullback. In other words, B1 = C1 ⊕Q(A1) M(A1) ∼= B ⊕M(A) M(A1).

Proof. As indicated above, B1 = M(A1) ⊕Q(A1) C1, the pullback constructed from

τ1. If π : M(A) → Q(A), and taking B to be the pullback due to τ so that

B = {(m, c) : m ∈M(A), c ∈ C and π(m) = τ(c)}.

Let PB2 = B ⊕M(A) M(A1), the pullback constructed from the above diagram.

With B also a pullback,

PB2 = {((m, c),m1) : (m, c) ∈ B, σ(m, c) = µ̂(m1)}.

Taking B to be the pullback, then σ is the projection onto the first coordinate

giving m = µ̂(m1). For (m1, c1) ∈ B1, define γ : B1 → PB2 by γ((m1, c1)) =

((µ̂(m1), ν(c1)),m1). Let π1 : M(A1) → Q(A1). With (m1, c1) ∈ B1, then π1(m1) =

τ1(c1) = τ1(c,m + A1) such that τ(c) = µ̃(m1 + A1) = µ̂(m1) + A. This gives

(µ̂(m1), c) ∈ PB. Since m = µ̂(m1), we have ((µ̂(m1), c),m1) ∈ PB2. To show γ is a

complete contraction, from Diagram 6.1.2, χ : B1 → B would need to be defined by

χ((m1, c1)) = (µ̂(m1), ν(c1)). This makes sense by the above discussion. With this

understanding, γ((m1, c1)) = (χ((m1, c1)),m1) and so is a completely contractive

morphism. To see it is a complete isometry, first recognize that elements of B1 can

be written as (m1, (c,m1 + A1)), viewing C1 as a pullback. Taking the norms,
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‖(m1, (c,m1 + A1))‖ = max{‖m1‖, ‖c‖, ‖m1 + A1‖} = max{‖µ̂(m1)‖, ‖c‖, ‖m1‖} =

‖γ((m1, c, m1 + A))‖.

This would be true at all matrix levels giving γ is a complete isometry. To see it is

surjective, if ((m, c), m1) ∈ PB2, then m = µ̂(m1) so that (c,m1+A1) ∈ C1 and there

is an element in B1, namely (m1, (c,m1 + A1)), such that γ((m1, (c,m1 + A1))) =

(m, c, m1).

Proposition 6.1.3. Let B be a C*-cover for A, an operator algebra with a cai. Then

the following is a Type II diagram universal completion.

0 // A //

j

²²

M(A)
π1 //

ĵ
²²

Q(A)

j̃
²²

// 0

0 // B // M(B) π // Q(B) // 0.

Proof. Since j is a complete isometry, the induced maps into the multiplier and

corona algebras of B = C∗
j (A) are also complete isometries, the latter by Lemma 2.1.2.

The first pullback, call it PB1, is completely isometrically isomorphic to Q(A). The

second pullback, call it PB2, is completely isometrically isomorphic to M(A). This

can be seen by the respective commutative diagram.

PB1
τ1 //

β
²²

Q(A1)

j̃
²²

Q(B) Q(B)
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Here τ1 and β are the projections on the associated component and π is the canonical

morphism. With the two algebras on the bottom equal and j̃ a complete isometry,

PB1
∼= Q(A). By Proposition 6.1.2, the middle algebra of the universal comple-

tion would be M(B) ⊕M(B) M(A). This gives the middle algebra as M(A). The

Diagram II completion can be formed as follows:

0 // A //

j

²²

PB2
τ1 //

χ

²²

Q(A)

j̃
²²

// 0

0 // B // M(B) π // Q(B) // 0.

By Lemma 3.3.3 the middle morphism is a complete isometry. By definition of exten-

sion the range of χ contains A as an ideal so χ(PB2) ⊂ ĵ(M(A)) by Lemma 7.1.5.

To see ĵ(M(A)) ⊆ χ(BP2), let m ∈ ĵ(M(A)), π(m) = m + B. However, with

m ∈M(A) (suppressing ĵ), there exists a coset m+A ∈ Q(A) with j̃(m+A) = m+B

so that (m,m + A) ∈ PB2 and m ∈ χ(PB2) and PB2
∼= M(A).

The above lemma gives a sense of connecting the type II diagram completions

with the Busby invariant of Chapter 2. Note that if C is an approximately unital

operator algebra and there is an extension of C by A, this extension can be considered

to be a Diagram II completion of the diagram in Proposition 6.1.3. This must factor

through the universal completion, giving a complete contraction from C to Q(A).

Additionally by Proposition 6.1.2, M(A) ∼= M(B)⊕Q(B) Q(A), which is easily seen

to be true.
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Lemma 6.1.4. Suppose µ, the first vertical arrow in type II diagram, is a com-

plete isometry. Then the universal completion will be strongly isomorphic to a sub-

extension of E1.

Proof. By Lemma 3.3.3 it is enough to show that ν : C1 → C is a complete isom-

etry. Recall that C1 = C ⊕Q(A) Q(A1). With µ a complete isometry, µ̃ is also by

Lemma 3.5.3. The morphism ν is the projection onto the first coordinate of the

ordered pair (c,m + A1). With µ̃ a complete isometry, ‖c‖ ≥ ‖τ(c)‖ = ‖m + A1‖.
Hence, ‖(c,m + A1)‖ = ‖c‖ and at all matrix levels, giving that ν is a complete

isometry.

Remarks. 1.) Suppose the universal complete of a Type II diagram is given as

in Diagram 6.1.2. An interesting question is, given a covering extension for E1 in

Diagram 6.1.2, E1∗ say, and a C*-cover for A1, (D1, i) with a proper morphism from

D1 intoD, what are the necessary hypotheses for the universal completion of Diagram

6.1.3 below to involve a covering extension for the universal completion. In other

words, is E3 below strongly isomorphic to a covering extension for E2.

E3 : 0 // D1

µ∗
²²

α′ // E ′
χ′

²²

β′
// F ′

ν′
²²

// 0

E1∗ : 0 // D α∗ // E β∗
// F // 0.

(6.1.3)

In the above diagram the ∗ subscripts would indicate the morphisms are the

extensions of µ, α and β from Diagram 6.1.2. Even in the case µ is a complete

isometry, where it is most likely the answer would be in the affirmative, a proof is
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quite involved. An outline of such a proof would first require verifying the relationship

of the Busby invariants of the E1∗ and E3. With E3 a subextension of E1∗ by

Lemma 6.1.4, Lemma 4.1.3 would need to be satisfied as well as the the canonical

Busby invariant for E3 as the universal completion. This, in fact, is the case. The

difficulty comes in using this relationship to show that F ′ is generated by ν(C ′). After

determining F ′ is a C*-cover for ν(C1), finally using properties of sub-extensions and

covering extensions, it would need to be determined that E ′ is a C*-cover for χ(B1).

2.) One can also consider a maximal covering extension of Diagram 6.1.3 as

below:

E ′
2 : 0 // C*

max(A1)

µ∗
²²

α1∗ // C*
max(B1)

β1∗ //

χ∗
²²

C*
max(C1)

ν∗
²²

// 0

E1∗ : 0 // D α∗ // E β∗
// F // 0.

This is certainly a Diagram II completion, but not likely to be a universal such one.

However, it has possibilities, using some of the previous results in this section, to

give new identifications for maximal C*-covers.

6.2 Amalgamated Free Products and Type III Di-

agram Completions

A Diagram III completion has the form:
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E1 : 0 // A
α //

µ

²²

B

²²
Â
Â
Â

β
// C //

²²
Â
Â
Â 0

E2 : 0 // A1
//___ ◦ //___ ◦ // 0.

Taking µ to be proper, the universal completion utilizes repeating C as the third

algebra and is of the form:

0 // A
α //

µ

²²

B

χ

²²

β
// C // 0

0 // A1
α1 // B1

β1
// C // 0.

For this top line to make sense, there must be a morphism τ1 : C → Q(A1). Re-

call that with µ proper, there is a canonical morphism µ̃ : Q(A) → Q(A1) by

Lemma 3.5.3. Forming the composition of the Busby invariant τ from the top line

with µ̃ accomplishes this. By Theorem 3.5.5, with τ1 = µ̃ ◦ τ , the middle morphism

χ exists. Also in this case B1 has a cai by Lemma 3.4.1 if C is approximately unital.

Suppose there is another Diagram III completion. This would require an operator

algebra C ′, an extension of C ′ by A1 and a completely contractive morphism ν ′ :

C → C ′, which would form a commuting diagram with E1. The existence of the

middle vertical arrow requires that τ ′ ◦ ν ′ = µ̃ ◦ τ by Theorem 3.5.5. This means

τ ′ ◦ ν ′ = τ1, giving a middle morphism from B1 → B′ and the following commutative

diagram. This shows any other Diagram III completion factors through the universal

completion.
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Eτ : 0 // A
α //

µ

²²

B

χ

²²

β
// C //

ν

²²

0.

Eτ1 : 0 // A1
α1 // B1

β1
//

χ′

²²

C //

ν′
²²

0

Eτ ′ : 0 // A1
α′ // B′ β′

// C ′ // 0.

We will see that in the Diagram III completion above B1 is the operator algebra

amalgamated free product A1?AB. In this section, results regarding Type III diagram

completions will be extended to operator algebras in the category of AUOA. Since

the results for the C*-algebra case involve C*-algebra amalgamated free products, a

description for the general class of operator algebra amalgamated free products will

be given.

In the C*-algebra theory of amalgamated free products, an amalgamated free

product is formed using the following diagram:

A
φ

**VVVVVVVVVVVVVVVVVVVVVVVVVV

ι1
##GGGGGGGGG

C

ε
??ÄÄÄÄÄÄÄÄ

π
ÂÂ

??
??

??
??

A ?C B //___ E

B

ι2
;;wwwwwwwww

ξ

44hhhhhhhhhhhhhhhhhhhhhhhhhh

(6.2.1)

The morphisms ε and π are called linking morphisms. Given morphisms φ and

ξ which are coherent morphisms if ϕ ◦ ε = ξ ◦ π, then there exists a morphism

represented above by the dotted line.

110



For operator algebras A, B, and C let i, j, and k be the complete isometries of each

algebra respectively into its maximal C*-algebra, let C*
max(A)?C*

max(C)C
*
max(B) be the

C*-algebra amalgamated free product with linking ∗-homomorphism ε : C*
max(C) →

C*
max(A) and π : C*

max(C) → C*
max(B) and ι1 and ι2 the injection maps of C*

max(A)

and C*
max(B) into the C∗-amalgamated free product. The amalgamated free product

A ?C B will be defined as the closed subalgebra generated by ι1 ◦ i(A) + ι2 ◦ j(B)

with linking morphisms ε|k(C) and π|k(C). It will now be shown this algebra has the

required universal property.

Assume φ : A → E and ψ : B → E are a coherent set of morphisms. By the

universal property of maximal C*-algebras, there are morphisms φ̃ : C*
max(A) →

C*
max(E) and ψ̃ : C*

max(B) → C*
max(E) such that φ̃ ◦ i = φ on A and ψ̃ ◦ j = ψ

on B. Applying the universal property of C*
max(A) ?C*

max(C) C∗
M(B), the morphism

φ̃ ? ψ̃ : C*
max(A)?C*

max(C) C
*
max(B) → C*

max(E) exists. It remains to see that φ̃ ? ψ̃|A?CB

maps into E as a subalgebra of C*
max(E). By the fact that φ̃◦i = φ on A and ψ̃◦j = ψ

on B, it is clear (suppressing some of the injection maps into the amalgamated free

product) that elements of i(A) ∪ j(B) map into the copy of E in C*
max(E). By

linearity, multiplicity, and continuity, the result follows on the completion of the

algebraic free product. Diagram 6.2.1 will be considered to be an amalgamated free

product diagram for operator algebras with the inclusion morphisms to the respective

maximal C*-covers suppressed.

Lemma 6.2.1. With the above definition, C*
max(A?C B) = C*

max(A)?C*
max(C)C

*
max(B).

Proof. To prove the lemma it is only necessary to show the amalgamated free product
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has the necessary universal maximal C*-algebra property. Suppose γ : A ?C B → E ,

where E is a C*-algebra. The restriction of γ to ι1(A) and ι2(B) are a coherent

pair of maps into E and there exists the morphism γ|ι1(A) ? γ|ι2(B) : C*
max(A) ?C*

max(C)

C*
max(B) → E demonstrating the universal property.

In [26] extensions of C*-algebra were used to identity amalgamated free products.

Here is a generalization of [26, Theorem 2.5] which utilizes the definition above of

the operator algebra amalgamated free product.

Theorem 6.2.2. In a commutative diagram of extensions of operator algebras in the

category of AUOA as follows:

0 // I //

α

²²

C
β

//

α

²²

B

γ

²²

// 0

0 // J // A
δ // X // 0,

the right square is a pushout if and only if α(I) generates J as an ideal in the sense

of [26]. Thus,

X = A ?C B = A/Id(α(Ker(β))).

Proof. The proof follows exactly as in [26, Theorem 2.5].

To guarantee the amalgamated free product has a cai it would suffice to require

that A and B each has a cai and the linking morphisms be proper. With these

requirements, given (et) is a cai for C, then ε(et) is a cai for A, π(et) is a cai for B.
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By the construction, ε(et) = π(et) is in the amalgamated free product. It is more

likely that the linking morphisms will not be proper. Even for C*-algebras, with A,B

and C unital, the amalgamated free product may not be unital. As an example, let

C = C and both A = B = `∞2 with C ∈ A,B as the second coordinate (0, z). Forming

the amalgamated free product gives C⊕∞X, where X is the C*-algebra generated

by 2 projections. A result in [28] shows this X is not only infinite dimensional, but

also non-unital.

Guaranteeing the amalgamated free product will have to be done indirectly. In

extending the next result for Type III diagram completions to the AUOA category,

the next result will lead to another criteria for the amalgamated free product staying

inside the AUOA category.

Theorem 6.2.3. In the category of operator algebras with a cai, given the commu-

tative diagram of extensions with α proper,

0 // A1
β

//

α

²²

B1
π1 //

γ

²²

C // 0

0 // A2
δ // B2

π2 // C // 0,

the left square is a pushout.

Proof. Since α is proper, there is a complete contraction α̃ : Q(A1) → Q(A2) is

induced by α. Let τ be the Busby invariant of the bottom sequence. There is a

completely contractive morphism α̃◦τ : C → Q(A2). The morphism γ is from Theo-

rem 3.5.5 making the diagram commute. Using the maximal C∗-covering extensions,
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we can form the following commutative box diagram using the universal property of

the maximal C*-algebras.

C*
max(A1)

β′
//

α′

²²

C*
max(B1)

π′1 //

γ′

²²

C*
max(C)

A1
β

//

α

²²

i1

<<xxxxxxxxxxxxxxxxxx
B1

π1 //

γ

²²

j1

<<xxxxxxxxxxxxxxxxxx
C

k

<<zzzzzzzzzzzzzzzzzz

C*
max(A2)

δ′ // C*
max(B2)

π′2 // C*
max(C)

A2

i2

<<xxxxxxxxxxxxxxxxxx

δ
// B2

j2

<<xxxxxxxxxxxxxxxxxx π2 // C

k

<<zzzzzzzzzzzzzzzzzz

Since α is proper, we claim that α′ is proper. Let (et) be a cai for A1. Then α(et)

is a cai for A2 and also a cai for C*
max(A2). The diagram is commutative and this

implied that (i◦α̃)(et) is cai for C*
max(A2). By the corresponding result for C*-algebra

Diagram III completions, C*
max(B2) = C*

max(A2) ?C*
max(A1) C*

max(B1) ∗-isomorphically.

By definition, B2 = A2 ?A1 B1.

A welcome consequence of Theorem 6.2.3 is that it gives an example where an

amalgamated free product has a cai.

Corollary 6.2.4. Let A1, B1 and A2 be in the category AUOA such that the linking

morphism from α : A1 → A2 is a proper morphism and the linking morphism from

β : A1 → B1 is a complete isometry with the image an ideal in B1. Then the
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amalgamated free product has a cai.

Proof. With β(A1) an ideal in B1, an exact sequence can be formed as in the first line

of the diagram below. The second line can be formed via a Diagram III completion.

0 // A1
β

//

α

²²

B1
π1 //

γ

²²

B1/A1
// 0

0 // A2
δ // B2

π2 // B1/A1
// 0.

By Theorem 6.2.3 B2
∼= A2 ?A1 B1. Since it was shown B1 has a cai in the discussion

of Diagram III completions, it can be concluded A?A1 B is approximately unital.

6.3 Corona Extendibility and Type IV Diagram

Completions

The basic diagram form is:

0 // A
α //

²²
Â
Â
Â B

²²
Â
Â
Â

β
// C //

ν
²²

0

0 // ◦ //___ ◦ //___ C1
// 0.

Consider the following completion form:
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0 // A
α // B

²²
Â
Â
Â

β
// C //

ν
²²

0

0 // A //___ ◦ //___ C1
// 0.

From Theorem 3.5.5 a completion will exist only if τ1 : C1 → A has the property

that τ1 ◦ ν = τ where τ is the Busby invariant from the top extension. Define a

morphism ν : C → C1 to be corona extendible if every morphism τ taking C into the

corona algebra of a σ-unital algebra A may be factored through C1 via a completely

contractive morphism η : C1 → Q(A) as in the following diagram.

C

ν

²²

τ

""FFFFFFFF

C1 η
// Q(A)

In order to extend results from C*-algebra theory to operator algebras, there

would need to be a way to connect corona extendability of complete contractions be-

tween operator algebras in the category AUOA to coronal extendability of C*-algebras.

It would be tempting to try and do this via the maximal C*-cover. One direction of

such a connection is quite straightforward as shown in the next lemma.

Lemma 6.3.1. Let ν be a complete contraction between operator algebras C and

C1. Then ν∗ : C*
max(C) → C*

max(C1), the extension of ν to the maximal C*-covers is

corona extendible if ν, is corona extendible.

Proof. Let ν : C → C1 be corona extendible. To show ν∗ is corona extendible, let
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τ : C*
max(C) → Q(A) for a σ-unital C*-algebra A. The restriction of τ to C is a

complete contraction, so there exists a morphism η : C1 → Q(A) by virtue of ν being

corona extendible. Appealing to the universal property of maximal C*-covers, ν and

η can be extended to the maximal C∗−covers giving the following diagram:

C*
max(C)

ν∗
²²

τ

%%JJJJJJJJJJ

C*
max(C1) η∗

// Q(A)

implying the morphism ν∗ is corona extendible.

The difficulty for the necessary direction of Lemma 6.3.1 lies in how restricting the

associated ∗-homomorphisms to the underlying algebras can be assumed to behave.

Suppose that ν : C → C1 is a completely contractive morphism with ν∗ : C*
max(C) →

C*
max(C1) corona extendible. Suppose there exists a completely contractive morphism

τ : C → Q(A) for a σ-unital algebra A. With Q(A) ⊂ Q(C*
max(A)), completely iso-

metrically, there exists a ∗-homomorphism τ∗ : C*
max(C) → Q(C*

max(A)). A diagram

similar to the one above can be constructed. It is shown below with the morphisms

reflecting this case.

C*
max(C)

ν∗
²²

τ∗

''OOOOOOOOOOO

C*
max(C1) η

// Q(C*
max(A))
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The morphism η : C*
max(C1) → (Q(C*

max(A))) exists due to ν∗ being corona ex-

tendible. For ν to be corona extendible, it would need to shown that η|C1
takes C1

to the completely isometric copy of Q(A) in Q(C*
max(A)). With the only interesting

cases occurring when ν is not surjective, it cannot be assumed that η(C1) ⊂ ν∗(C).

Also, since corona algebras are linked to the multiplier algebras, and it can not be

assumed M(A) generates M(C*
max(A)) the range of η(C1) cannot even be confirmed

to stay in the C*-algebra generated by Q(A). There is no hope of assuring oneself

that the restriction behaves as needed and results concerning corona extendability

will not be covered in this dissertation.
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Chapter 7

Multiplier Algebras

The notations will be slightly different from the previous chapters. In this chapter

the morphism π : B → C will be a complete quotient morphism such that Ker(π)

has a cai. Usually B will be required to have a cai. It will be noted if this is not the

case. One then gets an exact sequence with π as the second morphism as follows:

0 // Ker(π) Â Ä // B
π // C // 0.

The notation β will be used to denote the strict topology. If A has a cai, the

β-closure is the convergence of all nets of the form (at)t such that when multiplied

on the left or right by a fixed element of A form a norm convergent net. This gives

that A
β

= M(A) when B is approximately unital which will be proved in Lemma

7.1.2. The morphisms α, σ, and τ will retain the same meanings as in the previous

chapters. For an approximately unital algebra A, the complete quotient morphism
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q : M(A) → Q(A) will be the canonical such morphism.

7.1 Morphisms Between Multiplier Algebras

The multiplier algebra of a C*-algebra plays a critical role in extension theory. Some

of the results in [17] and [29] will be extended for an approximately unital operator

algebra A. When the proofs follow directly as in the C∗-algebraic theory, it will be

noted. A C*-algebra form of the following proposition can be found in [29, Propo-

sition 2.3.7] and is a case where the proof for operator algebras in the category of

AUOA is essentially the same as in [29]. The strict topology will be referred to as

the β-topology.

Proposition 7.1.1. Let A,B be approximately unital operator algebras and ψ :

M(A) → M(B) a norm continuous homomorphism for which B ⊂ ψ(A). Then

ψ is strictly continuous, i.e. ψ(xλ) →β ψ(x) when xλ →β x in M(A).

Proof. Let (xλ) be a strictly convergent net in M(A) and let b ∈ B be arbitrary.

There is a lift of b in A since by hypothesis B ⊂ ψ(A). Let a be such a lift. This

gives convergent nets for all a ∈ A of the form (axλ) and (xλa). Since ψ is norm

continuous, the images of these nets under ψ in B are also convergent nets. Since b

was arbitrary, ψ(xλ) is strictly convergent in M(B).

Lemma 7.1.2. Suppose that A has a cai, call it (ft), and let m ∈ M(A). Then

strictly converging nets can be formed as follows:
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mft →β m and ftm →β m.

Proof. To show the above nets converge in the strict topology it needs to be shown

that for any a ∈ A, mfta and amft are convergent nets. With ft a cai for A, then

m(ft)a → ma in norm. Let am = a′. Then amft = a′ft → a′ in norm. Similar

arguments can be made for ftm.

Lemma 7.1.3. Suppose that I and A are operator algebras with cais and I is a

completely essential ideal in A. Then M(A) ⊂M(I).

Proof. The canonical morphism σ : A → M(I) is multiplier nondegenerate and by

assumption is a complete isometry. By Theorem 3.5.2 there exists a unital complete

isometry σ̂ : M(A) →M(I) which is a complete isometry.

Alternately the above lemma could be proved in the following manner. With I

an ideal in A, I is also an ideal in M(A). Let θ : M(A) →M(I) be the canonical

morphism, which is a complete isometry on A since I is completely essential in A.

By Proposition 2.2.3, σ is a complete isometry on M(A) giving the result.

Lemma 7.1.4. Let A be an operator algebra and D a C*-algebra containing A. If

i : A → D is the inclusion morphism, then, working inside D∗∗, i∗∗(A∗∗)∩D = i∗∗(A).

Additionally, if A and D share a cai, then i∗∗(A∗∗) ∩M(D) = M(i∗∗(A)).

Proof. Let i∗∗ : D∗∗ → A∗∗ be the canonical second dual morphism of i which is a

complete isometry. Note that if J = Ker(i∗), then J = A⊥ and A = J⊥. Looking
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inside the second dual, if k : D → D∗∗, i∗∗(A∗∗) = (k(A))⊥⊥ = J⊥. Since A

is closed, i∗∗(A∗∗) ∩ k(D) = k(J⊥) = i∗∗(A). For the second assertion, since A

has a cai, using the definition of M(A) from [5, Theorem 2.6.2 (1), Section 2.6.7],

M(A) ⊂ A∗∗ ∼= A⊥⊥ ⊂ D∗∗. Also with A and D sharing a cai, M(A) ⊂ M(D) by

Lemma 4.1.4. This gives M(A) ⊂ M(D) ∩ A⊥⊥. Conversely, if x ∈ M(D) ∩ A⊥⊥,

then let (et)t be a cai shared by A and D. Suppose a ∈ A. Since D is an algebra,

xa = y ∈ D. It is also the case that xeta → y ∈ A⊥⊥ so that xa ∈ D ∩ A⊥⊥ = A by

the first assertion. A similar calculation can be made for right multiplication giving

x ∈M(A).

The next lemma will be used toward the end of this chapter.

Lemma 7.1.5. Suppose that A and B each have a cai, with A a completely essential

ideal in B. Let x ∈ M(A) such that xB ⊂ B and Bx ⊂ B, then x is contained in

the isometrically isomorphic copy of M(B) in M(A).

Proof. By Lemma 7.1.3 M(B) ⊂ M(A) completely isometrically as a unital subal-

gebra. Let x ∈ M(A) such that xB ⊂ B and Bx ⊂ B. To see x ∈ M(B) ⊂M(A),

let Θ be a nondegenerate completely isometric unital representation of A on B(H)

for some Hilbert space H. Using the definition from [5, Proposition 2.6.2 (2) and

Proposition 2.6.8] of the multiplier algebra of A as:

{T ∈ B(H) : TΘ(A) ⊂ Θ(A) and Θ(A)T ⊂ Θ(A)}.

With M(A) ⊂ B(H) completely isometrically isomorphically, and with A ⊂ B ⊂
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M(A) completely isometrically isomorphically, Θ is also a nondegenerate represen-

tation of B. Using the same definition for the M(B) as the one above for M(A),

Θ(x) is in M(B) ⊂ B(H). It is also clear that Θ takes the completely isometric

copy of M(B) ⊂ M(A) onto the multiplier algebra of Θ(A) in B(H). Since Θ is a

complete isometry, x ∈M(B) ⊂M(A).

7.2 First Tietze Extension Result for Operator

Algebras

Proposition 7.2.1. Let B, C be in the category AUOA and let π : B → C be

a complete quotient morphism such that Ker(π) = A has a cai. Then π extends

to a complete quotient morphism π̂ : M(B) → M(C) if the canonical completely

contractive Busby morphism τ : C → Q(A) extends to a completely contractive

morphism τ̂ : M(C) → Q(A).

Proof. With τ̂ : M(C) → Q(A), there exists an extension M(C) by A with middle

algebra

PB = {(z, y) : z ∈M(A), y ∈M(C) and q(z) = τ̂(y)}.

Here q : M(A) → Q(A) is the canonical morphism. This extension contains a

strongly isomorphic copy of the original extension as a sub-extension by Proposition

4.1.1 and noting that τ̂|C = τ ◦ι2 as in the diagram below. The completely isomorphic
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copy of B inside PB will be denoted as PB0. The following morphism between

extensions can be formed. The diagram includes canonical morphisms µ : PB →
M(A) and ν : PB →M(C), the projections from the first and second coordinates

of PB respectively. Not shown is σ : B → M(A) and its canonical extension

σ̂ : M(B) →M(A) utilizing that A is an ideal in M(B). These morphisms will be

important in the discussion below.

0 // A // M(A)
q

// Q(A) // 0

0 // A
α′ // PB

ν //

µ

OO

σ′ $$JJJJJJJJJJ M(C) //

τ̂

OO

0

M(B)

π̂

::ttttttttt

0 // A
α // B

+ ®

ι1
99ssssssssss

θ

OO

π // C
?Â

ι2

OO

// 0

(7.2.1)

Let θ : B → PB0 be the canonical completely isometric isomorphism from

B → PB0. Suppressing the inclusion morphisms ι1 and ι2, for all b ∈ B, θ(b) =

(σ̂(b), π̂(b)) = (σ(b), π(b)) ∈ PB0 since q ◦ σ(b) = τ ◦ π(b). With σ̂, π̂ and τ̂ the

extension of σ, π and τ respectively, this also shows how PB0 sits inside PB. The

inverse θ−1 : θ(B) → B takes (σ̂(b), π̂(b)) → b. After it is shown that PB0 is an

ideal in PB, there will be a unique canonical completely contractive morphism, call

it σ′ : PB →M(B), which extends θ−1. This will in turn be the unique morphism

which makes the top triangle in the center of the above diagram commute.

Let (y0, z0) ∈ PB with y0 ∈ M(A), z0 ∈ M(C), so that q(y0) = τ̂(z0). Form
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the product of (y0, z0)(σ̂(b), π̂(b)) = (y0σ̂(b), z0π̂(b)), which must stay in PB since

it is an algebra. Using the definition of PB, q(y0σ̂(b)) = τ̂(z0π̂(b)). The second

component of the product, z0π̂(b) = c ∈ C since z0 ∈ M(C). It will be shown that

y0σ̂(b) ∈ σ̂(B). Let m ∈ M(A) such that y0σ̂(b) = m giving that q(m) = q(σ̂(b′)) =

τ̂(b). Certainly there is a b′ ∈ B, by the existence of the bottom extension, such

that (q ◦ σ̂)(b′) = τ(c) = τ̂(c). The second equality is due to τ̂ being the extension

of τ . With A = Ker(q), then m − σ̂(b′) ∈ A. Let a ∈ A with m − σ̂(b′) = a. The

following equation can be formed using the properties of a morphism, and the fact

that (σ ◦ α)(a) = a:

m = a + σ̂(b′) = σ̂(α(a)) + σ̂(b′) = σ̂(α(a) + b′) ∈ σ̂(B).

This implies that y0σ̂(b) ∈ σ̂(B). Let b1, b2 ∈ B with σ̂(b1) = y0σ̂(b) and π̂(b2) =

z0π̂(b). By definition of the pullback combined with the properties of an extension

(here we will use the morphisms without the hat designation),

q(σ(b1)) = τ(π(b2)) = (τ ◦ π)(b2) = (q ◦ σ)(b2) = q(σ(b2)).

Putting the first term together with the last, and noting A = Ker(q), indicates

σ(b1) − σ(b2) = a′ for some a′ ∈ A. By linearity of σ, σ(b1 − b2) = a′. With σ a

complete isometry on A, this indicates b1 − b2 = a′ and π(b1) = π(b2). The ordered

pair (σ(b1), π(b2)) can equivalently be rewritten as (σ(b1), π(b1)). This indicates the

product is in PB0
∼= B, which is thus an ideal in PB.
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Having shown that PB0 is an ideal in PB, σ′ : PB → M(B) will be defined

canonically. That is for all (y, z) ∈ PB, σ′((y, z)) = m for which,

θ(mb) = θ(b′) = (σ(b′), π(b′)) = (yσ(b), zτ(b)) = (y, z)(σ(b), π(b)),

and similarly for right multiplication. With σ′ multiplier nondegenerate and σ′|θ(B)
a

complete isometry, by Theorem 3.5.2, σ′ will also be a complete isometry. It needs

be shown that if σ′((y, z)) = m, then π̂(m) = z. From the above displayed equation

it can be deduced that π(mb) = zc and π(bm) = cz for all c ∈ C. Since π and π̂

agree in B, then π̂(mb) = π̂(m)π̂(b) = π̂(m)c = zc. A similar result can be found for

right multiplication, giving π̂(m) = z and π̂ is surjective.

To see it is also a complete quotient morphism, note that the above calculations

indicate the top triangular part of the above diagram commutes with ν = π̂ ◦ σ′. As

a projection, ν is a complete quotient morphism. With σ′ a complete isometry, then

π̂ must be a complete quotient morphism.

Unfortunately the existence of τ̂ is a rather strong condition, but does not require

a σ-unital hypothesis. An application is split extensions. We recall that a split

extension is an extension of C by A in which there exists γ : C → B, where B is the

middle algebra, in which π ◦ γ gives the identity morphism on B. By Theorem 3.4.4,

there is an associated morphism η : C → M(A) with τ = q ◦ η. The next lemma

addresses the existence of τ̂ from Proposition 7.2.1 in light of split extensions.
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Corollary 7.2.2. Suppose an extension of C by A in AUOA is split. If γ can be cho-

sen such that the associated morphism η : C → M(A) is multiplier nondegenerate,

then τ̂ exists and by Proposition 7.2.1, π̂ : M(B) → M(C) is a complete quotient

morphism. Additionally the extension of M(C) by A is split.

Proof. Suppose that η : C →M(A) is multiplier nondegenerate. By Theorem 3.5.2

η extends to a completely contractive morphism η̂ : M(C) →M(A). Composing ρ

with q gives a completely contractive morphism q ◦ ρ : M(C) → Q(A). This gives

an extension of M(C) by A. Let PB be the middle algebra of this extension. In

Theorem 3.4.4 it was shown if τ = q ◦ η then there exists γ : M(C) → PB showing

the extension splits. By Proposition 7.2.1, π̂ is a complete quotient morphism.

7.3 Structure of Multiplier Extensions

For the rest of this chapter it will be helpful to list the notations and conventions for

specific algebras and morphisms, many of which are from Lemma 3.6.2 from Chapter

3. The morphism π : B → C will be a complete quotient morphism with Ker(π) = A

and A having a cai. The canonical morphisms σ : B → M(A) and τ : C → Q(A)

will be as in the previous sections. Then Ker(σ) = J and Ker(τ) = K with no

assumptions about either being approximately unital. The morphisms θ1 : B → B/J

and θ2 : C → C/K are the canonical complete quotient morphisms. The completely

isometric morphism σ̃ : B/J →M(A) and τ̃ : C/K → Q(A) are the canonical ones

due to the Factor Theorem. The extensions to the respective multiplier algebras

of any of the above morphisms, if they exist, will be designated with a hat. For
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instance, σ̂ : M(B) → M(A) is the extension of σ to the multiplier algebra of

B. If a morphism is an extension to a ∗-homomorphism from a C*-cover, then it

will be given a asterisk as a subscript. For instance π∗ : C*
max(B) → C*

max(C) is

the extension of π to its maximal C*-cover. The asterisk designation will also be

used for a ∗-homomorphism if the relationship to the operator algebra morphism

parallels what would be the relationship if it were an extension. For example, it

was proved in Lemma 5.1.4 that, if (D, i) and (E , j) are C*-covers of A and B in

a covering extension, and if σ̂′ : M(E) → M(D) is the canonical morphism for a

covering extension, and the similar canonical morphism from the operator algebra

extension is σ̂ : M(B) →M(A), then σ′ ◦ j = î◦σ. With the notational conventions

given above, we will want to redesignate σ̂′ = σ̂∗. If a ∗-homomorphism is not

necessarily related to another respective morphism, it will be given a new name if

there is a possibility for confusion. Algebras that are not necessarily C*-algebras

will be designated with roman letters, and C*-algebras with scripted letters. While

it will be assumed that an algebra will be contained in the C*-algebra of the same

letter designation, at least isometrically isomorphically, there is no assumption that

the C*-algebra is a C*-cover unless it is proven to be.

Another approach has, as its inspiration, [17, Theorem 3.1] which is stated below.

Theorem 7.3.1. [17, Theorem 3.1] Let Q(A) denote the corona algebra of a σ-

unital C*-algebra A, and let D and N be separable C*-subalgebra s of Q(A). For

every morphism

τ : C → Q(A) ∩ D′ ∩N⊥,
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where C ia a σ-unital C*-algebra, and every element m in M(C), there is a z in

Q(A) ∩ D′ ∩ N⊥ such that zτ(c) = τ(mc) and τ(c)z = τ(cm) for each c in C. If

0 ≤ m ≤ 1, we can choose 0 ≤ z ≤ 1.

Building on Lemma 3.6.2 from Chapter 3, by Theorem 3.5.2 there exist completely

contractive extensions to the respective multiplier algebras. Let π̂, θ̂1, θ̂2, and λ̂

respectively be these extensions. The diagram below is just Diagram 3.6.1 with each

morphism the expansion to the respective multiplier algebras. Usually λ̂, as shown

below, will be restricted to the range of θ̂1.

θ̂1(M(B))
λ̂ // θ̂2(M(C))

M(B)

θ̂1

OO

π̂ // M(C)

θ̂2

OO
(7.3.1)

With each morphism the unique extension of morphisms from Diagram 3.6.1, the

diagram commutes with λ̂|θ̂1(M(B))
surjective if π̂ is surjective. Below it will be shown

that if λ̂ is restricted as above and satisfies certain conditions, then π̂ will be a

complete quotient morphism, but this is not so obvious. The only other point in

question is whether or not the vertical maps have closed range. For the time being

Ran(θ̂1) will be assumed to be closed, which will be stated in the hypothesis of the

next several results. For the next lemma and proposition, the extensions of σ : B →
M(A), and σ̃ : B/J →M(A) to the associated multiplier algebra will be required.

These extensions will be denoted σ̂ : M(B) → M(A) and ˆ̃σ : M(B/J) → M(A)

respectively. Here is a useful lemma based on the above discussion.
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Lemma 7.3.2. Using notation from Lemma 3.6.2 and the above discussion, if σ is

a complete quotient morphism onto its range, then σ̂ has closed range if and only if

θ̂1 has closed range. Additionally, σ̂ is a complete quotient morphism onto its range

if and only if θ̂1 is a complete quotient morphism onto its range.

Proof. For this proof each algebra will be considered to be contained in its respec-

tively multiplier algebra so that, for instance, σ̂|B = σ. With σ a complete quotient

morphism onto its range, B/J ⊂M(A) completely isometrically. By Theorem 3.5.2

ˆ̃σ : M(B/J) → M(A) is a complete isometry. That the following diagram com-

mutes can first be noted by the fact that (σ̃ ◦ θ1)(b) = σ(b) for all b ∈ B. Also,

each extension to the multiplier algebras is unique and continuous in the respective

strict topologies by Proposition 7.1.1. If (et)t is a cai for B, then if m ∈ M(B), by

Lemma 7.1.2, met →β m. Since σ̂(met) = (ˆ̃σ ◦ θ̂1)(met), σ̂(m) = (ˆ̃σ ◦ θ̂1)(m).

M(A)

M(B)

σ̂

OO

θ̂1 // θ̂1(M(B))

ˆ̃σ
eeLLLLLLLLLL

From the above diagram, with ˆ̃σ a complete isometry, the restriction to θ̂1(M(B))

is a complete isometry. It is clear that σ̂ has closed range (respectively is a complete

quotient morphism) if and only if θ̂1 has closed range (respectively is a complete

quotient morphism).

Proposition 7.3.3. Using notations for the morphisms and algebras in Lemma 3.6.2

and the above discussion, let τ : C → Q(A) be a complete quotient morphism onto
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its range with B ∼= PB the pullback due to τ . Then if π̂ : M(B) → M(C) is

surjective onto M(C) and the associated morphism θ̂1 has closed range, there exist

closed subalgebras X and Y of M(A) and Q(A), in particular X = ˆ̃σ(θ̂1(M(B)))

and Y = ˆ̃σ(θ̂1(M(B)))/A, and a surjective homomorphism ρ : Y → θ̂2(M(B)) such

that the following diagram commutes.

X
q

// Y

ρ
²²

θ̂1(M(B))

ˆ̃σ

OO

λ̂ // θ̂2(M(C))

(7.3.2)

Proof. The bottom horizontal arrow is surjective onto θ̂(M(C)) since by hypothesis

π̂ is surjective onto M(C). To see this, if η ∈ M(C), then η has a pre-image under

π̂, ζ say. By commutativity of Diagram (7.3.1), and noting the definition of λ̂, which

must agree with the definition of λ in the proof of Lemma 3.6.2, λ̂(θ̂1(ζ)) = θ̂2(η),

giving that each element of θ̂2(M(C)) has a pre-image under λ̂ in θ̂1(M(B)). Also

from the proof of Lemma 3.6.2, A/J is completely essential in B/J with τ being

a complete quotient morphism. The extension of σ̃ to M(B/J) is also a complete

isometry and M(B/J) ⊂ M(A) completely isometrically by Lemma 4.1.4. This

gives that X = ˆ̃σ(θ̂1(M(B))) is closed and Y is closed by Lemma 2.1.2 since X

contains A = Ker(q) which has a cai. Looking at Diagram 7.3.2, the morphisms in

that diagram are restrictions of the morphisms in the following diagram once ρ has

been defined as a completely contractive morphism.
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ˆ̃σ(M(B/J))
q

// ˆ̃σ(M(B/J))/A

ρ

²²

M(B/J)

ˆ̃σ

OO

λ̂ // M(C/K)

(7.3.3)

With ˆ̃σ a complete isometry, Ker(ˆ̃σ) = 0, and with σ̃(A/J) = A, Ker(q ◦ ˆ̃σ) = A/J .

As in Lemma 3.6.2, A ∼= A/J ⊂ B/J ⊂ M(B/J). Define, for m + A/J ∈
M(B/J)/(A/J), ψ : M(B/J)/(A/J) → ˆ̃σ(M(B/J)/A by ψ(m+A/J) = ˆ̃σ(m)+A.

With A/J = Ker(q ◦ ˆ̃σ), by the Factor Theorem ψ is a completely isometric isomor-

phism. If q′ : M(B/J) → M(B/J)/(A/J), the following commutative diagram

exists.

ˆ̃σ(M(B/J))/A

ρ

²²

M(B/J)

ψ◦q′
77nnnnnnnnnnnn

λ̂ // M(C/K)

With ˆ̃σ(M(B/J))/A ∼= M(B/J)/(A/J) via ψ, ρ exists by the Factor Theorem as a

completely contractive morphism with Ran(ρ) = Ran(λ̂) = θ̂2(M(C)). With all the

morphisms in Diagram 7.3.2 the restrictions of the morphisms in Diagram 7.3.3, the

result is proven.

Remarks. 1). If I = Ker(λ̂|θ̂1(M(B))
), then it is easy to see that ˆ̃σ(I)/A = Ker(ρ) by

commutativity of Diagram 7.3.2.

2). Considering Theorem 7.3.1, suppose A and C are both σ-unital C*-algebras.

The pullback, PB, due to τ is σ-unital. By the C*-algebra Tietze extension theorem,
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the extension of the canonical surjective ∗-homomorphism ν : PB → C extends to

ν̂ : M(PB) → M(C) as a surjective ∗-homomorphism. By Proposition 7.3.3, ρ

exists giving that for all m ∈M(C), there exists a z ∈ (q ◦ ˆ̃σ ◦ θ̂1)(M(PB)) such that

ρ(z) = θ̂(m). In other words, z acts on τ(C) in the similar manner to the way θ̂2(m)

acts on θ2(C).

3). Putting Proposition 7.3.3 together with Proposition 7.2.1, by Proposition

7.2.1, if τ̂ extends from M(C) → Q(A), then π̂ is a complete quotient morphism. If,

in addition, τ is a complete quotient morphism and θ̂1 has closed range, Proposition

7.3.3 applies. The surjective morphism ρ : Y → θ̂2 as well as ˆ̃τ : M(C/K) → Q(A)

exist with ˆ̃σ a complete isometry. By Lemma 3.6.1, ˆ̃τ a complete isometry giving the

following commutative diagram.

ˆ̃σ(θ̂1(M(B))
q

// Y

ρ

²²

θ̂1(M(B))

ˆ̃σ

OO

λ̂ // θ̂2(M(C))

ˆ̃τ

OO

From the above diagram it is easy to see the ρ is a complete isometry. This also

gives that θ̂2 is surjective with closed range.

Above it was noted that is not obvious that if λ̂ is a complete quotient morphism

onto its range, then the same will be true for π̂. The next proposition addresses this.

Although not stated in Proposition 7.3.4, by Proposition 7.3.3, the morphism ρ will

exist as a consequence.

Proposition 7.3.4. Using the notations from Proposition 7.3.3 suppose that θ̂1 has

133



closed range and the restriction of λ̂ to θ̂1(M(B)) is a complete quotient morphism

onto θ̂2(M(C)) such that the kernel of this restriction has a cai. Further suppose

that as in Proposition 7.3.3, τ is a complete quotient morphism onto its range. Then

π̂ is a complete quotient morphism with Ker(π̂) ∼= Ker(λ̂|θ̂1(M(B))
).

Proof. Let I = Ker(λ̂|θ̂1(M(B))
) ⊂ M(B/J) which has a cai by hypothesis. Also

by hypothesis, this restriction is a complete quotient morphism onto θ̂2(M(C)),

indicating θ̂2 has closed range. With J = Ker(σ), note that A ∼= A/J ⊂ I by

Lemma 3.6.2. With ˆ̃σ a complete isometry also by Lemma 3.6.2, the restriction to

I is a complete isometry. Hence, by definition, A/J is completely essential in I. By

Lemma 4.1.4, M(I) ⊂M(A) completely isometrically isomorphically. On the other

hand, with I an ideal in θ̂(M(B)), the following morphism between extensions exists

with the prime designation the canonical morphisms of this new extension.

0 // I // M(I)
q′

// Q(I) // 0

0 // I
Â Ä // θ̂1(M(B))

λ̂ //

σ′

OO

θ̂2(M(C)) //

τ ′

OO

0

The morphism σ′ is the canonical such one taking θ̂1(M(B)) into M(I) and it will

now be proved that σ′ is a complete isometry. By the observation in the previous

paragraph that M(I) ⊂M(A), define the complete isometry ζ : M(I) →M(A) as

the extension toM(I) of ˆ̃σ|I : I →M(A). This will mapM(I) onto a completely iso-

metrically isomorphic copy ofM(I) ⊂M(A). To see that ˆ̃σ(θ̂1(M(B))) ⊂ ζ(M(I)),

apply Lemma 7.1.5 noting that ˆ̃σ(θ̂1(M(B))) contains ˆ̃σ(I) as an ideal. Since
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ζ|I = ˆ̃σ(I) and σ′ is the identity morphism on I ⊂ θ̂1(M(B)), the composition

ζ ◦ σ′|I = ˆ̃σ|I , or more particularly σ′|I = ζ−1
|I ◦ ˆ̃σ|I . The completely contractive mor-

phism σ′ is the unique morphism taking θ̂1(M(B)) →M(I) which when composed

with (in this case) the inclusion morphism taking I → θ̂1(M(B)) is the identity

on I. By the previous observation, σ′ = ζ−1 ◦ ˆ̃σ|θ̂(M(B))
and is a complete isom-

etry. This also makes the extension of θ̂2(M(C)) by I completely essential and

τ ′ : θ̂2(M(C)) → Q(I) a complete isometry. (Note that Q(I) is not generally a

subset of Q(A), but there is a canonical morphism δ : ζ(M(I))/A → Q(I) which is

surjective by the Factor Theorem. This morphism will be used in a later section.)

Now the following morphisms between extensions will be considered substituting

B/A for C.

0 // I // M(I)
q′

// Q(I) // 0

0 // I // θ̂1(M(B))

σ′

OO

λ̂ // θ̂2(M(B/A)) //

τ ′

OO

0

0 // I
α // PB

µ

OO

ν // M(B/A)

θ̂2

OO

// 0

0 // I
α // PB0

ν′ //
?Â

OO

B/A
?Â

OO

// 0

0 // A //
?Â

OO

B
π //

γ

OO

B/A // 0

(7.3.4)

With (τ ′ ◦ θ̂2) : M(B/A) → Q(I), there exists an extension of M(B/A) by I

with PB ⊂M(I)⊕Q(I) M(B/A). By definition,
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PB = {(m1,m2) : m1 ∈M(I),m2 ∈M(B/A) and q′(m1) = (τ ′ ◦ θ̂2)(m2)}.

The intention from this point on will be to give more refined definitions of the

pullbacks PB and PB0 above. The morphisms µ and ν are the canonical projections

from the first and second coordinates respectively. Note that I ⊂ PB as (I, 0) since

I = Ker(q′) and for all y ∈ I, q′(y) = 0 = (τ ′ ◦ ν)(y). Using the fact that σ′ and

τ ′ are complete isometries and considering each respective algebra as a subalgebra

of M(I) and Q(I), the second line is a sub-extension of the first line. To redefine

the pullback using this sub-extension, it needs to be shown that given an m ∈M(I)

such that q′(m) = τ ′(m0) for m0 ∈ θ̂2(M(B/A)), then m ∈ σ′(θ̂1(M(B))). Let

(m,m0) ∈ PB. With λ̂|θ̂1(M(B))
onto θ̂2(M(B/A)), there is an x ∈ θ̂1(M(B)) such

that (q′ ◦ σ′)(x) = τ ′(m0). With I = Ker(q′), then m− σ′(x) ∈ I, or m = σ′(x) + y

for some y ∈ I. Since I ⊂ σ′(θ̂1(M(B))), m ∈ σ(θ̂1(M(B))). The definition of the

pullback can be amended to

PB = {(m1,m2) : m1 ∈ θ̂1(M(B)), m2 ∈M(B/A) and λ̂(m1) = θ̂2(m2)}.

A specific definition of PB0 will be given again considering θ̂1(M(B)) ⊂M(I) and

θ̂2(M(B/A)) ⊂ Q(I). Define the pullback due to (τ ′ ◦ θ2)|B/A
by

PB0 = {(m1, b + A) : m1 ∈ θ̂1(M(B)), b + A ∈ B/A and λ̂(m1) = θ̂2(b + A)}.
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The fourth line from the top would need to be a sub-extension of the third line by

Proposition 4.1.1 with ν ′ being the restriction of ν to PB0 and a complete quotient

morphism by Lemma 2.1.2.

For the last line, define for all b ∈ B, γ : B → PB0 by γ(b) = (θ1(b)), π(b)).

Evidently θ̂1 : B → B/J ⊂ M(B/J) since it agrees with θ1 on B. By Diagram

(3.6.1),

λ̂(θ̂1(b)) = λ(θ1(b)) = θ2(π(b)) = θ̂2(π(b)).

By the revised definition of PB, takes B → PB. The last line contains A as the first

algebra which is completely isometrically isomorphic to A/J ⊂ I. The right vertical

arrow is a complete isometry, so by Lemma 2.1.2 the middle arrow is a complete

isometry, and the last line can be considered to be a sub-extension of the fourth line.

Let Ran(γ) = PB00 with a typical element having the form (b + J, b + A). Also note

that γ is a complete isometry so it has an inverse morphism.

It will be shown that for all m2 ∈ M(B/A), there is a pre-image under π̂ in

M(B) in a manner similar to the proof of Proposition 7.2.1. First it will be shown

that PB00 is an ideal in PB. Let (m1,m2) ∈ PB and form the product with

γ(b) for some b ∈ B. This would be (m1,m2)(b + J, b + A) = (b1 + J, b2 + A) for

b1, b2 ∈ B since m1 ∈ M(B/J) and m2 ∈ M(B/A). Using A = Ker(π) ∼= A/J ⊂ I,

completely isometrically isomorphically, it will be shown that b1 + J = b2 + J . With

(b1 + J, b2 + A) ∈ PB, by definition of PB and the various morphisms:
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π(b1) + K = λ(b1 + J) = λ̂(b1 + J) = θ̂2(b2 + A) = π̂(b2) + K = π(b) + K.

This means π(b1) − π(b2) = k ∈ K. Then, π(b1 − b2) = k = π(j) for some j ∈ J .

So let b1 − b2 = j′ ∈ J and b1 + J = b2 + J , or in other words, θ1(b1) = θ1(b2). The

ordered pair (b1 +J, b2 +A) can be rewritten equivalently as (b2 +J, b2 +A) = γ(b2).

This shows PB00 is an ideal in PB so we may define γ̂−1 canonically as in the proof

of Proposition 7.2.1. In the same way if γ̂−1(m1,m2) = m, then π̂(m) = m2. This

can be done for all m2 ∈M(C) showing π̂ is a surjective.

For the last two assertions, to show that π̂ is a complete quotient morphism and

Ker(π̂) ∼= Ker(λ̂|θ̂1(M(B))
) is equivalent to showing, by Proposition 4.1.1 there is a sub-

extension of M(C) by I with middle algebra M(B). With τ ′ ◦ θ̂2 : M(C) → Q(I)

the pullback extension in line four from the top of Diagram (7.3.4) will be used

with α(I) = Ker(ν). It needs to be shown that the previously defined morphism

γ̂−1 : PB →M(B) is a completely isometric isomorphism. It is already a complete

isometry by Theorem 3.5.2 since γ̂−1|γ(B)
is a complete isometry. With PB a pullback,

and using the second definition of PB, a morphism can be defined fromM(B) → PB

by showing θ̂1 and π̂ are coherent morphisms with λ̂ and θ̂2. Let this morphism be

denoted γ̂ since it obviously extends γ as defined above giving PB ∼= M(B).

Several corollaries follow from Proposition 7.3.4.

Corollary 7.3.5. In the language and notation above, there is a canonical morphism

σ′′ : M(B) →M(I).
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Proof. Let I0 = Ker(π̂). With Ker(π̂) ∼= I, and θ̂1(I0) = I, and θ̂1 must be a

completely isometric isomorphism on I0. From the commutativity of Diagram 7.3.4,

(σ′ ◦ θ̂1)(I0) = I. This extends to a completely contractive morphism, call it σ′′ :

M(B) →M(I), which extends (σ′ ◦ θ̂) as shown in the following diagram.

M(I)

M(B)

σ′′

66nnnnnnnnnnnnnnnnnnnnnnnnnnnn
θ̂1 // M(B/K)

ˆ̃σ //

σ′

<<yyyyyyyyyyyyyyyyyy
ˆ̃σ(θ̂1(M(B)))

ζ−1

OO

Corollary 7.3.6. The morphism ζ : M(I) →M(A) can be defined as the extension

of σ̂ ◦ θ̂−1
1|I0

, where I0 is the completely isometrically isomorphic copy of I in M(B).

Proof. Remember that σ̂ = ˆ̃σ ◦ θ̂1 and use the above diagram.

Corollary 7.3.7. The homomorphism δ : ζ(M(I))/A → Q(I) is a surjective com-

pletely contractive morphism with Ker(δ) = ˆ̃σ(I)/A.

Proof. With ζ defined as the extension of ˆ̃σ(I) →M(A), then A ⊂ ˆ̃σ(I) ⊂ ζ(M(I))

as an ideal. A composition of morphisms will be done with the following three mor-

phisms: the completely isometric isomorphism ζ−1(ζ(M(I))) →M(I), the complete

quotient morphism due to ζ−1(A) being an ideal, qζ−1(A) : M(I) → M(I)/ζ−1(A),

and the completely contractive morphism, due to the Factor Theorem, defined as

q′′ : M(I)/ζ−1(A) → Q(I). It is easy to see that q′′ ◦ qζ−1(A) ◦ ζ−1 = δ ◦ q, where

q : M(A) →M(A)/A, as shown below.
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ζ(M(I))

ζ−1

²²

q
// ζ(M(I))/A δ // Q(I)

M(I)
qζ−1(A)

// M(I)/ζ−1(A)
q′′

// Q(I)

It is only necessary to define a morphism ξ : ζ(M(I))/A → M(I)/ζ−1(A) in the

obvious way. That is for all ζ(m) + A ∈ ζ(M(I))/A, χ(ζ(m) + A) = m + ζ−1(A).

By Lemma 3.3.3, χ is a complete isometry, in fact it is a completely isometric iso-

morphism.

It is now possible to give a characterization for M(B) similar to the one given

for B in Corollary 3.6.3

Corollary 7.3.8. Using notations from Proposition 7.3.4, if the hypotheses of Propo-

sition 7.3.4 are met, then M(B) ∼= M(B/J)⊕M(C/K) M(C).

Proof. At the end of the proof of Proposition 7.3.4 γ̂ : M(B) → PB was defined

as the extension of γ : B → BP00. It was shown that its inverse is γ̂−1 giving that

M(B) ∼= PB = M(B/J)⊕M(C/K) M(C).

The next proposition will show that with the hypotheses of Proposition 7.3.4

saying λ̂ is a complete quotient morphism is equivalent to saying π̂ is a complete

quotient morphism.

Proposition 7.3.9. Using the notations from Proposition 7.3.4 suppose that θ̂1 has

closed range. Suppose that I = Ker(π̂) ∼= Ker(λ̂|θ̂1(M(B))
) and that I has a cai. Then
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π̂ is a complete quotient morphism onto M(C) if and only if λ̂|
θ̂1(M(B))

is a complete

quotient morphism onto θ̂2(M(C)).

Proof. One direction is done by Proposition 7.3.4. Suppose that π̂ is a complete

quotient morphism onto M(C). The following diagram can be formed:

0 // I // M(I)
q′

// Q(I) // 0

0 // I
θ̂1 // θ̂1(M(B))

σ′

OO

λ̂ // θ̂2(M(C)) //

τ ′

OO

0

0 // I // M(B) π̂ //

θ̂1

OO

M(C) //

θ̂2

OO

0

0 // A //
?Â

OO

B
π //

?Â

OO

B/A
?Â

OO

// 0.

All the morphisms are the same as in Diagram 7.3.4 except now the assumption is

that π̂ is a complete quotient morphism instead of λ̂|θ̂1(M(B))
and that τ ′′ : M(C) →

Q(I) exists instead of τ ′ above. With π̂ a complete quotient morphism, M(C) ∼=
M(B)/I, and with π̂ surjective, it is clear λ̂ is surjective. By assumption, I ∼=
Ker(λ̂θ̂1(M(B))) = θ̂1(I) so it is an ideal in θ̂1(M(B)). Now define τ ′, for θ̂2(m) ∈
θ̂2(M(C)), by τ ′(θ̂2(m)) = τ ′′(m). This makes the diagram below commute:

θ̂2(M(C))
τ ′ // Q(I)

M(C)

θ̂2

OO
τ ′′

99ssssssssss
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showing τ ′ is completely bounded. Proving it is a completely contractive morphism

is a little more complicated since it is not assumed that λ̂θ̂1(M(B)) is a complete

quotient morphism. With σ′ still a complete isometry and q′ a complete quotient

morphism, Ker(q′ ◦ σ′) = θ̂1(I). By the Factor Theorem, a complete isometry

χ : θ̂1(M(B))/θ̂1(I) → (σ′ ◦ θ̂1)(M(B))/I can be defined for all θ̂1(m) + θ̂1(I) ∈
θ̂1(M(B))/θ̂1(I) by χ(θ̂1(m) + θ̂1(I)) = (σ′ ◦ θ̂1)(m) + I. Also, by the Factor Theo-

rem a surjective completely contractive morphism
˜̂
λ : θ̂1(M(B))/θ̂1(I) → θ̂1(M(C))

exists defined in the usual way. This gives the following commutative diagram:

(σ′ ◦ θ̂1)(M(B))/A

θ̂1(M(B))/θ̂1(I)
˜̂
λ //

χ
55kkkkkkkkkkkkkk

θ̂1(M(C)).

τ ′
OO

Commutativity comes from that fact that q′ ◦σ′′ = τ ′′ ◦ π̂ and σ′′ = σ′ ◦ θ̂1. Checking

the norms based on the above diagram and using that each element in M(C) has a

pre-image under π̂, let m ∈M(B):

‖(θ̂2 ◦ π̂)(m)‖ ≤ ‖θ̂1(m) + θ̂1(I)‖ = ‖τ ′(θ̂2(π̂(m)))‖.

With τ ′ a completely contractive morphism, it will be shown that θ̂1(M(B)) ∼=
PB, where PB is the pullback due to τ ′. With σ′ and λ̂ coherent with q′ and τ ′,

define ψ : θ̂1(M(B)) → PB for all m ∈ θ̂1(M(B)) by ψ(m) = (σ′(m), λ̂(m)). With

σ′ a complete isometry ψ is injective and a complete isometry. That it is surjective

comes from the fact that λ̂ is surjective. This shows that λ̂ is a complete quotient
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morphism. The morphism τ ′ is also a complete isometry by Lemma 3.6.1 since σ′ is

a complete isometry.

For C*-algebras, it is the case that all ∗-homomorphisms have closed range and

are complete quotient morphisms onto their respective ranges. This gives a nice

characterization of the previous results for C*-algebras. For the next result, even

though the algebras are C*-algebras, the morphisms will be the same as described

at the beginning of this section since all the algebras are C*-algebras and there is no

confusion.

Corollary 7.3.10. Let A,B, and C be C*-algebras with π : B → C a surjective ∗-
homomorphism and Ker(π) = A. Then π extends to a surjective ∗-homomorphism

π̂ : M(B) → M(C) if and only if the induced ∗-homomorphism λ̂|θ̂1(M(B))
is sur-

jective onto θ̂2(M(C)) if and only if there exists a surjective ∗-homomorphism ρ :

ˆ̃σ(θ̂2(M(B)))/A → θ̂2(M(C)) such that Diagram 7.3.2 of Proposition 7.3.3 com-

mutes.

Proof. If π̂ is surjective, then by Proposition 7.3.3 λ̂|θ̂1(M(B))
and ρ exist and are

surjective. Suppose ρ exists as a surjective ∗-homomorphism satisfying the following

commutative diagram from Proposition 7.3.3.

X q
// Y

ρ
²²

θ̂1(M(B))

ˆ̃σ

OO

λ̂ // θ̂2(M(C))
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Here X = σ̂′(θ̂1(M(B))) and Y is the image of X under q : M(A) → Q(A). By

commutativity of the diagram, λ̂ is a complete quotient morphism onto θ̂2(M(C)),

and by Proposition 7.3.4, π̂ is surjective. If λ̂|θ̂1(M(B))
is a complete quotient morphism

onto θ̂2(M(C)), ρ and π̂ are surjective ∗-homomorphisms by Proposition 7.3.4.

7.4 Multiplier Extension Results

Theorem 7.4.1. Suppose that B and C are approximately unital operator alge-

bras and let π : B → A be multiplier extendible such that π̂ is a complete quotient

morphism and all the related morphisms satisfy the hypotheses of Proposition 7.3.4.

Suppose B0 is a subalgebra of B which shares a cai so that M(Bo) ⊂ M(B) com-

pletely isometrically isomorphically. Suppose Ker(π|B0
) shares a cai with Ker(π),

and that Ker(λ̂|θ̂1(M(B0))
) contains a cai for Ker(λ̂|θ̂1(M(B))

). Let C0 = π(B0), which

will share a cai with C, so that M(C0) ⊂ M(C) completely isometrically isomor-

phically. Further suppose that τ|C0
is a complete quotient morphism onto its range,

B0/Ker(θ̂1|B0
) ∼= θ1(B0), and θ̂2(M(C0)) is closed. Then π|B0

is multiplier extendible

with π̂|M(B0)
a complete quotient morphism.

Proof. From the hypotheses that π is a complete quotient morphism and is multiplier

extendible and satisfies the hypotheses of Proposition 7.3.4, the following commuta-

tive diagram can be assumed with the vertical arrows complete isometries and the

horizontal arrows complete quotient morphisms.
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0 // I // M(I)
q′

// Q(I) // 0

0 // I // θ̂1(M(B))

σ′

OO

λ̂ // θ̂2(M(C)) //

τ ′

OO

0

It can be further deduced from the hypotheses that π|B0
, θ̂1|B0

are complete quotient

morphism as are λ̂|θ̂1(B0)
and λ̂|θ̂1(M(B0))

. This gives that θ2(C0) = Ran(λ̂(θ1(B0))) is

closed. Let I0 = Ker(λ̂|θ̂1(M(B0))
), A0 = Ker(π|B0

), J = Ker(θ1) and X = Ranλ̂(θ̂1(M(B0)).

The following commutative diagram can be formed:

I // M(I)
q

// Q(I)

I0
//

?Â

OO

θ̂1(M(B0))

σ′

OO

λ̂|
θ̂1(M(B0))

// X

τ ′

OO

A0/J //

OO

θ̂1(B0)
λ̂|

θ̂1(B0)
//

?Â

OO

θ̂2(C0)
?Â

OO

A0
//

θ1

OO

B0

π̂|B0 //

θ̂1|B0

OO

C0.

θ̂2|C0

OO

It will be shown that λ̂|θ̂1(M(B0))
is surjective onto θ̂2(M(C0)) which together with

the other hypotheses proves the result. With I0 sharing a cai with I = Ker(λ̂|θ̂1(M(B))
),

this means M(I0) ⊂ M(I) and Q(I0) ⊂ Q(I) completely isometrically by Theo-

rem 3.5.2. As in the proof of Proposition 7.3.4, σ′(θ̂1(M(B0)) ⊂ M(I0) ⊂ M(I).

With the intention of showing X = θ̂2(M(C0)), the following diagram can be formed

with each morphism a complete quotient morphism or a complete isometry.
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M(I0)
q|M(I0)

// Q(I0)

θ̂1(B0)
λ̂|

θ̂1(B0)
//

σ′

OO

θ̂2(C0)

τ ′

OO

B0

π̂|B0 //

θ̂1|B0

OO

C0

θ̂2|C0

OO

(7.4.1)

The only morphism that is not clearly a complete quotient morphism is θ̂2|C0
. By

the hypothesis that B0/Ker(θ̂1|B0
) ∼= θ1(B0), it follows θ̂1|B0

is a complete quotient

morphism. With all other morphisms in the lower box complete quotient morphisms,

θ̂2|C0
must be also.

From the last diagram above, it is evident that τ ′(θ̂2(C0)) ⊂ Q(I0) ⊂ Q(I)

and with τ ′ a complete isometry, τ ′(θ̂2(C0)) is closed. Next, it will be shown that

θ̂2(M(C0)) ⊂ Q(I0) completely isomorphically. Let τ
′∗∗
|θ̂2(C0)

: θ̂2(C0)
∗∗ → Q(I0)

∗∗

be the canonical completely isometric weak∗-continuous extension of this restric-

tion of τ ′. With θ̂(C0)
∗∗ containing a completely isometrically isomorphic copy of

M(θ̂2(C0)), this indicates that Q(I0)
∗∗ also contains a completely isometrically iso-

morphic copy of M(θ̂2(C0)). Let ι : Q(I0) → Q(I) be the canonical morphism with

ι∗∗ : Q(I0)
∗∗ → Q(I)∗∗ the completely isometrically isomorphically weak∗-continuous

extension of ι. The following commutative diagram can be formed.

Q(I0)
∗∗ ι∗∗ // Q(I)∗∗

θ2(C0)
∗∗

τ
′∗∗
|θ2(C0)

eeLLLLLLLLLL τ
′∗∗
|θ2(C0)

99ssssssssss
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With τ ′(θ2(C0)) ⊂ ι(Q(C0)), then τ
′∗∗
|θ2(C0)

(θ2(C0))
∗∗ ⊂ ι∗∗(Q(I0)

∗∗) giving the above

diagram is commutative. From this observation ι∗∗ can be considered to be the

identity morphism on the completely isometrically isomorphic copy of M(θ2(C0))

in Q(I)∗∗. Since π′ is a complete quotient morphism, Proposition 7.3.4 implies

τ ′(θ̂2(M(C0)) ⊂ Q(I) as well as Q(I0)
∗∗. By Lemma 7.1.4 Q(I0)

∗∗ ∩ Q(I) = Q(I0)

giving τ ′(θ̂2(M(C0))) ⊂ Q(I0).

The following commutative diagram is the same as Diagram 7.3.4, but each of the

morphisms restrictions as indicated. The inclusion morphisms from M(I0) →M(I)

and Q(I0) → Q(I) have been suppressed for clarity. However, it is not yet proven

that, in particular, λ̂|θ̂1(M(B0))
is surjective onto θ̂2(M(C0)).

I0
// M(I0)

q|M(I0)
// Q(I0)

I0
// θ̂1(M(B0))

λ̂|
θ̂1(M(B0))

//

σ′|
θ̂1(M(B0))

OO

θ̂2(M(C0))

τ|′
θ̂2(M(C0))

OO

A0
//

θ1|A0

OO

B0

π|B0 //

θ1|B0

OO

C0

θ2|C0

OO

(7.4.2)

With τ ′|θ̂2(M(C0))
taking θ̂2(M(C0)) into Q(I0), there exists an extension of θ̂2(M(C0))

by I0. As before, the pullback will be shown to contain B0 as an ideal. The first

step is to show A0 as the first algebra on the bottom row represents more just

Ker(π|B0
). It needs to be seen that θ1(A0) = I0 ∩ θ1(A). One set inclusion is easy.

Let θ1(a) ∈ I0 ∩ θ(A). This means θ1(a) ∈ θ̂1(M(B0)) so that for all θ1(b) ∈ θ1(B0),

θ1(ab) ∈ θ1(B0). Since θ1(A) is an ideal, θ1(ab) ∈ θ1(A), and the product is in

θ1(B0) ∩ θ1(A). Since this intersection is in θ1(A), and θ1 is a complete isometry
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on A, θ−1
1 (θ1(B0) ∩ θ1(A)) = B0 ∩ A. As the kernel of π|B0

, A0 = B0 ∩ A by

Proposition 4.1.1. This means θ1(A0) is an ideal in I0 ∩ θ1(A). Since A0 shares a cai

with A, then I0 ∩ θ1(A) = θ1(A0).

To form the pullback due to τ ′|θ̂2(M(C0))
, the definition of the morphisms σ′′ :

M(B) →M(I) from Corollary 7.3.5 will be used. Then define τ ′′ : M(C) → Q(I0)

by τ ′′ = τ ′ ◦ θ̂2|M(C0)
. When the pullback is defined below, it is known that M(C0)

maps into Q(I0), but not which elements of M(B) map into M(I0). The following

definition of the pullback reflects this and is simplified as follows:

PB0 = {(m1,m2) : m1 ∈M(I0),m2 ∈M(C0) : q(m1) = τ ′′(m2)}.

From the requirement q(m1) = τ ′′(m2), m1 ∈ σ′′(M(B))∩M(I0). A typical element

will be more precisely denoted as (σ′′(m1),m2) with m1 ∈ M(B) such that (q ◦
σ′′)(m1) = τ ′′(m1) ∈ Q(I0). Now we will form the canonical morphism γ : B → PB

for all b ∈ B using the above notations. That is γ(b) = (σ′′(b), π(b)). Note that γ(B)

maps into M(I) ⊕Q(I) M(C) = PB from Proposition 7.3.4. The restriction of σ′′|B0

and τ ′′|C0
can give a definition of the completely isometric copy of B0 in PB. That

is, for b0 ∈ B0, γ(b0) = (σ′′(b0), π(b0)) ∈M(I0)⊕Q(I0) M(C0), which is a subalgebra

of M(I) ⊕Q(I) M(C). Form the multiplication by a typical element of PB0 with a

typical element of γ(B0) as:

(σ′′(m1),m2)(σ
′′(b0), π(b0))(σ

′′(m1b0),m2π(b0)) = (σ′′(b), π(b′0)).
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Certainly, (σ′′(b), π(b′0)) ∈ γ(B). With γ one-to-one on B, then (σ′′(b), π(b′0)) =

(σ′′(b1), π(b1)) for some b1 ∈ B. Note that σ′′(b1) = σ′′(b) and π(b1) = π(b′0). This

gives π(b0) = π(b1) and b0 − b1 ∈ A. In addition, (σ′′(b1), π(b1)) ∈ PB. By the

definition, q(σ′′(b1)) = τ(π(b1)) = τ(π(b′0)). With q ◦ σ′′ = τ ′′ ◦ π, then q ◦ σ′′(b1) =

q◦σ′′(b′0), so that σ′′(b1)−σ′′(b′0) = σ′′(b1−b′0) ∈ I0. Putting the two together with the

above discussion, namely θ1(A)∩I0 = θ1(A0), indicates θ1(b1−b′0) ∈ θ1(A0). Rewrite

the product above as (σ′′(b0+a0), π(b0+a0)) ∈ γ(B0). There is a canonical completely

isometric isomorphism in Proposition 7.3.4 which was designated γ̂−1 : PB →M(B).

The restriction to PB0, which is a completely isomorphic morphisms, maps into

M(B0) ⊂ M(B) by Lemma 7.1.5. From the definition of γ̂ : M(B) → PB in

Proposition 7.3.4, γ̂(m) = (σ′′(m), π̂(m)). Since π̂(M(B0)) ⊂ M(C0), and PB0 is

the pullback due to τ ′′|M(C0)
, if m ∈M(B0), γ̂(m) = (σ′′(m), π̂(m)) ∈ PB0.

Theorem 7.4.1 will be used to give a Tietze extension theorem for σ-unital opera-

tor algebras. If π : B → C is a complete quotient morphism, it induces an extension

of C by Ker(π) assuming the kernel has a cai. The strategy will be to use a cov-

ering extension of this induced extension. The C*-covers of B and C are σ-unital

and so the C*-algebra Tietze theorem will apply. First a lemma is required. The

conventions for the morphisms differs slightly from that discussed at the beginning

of Section 7.3, but the differences are clearly defined.

Lemma 7.4.2. Let E be an extension of C by A with middle algebra B and E∗ a

maximal covering extension of E. Let i : A → C*
max(A), j : B → C*

max(B), and k :

C → C*
max(C) be the inclusion morphisms. Also let î : M(A) → M(C*

max(A))

and ĩ : Q(A) → Q(C*
max(C)) be the canonical completely isometric morphisms, and
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similarly for j and k. Furthermore, assume that the canonical morphisms τ and σ̂

are complete quotient morphisms onto their respective ranges. Then the associated

morphisms of the E and E∗ as in Proposition 7.3.4 are related in the following ways:

(i) If π : B → C is a complete quotient morphism, and π′ : C*
max(B) → C*

max(C) is

the canonical extension of π, then π′ ◦ j = k ◦π and both π and π′ are complete

quotient morphisms. Additionally, ‖π(b)‖ = ‖π′(j(b))‖ for all b ∈ B.

(ii) If τ : C → Q(A) is the canonical morphism due to the extension E, and

if τ ′ : C*
max(C) → Q(C*

max(A)) is the canonical ∗-homomorphism due to the

maximal covering extension, then τ ′◦k = ĩ◦τ . Additionally ‖τ(c)‖ = ‖τ ′(k(c))‖
for all c ∈ C.

(iii) If σ : B → M(A) and σ′ : C*
max(B) → M(C*

max(A)) are the canonical mor-

phisms, then both are complete quotient morphisms onto their ranges with

î ◦ σ = σ′ ◦ j. Additionally ‖σ(b)‖ = ‖σ′(j(b))‖ for all b ∈ B.

(iv) If σ̂ : M(B) → M(A) is the canonical extension of σ to M(B), and σ̂′ :

M(C*
max(B)) →M(C*

max(A)) is the canonical extension of σ′ to M(C*
max(B)),

then both are complete quotient morphisms onto their respective ranges, and

î ◦ σ̂ = σ̂′ ◦ ĵ. Additionally ‖σ̂(m)‖ = ‖σ̂′(ĵ(m))‖ for all m ∈M(B).

(v) If θ1 : B → B/J , where J = Ker(σ), is the canonical complete quotient mor-

phism, and θ′1 : C*
max(B) → C*

max(B)/J where J = Ker(σ′) is the canonical

surjective ∗-homomorphism, then B/J ∼= B/J , and C*
max(B)/J is a C*-cover

for B/J . Let ι1 : B/J → C*
max(B)/J is the canonical inclusion morphism,

then ι1 ◦ θ1 = θ′1 ◦ j.
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(vi) If θ2 : C → C/K, where K = Ker(τ), is the canonical complete quotient

morphism, and θ′2 : C*
max(C) → C*

max(C)/K where K = Ker(τ ′) is the canonical

surjective ∗-homomorphism, then C/K ∼= C/K, and C*
max(C)/K is a C*-cover

for C/K. Let ι2 : C/K → C*
max(C)/K is the canonical inclusion morphism,

then ι2 ◦ θ2 = θ′2 ◦ k.

(vii) If λ : B/J → C/K and λ′ : C*
max(B)/J → C*

max(C)/K are the morphism from

Lemma 3.6.2, then ι2 ◦λ = λ′ ◦ ι1. Additionally ‖λ(θ1(b))‖ = ‖λ′(θ′1(j(b)))‖ for

all b ∈ B.

(viii) If θ̂1 : M(B) →M(B/K) is the canonical morphism from Proposition 7.3.3,

and θ̂′1 : M(C*
max(B)) →M(C*

max(B)/J ) is the canonical extension of θ′1, then

ι̂1 ◦ θ̂1 = θ̂′1 ◦ ĵ. Here the hat notations mean the extensions to the multiplier

algebras. Additionally ‖θ̂1(m)‖ = ‖θ̂′1(ĵ(m))‖ for all m ∈M(B).

(ix) If λ̂ : M(B/J) → M(C/K) is the canonical morphism from Proposition

7.3.3, and λ̂′ : M(C*
max(B)/J ) → M(C*

max(C)/K) is the canonical mor-

phism from Proposition 7.3.3 as it relates to the above ∗-homomorphisms, then

λ̂|θ̂1(M(B))
is a complete quotient morphism onto its range if Ker(λ̂|θ̂1(M(B))

) and

Ker(λ̂′|
θ̂′1(M(C*

max(B)))
) share a cai. In this case ‖λ̂(θ̂1(m))‖ = ‖λ̂′(θ̂′1(m))‖ for all

m ∈M(B).

(x) If the condition in (ix) is satisfied, and if ι3 : Ker(λ̂) → Ker(λ̂′) is the inclu-

sion morphism, then ι̂3 : M(Ker(λ̂)) → M(Ker(λ̂′)) and ι̃3 : Q(Ker(λ̂)) →
Q(Ker(λ̂′)) are complete isometries.

(xi) If σ1 : θ̂1(M(B)) → M(Ker(λ̂)) and σ′1 : θ̂′2(M(C*
max(B))) → M(Ker(λ̂′))
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are the associated complete isometries from Proposition 7.3.3 for the E and E∗

assuming all the above conditions are met, then ι̂3 ◦ σ1 ◦ θ̂1 = σ′1 ◦ θ̂′1 ◦ ĵ for all

m ∈M(B). In addition both σ1 and σ′1 are complete isometries.

Proof. (i) Follows from universal property of maximal C*-cover and Lemma 2.1.2.

(ii) Follows from Lemma 5.1.1 and Corollary 2.1.4.

(iii) That σ is a complete quotient morphism follows from τ being a complete

quotient morphism and Lemma 3.5.3. That î ◦ σ = σ′ ◦ j follows from Lemma 5.1.1.

With i and j complete isometries, ‖σ(b)‖ = ‖̂i(σ(b))‖ = ‖σ′(j(b))‖ for all b ∈ B.

(iv) By Lemma 5.1.4, î◦ σ̂ = σ̂′ ◦ ĵ even if σ̂ is not a complete quotient morphism.

With î and ĵ complete isometries, as in the proof of (iii), ‖σ̂(m)‖ = ‖̂i(σ̂(m))‖ =

‖σ̂′(ĵ(m))‖ for all m ∈M(B).

(v) With σ a complete quotient morphism as in (iii), then by Lemma 3.6.2, for

all b ∈ B,

‖σ(b)‖ = ‖θ1(b)‖ = ‖b + J‖ ≤ ‖b + J ‖ = ‖σ′(j(b))‖ = ‖σ(b)‖.

The last equality is due to (iii). The above holds at all matrix levels, giving B/J ∼=
B/J . It is easy to see that B/J generates C*

max(B)/J so that the latter C*-algebra

is a C*-cover for B/J . Let ι1 : B/J → B/J be the canonical complete isometry.

Then for b ∈ B, (ι1 ◦ θ1)(b) = ι1(b + J) = b + J = θ′1(j(b)), showing ι1 ◦ θ1 = θ′1 ◦ j.

(vi) With τ a complete quotient morphism by hypothesis, by Lemma 3.6.2, for
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all c ∈ C,

‖τ(c)‖ = ‖θ2(c)‖ = ‖c + K‖ ≤ ‖c +K‖ = ‖τ ′(k(c))‖ = ‖τ(c)‖.

The last equality due to (ii). The above holds at all matrix levels, giving C/K ∼=
C/K. It is easy to see that C/K generates C*

max(C)/K so that the latter C*-algebra

is a C*-cover for C/K. Let ι2 : C/K → C/K be the canonical complete isometry.

Then for c ∈ C, (ι2 ◦ θ2)(c) = ι2(c + K) = c +K = θ′2(k(c)) showing ι2 ◦ θ2 = θ′2 ◦ k.

(vii) By Lemma 3.6.1 both λ and λ′ are complete quotient morphisms with

Ker(λ) = A/J ∼= A and Ker(λ′) = C*
max(A)/J ∼= C*

max(A). To see that for all

b + J ∈ B/J , ι2 ◦ λ = λ′ ◦ ι1,

(ι2 ◦ λ(b + J) = ι2(τ(b) + K) = τ(b) +K = λ′(b + J ) = λ′(ι1(b + J)).

To see ‖λ(θ1(b))‖ = ‖λ′(θ′(j(b)))‖, note that A/J and C*
max(A)/J share a cai and

the result follows from Lemma 2.1.2.

(viii) That θ̂1 is a complete quotient morphism onto its range follows from the hy-

pothesis that σ̂ is a complete quotient morphism onto its range. From Lemma 7.3.2.

With ι1 a complete isometry, then ι̂1 : M(B/K) → M(C*
max(B)/J ) is a complete

isometry by Lemma 4.1.4. To see that for all m ∈ M(B), ι̂1 ◦ θ̂1 = θ̂′ ◦ ĵ, note that

the restrictions to B commute by (v). Each composition is multiplier nondegenerate,

and by the uniqueness of the extension of each to M(B), the composition must also
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agree on M(B). That ‖θ̂1(m)‖ = ‖θ̂′1(ĵ(m))‖ for all m ∈M(B) will follow from (iv)

above and Theorem 3.5.2.

(ix) With the assumption that Ker(λ̂|θ̂1(M(B))
) and Ker(λ̂′|

θ̂′1(M(C*
max(B)))

) share a cai,

the result follows from Lemma 2.1.2

(x) Follows from Lemma 4.1.4.

(xi) From (viii), ι̂1 ◦ θ̂1 = θ̂′1 ◦ ĵ. Now it will be shown that σ′1 ◦ ι̂1 = ι̂3 ◦ σ1 for all

m ∈ θ̂1(M(B)). Let m ∈ θ̂1(M(B)), and

(σ′1 ◦ ι̂1)(m) = σ′1(θ̂
′
1(ĵ(m))) = ι̂3(σ1(m)).

Put the two equations together to get the result. That σ1 and σ′1 are complete

isometries follows from Proposition 7.3.4.

Theorem 7.4.3. Using the notations for algebras and morphisms from Proposi-

tion 7.3.4, Theorem 7.4.1, and Lemma 7.4.2, let π : B → C be a complete quotient

morphism between σ-unital operator algebras such that A = Ker(π) has a cai. Fur-

thermore, suppose that τ : C → Q(A) is a complete quotient morphism onto its

range, and σ̂ : M(B) → M(A) is a complete quotient morphism onto its range.

Let C*
max(A), C*

max(B) and C*
max(C) be the maximal C*-covers for A,B, and C re-

spectively. The extension of π′ was defined as π̂′ : M(C*
max(B)) → M(C*

max(C)).

Finally suppose θ̂2(M(C)) is closed and Ker(π̂) and Ker(π̂′) share a cai. Then π is

multiplier extendable and π̂ is a complete quotient morphism.

Proof. With B and C σ-unital, by the C*-algebra Tietze extension theorem, π̂′ :
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M(C*
max(B)) →M(C*

max(C)) is a surjective ∗-homomorphism. The result follows if

it is shown that the hypotheses of Theorem 7.4.1 are met.

First, B and C*
max(B) share a cai. To see that Ker(π) and Ker(π′) share a

cai, appealing to Proposition 5.1.2 gives a covering extension with middle algebra

C*
max(B). By Lemma 5.3.5, all the C*-algebras of this covering extension are maximal

C*-covers. It can be deduced that C*
max(A) = Ker(π′) and shares a cai with A. The

hypothesis that τ ′|C is a complete quotient morphism follows from Lemma 7.4.2 (ii)

and the hypothesis that τ = τ ′|C is a complete quotient morphism. The hypothesis

that B/Ker ∼= θ̂′1|B (B) follows from Lemma 7.4.2 (v) and from the fact that θ̂′1 extends

θ′1 to M(C*
max(B)). Since B is σ-unital, then C*

max(B)/Ker(θ′1) is σ-unital. By the

C*-algebra Tietze extension theorem, θ̂′1 is surjective. With π̂′ also a surjective ∗-
homomorphism, then by Proposition 7.3.4, Ker(π̂′) ∼= Ker(λ̂′). Putting this together

with the hypotheses that Ker(π̂) and Ker(π̂′) share a cai, and that θ̂2(M(C)) is

closed, then all the hypotheses of Theorem 7.4.1 have been met. By Theorem 7.4.1

π̂ is a complete quotient morphism.

Corollary 7.4.4. Suppose that π : B → C is a complete quotient morphism between

σ-unital operator algebras. Further suppose that A = Ker(π) has a cai and is a

completely essential ideal in B. If Ker(π̂) contains a cai for Ker(π̂′), then π is

multiplier extendable such that π̂ is a complete quotient morphism.

Proof. Automatically τ, σ, and σ̂ are complete isometries. In this case, θ1, θ2, and λ

are redundant. The only remaining hypothesis for Theorem 7.4.3 is that π̂ and π̂′

share a cai, giving the result.
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