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Abstract

Parametric estimation of stochastic processes is one of the most widely used techniques

for obtaining effective models, given a discrete dataset. Often, the experimental or obser-

vational datasets are not explicitly generated by the underlying stochastic model and are,

thus, expected to agree with the model only in approximate statistical sense, also referred

as Indirect Observability. Therefore, there may be an inherent difference between the data

and the model, leading to the inconsistency of the parametric estimation.

The dissertation is presented in three parts. In first part (chapter 2), the goal is to

develop an efficient and accurate parametric estimation procedure for the reduced model

(SDE for slow variables alone) when the given data are the time series of the slow variables

in the multi-scale high-dimensional Lorenz-96 model. The first estimator considered for the

reduced model is approximate Maximum Likelihood estimator, which is highly dependent

on the subsampling time-step of the given data. There is no feasible solution to compute

optimal subsampling time-step for consistent approximate Maximum Likelihood estimator.

Next, we look at the moment estimator which is weakly dependent on subsampling time-

step of the given data, but is valid only if the mean of the slow variables in the full model

is relatively large. Both estimators give acceptable values for the parameters in reduced

model. Given the situation of non-linear multi-scale model to be reduced to stochastic model

of slow variables alone, moment estimator is preferred if the mean of the slow variables is

relatively large and the reduced model is not very sensitive to the change in parameters.

The second part is chapter 3, in which we consider the multi-scale model having energy

conserving fast subsystem and the stochastic terms been added to the equation of slow

variables alone. In such situations, the energy of the fast variables changes with time due

to the coupling between the slow and fast dynamics and hence, considered as an additional

hidden slow variable. We develop a stochastic mode reduction technique to derive an
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efficient stochastic model for the original slow variables in full model and additional slow

variable given by energy of the fast subsystem.

In the third part (chapter 4), similar parametric estimation procedure is studied un-

der Indirect Observability as done for Lorenz-96 model in chapter 2 but here we consider

multi-scale fast-oscillating potential model. We get linear reduced model which simplifies

certain analytical computations and we specify explicit conditions for which the estimators

of the reduced model are consistent under Indirect Observability. Another important aspect

discussed in the chapter is estimation of an effective model from a dataset generated with

a fixed but unknown value of the scale separation parameter ε.
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CHAPTER 1

Introduction and Motivation

Stochastic modeling of discrete dynamic data has been an active area of research for many

decades. There are many applications where it is desirable to fit a reduced stochastic

description (e.g. an SDE) to data. Some of these applications include molecular dynamics

[28, 45], atmosphere/ocean science [12, 26, 37], and econometrics [14, 74]. Parametric

estimation of stochastic processes is one of the most widely used techniques for obtaining

effective models. In such situations, the main objective is to estimate the model parameters

to best fit the given observations. This is one of the main issues of the dissertation. Often,

the experimental or observational datasets are not explicitly generated by the underlying

stochastic model and are, thus, expected to agree with the model only in approximate

statistical sense. Since, the data to be fitted are only an approximation to the model, we

refer to such situations as Indirect Observability. The main concern is that the parametric

estimation of stochastic models under Indirect Observability framework may not be robust.
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In such scenarios, one must show caution in applying standard statistical techniques to

obtain estimates for the model parameters such as Maximum Likelihood estimation.

The multi-scale nature of complex dynamics is common in applications of contemporary

science, such as geophysical science and climate change prediction [15, 37, 40, 64]. Multi-

scale systems are typically characterized by the time and space scale separation of patterns

of motion, with (typically) fewer slowly evolving variables and much larger set of faster

evolving variables. This time-space scale separation causes direct numerical simulation

of the evolution of the dynamics to be computationally expensive, due both to the large

number of variables and the necessity to choose a small discretization time-step in order to

resolve the fast components of the dynamics.

In the climate change science the situation is further complicated by the fact that

the climate is characterized by the long-term statistics of the slow variables, but the slow

variables are influenced by small changes of physical parameters (such as the solar radiation

forcing, greenhouse gas content, etc.). Therefore, climate change occurs over even longer

time-scale than the dynamics of the slow variables themselves. In this situation, where

long-term statistics of the slow motion patterns need to be captured, the direct forward

time integration of the most comprehensive global circulation models (GCM) is subject to

enormous computational expense.

It has long been recognized that a closed simplified model for the slow variables is a more

computationally feasible alternative to a direct forward time integration of a complete multi-

scale model. One could use this simplified low-dimensional model to efficiently simulate the

long-term statistics of the slow variables. One example is the field of molecular dynamics,

where it is desirable to find the effective models for low-dimensional phenomena (such

as conformational dynamics, vacancy diffusion and so forth) which are embedded within

higher dimensional time series. Another example is the ocean-atmosphere sciences where it

2



1.1. INDIRECT OBSERVABILITY

is desirable to find effective models for large-scale structures, while representing the small-

scales stochastically. The multi-scale structure of the data in these problems renders the

problem of parameter estimation very subtle and great care has to be taken in order to

estimate the coefficients correctly.

In the last few decades the importance of multi-scale effects has been particularly empha-

sized in many applications. In this context, reduced modeling of complex PDEs has been one

of the main motivations behind many techniques. For instance, the stochastic mode reduc-

tion technique (same as homogenization) based on the earlier works [35, 50, 51, 52, 53, 66]

has succesfully modeled the dynamics of large-scale structures in system with time-scale

separation [24, 36, 58, 59, 60, 61]; stochastic mode-reduction has been applied to the finite-

difference discretizations of the Burgers equation [29, 30] to derive an effective equation

for local spatial averages; an optimal prediction framework has enabled coarse-grained dy-

namic modeling of statistical descriptors [18, 19, 21]; microscopic spin-flip process have

provided coarse-grained models of car and pedestrian traffic flow [7, 16, 17, 32, 41, 73];

reduced Markov chain models have been applied to prototype atmosphere-ocean interac-

tions [24, 31, 63]; a framework for dimension reduction in metastable systems has been

developed [42, 71]; and importance of multi-scale effects in data-driven stochastic modeling

[39, 43, 44, 75] has been discussed.

1.1 Indirect Observability

The Indirect Observability context considered here is motivated primarily by stochastic

modeling of large-scale structures in turbulent geophysical partial differential equations.

The climate system is assumed to be in statistical equilibrium and the reduced system

is derived using averaging or homogenization with respect to the equilibrium measure of

fast variables. This approach can be formalized by splitting all dynamic variables into

3



1.1. INDIRECT OBSERVABILITY

two sets - slow and fast variables, properly introducing an artificial small parameter, ε,

into the climate system, and deriving the effective reduced stochastic differential equation

for the slow variables in the limit as ε → 0. This technique has been applied to some

prototype models [8, 60, 61] and more realistic atmospheric models of various complexity

[25, 37, 38]. The main disadvantage of this technique is that coefficients in the reduced

model are computed using the stationary statistics of fast variables and the long simulation

of the full model are typically necessary to estimate this data. Alternatively, it is possible

to estimate the coefficients of the reduced model from the time series of the slow variables

themselves. This introduces a mismatch between the estimated model and data, since slow

variables are only a subset of full slow-fast dynamics. For instance, time series of the slow

variables alone are non-Markovian and multi-scale effects from the fast unresolved variables

can lead to inconsistencies in reduced stochastic modeling of the large-scale structures in

the atmosphere-ocean applications [12, 26].

In practical situations the full slow-fast system is not particularly close to the limiting

stochastic dynamics. For atmospheric dynamics, the scale separation ε is generally con-

sidered to be in the range of [0.3 · · · 0.5], but it is impossible to estimate the precise value

of ε since it does not enter the model explicitly. Nevertheless, it is desirable to obtain a

closed form reduced model for the time-evolution of the large-scale structures. Therefore,

the main practical goal of stochastic modeling under Indirect Observability is to develop ef-

ficient and accurate parametric estimation procedure for SDEs when the data are generated

by a multi-scale model for which the scale separation ε has a finite, but unknown value. In

[9, 10, 11], authors show the asymptotic results for the development of bias-corrected esti-

mators accurately reproducing the statistical properties of observed or simulated dynamic

data sets. In next subsection, we discuss the precise mathematical framework of Indirect

Observability for the centered stationary continuous time processes, shown in [9, 10, 11].

4



1.1. INDIRECT OBSERVABILITY

1.1.1 Mathematical framework of Indirect Observability

The mathematical description of the Indirect Observability framework is a formal way to

address an important case when the nature of the observed process is not known exactly or

too complex to use in numerical/analytical calculations; instead, it is desirable to approx-

imate this process by a suitable stochastic process Xt with matching statistical features.

The observable complex process is denoted as Y ε
t where ε is the scale separation parameter

in multi-scale systems. To test the consistency of the estimation procedure we consider

examples when Y ε
t is such that Y ε

t → Xt as ε→ 0 in some suitable sense. The limit process

of interest is denoted as Xt, but it is not observed directly; instead the parameters of the

stochastic model for Xt are inferred from the data subsampled from Y ε
t . Here Y ε

t is also

referred to as an approximating process.

Consider the parameter vector to be estimated in underlying process Xt as θ which

needs to be estimated using the observations of Y ε
t . The limiting behavior of Y ε

t can

be derived explicitly via a well known homogenization procedure. The homogenization

procedure is used to derive the explicit equations for the limiting process and the "true"

values of parameter vector θ . These "true" values depends on the moments of the fast

variables in full model. The concrete target is to efficiently use the data of approximating

process Y ε
t to generate consistent estimators of the unknown "underlying" parameter vector

θ. Hence, the "true" values, derived using the homogenization procedure, are only used

to test the behavior of the estimators as ε → 0. Estimator for the unknown parameters

vector θ computed using the data of Y ε
t is the function of ε, denoted by θ̂ε. Since Xt is the

limit process of Y ε
t as ε→ 0, it is desirable that the parameter estimator θ̂ε computed from

discrete data of Y ε
t converge to the "true" parameter value of θ as ε→ 0.

The homogenization procedure provides us with an explicit equation for Xt and the
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"true" values of parameters. As part of the comparison procedure, equation of Xt is sim-

ulated and compared with the observable process Y ε
t as ε → 0. We observe that at short

time-scales, the trajectories Y ε
t of the observable physical process are quite different from

sample paths Xt but on longer time-scales, the behavior of Y ε
t is well matched by Xt.

This situation is typical for data generated by a numerical dynamical model, such as fluid

dynamics PDEs. For very short times, there is an inconsistency in de-correlation times

between Xt and Y ε
t . Therefore, if θ̂ε depends on the subsampling time lag ∆ (e.g., the

Maximum Likelihood estimator), θ̂ε can loose it’s consistency if one simply substitutes the

data generated by Y ε
t instead of the data Xt, especially if the observations of Y ε

t are too

dense in time. Hence, there is a need to subsample the data at an optimal time-step ∆

such that the estimator converges to true parameter as ε → 0. This study highlights the

necessity to subsample at adequate rates when the observations are not generated by the

underlying stochastic model whose parameters are being estimated.

Here, we consider estimators computed from discrete observational samples. Consider

discretely subsampled data Un = Y ε
n∆, n = 0, 1, 2, ...N, from an observable process Y ε

t

which has complex dynamics. Our goal is to determine explicit conditions on the number

of discrete observations N = N(ε), and the uniform time-step ∆ = ∆(ε) such that, as

ε→ 0, the estimator θ̂ε based on the observations Un subsampled from the approximating

process Y ε
t converges to the true parameter value θ.

Subsampling strategies become essential when the parameters of an SDE driving Xt

must be estimated using discrete data extracted from a process Y ε
t quite close to Xt for

small ε, but having higher trajectory smoothness than Xt. Subsampling approaches have,

for instance, been studied for the homogenization problem [67, 68, 9, 10, 11].

Previous work. In [9, 10, 11], authors characterize efficient subsampling strategies

with a complete determination of the optimal subsampling rates. The main results are
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presented via a prototype example in which the underlying process Xt is a stationary

Ornstein-Uhlenbeck (OU) process with unknown drift and diffusion coefficients γ and σ2,

given by

dXt = −γXtdt+ σdWt, (1.1)

where Wt is the standard Brownian motion and the unknown parameters γ, σ are strictly

positive. It is assumed that the only available observations are generated by another sta-

tionary Gaussian process Y ε
t , indexed by a small parameter ε > 0. One example of the

approximating process Y ε
t is the Smoothed Ornstein-Uhlenback process given by

Y ε
t =

1

ε

ˆ t

t−ε
Xsds. (1.2)

It can be shown that Y ε
t → Xt in L2 as ε → 0, and in particular, the correlation function

of Y ε
t converges to the correlation function of Xt as ε → 0. The process Xt is not directly

observable and the only available information is N number of observations extracted from

Y ε
t by subsampling with a time-step ∆.

The goal is to consistently estimate the drift and diffusion parameters γ and σ of the

non-observable OU process Xt, using N(ε) observations extracted by subsampling at time-

step ∆(ε), of the approximating process Y ε
t which tends to Xt in L2 as ε→ 0. Estimators γ̂

and σ̂2 are considered for parameters γ and σ2, based on the second-order covariance estima-

tors of the underlying process. These estimators are also shown asymptotically equivalent

to the Maximum Likelihood estimators for the OU SDE. The main goal is to determine

necessary and sufficient conditions on parametric estimation under Indirect Observability,

i.e. conditions to ensure that estimators (γ̂, σ̂2) → (γ, σ2) as ε → 0 when estimators are

computed using the observations of Y ε
t subsampled at time-step ∆.

In [10], the authors developed the necessary and sufficient conditions for the consistency

of the Maximum Likelihood estimators based on adequately subsampled approximate data
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and also investigated the optimal speed of convergence. In particular, the consistency

conditions for vanishing lags estimators are formulated as

N(ε)→∞, ∆(ε)→ 0, N(ε)∆(ε)→∞, ε/∆(ε)→ 0. (1.3)

If, for simplicity, the power-law relationships between N, ∆ and ε are considered, then, the

consistency requirements for the subsampling procedure becomes

∆ = εα, α ∈ (0, 1), N = ε−β, β > α. (1.4)

Previous work: Modeling a given dataset generated at a fixed but unknown

scale. In [9, 10, 11], authors also considered the situation of estimating an effective stochas-

tic model for the large-scale structures from a single dataset generated by an approximate

multi-scale model with an unknown fixed parameter ε. The algorithm is developed to con-

struct a new bias-corrected estimator. This is an important point, addressing a practical

question of stochastic modeling of large-scale structures in multi-scale high-dimensional

systems. Typically, in such situations the time series of the large-scales are available from

numerical simulations of the full model, but the exact value of the multi-scale parameter is

unknown.

Consider the Maximum Likelihood estimators γ̂, σ̂2 which depend on the behavior of

lagged covariance of large-scale observations. The goal is to develop an approach for con-

structing the bias-corrected estimators when the data are generated from a trajectory Y ε
n∆

with a fixed, but unknown value of the multi-scale parameter ε. The bias-corrected es-

timator is constructed by analysis of the curve γ̂(∆) vs ∆ and concluded that the slope

estimator is an unbiased estimator for the damping parameter γ, i.e. the bias-corrected

estimators can be computed by linear regression of γ̂(∆) ∆ versus ∆. If we have non-linear

reduced model, the curve γ̂(∆) vs ∆ can be more complicated. We show the results of [9]
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on multi-scale fast-oscillating potential model in chapter 4 for which we have OU process

as the reduced model.

1.2 Outline of Dissertation

Chapter 2: Parameter Estimation of Lorenz-96 Model

Our goal is to test estimation under Indirect Observability on a more realistic multi-scale

model related to fluid dynamics. In chapter 2, the results of Indirect Observability in

[9, 10, 11] are extended to the complex multi-scale Lorenz-96 model having 18 slow vari-

ables and total 360 fast variables. We consider the non-linear two-scale L96 model having

chaotic behavior, forcing, and dissipation with dynamics ranging from weakly to strongly

chaotic, and fully turbulent depending on choice of value of force. The L96 model is more

complicated in comparison to OU and triad model considered in [9, 10, 11]. The main

difference in the L96 model is that the reduced model is not linear.

The numerical simulation of the L96 model can be computationally very expensive due

both to the large number of variables and the necessity to choose a small discretization

step in order to resolve the fast variables of the model. Hence, the computationally feasible

solution for studying the statistical behavior of the slow variables is approximating the slow

variables of the L96 model by an explicit SDE model. The main goal of chapter 2 is to

develop an efficient and accurate parametric estimation procedure for the reduced model

(SDE for slow variables alone) when the given data is the time series of the slow-variables

in the full L96 model.

We introduce a small parameter ε > 0 to emphasize multi-scale effects in the full model.

The homogenization procedure is used to derive an explicit reduced equation and the "true"

values of parameters. The "true" values depend on lagged covariances of fast variables in the

L96 model. Due to the complexity of the equation for the fast variables in the L96 model,
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we can not evaluate the "true" values of parameters analytically. Hence, the "true" values

are computed using one long simulation of the fast subsystem of the L96 model. Recall

that the main goal is to estimate parameters of the reduced model using observations of

the slow variables in the full model. Hence, the "true" values for the reduced model are

only used to test the behavior of the estimators as the scale separation parameter ε→ 0.

The first estimator considered here is Maximum Likelihood estimator. Since the reduced

model is the limit process of the slow variables in the L96 model as ε → 0, it is desirable

that the Maximum Likelihood parameter estimates computed from discrete data of slow

variables in L96 converge to the "true" parameter values as ε → 0. Similar to [9, 10, 11],

we observe that the Maximum Likelihood estimators depend on auto-correlation of slow

variables and hence can lose their consistency if we use the data of slow variables of the full

model at a very dense time-step. To this end, there is a need to subsample the data at an

optimal time-step ∆ such that the MLEs converge to true parameters as ε→ 0. In [9, 10, 11],

for all the examples, the reduced model was linear which considerably simplified analytical

calculations and allowed authors to develop method for obtaining optimal subsampling time-

step for consistency of Maximum Likelihood estimators. However, in the L96 example, the

reduced model is highly non-linear, and hence we can not use the same strategy as the one

developed before. It is analytically impossible to find the optimal subsampling time-step in

the L96 model. Hence, the only solution is comparing the Maximum Likelihood estimators

with "true" values of parameters and investigating numerically the existence of optimal

subsampling time-step. Clearly, this is not the best solution. Therefore, the most valid

next goal is to look for estimator which do not depend on subsampling time-step.

The second estimator considered is the moment estimator derived by applying the

"Method of Moments" on reduced SDE model driving slow variables alone. Although,
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the moment estimator is derived using the reduced equation, the main goal is to test its ac-

curacy using the observations of slow variables in the full L96 model. One advantage of this

estimator is its independence of subsampling time-step. We compare the two estimators in

the Direct Observability context by computing the L2 errors using the data of the reduced

model. Overall, we conclude that if the mean of the slow variables in the multi-scale non-

linear model is relatively large and the reduced model is not very sensitive to the change

in parameters then the moment estimator is considered a more robust estimator compared

with Maximum Likelihood estimator since it has no subsampling complexity.

Chapter 3: Stochastic Mode-reduction of Multi-scale Models with Energy

as a Hidden Slow Variable

In this chapter, we continue the objective of deriving an effective stochastic model for the

slow variables in the complex multi-scale model. In chapter 2, we consider the non-linear

multi-scale L96 model with fast variables represented stochastically. Statistical theories

and stochastic modeling with non-essential degrees of freedom represented stochastically

provide computationally feasible alternatives for calculating the statistical evolution of the

slow variables, and this topic received a lot of attention in recent years [6, 13, 20, 21, 27, 33,

34, 70, 72, 59, 58]. A systematic approach to stochastic mode elimination was developed

by authors in [59, 58] which is generalized in [62] for large deterministic systems. In [62],

the preliminary step in the stochastic mode elimination method in which the non-linear

self-interactions of the fast degrees of freedom are represented stochastically, is avoided.

Authors considered the truncated Burgers-Hopf (TBH) system which is deterministic and

energy conserving model. Under the assumptions of ergodicity and mixing, they developed

a procedure giving closed form stochastic model for slow variable in the limit of infinite

separation of time-scales.
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In our work, we generalize the procedure developed in [62] to the situation when stochas-

tic terms are added to the slow variables in energy conserving non-linear systems. In such

situation, since the noise only affect the slow variables, the fast subsystem is deterministic

evolving on a sphere of constant energy. On the other hand, the radius of the sphere slowly

changes due to the coupling between the slow and fast dynamics. Therefore, in order to ap-

ply the stochastic mode reduction techniques, we consider the energy of the fast subsystem

as an additional hidden slow variable. Hence, we generalize the stochastic mode reduction

technique in [62] to derive an efficient stochastic model for the original slow variables in full

model and additional slow variable given by energy of the fast subsystem.

Also, we introduce a similar second procedure to derive the reduced model for slow

variables but this time using Fokker-Planck equation of the reduced model and using the

explicit knowledge of the stationary distribution of slow variables in full model. Both

stochastic mode reduction techniques are shown on the generalization of prototype Triad

model with the modification that we add the stochastic terms in slow variables instead of

fast variables and the number of fast variables is increased to ensure the ergodicity and

mixing in deterministic fast subsystem.

In the considered the non-linear full model, we show the explicit stationary distribution

for the slow and fast variables which leads to the derivation of a new procedure of stochastic

mode reduction by imposing the fact the the Fokker-Planck operator annihilates the joint

stationary density. The second procedure which is generalization of the procedure derived in

[62] uses the stationary distribution of fast variables in fast subsystem. The fast subsystem

is deterministic and energy conserving, hence, we consider the fast variables to be uniformly

distributed over the sphere of radius as initial energy of the system. Both methods provide

the same reduced model for the considered non-linear full model.

One of the main concern is that the derived analytical formula of parameters in the
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reduced model is dependent on the fourth-order two-point moments of fast variables in fast

subsystem which on the other hand, is dependent on the initial energy of the fast subsystem.

Since the radius of the sphere changes stochastically in the full model, we would need to

simulate the fast subsystem with all possible values of energy and compute the required

fourth-order two-point moments of fast variables which is clearly not feasible. Fortunately,

the fast subsystem for our model is invariant under a particular rescaling which simplifies

the fourth-order two-point moment to the corresponding moment of the fast subsystem with

fixed energy n. The consequence of rescaling leads to simulation of the fast subsystem only

once with fixed initial energy and hence, simplification of parameters in reduced model.

The derived reduced model is verified numerically by comparing with full model as ε→ 0

by testing auto-correlation, density and kurtosis. Conclusion using numerical simulations

is that reduced model is an accurate approximation of the slow process in full model.

Chapter 4: Parametric Estimation for Fast-oscillating Potential Model un-

der Indirect Observability

In this chapter, we study the adequate data subsampling for consistent parametric estima-

tion of unobservable stochastic differential equations (SDEs) under Indirect Observability,

similar to the study done for the Lorenz-96 model in chapter 2. The reduced model for

slow variables in the Lorenz-96 model is non-linear in chapter 2 but the reduced model is

linear OU model in the case of fast-oscillating potential model in chapter 4. Thus, we can

refer to the results in [9, 10, 11] shown for the multi-scale model having linear OU reduced

model. As specified in section 1.1, authors in [9, 10, 11] have provided a rigorous foundation

for the parameter estimation of linear stochastic model under Indirect Observability. The

authors considered the asymptotic behavior of the Maximum Likelihood estimators for the

unknown parameters of the stochastic model, using the observations of multi-scale approx-

imating process as scale separation parameter ε → 0. In particular, they demonstrated

13



1.2. OUTLINE OF DISSERTATION

that for consistent estimation of the diffusion parameters the underlying dataset has to be

subsampled with time-steps constrained by specific subsampling criteria, depending on the

value of the multi-scale parameter ε. Otherwise, if these subsampling criteria are violated,

the estimated underlying diffusion model will not reproduce the statistical features of the

data and the corresponding parameter estimators will be biased even in the limit ε→ 0.

We extend the results in [10, 11] on the model with the fast-oscillating potential to

illustrate the subsampling problem. First, the numerical investigation of the subsampling

criteria derived in [10, 11] in the context of homogenized models is performed.

Another important aspect discussed in the chapter is estimation of an effective model

from a dataset generated with a fixed but unknown value of the scale separation parameter

ε. This issue is important in practical situations, since there has been a considerable effort

to efficiently parametrize a stochastic model for the large-scale structures from numerical

simulations of various geophysical models. In [9], authors introduced a regression approach

for constructing bias-corrected estimators from a single dataset generated by a multi-scale

approximate dynamics with a fixed, but unknown value of the parameter ε. We show

numerically that the regression approach introduced in [9] works for the multi-scale fast-

oscillating potential model also.
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CHAPTER 2

Parameter Estimation of the Lorenz-96 Model

2.1 Introduction

Original Lorenz-96 model

The Lorenz-96 model, introduced by Lorenz and Emanuel [55, 56] as a simple model with

large-scale features of complex non-linear geophysical systems, is given as follows

d

dt
xk = xk−1(xk+1 − xk−2)− γxk + F − kx

J

J∑
j=1

yj,k, k = 1 . . .K,

d

dt
yj,k = c (yj+1,k (yj−1,k − yj+2,k)− yj,k) + kyxk, j = 1 . . . J.

(2.1)

The L96 model describes the linked dynamics of a set of K slow, large-amplitude variables

xk, each of which is associated with J fast, small-amplitude variables yj,k. The model is

designed to mimic mid-latitude weather and climate behavior and to study the influence

of multiple spatio-temporal scales on the predictability of atmospheric flows. Although the
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L96 is a prototype model, the slow xk and the fast yj,k variables in the model are analogous

to some atmospheric quantities discretized along the latitude circle. The unit spatial scale

between the discrete nodes in L96 model is regarded as a non-dimensional mid-altitude

Rossby radius ≈ 800 km. In mid-altitude weather systems, the main "weather waves", the

Rossby waves, have westward phase velocity, but eastward group velocity. For the values of

constant forcing F ranging from 5 to 32, the L96 model has the band of linearly unstable

waves, located roughly between the Fourier wave numbers 3 and 12. It is shown in [55, 56]

and chapter 2 of [57] that this band of linearly unstable wave numbers has westward phase

and eastward group velocities, just like actual Rossby waves.

L96 and its modifications have been used to test various statistical and stochastic tech-

niques. In [4], authors developed and tested two novel computational algorithms for pre-

dicting the mean linear response of the chaotic L96 system to small changes in external

forcing via the fluctuation-dissipation theorem (FDT): the short-time FDT and the hy-

brid FDT. Authors considered the large-scale dynamics of the L96 model alone. It was

shown that the blended response algorithms have a high level of accuracy for the linear

response of both mean state and variance throughout all the different chaotic regimes of

the 40-mode model. However, in multi-scale dynamical systems with time-scale separation,

the ST-FDT method developed in [4] can be vulnerable to the presence of fast variables,

especially when the response is practically needed only for slow model variables, due to

increased response errors at fast scales. Hence, in [1], the author developed an approximate

algorithm based on averaged dynamics of multi-scale systems to predict the mean response

of the chaotic L96 system to small changes in external forcing. The new method allows

to compute the response operators directly for slow variables using existing FDT formulas,

which improves numerical stability and reduces computational expense. The author tests

this new algorithm on the deterministic L96 system with the addition of constant force in
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the equation for the fast variables. The addition of constant forcing in small-scale variables

is considered to induce chaotic behavior of fast variables. In [46], authors develop a filtering

scheme for the chaotic signals with long memory depth and test it on the deterministic L96

model having slow variables alone. Filtering is the process of finding the best statistical

estimate of the true signal if given noisy observations. The authors consider a generaliza-

tion of the Mean Stochastic model with a diagonal autoregressive linear stochastic model

in Fourier space as a filter model for chaotic signals with long memory depth. Using the

deterministic L96 model, they show that the non-Markovian nature of this autoregressive

model is an important feature in capturing highly oscillatory modes with long memory

depth. In [77], the author consider multi-scale original L96 system and study stochastic

parameterizations of unresolved fast variables. High-dimensional multi-scale system is re-

duced to low-dimensional system consisting of large-scale variables alone. The effects of

the unresolved variables are parametrized and replaced by a non-linear stochastic function

of resolved variables. This stochastic function is computed using regression of unresolved

tendency on resolved variables. In [36], the authors consider the original multi-scale deter-

ministic L96 model and develop numerical schemes to estimate the effective low-dimensional

system for large-scale variables. The effects of the unresolved variables are replaced by an

effective forcing term which accounts for the effect of fast variables on slow variables. The

derived effective forcing is function of just one slow variable and is computed by averaging

the coupling term in equation of slow variables, conditioned on a particular fixed value

of slow variables. The authors also consider the L96 model with non-linear coupling and

investigate the role of possible hidden slow variables as well as the additional effects arising

on the diffusive time-scale. In [3], authors proposed a method of determining the closed

model for slow variables alone, which requires only a single computation of appropriate

statistics for the fast dynamics with a certain fixed state of the slow variables. The method

17



2.1. INTRODUCTION

is based on the first-order Taylor expansion of the averaged coupling term with respect to

the slow variables, which can be computed using the linear fluctuation-dissipation theorem.

The method is tested on a two-scale deterministic L96 model, with additional forcing in

fast variables. The effects of the unresolved variables are parametrized and replaced by

linear deterministic function of resolved variable. The authors extended the method in [3]

to the L96 model with non-linear and multiplicative coupling in [2].

Outline of our work on Lorenz-96 model

We consider a stochastic extension of the multi-scale L96 model with addition of white-

noise forcing to fast variables to ensure ergodicity of the L96 model. In the absence of

the stochastic terms, the behavior of fast variables may not be ergodic; hence we add

the Brownian motion in the equation for the fast variables to ensure strong mixing and

ergodicity of the system. In particular, mixing and ergodicity of the fast subsystem is

essential for applying the homogenization technique. We also introduce a small parameter

ε > 0 into the model and refer to the resulting system as the "accelerated L96 model". The

parameter ε > 0 induces scale separation between the slow and fast variables since our goal

is to study how the multi-scale nature of the data affects parametric estimation. The direct

numerical simulation of the evolution of the dynamics in L96 is computationally expensive,

due both to the large number of small-scale variables and the necessity to choose a small

discretization time-step in order to resolve the fast components of L96. Hence, the valid

goal is to derive a low-dimensional stochastic model for slow variables alone, referred as

reduced model or limiting process. The reduced model should be such that the behavior of

slow variables in the full model (L96) weakly converges to the corresponding statistics in

the reduced model as the scale separation parameter ε→ 0.

We derive a closed reduced model for slow variables using the homogenization proce-

dure. The effect of the fast variables in the L96 model is replaced by linear damping and
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diffusion terms in the reduced model. Homogenization procedure is used to derive the ex-

plicit equations for the limiting process and also, the "true" values of parameters in the

reduced model. The "true" values of parameters can not be computed analytically since

they depend on lagged covariance of the non-linear fast subsystem. Hence, true values of

parameters are computed using numerical data of the fast subsystem which determines the

behavior of the fast variables in the full model as ε → 0. Nevertheless, the main goal is

to estimate parameters of the reduced model using observations of the slow variables in

full model with a finite value of ε and to test the estimation procedure as ε → 0. Thus

the "true" values derived using homogenization are only used to test the accuracy of the

estimators.

We focus on parametric estimation to emphasize the Indirect Observability framework,

and illustrate the impact of Indirect Observability on various estimators. The main goal

is to prevent large errors in parametric estimation of reduced model when the available

observations are subsampled from data of the slow variables in the full L96 model. We

analyze the performance of two different estimators and use the true values of parameters

only to test their accuracy. Since we know that the statistical behavior of the slow variables

in the full model converges to the reduced equation, we expect parameter estimators to

converge to the true values as ε→ 0.

First, the method of approximate Maximum Likelihood estimation is used to obtain

estimators for the damping and diffusion coefficients in the reduced model. The approximate

Maximum Likelihood estimators depend on the auto-correlation of the slow variables in

the full model. As mentioned in section 1.1, analytical properties of sample paths in the

full and the reduced models are very different especially for small time-steps. This can

have a potentially high impact on the accuracy of the approximate Maximum Likelihood

estimators, since they depend on auto-correlations of the slow variables in the full model.
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Next we analyze a moment estimator derived using method of moments. Although,

the moment estimator is derived using discretization of the reduced model, the main goal

is to test it’s accuracy when this estimator is computed using observations of the slow

variables in the full model. In contrast with approximate Maximum Likelihood estimators,

the moment estimator depends only on one-point stationary moments of the slow variables

and is independent of subsampling time-step. Thus, we compare and contrast the two

estimators computed on data of the slow variables in the full model with different values of

ε and subsampled at time-step ∆.

2.2 Accelerated Lorenz-96 Model

We consider a modified Lorenz-96 model with the scale separation parameter ε > 0 explicitly

controlling the scale separation between the slow and the fast variables. As discussed in

the introduction, the L96 model considered here has generic features of climate-weather

systems, such as the presence of linearly unstable waves, strong non-linearity, constant

forcing, linear damping, dissipation, chaos, and mixing. The modified multi-scale Lorenz

model is given by:

dxk = xk−1(xk+1 − xk−2)dt− γxkdt+ Fdt− kx
ε

Bk
J
dt, k = 1 . . .K

dyj,k =
c

ε2
(yj+1,k (yj−1,k − yj+2,k)− yj,k) dt+

ky
ε
xkdt+

s

ε
dWj,k, j = 1 . . . J

(2.2)

where Bk =

J∑
j=1

yj,k. dWj,k represent the increment in independent Brownian motions,

ε > 0 is the scale separation parameter, γ, kx, ky, c, s are known constants, and F is a

constant forcing.

The L96 model, given by (2.2), is designed to mimic mid-altitude weather and climate

behavior in which the slow xk and fast yj,k variables in the model represent some atmo-

spheric quantities discretized respectively intoK andK×J sectors along the latitude circle.
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The full model describes the linked dynamics of a set of K slow variables xk, each of which

is coupled to J fast variables yj,k. For a fixed value of k = 1 to K, all the fast variables

yj,k, j = 1 . . . J , are coupled to each other and affected equally by the large-scale variable

xk, to which they belong to.

We assume that both x and y variables are periodic (or cyclic), i.e. xk+K = xk and

yj,k+K = yj,k, yj+J,k = yj,k+1 where K and J are the total number of x and y variables,

respectively. Also, xk variables are invariant under the index shift which implies that

stationary statistics is also invariant under the index shift

〈xi1(t1)xi2(t2) . . . xik(tk)〉 = 〈xi1+p(t1)xi2+p(t2) . . . xik+p(tk)〉 ,

where p ≥ 0 is the index shift. We will refer to this characteristic of slow variables as

"stationary statistically invariant under the index shift" from now on in the dissertation.

We fix the total number of x-variables as K = 18 and the number of y-variables for

each xk as J = 20, so that there are 360 y-variables in total. Coupling parameters kx and

ky affect the strength of the interaction between the slow and the fast sets of variables; we

fix them to be kx = 4 and ky = 1. The coefficient c in the equation for y-variables, is fixed

as c = 1.

Constant forcing F is one of the key bifurcation parameters in the L96 model. It is

shown in [55, 56] and chapter 2 of [57] that the Lorenz model in (2.2), for the values of

constant forcing F ranging from 5 to 32, has a band of linearly unstable waves which

have westward phase and eastward group velocities, just like the main ’weather waves’, the

Rossby waves. Also, it’s demonstrated in chapter 2 of [57] that the dynamical regime of the

L96 model varies considerably with different values of the constant forcing term F . The

model is in weakly chaotic regimes for F = 5, 6, strongly chaotic regime for F = 8, and

turbulent regimes F = 12, 16, 24. We will present our results for some specific values of

forcing F , for example, F = 8, 10, 12, 24.
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In further sections, we show the results using various values of force F and linear

damping coefficient γ but all other parameters in (2.2) are fixed as

kx = 4, ky = 1, c = 1, s = 2.236, K = 18, J = 20. (2.3)

Multi-scale systems like (2.2) are particularly challenging for direct numerical compu-

tations because a time-step of the order of ε2 is necessary to resolve the fast variables y;

therefore a total number of steps of the order of ε−2 is required to simulate the evolution of

the slow variables x. To overcome these computational difficulties caused by the separation

of time-scales, it is desirable to capture the statistical features of the slow variables in the

multi-scale system (2.2) by fitting a reduced (single-scale) system of SDEs to the data set of

slow variables x. Therefore, the main goal of this chapter is to develop efficient parametric

estimation techniques for SDEs which rely on the data of large-scale variables alone. Since

the data is generated by the multi-scale model L96 in (2.2), the small-scale effects in the

data can play a significant role and yield incorrect estimation results.

To test our estimation procedure, we use analytical results of homogenization for SDEs

where a limiting equation for the x-variables can be derived explicitly in the limit ε → 0,

explained in detail in next section.

2.3 Homogenization for the L96 Model

Given observations of the large-scale variable xk, our objective is to fit an effective SDE

consistent with those observations and, hence, we need to estimate parameters of that SDE

accurately and efficiently. Our main goal is to test how multi-scale effects in the data affect

the estimation of parameters in the stochastic reduced model. To this end, we need to

compute the "true" values of parameters and these true values will be used to verify the

accuracy of parametric estimation.
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Mode-reduction (a.k.a homogenization) provides a natural tool for semi-analytical com-

putation of such "true" values of parameters. Homogenization technique is a natural ana-

lytical approach to obtain a reduced model of the full model with a multi-scale parameter

ε in the limit of infinite scale separation (i.e., ε→ 0). In this procedure, coefficients of the

reduced model are estimated from the data of the fast variables. Thus, the homogenization

will yield the "true" values for the coefficients of the effective model which can be used for

the quantitative comparison with the results of parametric estimation.

The fast subsystem determines the behavior of y variables in full model, given by (2.2),

as ε → 0. We will show in the this section that the fast subsystem plays a particularly

important role in the homogenization procedure. In particular, the explicit knowledge

of the stationary distribution for the fast subsystem significantly simplifies the analytical

calculations in the mode reduction.

2.3.1 The fast subsystem and it’s stationary distribution

The fast subsystem, consisting of y-variables of L96 model, corresponds to the O(ε−2) terms

in the Fokker-Planck equation for the L96 SDE (2.2). It is given by:

dyj,k = c(yj+1,k(yj−1,k − yj+2,k)− yj,k)dt+ sdWj,k, (2.4)

where j = 1 . . . J, k = 1 . . .K and Wj,k are independent Brownian motions where dWj,k

represent increment in Brownian motion. The fast subsystem is a ring of J × K = 360

variables.

We prove analytically that the joint invariant measure of all yj,k variables is a product

measure and each yj,k variable in (2.4) follows a Gaussian distribution with the same mean

and variance, i.e., yj,k ∼ N
(

0, s
2

2c

)
∀j = 1 . . . J, k = 1 . . .K.

Let ρ be the invariant joint measure of {yj,k, j . . . J, k = 1 . . .K}. We prove analytically

23
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that ρ is a product measure and is given by,

ρ = C

K∏
k=1

J∏
j=1

exp

(
−2c

s2
y2
j,k

)
, (2.5)

where C is a normalizing constant. The differential operator for the Fokker-Planck equation

of (2.4) is

L =

K∑
k=1

J∑
j=1

(
−c(∂yj,kyj+1,k(yj−1,k − yj+2,k)− ∂yj,kyj,k) +

s2

2
∂2
y2j,k

)
. (2.6)

To prove that invariant joint measure of all yj,k variables in fast subsystem (2.4) is ρ (2.5),

we show explicitly that Lρ = 0. First, we find the partial derivatives of ρ w.r.t. yj,k as:

∂yj,kρ = ∂yj,k

C K∏
k=1

J∏
j=1

exp
(
− c

s2
y2
j,k

) = −2c

s2
yj,kρ,

∂yi,k(yj,kρ) = δi,jρ−
2c

s2
yi,kyj,kρ, (2.7)

∂2
y2i,k
ρ = −2c

s2

(
1− 2c

s2
y2
i,k

)
ρ,

where δi,j is the Kronecker delta function. Substituting partial derivatives of ρ in Lρ (2.6)

gives:

Lρ =

K∑
k=1

J∑
j=1

(
−c
(
∂yj,kyj+1,k (yj−1,k − yj+2,k)− ∂yj,kyj,k

)
+
s2

2
∂2
y2j,k

)
ρ,

=
K∑
k=1

J∑
j=1

(
−cyj+1,k (yj−1,k − yj+2,k)

(
−2c

s2
yj,kρ

)
+ c

(
1− 2c

s2
y2
j,k

)
ρ

−c
(

1− 2c

s2
y2
j,k

)
ρ

)
,

which further simplifies to

Lρ =
2c2

s2

K∑
k=1

J∑
j=1

yj,k yj+1,k (yj−1,k − yj+2,k) ρ. (2.8)

Note that the assumption of periodicity of y-variables in the full model (2.2) follows in the

fast subsystem also, i.e., yj,k+K = yj,k, yj+J,k = yj,k+1. Hence, we obtain
K∑
k=1

J∑
j=1

yj,k yj+1,k (yj−1,k − yj+2,k) = 0,
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which simplifies equation (2.8) as

Lρ = 0. (2.9)

Lρ = 0 in (2.9) shows that ρ in (2.5) is an invariant measure of all yj,k variables and

since it’s a product measure, their stationary one-point moments are independent of each

other, hence, yj,k ∼ N(0, s
2

2c ), j = 1 . . . J, k = 1 . . .K.

Empirical Moments: We observe low-order one-point moments and two-point covariance

numerically. The fast subsystem model, (2.4), is simulated by keeping all parameters fixed

as in (4.5) with the integration time-step δt = 0.0001 and the total time T = 50000.

Note that since y variables are circulatory stationary hence all yj,k have equal stationary

moments. We obtain low-order stationary moments of y-variable in the fast subsystem (2.4)

as follows

Mean = 〈yj〉 = 0, Variance =
〈
y2
j

〉
− 〈yj〉2 = 2.49,

Skewness =

〈
y3
j

〉
〈
y2
j

〉3/2
= −0.005, Kurtosis =

〈
y4
j

〉
3
〈
y2
j

〉2 = 0.99,

and all other odd moments are approximately equal to zero.

We also observe numerically that the stationary lagged covariances are approximately zero

for different indexes, i.e.

〈yi(0)yj(τ)〉 ≈ 0, i 6= j, (2.10)

where τ > 0 is covariance time lag. This property of lagged covariance of mixed fast

variables being zero, does not follow from the stationary distribution in (2.5). This is a

stronger property of the fast subsystem.
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2.3.2 Derivation of reduced model

Homogenization technique is a natural analytical approach to obtain a reduced model of

the full model with a multi-scale parameter ε in the limit of infinite scale separation (i.e.,

ε→ 0). In this subsection, we apply the homogenization procedure to the L96 model given

by (2.2). Also, we derive the coefficients of the effective model as a function of the data of

the fast subsystem (2.4).

Let ~x = {x1, x2, . . . , xK} and ~y = {yj,k, j = 1 . . . J, k = 1 . . .K}. The Kolmogorov

backward equation associated to the full model, (2.2), is applied to an arbitrary function

u = u(t, ~x, ~y), where

u(t, ~x, ~y) = E[f(~x(t), ~y(t)) | ~x(0) = ~x, ~y(0) = ~y],

where f is an arbitrary test function. Here, ~x(t), ~y(t) are vectors of the stochastic pro-

cesses defined by (2.2) and ~x, ~y are vectors of initial conditions which also play the role of

independent variables in the backward equation. Thus, the backward equation is given by

−∂tu = L0u+
1

ε
L1u+

1

ε2
L2u, (2.11)

where the differential operators Li are given by:

L0 =

K∑
k=1

(xk−1(xk+1 − xk−2)− γxk + F )∂xk ,

L1 =

K∑
k=1

−kxBk
J
∂xk +

J∑
j=1

kyxk∂yj,k

 , (2.12)

L2 =

K∑
k=1

J∑
j=1

(
c(yj+1,k (yj−1,k − yj+2,k)− yj,k)∂yj,k +

s2

2
∂2
yj,k

)
,

where Bk =
J∑
j=1

yj,k.

Note that the differential operator L2 is the infinitesimal generator for the fast subsystem
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(2.4). As proved in section 2.3.1, the fast subsystem has an invariant measure of yj variables

given by:

ρ(~y) = C

K∏
k=1

J∏
j=1

exp

(
−2c

s2
y2
j,k

)
,

where ~y = {yi,j , i = 1 . . . J, k = 1 . . .K}. Hence, the adjoint operator of L2 applied to the

invariant measure ρ gives:

L∗2ρ = 0. (2.13)

Let us consider the multi-scale expansion of u as

u = u0 + εu1 + ε2u2 + ..

Plugging in expansion of u into (2.11) and collecting different powers of ε in (2.11) gives

the following relations:

1

ε2
: L2u0 = 0,

1

ε
: L1u0 + L2u1 = 0, (2.14)

1 : −∂tu0 = L0u0 + L1u1 + L2u2.

Recall that L2 is a differential operator w.r.t. all yj variables, defined as the third equation

in (2.12). Hence, since u0 is arbitrary, the first equation in (2.14) implies that u0 = u0(~x, t),

i.e. u0 is independent of the fast variables ~y. Now, let P denote the expectation with respect

to the invariant density ρ(~y) as

Pg =

ˆ
g(y) ρ(~y) d~y. (2.15)

where g is any bounded Borel function. Recall that ρ is invariant density for the fast

subsystem, (2.4), i.e. satisfies the Fokker-Planck equation with L∗2ρ = 0. Therefore, PL2f =

0 for all smooth functions f with compact support.
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Compatibility Condition: Applying the projection operator P to the second equation in

(2.14) we obtain the compatibility condition

PL1u0 = 0, (2.16)

since PL2· = 0. Since u0 is an arbitrary function of ~x, this implies that operator PL1

applied to any function of ~x must be zero. This compatibility condition, often written as

PL1P = 0, must hold in order for the homogenization approach to be applicable. Hence,

we show that L96 model satisfies this compatibility condition.

When we consider L1u0, then ∂yj,ku0 = 0 in the expression for L1 in (2.14) since u0 is

the function of ~x. Hence, the compatibility condition becomes

−kx
J

K∑
k=1

∂xku0

ˆ
Bk ρ(~y) d~y = 0, (2.17)

where Bk =
J∑
j=1

yj,k. The above expression can be simplified as

ˆ
yj,k ρ(~y) d~y = 0, (2.18)

which is true in L96 model. We showed in section 2.3.1 that means of ~y-variables are zero.

Therefore, the L96 model satisfies the compatibility condition and the homogenization

procedure is valid in this case. This is equivalent to "Averaging = 0" condition.

Second equation in 2.14 implies that

u1 = −L−1
2 L1u0, (2.19)

where the operator L−1
2 is given by

L−1
2 f(~y) = −

ˆ ∞
0

eL2τ f(~y) dτ. (2.20)
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Also, using the Feynmann-Kac technique, the solution can be obtained as the conditional

expectation and hence we obtain

L−1
2 f(~y) = −

ˆ ∞
0

E[f(~yτ |y0 = y)] dτ, (2.21)

where ~yτ is the solution of the fast subsystem (2.4) at time τ and E[f(~yτ |~y0 = ~y)] is the

conditional expectation with respect to ~yτ given initial value ~y0 = ~y.

Applying the projection operator P to both sides of the third relation in (2.14), gives,

P(−∂tu0) = P(L0u0) + P(L1u1) + P(L2u2). (2.22)

Since u0 = u0(~x, t) and P is the expectation with respect to the invariant density ρ(~y), we

obtain P(−∂tu0) = −∂tu0. Similarly, definition of L0 operator in (2.12) implies P(L0u0) =

L0u0. Lastly, L∗2ρ = 0 simplifies the equation (2.22) as

−∂tu0 = L0u0 + P(L1u1). (2.23)

Using the expression (2.19) for u1 gives the backward equation for u0 as

−∂tu0 = L0u0 − P(L1L
−1
2 L1u0).

Substituting operator L1 specified in (2.12) gives −P(L1L
−1
2 L1u0) as

−P(L1L
−1
2 L1u0) =

K∑
k=1

ˆ
..

ˆ −kxBk
J
∂xk +

J∑
j=1

kyxk∂yj,k

L−1
2−kxBk

J
∂xk +

J∑
j=1

kyxk∂yj,k

 ρ(~y) u0 d~y.

where Bk =

J∑
j=1

yj,k. The multiple integrals in above equation represent J number of inte-

grals w.r.t. {yj,k, j = 1 . . . J} variables for fixed k, which gets simplified to double integrals

in next expression. The first equation in (2.14) implies that u0 = u0(~x, t), hence, ∂yj,ku0 = 0.
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Also, partial derivatives of u0 with respect to xk can be pulled out of the integrals in the

above expression since the integration is with respect to ~y. Hence, P(L1L
−1
2 L1u0) simplifies

to

−P(L1L
−1
2 L1u0) =

K∑
k=1

k2
x

J2
∂2
xk
u0

J∑
i,j=1

ˆ ˆ
yi,k L

−1
2 yj,k ρ(yi, yj) dyi dyj

−
K∑
k=1

kxky
J

xk ∂xku0

J∑
i,j=1

ˆ ˆ
∂yj,k L

−1
2 yi,k ρ(yi, yj) dyi dyj ,

where ρ(yi, yj) = exp
[
− 2c
s2

(
y2
i + y2

j

)]
. Since ρ(~y) in (2.5) is a product measure of ~y

variables, integration with respect to yl, l 6= i, j can be separated and hence multiple

integrals gets simplified to double integrals in above expression. Note that ∂yj,kyi,k = 0 for

any j 6= i, hence, we further obtain:

−P(L1L
−1
2 L1u0) =

K∑
k=1

k2
x

J2
∂2
xk
u0

J∑
i,j=1

ˆ ˆ
yi,k L

−1
2 yj,k ρ(yi, yj) dyi dyj

−
K∑
k=1

kxky
J

xk ∂xku0

J∑
j=1

ˆ
∂yj,k L

−1
2 yj,k ρ(yj) dyj .

Note that integrals in the above expression do not depend on ~x. Also, ρ is the invariant

measure of the fast subsystem, therefore, the statistics should be computed from the fast

subsystem, not from the full model.

Substituting the expression for −P(L1L
−1
2 L1u0) given by (2.24) in the backward equa-

tion (2.24) characterizes the reduced model as

dXk = Xk−1(Xk+1 −Xk−2)dt− γXkdt+ Fdt− αXkdt+ σdWk, (2.24)

where k = 1 to K, Wk are independent Brownian motions, and parameters σ2 and α are

defined as

σ2 = 2
k2
x

J2

J∑
i,j=1

ˆ ˆ
yi,k L

−1
2 yj,k ρ(yi, yj) dyi dyj ,

α =
kxky
J

J∑
j=1

ˆ
∂yj L

−1
2 yj,k ρ(yj) dyj .

(2.25)
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Using the definition of the operator L−1
2 in the equation (2.21), σ2 can be further written

as

σ2 = 2
k2
x

J2

∑
i,j

ˆ ∞
τ=0
〈yi,k(t) yj,k(t+ τ)〉 dτ.

In (2.10), we showed empirically that

〈yi,k(0) yj,k(t)〉 ≈ 0 ∀t 6= 0, i 6= j,

which we obtained numerically by integrating the fast subsystem (2.4) with parameters

c = 1, s = 2.236. We will use this numerical estimate for the two-point covariance in

analytical simplification of the reduced model. Hence, σ2 can be further simplified as

σ2 = 2
k2
x

J2

∑
i

ˆ ∞
τ=0
〈yi,k(t) yi,k(t+ τ)〉 dτ. (2.26)

In section 2.3.1, we proved that the joint invariant measure of yj,k, j = 1 . . . J, k = 1 . . .K

variables is a product measure and

yj,k ∼ N
(

0,
s2

2c

)
,

for all values of j = 1 to J and k = 1 to K. This product measure is used to simplify the

expression for α in (2.25) using integration by parts as

α =
kxky
J

J∑
j=1

ˆ
∂yj L

−1
2 yj,k ρ(yj) dyj ,

with the integration by parts defined as

uα = ρ(yj) =

√
2c

s
√

2π
e−c

y2j

s2 , dvα = ∂yjL
−1
2 yjdyj ,

⇒ duα = −2c

s2
yjρ(yj), vα = L−1

2 yj .

Using the specified integration by parts and the fact that the Gaussian density ρ(~y) vanishes

exponentially as |y| → ∞, α simplifies to

α =
kxky
J

2c

s2

J∑
j=1

ˆ ∞
τ=0
〈yj,k(t) yj,k(t+ τ)〉 dτ. (2.27)
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Finally substituting σ2 expression from (2.26) and α from (2.27) in reduced model equation

(2.24)and comparing α and σ2 expressions, we obtain the following reduced model,

dXk = Xk−1(Xk+1 −Xk−2)dt− γXkdt+ Fdt− αXkdt+ σdWk, (2.28)

where k = 1 to K, Wk, k = 1 to K are independent Brownian motions and parameters

α, σ2 are given by,

α =
kxky
J

2c

s2

J∑
j=1

ˆ ∞
τ=0
〈yj,k(t) yj,k(t+ τ)〉 dτ, σ2 =

kxs
2

kycJ
α.

It is impossible to obtain the value of the lagged covariance of ~y-variables analytically,

hence, we use one long simulation of the fast subsystem to compute the lagged covariance

numerically.

Reduced model

In section 2.3.2 , we showed using homogenization procedure that the slow variables xk in

L96 (2.2) converges weakly to Xk variables in the reduced model (2.29) as ε → 0 for each

k = 1 to K. The effective stochastic reduced model for large-scale variables Xk, as shown

in (2.28), is given by

dXk = Xk−1(Xk+1 −Xk−2)dt− γXkdt+ Fdt− αXkdt+ σdWk. (2.29)

where k = 1 to K, Wk are independent Brownian motions, and parameters α and σ can

be computed explicitly as

α =
kxky
J

2c

s2

J∑
j=1

ˆ ∞
τ=0

covyj,k(τ)dτ,

σ2 =
kxs

2

Jkyc
α,

(2.30)

where covyj,k(τ) is the stationary lagged covariance function of yj,k at time lag τ > 0,

defined as

covyj,k(τ) = E (yj,k(t) yj,k(t+ τ)) . (2.31)
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The lagged covariance of yj,k variables, required for α and σ in (2.30), is computed

numerically from the fast subsystem (2.4). Note that the equation for yj,k variables in

the fast subsystem (2.4) does not depend on the force F and damping γ. Hence, we can

conclude using formulas in (2.30) that the explicit true values of α and σ in the reduced

stochastic model (2.29) do not depend on force F and damping γ in the equation for the

slow variables. Therefore, the parameters α and σ can be estimated from a single simulation

of the fast subsystem for all values of F and γ and it is not necessary to recompute them

when F, γ change.

In the next subsection, we discuss the numerical computation of lagged covariance of

yj,k variables and the resulting numerical "true" values of parameters α and σ.

2.3.3 Numerical estimates of true parameters of L96 limiting equation

In section 2.3.2, we derived the stochastic reduced model (2.29) for the slow variables xk and

its true parameters α and σ (2.30). Note that to compute the explicit value of α in (2.30), we

need lagged covariance of yj,k variables which is not feasible to find analytically in the fast

subsystem (2.4). In this subsection, we find numerical estimates of lagged covariance of yj,k

variables using Riemann sum. Further, we compare the stationary statistics of the reduced

model (2.29) with different numerically computed parameters α, σ. We show numerically

that the reduced model is not sensitive to small changes in these parameters.

Since all yj,k variables have identical stationary moments in the fast subsystem (2.4),

it’s enough to find auto-covariance of just one yj,k variable i.e. for one fixed value of j = 1

and k = 1. We use Riemann sum to find the auto-correlation time of yj,k variables in (2.30).

For that, we simulate one long trajectory of the fast subsystem (2.4) which requires only

two fixed parameters c and s. Hence, keeping parameters same as in (4.5) i.e. c = 1 and

s = 2.236, we simulate one long trajectory of the fast subsystem (2.4) with the integration
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time-step δt = 0.0001 and total time T = 50000. We obtain auto-covariance of y1,1 variable

shown in Figure 2.1.
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Figure 2.1: Auto-covariance of y1,1 variable in the fast subsystem (2.4)

Figure 2.1 clearly shows that for fixed parameters, given by (4.5), auto-covariance of

y1,1 variable converges to zero for correlation time lag τ ≥ 2. Hence, to compute α in (2.30),

it’s sufficient to look at the integrated lagged covariance of yj,k variable until correlation

lag time τ = 2. Using Riemann sum technique, we approximate the integrated lagged

covariance of yj,k variable in Figure 2.1 using partition of lag time-step as τ = 0 : 0.01 : 2.

The numerical estimate for the integrated lagged covariance of yj,k variables can be written

as,

ˆ ∞
τ=0

covyj,k(τ)dτ =

τ=2∑
τ=0,∆τ=0.01

covyj,k(τ)∆τ. (2.32)
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where covj,k(τ) is lagged covariance of yj,k variables, given by (2.31). Therefore, the nu-

merical estimate for parameters α and σ in (2.30) for this particular case is given by

α =
kxky
J

2c

s2

J∑
j=1

τ=2∑
τ=0,∆τ=0.01

covyj,k(τ)∆τ,

σ2 =
kxs

2

kycJ
α. (2.33)

We obtain integrated lagged covariance of all yj,k variables as

τ=2∑
τ=0,∆τ=0.01

covyj,k(τ)∆τ = 1.1867.

and the corresponding numerical estimate of α and σ are α = 1.8987, σ = 1.3999.

Numerical Estimates of α and σ: One concern of using the numerical estimation out-

lined above is possibility of various numerical errors affecting the estimates. The numerical

estimate of α parameter given in (2.33) is a reliable estimate only if we show that the

Riemann sum computation presented above is robust and statistics of the reduced model

(2.29) is not sensitive to small numerical errors in empirical parameter estimates for α and

σ.

We simulate 150 trajectories of the fast subsystem (2.4) by changing either seed for

random number generation, integration time-step δt, correlation time-step τ , or total time

T . The average and the standard deviation of the 150 numerical estimates of the parameter

α are
mean(α) = 1.8553, std(α) = 0.0344,

mean(σ) = 1.362, std(σ2) = 0.0344.

(2.34)

Note that for the specific parameters in (4.5), we obtain σ =
√
α, therefore, it’s enough to

mention the estimates of α. The minimum and maximum values of α are 1.8522 and 1.9208,

respectively. Substituting either minimum or maximum estimate of α in the reduced model

(2.29), gives numerically indistinguishable stationary moments from the reduced model
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with parameter value α = 1.8553. Note that the value of σ also changes with α using the

relation in (2.30). Thus the reduced model is not sensitive to small numerical errors in

parameters α and σ and hence numerical estimates of these parameters using the Riemann

sum is sufficient to be used as true values of parameters in stochastic reduced model.

For the rest of this chapter, we use the true value of parameters α and σ as,

α = 1.8553, σ = 1.362, (2.35)

for fixed parameters as given in (4.5). We emphasize that these parameters α and σ in

the reduced model depend only on parameters c, kx, ky and s. Therefore, "true" values of

parameters α and σ are valid for any choice of F and γ.

2.3.4 Comparison of the full and the reduced model using true parame-

ters

In this subsection, we investigate numerically the convergence of xk variables in the full

model (2.2) to Xk in the reduced model (2.29) as ε → 0. Keeping all parameters fixed as

in (4.5), we will consider the convergence of stationary correlation functions and stationary

density of xk in the full model to the corresponding statistics of Xk in the reduced model

as ε→ 0 for various values of force F . We would like to remind that the true values α and

σ, in reduced model, will remain fixed all values of force F and damping γ.

Numerical Setting: Fix parameters as in (4.5). Convergence of stationary auto-

correlation and stationary density is demonstrated for different values of force F = 8, 10, 12, 16,

and 24 and damping is fixed at γ = 2. We simulate the full model with ε = 1, 0.5, 0.3, 0.1

and observe that the full model with ε = 0.1 is sufficiently close to the reduced model. We

use α = 1.8553, σ = 1.362 in the reduced model for all values of force F . Table (2.1) shows

the integration time-step and total time for various simulations of the full model and the

reduced model.

36



2.4. NUMERICAL METHOD

Figure 2.2 depicts the convergence of the correlation function and the stationary density

for F = 10, γ = 2. Figure 2.3 shows similar results for different values of force F = 8, 12, 24

and damping γ = 2.
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Figure 2.2: Left part - Convergence, as ε→ 0, of auto-correlation function of xk in full model
(2.2) to the stationary auto-correlation function of Xk in reduced model (2.29). Right part
- Convergence, as ε→ 0, of the stationary density of xk in full Model (2.2) to the stationary
density of Xk in reduced model (2.29). Both parts are for parameters given by (4.5) and
F = 10, γ = 2. Note in left part that ε = 0.1 and analytical limit nearly overlap and thus,
are not distinctively visible in the figure.

2.4 Numerical Method

We use a split-step method to integrate the full model (2.2) and stochastic reduced model

(derived in section 2.3). We use the second-order Runge Kutta integrator for the deter-

ministic part of the model and then use Euler discretization to add a Gaussian random

variable which approximates dW , i.e., the increment of the Brownian motion. Numerical

simulations of the full L96 model (2.2) get computationally expensive for small values of

the scale separation parameter due to both the large number of variables and the necessity

to choose a small discretization time-step in order to resolve the fast components of the
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Figure 2.3: Convergence, as ε → 0, of auto-correlation function and density of xk in full
model (2.2) to the stationary auto-correlation function of Xk in reduced model (2.29). Left
part - Stationary auto-correlation function, Right part - Stationary density. Top part -
Force F = 8, damping γ = 2. Middle part - Force F = 12, damping γ = 2. Bottom part -
Force F = 24, damping γ = 2.
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Figure 2.4: Left part - Convergence, as ε → 0, of auto-correlation function of xk in full
model (2.2) to the stationary auto-correlation function of Xk in reduced model (2.29).
Right part - Convergence, as ε → 0, of the stationary density of xk in full Model (2.2) to
the stationary density of Xk in reduced model (2.29). Both parts are for parameters given
by (4.5) and F = 24, γ = 0.1. Note in left part that ε = 0.1 and analytical limit nearly
overlap and thus, are not distinctively visible in the figure.

dynamics. Let δt represent the integration time-step for the trajectory, T represent the

averaging time window for computing long-term time averages, and T0 be the initial spin-

up time, i.e. time skipped before computing averages to let the numerical trajectory reach

stationary state. Table 2.1 provide values of δt, T and T0 for each simulations of the full

model for considered values of ε and the reduced model. Also, we specify the approximate

running time of each simulation. All the trajectories of the full model and reduced model

are simulated using Intel Core i5-2400 CPU @ 3.10 GHz and only one cpu core, i.e. no

parallel computing.
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Table 2.1: Description of numerical simulations of full model and reduced model and time
taken for each simulation
Model ε Integration time Time Skipped time Approximate time

step δt T T0 for the simulation

Full Model

1 10−4 30000 5000 4 hrs.
0.5 2.5× 10−5 30000 5000 12 hrs.
0.3 9× 10−6 30000 5000 1 day
0.1 10−6 10000 2000 5 days
0.05 2.5× 10−7 10000 2000 10 days

Reduced Model - 10−5 50000 10000 6 hrs.

2.5 Parameter Estimation: Approximate Maximum Likeli-

hood Approach

In many realistic situations, it is desirable to capture the statistical features of high-

dimensional multi-scale dynamics by fitting a low-dimensional (single-scale) system of SDEs

to the observed dataset. In such situations, generally the available data is only of large-scale

variables since it is computationally expensive to obtain the small-scale data. Our main

objective is to develop accurate and efficient estimation techniques, for parametric fitting

SDEs to the observed data set, when the data of the large-scale variables is generated by

multi-scale dynamics.

In this section, we derive estimators α̂mle and σ̂mle of parameters α and σ, respectively,

using approximate Maximum Likelihood approach (MLE) on the reduced model and use the

true values of α and σ in (2.30) to test their accuracy. These estimators depend on empirical

estimates of stationary moments of the data. Although the estimators are derived from the

reduced model, the goal is to analyze the performance of α̂mle(ε) and σ̂mle(ε) when the data

of the xk variables from the full model at fixed ε > 0 is used in computing the parameter

values. We introduce ε in the notations of approximate Maximum Likelihood estimators as

α̂mle(ε) and σ̂mle(ε) to explicitly emphasize their dependence on the observations of slow
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variables xk in full model. We refer to this framework as Indirect Observability, since the

process Xk is not observable. The only data which are available is generated by xk which

is an approximation for Xk.

Reduced model: We introduce new notation Xk(t) which represents variable Xk at

time t. The reduced model in (2.29) can be rewritten as,

dXk(t) = Xk−1(t)(Xk+1(t)−Xk−2(t))dt− (γ + α)Xk(t)dt

+Fdt+ σdWk, (2.36)

where k = 1 to K and Wk are independent Brownian motions. We can apply the approxi-

mate Maximum Likelihood technique to each Xk separately since the damping and diffusion

coefficient matrices are assumed to be diagonal. The damping matrix, in (2.36), is αI and

the diffusion matrix is σI where I is the K × K identity matrix. The transition density

of Xk(t) is not available analytically, so we compute an approximation to the Likelihood

function based on the discretized version of the SDE.

In particular, given an initial value Xk(t), we use the Euler 1.0 discretization scheme to

approximate the solution Xk(t+ ∆) of the reduced model (2.36) over a small time interval

[t, t+ ∆] by,

Xk(t+ ∆) = Xk(t) +Xk−1(t)(Xk+1(t)−Xk−2(t))∆− (γ + α)Xk(t)∆ + F∆

+σ∆Wk(t) +O(∆), (2.37)

where ∆Wk(t) = Wk(t+ ∆)−Wk(t) represents the increment of the Brownian motion over

the time-interval ∆ > 0. Note that in the L96 model (2.2) and the reduced model (2.29),

we have additive noise and hence, Euler 0.5 order discretization scheme is equivalent to

Euler 1.0 order discretization scheme for our work.

Since increments of the Brownian motion are Gaussian, equation (2.37) gives a Gaussian

approximation to the exact conditional transition density function associated with Xk(t).
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Rewriting the discretized equation in (2.37) as

σ(∆Wk(t)) ≈ Xk(t+ ∆)−Xk(t) +Xk−1(t)(Xk+1(t)−Xk−2(t))∆

−(γ + α)Xk(t)∆ + F∆, (2.38)

we can construct the Likelihood function given the discrete observations of Xk(t). The

Likelihood estimators computed using the discretized equation (2.37) are in general not

consistent (biased) for a fixed subsampling time-step. Hence, in the estimation of MLE we

need to consider a small subsampling time-step ∆ > 0. To test estimation procedure we

compare the approximate Maximum Likelihood estimators with the true values of param-

eters in (2.30).

We repeat that the main objective is to fit a stochastic model on an observed data so we

assume that we have total of N = T/∆ + 1 discretely sampled observations at equidistant

time-steps, 0 = t0 < t1 < .. < tN = T , of length ∆ > 0, for each of the Xk, k = 1 . . .K,

variable. Using the fact that the right hand side of the discretized equation, in (2.38), follows

a Normal distribution with mean zero and variance σ2∆, we can write the log-likelihood

function as

LN (α, σ) = N log

(
1√

2πσ
√

∆

)
+

1

2σ2∆

∑
t=0:∆:T

(
Xk(t+ ∆)−Xk(t)

− (Xk−1(t) (Xk+1(t)−Xk−2(t))− (γ + α)Xk(t) + F ) ∆
)2
. (2.39)

The principle of the approximate Maximum Likelihood is to maximize the probability of

the observed data. This is achieved by maximizing the log-likelihood function with respect

to the values of the unknown parameters. Hence, we search for the values of α and σ

such that the gradient of log-likelihood function with respect to the parameters α and σ

is zero. This determines a system of two equations for α and σ whose solutions provide

an expression for the estimators denoted as α̂mle and σ̂mle , depending on the observations
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and N,∆. Taking partial derivative of the log-likelihood LN (α, σ) (2.39) w.r.t. parameter

α gives the following relation

α̂mle = −

∑
t=0:∆:T

(
Xk(t+ ∆)Xk(t)−X2

k(t)
)

∑
t=0:∆:T

X2
k(t)∆

+

∑
t=0:∆:T

(
Xk−1(t)Xk(t) (Xk+1(t)−Xk−2(t))− γX2

k(t) + FXk(t)
)

∑
t=0:∆:T

X2
k(t)

. (2.40)

Assume that number of observations N in the given large-scale data is large enough to

reach the stationary stage of the L96 model. Also, recall that the all Xk variables are

symmetric in the reduced model since the reduced model is also invariant under the index

shift. Hence, the third-moments will cancel in the above equation, since they are the

identical third-moments shifted by one index. Therefore, in (2.40),

∑
t=0:∆:T

Xk−1(t)Xk(t) (Xk+1(t)−Xk−2(t))→ 0, as N →∞.

Thus, MLE of the parameter α in (2.40) can be rewritten as

α̂mle = −

∑
t=0:∆:T

(
Xk(t+ ∆)Xk(t)−X2

k(t)
)

∑
t=0:∆:T

X2
k(t)∆

− γ + F

∑
t=0:∆:T

Xk(t)∑
t=0:∆:T

X2
k(t)

. (2.41)

Similarly, taking the partial derivative of the log-likelihood function in (2.39) w.r.t. σ,

assuming parameter α as fixed, gives

σ̂2
mle = − 1

N∆

∑
t=0:∆:T

(Xk(t+ ∆)−Xk(t)− (Xk−1(t) (Xk+1(t)−Xk−2(t))−

(γ + α)Xk(t) + F ) ∆)2 . (2.42)

In the above equation for σ, we expand the terms on the right-hand side of the equation
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and neglect higher-order terms w.r.t. ∆, thus, we obtain,

σ̂2
mle = − 2

N∆

∑
t=0:∆:T

(
Xk(t+ ∆)Xk(t)−X2

k(t)
)
− 2

N

∑
t=0:∆:T

(Xk(t+ ∆)−Xk(t))

(Xk−1(t) (Xk+1(t)−Xk−2(t))− (γ + α)Xk(t) + F ) +O(∆). (2.43)

Note that (Xk(t+ ∆)−Xk(t)) is O(∆), which can be observed by looking at the discretized

equation given in (2.37). Hence, the expression (2.43) for σ̂2 can be further reduced to

provide asymptotically equivalent estimators for small subsampling time-step ∆ as

σ̂2
mle = − 2

N∆

∑
t=0:∆:T

(
Xk(t+ ∆)Xk(t)−X2

k(t)
)
. (2.44)

Lastly, corresponding to a discrete centered stationary process Xk = {Xk(t), t = 0 : ∆ : T}

for a fixed arbitrary value of k = 1 to K, define the standard empirical covariance estimator

r̂1(N,∆), second-moment estimator r̂0(N,∆) and mean estimator µ̂(N,∆), as

r̂1(N,∆) =
1

N

∑
t=0:∆:T

Xk(t+ ∆)Xk(t),

r̂0(N,∆) =
1

N

∑
t=0:∆:T

X2
k(t), (2.45)

µ̂(N,∆) =
1

N

∑
t=0:∆:T

Xk(t),

where N is total number of observations in the data for each Xk variable, given by N =

T/∆ + 1. Then, the approximate Maximum Likelihood estimators of α and σ based on the

observed data set and functions of total number of observations N and small subsampling

time-step ∆ is given by

α̂mle = − r̂1 − r̂0

r̂0∆
− γ + F

µ̂

r̂0
,

σ̂2
mle = − 2

∆
(r̂1 − r̂0) ,

(2.46)

where r̂1 = r̂1(N,∆), r̂0 = r̂0(N,∆) and µ̂ = µ̂(N,∆) are the standard empirical estimators

defined in (2.46).
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The auto-correlation of Xk variable in reduced model for time lag τ > 0 is defined as

CorrXk(∆) =
E
[
(Xk(t)− µ)(Xk(t+ ∆)− µ)

]
E
[

(Xk(t)− µ)2]
. (2.47)

For the observed data Xk(t), t = 0 : ∆ : T , the empirical auto-correlation of Xk variable is

equivalent to

CorrXk(∆) ≈ r̂1 − µ̂2

r̂0 − µ̂2
. (2.48)

Getting motivation from the above correlation formula and using log(1 − x) ≈ x, the

approximate Maximum Likelihood estimator of α can be rewritten for small ∆ as

α̂mle = − r̂0 − µ̂2

r̂0∆
log

(
r̂1 − µ̂2

r̂0 − µ̂2

)
− γ + F

µ̂

r̂0
. (2.49)

We can rewrite approximate Maximum Likelihood estimator of σ2 as a function of α̂mle by

comparing the two equations in (2.46) as

σ̂2
mle = 2 ((α̂mle + γ)r̂0 − Fµ̂) . (2.50)

Recall that although the approximate Maximum Likelihood estimators are derived from

equation of reduced model (2.29), our main objective is to estimate parameters based on

data set of xk in full model. Hence, next we summarize the formulas of approximate

Maximum Likelihood estimators based on observed data set of xk in full model, having

multi-scale dynamics.

Summary of approximate Maximum Likelihood estimators under Indirect

Observability

Assume we have been given a discrete set of observations of xk from the full model

(2.2), {xk(t), t = 0 : ∆ : T, k = 1 . . .K}, with a subsampling time-step ∆ > 0 at a fixed

ε > 0. Our objective is to develop accurate and efficient estimation techniques for fitting

the effective SDE on this data set. The approximate Maximum Likelihood estimators for
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parameters α and σ in the reduced model are given in (2.49) and (2.50), respectively. These

estimators depend on two parameters: total number of observations N and subsampling

time-step ∆ > 0. The goal is to understand the behavior of these estimators when we use

the data of the slow variables in the full model in the estimation procedure. To this end, we

define the empirical mean and covariance of the slow variables in the full model, for fixed

ε > 0, as

r̂ε1 =
1

N

∑
t=0:∆:T

xk(t+ ∆)xk(t), r̂ε0 =
1

N

∑
t=0:∆:T

x2
k(t), µ̂ε =

1

N

∑
t=0:∆:T

xk(t), (2.51)

where N = T/∆ + 1 is the total number of observations. Using the multi-scale data from

the full model in the estimators (2.49) and (2.50) is equivalent to substituting the empirical

moments (2.51) into the expressions of both estimators. Thus the estimators become

α̂mle(ε) = − r̂
ε
0 − µ̂2

ε

r̂ε0∆
log

(
r̂ε1 − µ̂2

ε

r̂ε0 − µ̂2
ε

)
− γ + F

µ̂ε
r̂ε0
,

σ̂2
mle(ε) = 2

(
(α̂mle(ε) + γ)r̂ε0 − Fµ̂ε

)
.

(2.52)

where we have introduced ε into the formulas for the estimators to explicitly emphasize

their dependence on the multi-scale data.

2.5.1 Necessary conditions for consistency of approximate Maximum

Likelihood estimators using the data of reduced model

Consistency is one of the basic properties of any estimator. Although, the approximate Max-

imum Likelihood estimators are derived using Euler discretization of the reduced model, the

main goal is to test the accuracy of α̂mle(ε) and σ̂mle(ε) when computed using observations

of xk in full model at fixed ε. This concept is referred to as Indirect Observability, i.e. esti-

mating coefficients in the reduced stochastic model from the time series of an approximated

process (slow variables in full model). Indirect Observability always introduce a mismatch

between the estimated model and data, since slow variables are only a subset of full L96
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model. The data recording the dynamics of the slow variables xk are non-Markovian and

multi-scale effects from the fast variables ~y can lead to inconsistencies in reduced stochastic

modeling of the large-scale structures. Therefore, to ensure that the only contributions to

the bias in approximate Maximum Likelihood estimators are from (i) Indirect Observability,

(ii) finite number of observations N and subsampling time-step ∆, we begin by showing

the consistency of the estimators under the Direct Observability.

In this subsection, we show the consistency of approximate Maximum Likelihood es-

timators under the Direct Observability concept, i.e., estimate coefficients in the reduced

model using the time series of the reduced model. We use the "true" values of parameters,

given by (2.30), to generate a time series of Xk in the reduced model and use that data to

compute approximate Maximum Likelihood estimators.

Consistency of drift estimator α̂mle in the context of Direct Observability

Given discrete observations of Xk from the reduced model, we prove the consistency of the

drift estimator α̂mle, given by (2.52). We derive analytical expression of auto-correlation

of Xk in the reduced model for small subsampling time-step ∆ → 0 and then use that to

show the convergence of α̂mle to true value α under specific conditions.

Let us be given observations as {Xk(t), t = 0 : ∆ : T} for each k = 1 . . .K, where

∆ > 0 is a fixed subsampling time-step. The estimator α̂mle in (2.52) is the function of the

number of observations N = T/∆ + 1 and the subsampling time-step ∆ > 0. We derive

conditions on the parameters N and ∆ such that the estimator α̂mle is asymptotically

consistent estimator of α, if computed based on observations of reduced model.

Theorem 2.5.1. Analytical correlation of the reduced model for small time lag

∆ > 0. Analytical auto-correlation of the large-scale variable Xk in the reduced stochastic
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model (2.29) for small lag ∆ (or first-order expansion in ∆) is

CorrXk(∆) = 1 + (Fµ− (γ + α)r0)
∆

r0 − µ2
, (2.53)

where r0 =
〈
X2
k

〉
, µ = 〈Xk〉.

Proof. Reduced model, derived in (2.29), is given by,

dXk(t) = Xk−1(t)(Xk+1(t)−Xk−2(t))dt− (γ + α)Xk(t)dt

+Fdt+ σdWk(t), (2.54)

where k = 1 to K, Xk(t) represents the variable Xk value at time t andWk are independent

Brownian motions.

Given an initial value Xk(t), we discretize the model in (2.54), using the Euler 1.0 order

scheme, to approximate the solution Xk(t) over a small time interval [t, t+ ∆] as

Xk(t+ ∆) = Xk(t) +Xk−1(t) (Xk+1(t)−Xk−2(t)) ∆− (γ + α)Xk(t)∆

+F∆ + σ(∆Wk(t)) +O(∆), (2.55)

where ∆Wk(t) = Wk(t+ ∆)−Wk(t) represents the increment of the Brownian motion over

the time interval [t, t+∆]. Note that the discretization using Euler scheme of order 0.5 and

1.0 will represent same discretization for reduced model (2.29) since the noise is additive in

the model.

Multiplying both sides of equation (2.55) byXk(t) and averaging both sides with respect

to the invariant measure of Xk(t), we obtain:

〈Xk(t+ ∆)Xk(t)〉 =
〈
X2
k(t)

〉
+ 〈Xk(t)Xk−1(t) (Xk+1(t)−Xk−2(t))〉∆

−(γ + α)
〈
X2
k(t)

〉
∆ + F 〈Xk(t)〉∆

+σ 〈Xk(t)∆Wk(t)〉∆ +O(∆), (2.56)
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where the third-moment, 〈Xk(t)Xk−1(t) (Xk+1(t)−Xk−2(t))〉 = 0 since Xk(t) variables

in the reduced model (2.29) are invariant under the index shift. Also, 〈Xk∆Wk(t)〉 = 0

since Xk(t) is independent of the increment of the Brownian motion ∆Wk(t). Therefore,

expression in (2.56) is simplified as

〈Xk(t+ ∆)Xk(t)〉 −
〈
X2
k(t)

〉
=

(
F 〈Xk(t)〉 − (γ + α)

〈
X2
k(t)

〉)
∆ +O(∆).

Defining the covariance function as r1 = 〈Xk(t+ ∆)Xk(t)〉, second-moment as r0 =
〈
X2
k(t)

〉
and mean of large-scale variable as µ = 〈Xk(t)〉 for any fixed arbitrary value of k = 1 to

K, equation in (2.57) can be rewritten as

r1 − r0 = (Fµ− (γ + α)r0) ∆ +O(∆). (2.57)

Auto-correlation of Xk(t) for time lag ∆ is defined as:

CorrXk(∆) =
r1 − µ2

r0 − µ2
. (2.58)

where r1 is the lagged auto-covariance of Xk(t) at time lag ∆ and r0, µ are stationary second

and first-moments of Xk(t) respectively. Comparing the expressions in equations (2.57),

(2.58) and using the fact that the expression in (2.57) can be rewritten as

r1 − r0 = 1 +
r1 − r0

r0 − µ2
,

we conclude that the auto-correlation of Xk(t) for small time lag ∆ is

CorrXk(∆) ≈ 1 + (Fµ− (γ + α)r0)
∆

r0 − µ2
. (2.59)

Theorem 2.5.2. Necessary conditions for consistency of estimator α̂mle using

the data of the reduced model

49



2.5. PARAMETER ESTIMATION: APPROXIMATE MAXIMUM LIKELIHOOD
APPROACH

Consider an observed variable data from the reduced model, (2.29), i.e., given N obser-

vations, {Xk(t), t = 0 : ∆ : T}, for each k = 1 to K, where ∆ > 0 is fixed subsampling

time-step and N = T/∆+1. Define the estimator α̂mle by formula derived in (2.52). Then,

under the conditions

∆→ 0, N →∞ and N∆→∞, (2.60)

the estimator α̂mle is an asymptotically consistent estimator of α in the reduced model,

(2.29).

Proof. In theorem (2.5.1) we derived first-order expansion of analytical auto-correlation of

Xk(t) for small lag ∆ > 0 in the reduced model (2.29). Taking logarithm of that expression,

we obtain:

log

(
r1 − µ2

r0 − µ2

)
= log

(
1 + (Fµ− (γ + α)r0)

∆

r0 − µ2

)
. (2.61)

Expanding logarithm function using Taylor series, the expression in (2.61) becomes

log

(
r1 − µ2

r0 − µ2

)
=

(
Fµ− (γ + α)r0

) ∆

r0 − µ2
+O(∆2), (2.62)

where O(∆2) represents higher order terms in ∆. Re-arranging equation (2.62) to get an

expression for α, we obtain

α =
r0 − µ2

∆r0
log

(
r1 − µ2

r0 − µ2

)
− γ + F

µ

r0
+O(∆2). (2.63)

Taking the limit in above expression,we obtain

r0 − µ2

∆r0
log

(
r1 − µ2

r0 − µ2

)
− γ + F

µ

r0
→ α as ∆→ 0. (2.64)

This limit of the expression in (2.64) shows that if we know stationary covariance and

moments of variable Xk(t), i.e., if we know r1, r0 and µ, then expression in (2.64) con-

necting moments of Xk(t) converges to the true value of α in the reduced model (2.29) as

subsampling time-step ∆→ 0.
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Given observed data of Xk in the reduced model, (2.29), we can obtain empirical co-

variance r̂1 and moments r̂0, µ̂ of Xk(t), which depend on the number of observations N

and fixed subsampling time-step ∆ > 0 of the data. For each fixed ∆ > 0, the covariance

estimator r̂1(N,∆) is consistent and asymptotically efficient estimator of r1 as N → ∞.

Similar result holds for moment estimators r̂0 and µ̂, which concludes that the estimator

α̂mle, (2.52), is an asymptotically consistent estimator of the parameter α as time-step

∆→ 0. Hence, we proved that based on observed data set of the reduced model, i.e. Direct

Observability, the estimator α̂mle(ε) given by (2.52) is asymptotically consistent estimator

of α under the conditions

∆→ 0, N →∞, N∆→∞.

Recall that the main objective was to study estimator α̂mle(ε) computed using the data

set of xk from the full model, (2.2), i.e. under Indirect Observability. It is not feasible

to prove the consistency of α̂mle(ε) analytically, thus, we will investigate numerically the

behavior of α̂mle in later sections.

Necessary conditions for consistency of diffusion estimator σ̂mle using the

data of the reduced model

Assume to be given an observed data from the reduced model, (2.29). Given {Xk(t), t =

0 : ∆ : T} at fixed subsampling time-step ∆ > 0, with the total N = T/∆ + 1 observations

for each k = 1 to K. In previous subsection 2.5.1, we proved that the estimator α̂mle

computed from the reduced model data is a consistent estimator of parameter α under

conditions ∆ → 0, N∆ → ∞, and N → ∞. Similarly, we show the same conditions for

consistency of estimator σ̂2
mle.

Theorem 2.5.3. Analytical relation between parameters α and σ using method
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of moments. In the reduced model (2.29) parameters σ and α obey the following relation

σ2 = 2((α+ γ)r0 − Fµ), (2.65)

where r0 =
〈
X2
k(t)

〉
, µ = 〈Xk(t)〉 and 〈.〉 is averaging under the invariant stationary mea-

sure of Xk(t).

Assume to be given N = T/∆+1 observations of Xk(t) at a fixed subsampling time-step

∆ > 0, then the estimator σ̂2
mle is a consistent estimator for parameter σ2 under conditions

∆→ 0, N∆→∞ and N →∞.

Proof. The stochastic reduced model derived in section 2.3.2 is given by

dXk(t) = Xk−1(t)(Xk+1(t)−Xk−2(t))dt− (γ + α)Xk(t)dt

+Fdt+ σdWk(t), (2.66)

where k = 1 to K and Wk are independent Brownian motions.

Let f(Xk(t)) = X2
k(t). Using Ito’s lemma, derivative of function f(Xk(t)) is derived as

df(Xk(t)) =
∂f

∂t
dt+

K∑
i=1

∂f

∂Xi(t)
dXi(t)

+
1

2

K∑
i,j=1

∂2f

∂Xi(t)∂Xj(t)
dXi(t)dXj(t). (2.67)

Since f(Xk(t)) = X2
k(t), partial derivatives of the function f required in (2.67) are given by

∂f

∂t
= 0,

∂f

∂Xi(t)
=

 2Xk(t), i = k,

0, i 6= k,

and

∂2f

∂Xi∂Xj
=

 2, i, j = k,

0, i or j 6= k.
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Substituting above partial derivatives to (2.67) we obtain

df(Xk(t)) = 2Xk(t)dXk(t) +
1

2
2(dXk(t))

2, (2.68)

where dXk(t) is given by (2.29). Using properties in the Ito’s lemma as

(dt)2 = 0, dWkdt = 0

dWkdWk′ =

 dt, k = k’,

0, k 6= k’,

and dXk(t) in reduced model (2.29), the expression in (2.68) becomes

df(Xk(t)) = 2Xk(t)Xk−1(t)(Xk+1(t)−Xk−2(t))dt− 2(γ + α)X2
k(t)dt

+2FXk(t)dt+ 2σXk(t)dWk +
1

2
2σ2dt.

Averaging above expression for d
(
X2
k(t)

)
under the invariant stationary measure of Xk(t),

we obtain

〈df(Xk(t))〉 = 2 〈Xk(t)Xk−1(t)(Xk+1(t)−Xk−2(t))〉 dt− 2(γ + α)
〈
X2
k(t)

〉
dt

+2F 〈Xk(t)〉 dt+ 2σ 〈Xk(t)dWk〉+
1

2
2σ2dt. (2.69)

We consider stationary moments, hence change in moment
〈
X2
k(t)

〉
is considered zero, i.e.

〈df(Xk(t))〉 = 0. Also, recall that equations for Xk in the reduced model are invariant

under the index shift, hence,

〈Xk−1(t)Xk(t)Xk+1(t)〉 = 〈Xk−2(t)Xk−1(t)Xk(t)〉 .

And lastly, since Xk(t) and Wk are independent random variables and mean of change in

Brownian motion is zero, we obtain

〈Xk(t)dWk〉 = 0.
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Hence, equation in (2.69) is simplified to

0 =
〈
d(X2

k(t))
〉

= −2(γ + α)r0dt+ 2Fµdt+ σ2dt,

⇒ σ2 = 2((γ + α)r0 − Fµ), (2.70)

where r0 =
〈
X2
k

〉
, µ = 〈Xk〉 and 〈·〉 is the averaging under the invariant measure of Xk(t).

The expression in (2.70) gives an explicit analytical relation between parameters σ and α

in the reduced model (2.29).

Assume to be given an observed data of Xk from reduced model, (2.29). Consider

{Xk(t), t = 0 : ∆ : T, k = 1 . . .K}, where ∆ > 0 is fixed subsampling time-step and

N = T/∆+1 is total number of observations for each k. We can obtain empirical moments

r̂0 and µ̂ of the variable Xk(t), which depend on the number of observations N and fixed

subsampling time-step ∆ > 0 of the data. For each fixed ∆ > 0, as number of observations

N → ∞, the covariance estimator r̂0(N,∆) is the consistent and asymptotically efficient

estimator of r0. Similar result holds for first-moment estimator µ̂. If true value of parameter

α is known, then the only conditions for consistency of σ̂mle is N → ∞ under Direct

Observability.

If true value of α is not known and need to be estimated using the given data of reduced

model, then the consistency conditions of σ̂mle depends on consistency conditions of α̂mle

also. In theorem (2.5.2), we proved that as N → ∞,∆ → 0 and N∆ → ∞, α̂mle is

asymptotically consistent estimator of α. Hence, we conclude that if given the discrete

observations of Xk in reduced model, σ̂2
mle is an asymptotically consistent estimator of σ2,

under the conditions

∆→ 0, N∆→∞, N →∞

.

Recall that the main objective is to compute the approximate Maximum Likelihood
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estimator σ̂2
mle(ε) computed using the discrete observations of xk from the full model. We

investigate the consistency of approximate Maximum Likelihood estimators α̂mle(ε) and

σ̂2
mle(ε) numerically in later sections.

2.5.2 Relation between the approximate Maximum Likelihood estima-

tors and the derivative of the auto-correlation functions of slow

variables

In Theorem (2.5.1), we showed expansion of the analytical correlation of Xk(t) in the

reduced model for small time lag ∆ > 0. Let η be the coefficient of first-order of ∆ term

in the auto-correlation, (2.5.1). η can be also be considered equivalent to the derivative of

the auto-correlation of Xk(t) w.r.t. lag ∆ as ∆→ 0, i.e.,

η = lim
∆→0

∂

∂∆
CorrXk(∆).

We will refer η to be the slope of auto-correlation of slow variables. Using the first-order

expansion of auto-correlation derived in (2.5.1), we obtain

η =
Fµ− (γ + α)r0

r0 − µ2
,

⇒ α = −η r0 − µ2

r0
− γ + F

µ

r0
. (2.71)

which demonstrates a relation between parameter α and coefficient η of first-order ∆ term

in the auto-correlation of Xk(t), as ∆→ 0.

If we expand the auto-correlation of Xk used in estimator α̂mle to the first-order of ∆

(i.e. neglect O(∆2) terms), then the expression for α in (2.71) is same as α̂mle (2.49).

Given the observations of slow variables xk in full model for fixed ε > 0 with small

subsampling time-step ∆, approximate Maximum Likelihood estimator α̂mle(ε) in (2.52)
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can be rewritten as the function of the slope ηε of auto-correlation of xk as

α̂mle(ε) = −ηε r̂
ε
0 − µ̂2

ε

r̂ε0
− γ + F

µ̂ε
r̂ε0
. (2.72)

We denote the slope of auto-correlation of xk by ηε to emphasize it’s dependence on the

full model.

In later sections, we will show the importance of slope ηε while computing α̂mle(ε)

using observations of xk in full model. Recall that in Indirect Observability, we are using

observations of slow variables in full model to estimate the parameters for reduced model.

Hence, if the slope of auto-correlation of slow variables in full model and reduced model

are different for some time lag ∆ then there might be an inconsistency in estimator α̂mle(ε)

computed using same time lag ∆. This inconsistency in approximate Maximum Likelihood

estimator due to difference in auto-correlation of slow variables in full model and reduced

model is referred as Subsampling Issue. We conclude that subsampling issue is one of the

bias created due to Indirect Observability.

Similarly, we derive the relation between σ̂mle(ε) and the slope ηε of auto-correlation of

slow variables in full model. Comparing the analytical relation between parameters α and

σ derived in equation (2.70) and (2.72), we obtain

σ̂2
mle(ε) = −2ηε(r̂ε0 − µ̂2

ε ).

where ηε is the slope of the auto-correlation of the slow variables xk in the full model for

fixed ε, equivalent to the derivative of the auto-correlation of xk(t) in (2.5.1) w.r.t. time-step

∆. Due to Indirect Observability and the difference in slopes of auto-correlation function

of the slow variables in the full model and the reduced models, the subsampling issue also

arises in estimating parameter σ.
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2.5.3 Subsampling issue

The goal is to approximate the dynamics of key statistical descriptors of the turbulent high-

dimensional, multi-scale L96 model by a closed form low-dimensional stochastic process,

given by (2.29). In section 2.3.2 we derived a single-scale reduced model (2.29) with explicit

values of parameters α, σ such that the stationary auto-correlation and density of slow

variables xk in the full model (2.2) converges to the corresponding stationary statistics of

Xk in the reduced model (2.29) as ε→ 0.

The main objective is to analyze estimators of parameters α and σ in the reduced model

computed from the observations of the slow variables xk in the full L96 model, also referred

to as Indirect Observability. The parameter values derived in (2.30) depend on lagged

covariance of yj,k variables. In section 2.5 we derive approximate Maximum Likelihood

estimators α̂mle(ε) and σ̂mle(ε) which depend on stationary moments of xk variables in the

full model. We use the true parameters α and σ derived in (2.30) to test the approximate

Maximum Likelihood estimators α̂mle(ε) and σ̂mle(ε), respectively. Note that α̂mle(ε) in

(2.52) depends on auto-correlation of xk variable. We depict the difference of correlation

of xk in the full model and Xk in the reduced model for small correlation lag ∆→ 0 which

leads to the intuition for inconsistency of α̂mle(ε) at small correlation lags.

We observe that at short time-scales, the trajectories of xk(t) in the full model (2.2) for

even small ε are quite different from sample paths of Xk(t) in the reduced SDE (2.29) but

on longer time-scales the behavior of xk(t) in the full model as ε → 0 is well emulated by

the behavior of Xk(t) of the reduced model (2.29). The correlation function of xk has very

different curvature compared with the correlation function of Xk variable in the reduced

model. This difference is due to the fact that trajectories of xk in the full model are

differentiable in time. On the other hand, trajectories of Xk in the reduced model (2.29)

are not differentiable in time due to the presence of the Brownian motion in the equations
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of Xk. In such scenario, the Maximum Likelihood estimator α̂mle(ε), based on the discrete

observations of the variable xk, might not be consistent at certain correlation time lags

∆. Since estimator α̂mle(ε), given by (2.52), depends on the auto-correlation of xk, the

difference in correlation of the full and the reduced model, for small lags will effect the

consistency of the estimator α̂mle(ε). Also, in (2.72), we derived a relation between α̂mle(ε)

and the slope ηε of the auto-correlation of the slow variables. The difference in curvature

of the auto-correlation of the slow variables xk in the full and Xk in the reduced models

will lead to difference in slope η of correlation for small time lag ∆ → 0 concluding the

inconsistency of α̂mle(ε). In later section, we investigate numerically the conditions on the

uniform subsampling time-step ∆ such that as ε → 0, the estimator α̂mle(ε) based on the

observations from the full model converges to the true parameter value α.

Figure 2.2 showed the correlation of xk in the full model converging to correlation of

Xk in the reduced model as ε → 0. In this section, we show the same figure, but only for

very small lags. In figure 2.5, we show the difference in correlation of Xk in the full model

and corresponding correlation of the reduced model for lag close to zero and several small

values of ε. We fix parameters as in (4.5), damping γ = 2 and force F = 10 in the full

model (2.2). Then true parameters of reduced model are computed using homogenization

are α = 1.8553 and σ = 1.362. The full model is simulated for values of ε = 1, 0.5, 0.3, 0.1.

Figure 2.5 shows that close to lag zero, correlation function of the large-scale xk variable

in the full model (2.2) is concave upward for all ε whereas the correlation of the reduced

model (2.29) is concave downward. Therefore, the approximate Maximum Likelihood esti-

mator α̂mle(ε) will not be a consistent estimator of α if we use observations of the full model

subsampled at a very small time lag. Also, the figure 2.5 clearly shows that the tangent

of the correlation at ∆ = 0 is different for the slow variables in the full model (as ε → 0)

and the reduced model. Recalling the relation between approximate Maximum Likelihood
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estimator and slope η of the auto-correlation of the slow variables, given by (2.72), we

conclude that α̂mle(ε) is not consistent estimator for very small lag ∆. To obtain estimator

α̂mle(ε) value close enough to true α, we need to subsample the observations of the full

model at an intermediate optimal time-step.
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Figure 2.5: Correlation of xk in the full model for ε = 1, 0.6, 0.3, 0.1 compared to auto-
correlation of Xk in reduced model, for small lag time τ > 0. The parameters in full model
are fixed as in (4.5), force F = 10 and damping γ = 2. Parameters of reduced model are
derived using homogenization in (2.30) are given by α = 1.8553, σ = 1.362. Bold solid line
- auto-correlation of Xk in the reduced model and other lines represents the full model for
various ε. This figure showed the difference in curvature of auto-correlation between full
and reduced model.

In figure 2.6 we show the curvature difference in the correlation of xk variable in the full

and Xk in the reduced model more clearly by taking the log of correlation functions. For the

same trajectories as taken in figure 2.5, figure 2.6 shows the expression ∆−1 log(CFxk(∆))

which shows a clear difference in trajectories of xk variable in the full and Xk in the reduced

model for short time lags (∆→ 0). In figure 2.6, the full model is computed only for small

ε = 0.05. We would like to point out that the expression showed in figure 2.6 is the same
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Figure 2.6: Expression ∆−1 log(CFxk) compared between xk in the full model for small
ε = 0.1 and Xk in reduced model. For small τ = 0.001, the comparison of given expression
between both models gives 64% error. Dotted line - ∆−1 log(CFxk) computed using obser-
vations of xk in the full model for ε = 0.01, solid line - same expression computed on Xk in
reduced model.
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expression which is used in estimating parameter α̂mle(ε) in (2.52). This gives a clear

indication that computing estimator α̂mle(ε) using discrete observations of the full model

at small subsampling time lag will not give a correct estimator for parameter α in the

reduced model.

2.5.4 Numerical comparison of approximate Maximum Likelihood esti-

mator with true parameter under Indirect Observability

In this subsection, we compare α̂mle(ε) with "true" value of α in (2.30) where α̂mle(ε)

is computed using discrete observations of xk in the full model. The goal is to examine

numerically whether α̂mle(ε) is a good estimate of the true value of α using observations of

xk subsampled at small time-steps.

Numerical Setting: In the full model parameters are given by (4.5) and damping γ = 2,

force F = 10. With these specific parameters, we have already shown in figure 2.2 that

correlation of xk in the full model converges to the correlation of Xk in the reduced model,

with parameters α = 1.8553, σ = 1.362. Moreover we observed that as ε → 0 and we

observed that ε = 0.1 is small enough scale separation parameter so that the full model

is very close to the limiting reduced equation. For ε = 0.1 in the full model, we simulate

a trajectory of xk using integration time-step δt = 10−6 and total time T = 103. We use

these discrete observations to compute estimator α̂mle(ε) at different subsampled time lags

∆.

Results are presented in Figure 2.7. We observe two inconsistency regimes in the be-

havior of α̂mle(ε). First regime is when subsampling time-step ∆ < 0.004. This regime is

due to the subsampling issue created by the difference in auto-correlation of xk in the full

model and Xk in the reduced model for very small correlation lags. Second regime is when

subsampling time-step ∆ > 0.004 due to the Euler discretization used to derive α̂mle(ε).
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Hence, we observe that α̂mle(ε) diverges from the true value of α as ∆ increases. Note that

these both regimes are dependent on choice of ε in full model. For ε = 0.1, we observe

that α̂mle(ε) is a correct estimator only if the discrete observations of xk are subsampled at

∆ = 0.004.

Numerical results presented in this section implies that it is necessary to subsample the

discrete observations of xk from the full model at an optimal time-step to correctly estimate

α̂mle(ε). However, this optimal time-step will vary for different ε in the full model. Since it

is impossible to find the optimal subsampling time-step analytically, the only solution is to

observe α̂mle(ε) numerically for a fixed ε and empirically determine the optimal subsampling

time-step.
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Figure 2.7: Approximate Maximum Likelihood estimator α̂mle(ε) computed on discrete
observations of xk of the full model for ε = 0.1. Estimator α̂mle(ε) is compared with the
true value of α = 1.8553. Solid line - α̂mle(ε) computed using the data of the full model
with ε = 0.1, dotted line - α = 1.8553 derived using homogenization in (2.30). Figure shows
that α̂mle(ε) intersects true α for small correlation lag time which is considered "optimal
time-step". However, there is potentially a large inconsistency in the estimator α̂mle(ε) if
computed using the observations subsampled at time-step ∆ which is not optimal.
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2.5.5 Optimal subsampling time-step for the approximate Maximum Like-

lihood estimator

In previous subsection, we showed that α̂mle(ε) is an inconsistent estimator in two regimes

if computed on discrete observations xk, from the full model. First regime is when ob-

servations xk are subsampled at a very dense time-step. The second regime for large ∆

arises since α̂mle(ε) is derived by applying the Maximum Likelihood technique on the Euler

discretization of the reduced model.

Optimal subsampling time-step for fixed ε > 0: Given observations xk, k = 1 to K in

the full model for the fixed ε > 0, we subsample the data with various time-steps and can

compute estimator α̂mle(ε) with different subsampling time-steps ∆. Recall that the true

value of α in (2.30) is numerically computed using observations of the fast subsystem (2.4)

and can have small numerical errors. Hence, instead of just comparing α̂mle(ε) with one

explicit true value of α, we consider a 95% confidence interval to test the estimator α̂mle(ε).

We call a subsampling time-step as optimal for a fixed ε > 0 if α̂mle(ε) estimator lies in the

95% confidence interval around the true value α.

The 95% confidence interval for true parameter α: In subsection 2.3.3, we simulated 150

trajectories of the fast subsystem with various integration time-steps δt > 0, total number

of observations N , covariance time lag ∆ > 0 and seed for random values. Therefore, we

obtained 150 values of parameters α, σ. From the 150 trajectories, we obtained mean(α) =

1.8553 and standard deviation is std(α) = 0.0304. Hence, the 95% interval for α using

150 trajectories of fast subsystem is (1.7865, 1.9241). Therefore, the values of α in the

range (1.7865, 1.9241) are considered reliable to test the optimal subsampling time-step for

estimator α̂mle.

Given discrete observations of xk in the full model for various ε > 0, we compute

estimator α̂mle(ε) by subsampling observations at different time-step ∆. Figure 2.8 shows
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comparison of the estimator α̂mle(ε) for various ε and ∆, with the 95% confidence interval for

the true value of α. In the full model, all parameters are fixed as in (4.5), force F = 10 and

damping γ = 2. We consider discrete observations from the full model for ε = {0.3, 0.2, 0.1}.

For each ε, optimal subsampling time-step is considered as the range of subsampling time-

step ∆ such that α̂mle(ε,∆) belongs to (1.7865, 1.9241).
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Figure 2.8: Estimator α̂mle(ε) as function of the subsampling time-step ∆, computed using
observations of xk in the full model for various ε > 0. Straight line represents the "true"
value of α, given by (2.30), computed numerically using the fast subsystem. Top and
bottom straight lines represent the 95% confidence interval, (1.7865, 1.9241), for parameter
α. Middle straight solid line - "true" value of α. For fixed ε → 0, α̂mle(ε) is considered
consistent estimator if it lies in 95% confidence interval of α.

Optimal subsampling time-step as ε → 0. We apply regression on optimal

subsampling time-step for various ε to predict scaling of the optimal time-step as ε → 0.

Figure 2.9 shows the optimal subsampling time interval for ε = {0.03, 0.1, 0.2, 0.3, 0.6},

denoted as (Min∆,Max∆). Figure 2.9 shows that as ε → 0, the length of the optimal

subsampling time-step scales as ε2. Note thatMin∆ is same for all ε > 0, butMax∆ varies

with value of ε. We use quadratic polynomial fitting on Max∆ and numerically obtain an
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expression of Max∆ as function of ε

Min_t = 0.0001,

Max_t = 0.0042 + 0.1426ε+ 0.2233ε.2.
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Figure 2.9: Optimal subsampling time-step range (Min∆,Max∆), of estimator α̂mle(ε),
varies with value of ε. The values of ε considered here are ε = {0.03, 0.1, 0.2, 0.3, 0.6}.
Regression is showed on curve ofMax∆ for varying value of ε. Solid line - Optimal subsam-
pling time-step range (Min∆,Max∆) for α̂mle(ε) as function of ε. Dotted line - Regression
on Max∆.

Conclusion: An approximate Maximum Likelihood estimator is derived from the re-

duced model. We want to analyze the behavior of this estimator when α̂mle(ε) is computed

using the data of the slow variables in the full model. In section 4.2.1, we observed the

subsampling issue in estimator α̂mle(ε). We showed that α̂mle(ε) is inconsistent estimator

in two regimes. First regime is when subsampling time-step is very small. This regime

is due to the subsampling issue created by the difference in auto-correlation of xk in the

full model and Xk in the reduced model for very small correlation lags. Second regime is

when subsampling time-step is relatively large and this inconsistency is due to the Euler
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discretization used to derive α̂mle(ε). Main concern is that there is no feasible solution

to find optimal subsampling time-step analytically for computation of consistent α̂mle(ε).

Therefore, our next goal is obtain an estimator which does not depend on subsampling

time-step, i.e. it should not depend on two-point moments of given observations. In next

section, we show a new parameter estimate of α which will not depend on subsampling

time-step ∆ and hence, it simplifies the complications of subsampling. It depends on only

one-point moments of given observations.

2.6 Parameter Estimation using the Method of Moments

Given observations of the slow variables xk from the full model, having multi-scale dynamics,

our main goal is to fit a stochastic model which closely reproduces the statistical properties

of the observed dataset. In this section, we derive a new estimator of α denoted as α̂mom

using the method of moments. The moment estimator depends only on one-point stationary

moments of the given observations. Hence, we expect this estimator to be more robust with

respect to the subsampling time-step ∆.

Theorem 2.6.1. Derivation of moment estimator of parameter α. In the reduced

model given by (2.29) parameter α has the following relationship with one-point moments

αmom = −γ +
F + ρ

µ
,

where ρ is stationary mixed second-moment of Xk, defined as

ρ = 〈Xk−1(Xk+1 −Xk−2)〉 ,

and µ is stationary mean of Xk for any k = 1 . . .K.

Proof. Reduced model given in (2.29) is

d

dt
Xk(t) = Xk−1(t) (Xk+1(t)−Xk−2(t))− (γ + α)Xk(t) + F + σẆk, (2.73)
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where k = 1 . . .K, Wk are independent Brownian motions and Xk(t) represents the Xk

value at time t.

Given an initial value Xk(t), we discretize the reduced model (2.73), using the Euler-

Maruyama scheme, to approximate the solutionXk(t+∆) over a small time interval [t, t+∆]

as

Xk(t+ ∆) = Xk(t) +Xk−1(t) (Xk+1(t)−Xk−2(t)) ∆− (γ + α)Xk(t)∆

F∆ + σ∆Wk(t) +O(∆), (2.74)

where ∆Wk(t) represents the increment of the Brownian motion.

Averaging both sides of the equation (2.74) with respect to the invariant measure of Xk,

we obtain

〈Xk(t+ ∆)〉 = 〈Xk(t)〉+ 〈Xk−1(t) (Xk+1(t)−Xk−2(t))〉∆− (γ + α) 〈Xk(t)〉∆

+F∆ + σ 〈∆Wk(t)〉+O(∆). (2.75)

Note that the stationary mean of Xk variables is independent of time t, i.e. 〈Xk(t+ ∆)〉 =

〈Xk(t)〉. Also, mean of increment of the Brownian motion is zero. Hence, above equation

is further simplified to

0 = 〈Xk−1(t) (Xk+1(t)−Xk−2(t))〉 − (γ + α) 〈Xk(t)〉+ F. (2.76)

We solve the above equation for α and obtain a relationship between α and one-point

moments

αmom = −γ +
F + ρ

µ
,

where αmom is notation for α derived using method of moments, ρ is the stationary second-

moment given by, ρ = 〈Xk−1(Xk+1 −Xk−2)〉 and µ = 〈Xk〉 is the stationary mean. Note

above expression for αmom is valid only if the stationary mean µ 6= 0.
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Estimator for parameter σ2: In theorem (2.5.3), we analytically derived the relation

between parameters α and σ2 in reduced model. The same analytical relation is followed

here to compute σ2 using αmom and is given by

σ2
mom = 2((γ + αmom) r0 − Fµ), (2.77)

where r0 is the stationary second-moment of Xk, defined as r0 =
〈
X2
k

〉
.

Consistency of moment estimator using data of Xk from the reduced model

Assume to be given discrete observations of Xk from the reduced model as {Xk(t), t = 0 :

∆ : T}, for each k = 1 . . .K, with a fixed subsampling time-step ∆ > 0 and total time of

observations as T . If empirical mean of the observations of Xk is not equal to zero, then

define moment estimator as

α̂mom = −γ +
ρ̂+ F

µ̂
, (2.78)

where ρ̂ and µ̂ are empirical estimates of the stationary second mixed moment and the

mean of observations, respectively, i.e.

ρ̂ =
1

N

∑
t=0:∆:T

Xk(t) (Xk+2(t)−Xk−1(t)) , µ̂ =
1

N

∑
t=0:∆:T

Xk(t),

and N = T/∆ + 1 is the total number of observations of Xk for each k = 1 . . .K. As

the number of observations N → ∞, the mixed moment estimator ρ̂ is an efficient and

consistent estimator of ρ. Similar result holds for the first-moment estimator µ̂. Also,

recall that αmom, given by (2.77), is derived using Euler discretization of Xk in reduced

model. Hence, we can assume that αmom → α as subsampling time-step ∆→ 0. Therefore,

given observations of Xk from the reduced model, α̂mom is consistent estimator for α under

conditions ∆→ 0, N →∞ and N∆→∞.

Summary of moment estimators under Indirect Observability. Assume we

have been given a discrete set of observations of xk from the full model (2.2), {xk(t), t =
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0 : ∆ : T, k = 1 . . .K}, with a subsampling time-step ∆ > 0 at a fixed ε > 0. Our objective

is to develop accurate and efficient estimation techniques for fitting the effective SDE on

this data set. The moment estimators for parameters α and σ in the reduced model are

given by (2.78). These estimators depend on total number of observations N and weakly

dependent on the subsampling time-step ∆. The goal is to understand the behavior of these

estimators when we use the data of the slow variables in the full model in the estimation

procedure. To this end, we define the empirical mean and covariance of the slow variables

in the full model, for fixed ε > 0, same as in (2.51) with addition to one-point mix moment

given by

ρ̂ε =
1

N

∑
t=0:∆:T

xk(t) (xk+2(t)− xk−1(t)) , (2.79)

where N = T/∆ + 1 is the total number of observations. Using the multi-scale data from

the full model in the estimators (2.78) is equivalent to substituting the empirical moments

(2.51) into the expressions of both estimators. Thus the estimators become

α̂mom(ε) = −γ +
ρ̂ε + F

µ̂ε
,

σ̂2
mom(ε) = 2

(
(α̂mom(ε) + γ)r̂ε0 − Fµ̂ε

)
.

(2.80)

where we have introduced ε into the formulas for the estimators to explicitly emphasize

their dependence on the multi-scale data.

2.6.1 Moment estimator as a function of subsampling time-step ∆ under

Indirect Observability

The moment estimator α̂mom(ε) in (2.80) depends only on one-point moments of the discrete

observations of xk, it does not depend directly on the subsampling time-step of the data.

The dependence on the subsampling time-step ∆ enters weakly though the use of Euler

discretization in the derivation of α̂mom(ε). Hence, the moment estimator α̂mom(ε) can
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be inconsistent if computed using the observations of the slow variables in the full model

subsampled at large time-step ∆.

In this subsection, we analyze the weak dependence of α̂mom(ε) on the subsampling

time-step ∆ numerically and compare it with the dependence of α̂mle(ε) on ∆. We use the

same numerical setting as in section 2.5.5. Given observations xk, k = 1 to K in the full

model for the fixed ε = 0.3, we subsample the data with various time-steps ∆ and compute

estimators α̂mle(ε) (2.52) and α̂mom(ε) (2.80) with different subsampling time-steps ∆.
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Figure 2.10: Moment estimator α̂mom(ε) and approximate Maximum Likelihood estimator
α̂mle(ε) using the observations of xk in the full model for ε = 0.3. In the full model, parame-
ters are fixed as in (4.5) and force and damping are fixed as F = 10 and γ = 2, respectively.
Dotted dashed curve - α̂mle(ε = 0.3) given by (2.52) as a function of ∆, dotted dashed
straight line - α̂mom(ε = 0.3) given by (2.80) as a function of ∆. Straight line represents
the "true" value of α, given by (2.30), computed numerically using the fast subsystem.
Top and bottom straight lines represent the 95% confidence interval, (1.7865, 1.9241), for
parameter α. Middle straight solid line - "true" value of α.

Figure 2.10 shows comparison of both estimators α̂mle(ε = 0.3) and α̂mom(ε = 0.3)

for various subsampling time-steps ∆. Figure 2.10 also shows the 95% confidence interval

(1.7865, 1.9241) for the true value of α = 1.8553. This figure shows that the moment
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estimator α̂mle(ε = 0.3) is not very sensitive to change in subsampling time-step ∆ and

is almost constant for ∆ values as large as ∆ = 0.2. Hence, we consider α̂mom(ε) to be

approximately constant in later sections w.r.t. the subsampling time-step ∆ and focus on

it’s dependence on ε alone.

2.6.2 Moment estimator as a function of scale parameter ε under Indirect

Observability

In theorem (2.6.1), we derived an expression for α denoted as αmom analytically, using Euler

discretization of the reduced model. Next, we analyze the behavior of α̂mom computed using

the data of the slow variables in the full model.

Numerical Setting: In the full model (2.2), we fix parameters as in (4.5), force F = 10

and damping γ = 2. We obtain discrete observation from the full model for values of

ε = 1, 0.5, 0.3, 0.1. The integration time-step δt and total time of observations T chosen for

each ε in the full model are specified in Table 2.1. For each of these ε > 0, we compute

estimator α̂mom(ε) in (2.80) using discrete observations of xk from the full model,. Then

we compare α̂mom(ε) with true α = 1.8553.

Figure 2.11 shows the estimator α̂mom(ε) as a function of ε compared with the true

value of α = 1.8553. As ε → 0, we observe estimator α̂mom(ε) converging towards α. And

for smallest ε = 0.1, we obtain α̂mom = 1.937 which is 4.4% error compared to true value

α = 1.8553. Since both α̂mom (2.80) and α (2.30) are computed numerically, we assume

4.4% error to be small considering the possibility of numerical errors. Note that almost

all values of α̂mom(ε) lies outside the 95% confidence interval around the true value of α

which is acceptable because the reduced model is not sensitive to small numerical errors in

the parameters α and σ. Table 2.2 represents the relative absolute error of α̂mom(ε) with

respect to true value α = 1.8553 as ε→ 0. The relative absolute error in table 2.2 is given
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Table 2.2: Relative absolute error of α̂mom(ε) (2.80) computed using observations of the
full model

ε in full model 1 0.5 0.3 0.1 0.05
Relative Absolute error of α̂mom(ε) 2% 5.8% 6.4% 4.4% 4.3%

by

Relative Error =
|α̂mom(ε)− α|

α
.
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Figure 2.11: Moment estimator α̂mom based on xk data set from the full model for ε =
{1, 0.5, 0.3, 0.1}. In the full model, parameters are fixed as in (4.5) and force and damping
are fixed as F = 10 and γ = 2, respectively. Solid curve - α̂mom(ε) given by (2.77) as a
function of ε. Straight line represents the "true" value of α, given by (2.30), computed
numerically using the fast subsystem. Top and bottom straight lines represent the 95%
confidence interval, (1.7865, 1.9241), for parameter α. Middle straight solid line - "true"
value of α.

Figure 2.11 also shows that moment estimator α̂mom(ε) is not too sensitive to changes

in value of ε > 0. approximate Maximum bias of α̂mom(ε) is observed for ε = 0.3 with 6.3%

relative error. Considering numerical errors and a relatively large value of ε = 0.3, 6.3%

error is considered a very good agreement between the estimator and the true value of α.
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Since the moment estimator α̂mom(ε) depends only on one-point moments of the dis-

crete observations of xk, it doesn’t depend on the subsampling time-step of the data. The

dependence on ∆ enters weekly through the use of the Euler discretization in the derivation

of α̂mom(ε). We analyze the dependence of α̂mom(ε) on ε by doing regression of α̂mom(ε)

for various ε values. In figure 2.11, we observe an approximate quadratic curve of α̂mom(ε)

as function of ε. We obtain the following regression relationship

α̂mom(ε) = 1.9195 + 0.2440ε− 0.344ε.2. (2.81)

Using regression, we observe α̂mom(ε)→ 1.9195 as ε→ 0 which is 3.2% relative error with

true value of α = 1.8553. Since, reduced model is not sensitive to small errors in parameter

α and taking numerical errors in consideration, we conclude that α̂mom is a sufficiently

accurate estimator.

2.6.3 Comparison between the approximate Maximum Likelihood esti-

mator and the moment estimator using observations of the reduced

model

Comparison using observations of the reduced model: We compare α̂mle and α̂mom under

Direct Observability to compare the errors due to Euler discretization. The idea is that

we take discrete observations of Xk from reduced model and on the same data with fixed

subsampling time-step ∆ > 0, we compute both estimators α̂mle, α̂mom. Then we compare

the error of estimators from true value of α. We use the Monte-Carlo approach here.

Numerical Setting: In the reduced model, we fix parameters as given in (4.5). We test

estimators α̂mle, α̂mom for two set of parameters:

I : F = 10, γ = 2

II : F = 24, γ = 0.1
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In section 2.3.2, we derived the true value of α = 1.8553 corresponding to parameters in

(4.5). We used observations of the fast subsystem, (2.4) to compute α numerically. Recall

that α, given by (2.30), does not change with different values of force F and damping γ.

Hence for different F, γ, we consider value of true α fixed as α = 1.8553.

Time-averaging on one trajectory: For each set of parameters, we perform simulation

and obtain discrete observations of Xk in reduced model for each k = 1 . . .K. We fix

integration time-step as δt = 0.0001 with different total time of observations T . Then we

compute both estimators α̂mle and α̂mom using given observations of Xk. Note that α̂mle

is computed using subsampling time-step same as integration time-step, i.e.

∆ = δt = 0.0001.

Hence, both estimators are computed on original simulated trajectory and then compared

with true value of α = 1.8553. We compute "absolute error" (Error) and "Square of error"

(SE) as

Errormle = |α̂mle − α|, Errormom = |α̂mom − α|,

SEmle = (α̂mle − α)2, SEmom = (α̂mom − α)2. (2.82)

Monte-Carlo Approach: For each parameter setting , i.e. I and II and for fixed value of

T , we run M = 6 trajectories with same details as explained above. For all six trajectories,

absolute error and square of error is computed for estimators α̂mle and α̂mom. Then we

average both type of errors and define them as the "Bias" and "Mean Squared Error (MSE)"

respectively, to compare the errors accurately, i.e., we define averaged bias and MSE as

Biasmle = E(|α̂mle − α|), Biasmom = E(|α̂mom − α|), (2.83)

MSEmle = E((α̂mle − α)2), MSEmom = E((α̂mom − α)2). (2.84)

Comparison: In all simulations, integration time-step is fixed as δt = 0.0001. The goal is
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to compare Monte-Carlo errors in the two estimators computed with the same subsampling

time-step, but changing time of observations. We consider five values of T as

T = [2000, 5000, 10000, 50000, 100000]

Note that as T increases, the number of observations N = T/δt + 1 increases. Hence, for

each parameters set of I and II, we have five values of T , for which we obtain six trajectories

for each T .

Parameter setting I: F = 10, γ = 2

Figure 2.12 shows comparison of the mean bias and the mean squared errors for estimators

α̂mle and α̂mom as time of observation T increases. We observe that for various time T

or number of observations N , Bias and MSE of α̂mom is less than corresponding errors of

α̂mle.

Parameter setting II: F = 24, γ = 0.1

Figure 2.13 shows comparison of the mean bias and the mean squared errors for estimators

α̂mle and α̂mom as time of observation T increases. We observe that as time T increases,

Bias and MSE of α̂mom is less than corresponding errors of α̂mle under Direct Observability.

2.6.4 Conclusion on comparison of estimators α̂mom and α̂mle

Given observations of Xk from the reduced model (2.29), we observe numerically that as

number of discrete observations N increases, α̂mom has less bias and mean square error

than α̂mle. This observation implies that α̂mom estimates parameter α more accurately

than α̂mle using observations of the reduced model. Also, in section 2.5, we observed

that α̂mle(ε) depends on auto-correlation of observations, leading to subsampling issue. To

ensure that α̂mle(ε) is a sufficiently accurate estimator of α, we need to determine range of

an optimal subsampling time, then subsample the given data with that optimal time-step.

It is not feasible to find an explicit analytical expression for the optimal subsampling time
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Figure 2.12: Bias and mean squared error (MSE) of estimators α̂mle and α̂mom compared
with true parameter α = 1.8553. Estimators are based on discrete observations from
reduced model (2.29) with fixed integration time-step δt = 10−5 and varying total obser-
vation time T = [2000, 5000, 10000, 50000, 100000]. Parameters are fixed as in (4.5)and
F = 10, γ = 2. For each fixed T , Bias and MSE is computed by averaging the errors from
six trajectories of reduced model (with different random seed and initial value of Xk). Es-
timator α̂mle is computed at subsampling time-step equal to integration time-step ∆ = δt.
Left part - Bias of estimators, given by (2.84). Right part - MSE of estimators, given by
(2.84). Solid line - Bias and MSE of α̂mle, dashed line - Bias and MSE of α̂mom. As time
T or number of observations N increases, α̂mom seems to have less bias and mean squared
error than α̂mle making α̂mom a more robust estimator of parameter α.

range and that makes the subsampling process rather complex. On the other hand, the

moment estimator α̂mom(ε) is based only on one-point moments of discrete observations,

therefore, we do not need any subsampling to compute the moment estimator. Overall, we

conclude that α̂mom(ε) is a more robust estimator than α̂mle(ε) since it has no subsampling

complexity.

Recall that moment estimator α̂mom(ε) is valid only if the empirical mean of xk is not

too small. In practice for the α̂mom(ε) to be acceptable, the mean of xk should be O(1) or

larger. In the full model (2.2), if force F is close to zero, then the stationary mean of xk

is also close to zero. Hence, for small force F in the full model, α̂mom can have numerical

problems estimating α.
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Figure 2.13: Bias and mean squared error (MSE) of estimators α̂mle and α̂mom compared
with true parameter α = 1.8553. Estimators are based on discrete observations from
reduced model (2.29) with fixed integration time-step δt = 10−5 and varying total obser-
vation time T = [2000, 5000, 10000, 50000, 100000]. Parameters are fixed as in (4.5)and
F = 24, γ = 0.1. For each fixed T , Bias and MSE is computed by averaging the errors from
six trajectories of reduced model (with different random seed and initial value of Xk). Es-
timator α̂mle is computed at subsampling time-step equal to integration time-step ∆ = δt.
Left part - Bias of estimators, given by (2.84). Right part - MSE of estimators, given by
(2.84). Solid line - Bias and MSE of α̂mle, dashed line - Bias and MSE of α̂mom. As time
T or number of observations N increases, α̂mom seems to have less bias and mean squared
error than α̂mle making α̂mom a more robust estimator of parameter α.

2.7 True Values of Parameters in the Reduced Model as a

Function of One-point Moments of the Slow Variables

In this section, our goal is to estimate the "true" value of parameters in the reduced model

without computing all correlations for the fast variables. Direct numerical simulations of the

evolution of the dynamics in the full L96 model is computationally expensive, due both to

the large number of small-scale variables and the necessity to choose a small discretization

step in order to resolve the fast components of L96. Hence, our objective is to derive a

low-dimensional stochastic model for slow variables such that behavior of slow variables

in full model weakly converges to the corresponding statistics in reduced model as scale
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separation parameter ε → 0. In section 2.3.2, homogenization procedure is used to derive

the explicit equation for the reduced model and also the "true" values of parameters in

reduced model. The "true" values of parameters, given by (2.30), depend on lagged cross-

covariance of the fast variables which can not be computed analytically. Therefore, these

"true" values are computed using one long simulation of the fast subsystem (2.4) and using

empirical values of lagged cross-correlation of the fast variables. We observe numerically

that lagged cross-correlations of the fast variables are approximately equal to zero, i.e.

〈yi(0)yj(τ)〉 ≈ 0, i 6= j, (2.85)

hence, "true" values are computed by lagged auto-covariance of the fast variables alone.

In other situations, it can be hard to resolve all the correlation of the fast variables which

can make numerical computation of "true" values of parameters in reduced model very ex-

pensive. Numerical computation of all lagged cross-covariances can increase the simulation

time because of the number of possible combinations of cross-correlations and summations

needed to compute numerical approximation of each averaged cross-correlation. For exam-

ple, in the next chapter, the "true" values are dependent on fourth-moments of the fast

variables which is expensive to compute due to the amount of possible index combinations.

Hence, in this section, we derive an alternate formula for "true" values of parameters which

depends on mean and variance of the slow variables alone.

In section 2.3.2, homogenization procedure is used to derive the explicit equation for

the reduced model and also the "true" values of parameters in the reduced model. The

reduced model can be rewritten as

dXk = Xk−1(Xk+1 −Xk−2)dt− (γ + α)Xkdt+ Fdt+ σdWk, (2.86)

where k = 1 . . .K and Wk are independent Brownian motions. There is a relationship
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between parameters α and σ derived in (2.30) given by

σ2 =
kxs

2

Jkyc
α, (2.87)

which is proved analytically and hence considered exact in reduced model.

In theorem 2.5.3, we derived another exact relationship between parameters α and σ,

given in (2.70), using Ito’s formula for the reduced model. The parameters α and σ also

obey the relationship

σ2 = 2((γ + α)r0 − Fµ), (2.88)

where r0 =
〈
X2
k

〉
, µ = 〈Xk〉. Combining (2.87) and (2.88), we obtain another formula for

the true α given by

αnew = 2Jkyc

(
γr0 − Fµ

kxs2 − 2r0Jkyc

)
, (2.89)

where µ = 〈Xk〉 , r0 =
〈
X2
k

〉
. Note that the formulas in (2.87) and (2.88) are derived

analytically without any approximation and discretization, hence, expression in α in (2.89)

can also be used to cmpute the "true" value of α and to avoid computing all correlations

of the fast variables.

We test (2.89) on data generated by the full model with a small value of ε. Assume to

be given the observations of the slow variables xk in the full L96 model, i.e. {xk(t), t = 0 :

∆ : T, k = 1 · · ·K} where ∆ > 0 is subsampling time-step and N = T/∆ + 1 is number of

total observations of xk. Then, the new "true" value of α can be estimated as

α̂new = 2Jkyc

(
γr̂0 − Fµ̂

kxs2 − 2r̂0Jkyc

)
, (2.90)

where r̂0 and µ̂ are the standard empirical moment estimators defined as

r̂0 =
1

N

∑
t=0:∆:T

x2
k, µ̂ =

1

N

∑
t=0:∆:T

xk.
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Important Observation: Note that the expression for estimating the "true" value

given by α̂new in (2.90) is not under Indirect Observability framework. Indirect Observabil-

ity is when we compute estimators from the data of xk without using equations of the full

L96 model. Estimator α̂new is derived by combining homogenization on the full L96 model

and Ito’s formula for the reduced model. Also, to compute α̂new in (2.90), we need to know

constants ky, c, and s in the equation for y variables and the coupling coefficients kx of

slow and fast variables in the full L96 model (2.2). Hence, we need to know the explicit

equations of the full model to derive and compute the estimator α̂new for the "true" value

of α.

2.7.1 True value α̂new as function of ε, using observations from full model

Given observations of the large-scale variable xk from the full model, the true value of α in

the reduced model can be estimated using mean and variance of given data alone. Note that

α̂new in (2.90) is independent of the subsampling time-step ∆ and hence is only a function

of ε and the number of observations N . In this subsection, we numerically investigate the

behavior of α̂new as ε → 0 and compare it with the "true" value of α in (2.30) computed

using correlations of the fast variables.

Numerical Setting: In the full model (2.2), fix parameters as in (4.5), force F = 10,

and damping γ = 2. For values of ε = {1, 0.3, 0.2, 0.1}, we simulate the full model and

obtain discrete observations of xk. Integration time-steps δt and total time of observations

T for each ε are specified in Table 2.1. Based on these data, we compute estimator α̂new

for various values of ε. We compare α̂new with parameter α = 1.8553 as ε→ 0.

Figure 2.14 shows α̂new(ε) computed using observations of xk in the full model for several

values of ε. For ε = 0.1, α̂new has 1.7% relative error compared with α. Since α = 1.8553 is

computed numerically in (2.30), we consider the possibility of numerical errors in computing
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Table 2.3: Relative absolute error of α̂new(ε) (2.90), using observations of the full model as
ε→ 0, with respect to true value α in (2.30)

ε in full model 1 0.5 0.3 0.1
Relative Absolute error of α̂mom(ε) 9.2% 0.7% 0.45% 1.72%

α. For ε = 0.1, α̂new = 1.887 which belongs to the 95% confidence interval of true values

of α. Hence, we conclude that α̂new gives an accurate estimate of true value of α for small

ε. Table 2.3 also represents relative absolute errors of α̂new(ε) with respect to true value

α = 1.8553 as ε→ 0.
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Figure 2.14: Estimator α̂new computed using the observations of xk in the full model for
ε = {1, 0.5, 0.3, 0.1}. In the full model, parameters are as in (4.5) and force and damping
are F = 10 and γ = 2, respectively. Solid curve line - α̂new given by (2.90) as a function of ε.
Straight line represents the "true" value of α, given by (2.30), computed numerically using
the fast subsystem. Top and bottom straight lines represent the 95% confidence interval,
(1.7865, 1.9241), for parameter α. Middle straight solid line - "true" value α = 1.8553.
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2.8 Conclusion

Our objective is to develop an efficient and accurate parametric estimation procedure for

the effective reduced equation representing a limiting process which is not observable. The

data used in the estimation procedure are subsampled from an observable approximating

process. This objective has been explicitly illustrated using an observable process as the

L96 model (2.2).

In section 2.3, the homogenization procedure is used to derive explicit equations for the

reduced model, given by (2.29), and the "true" values of parameters α, σ in the reduced

model, given by (2.30). The reduced equation represents the effective unobservable process.

The "true" values, derived using homogenization procedure, depends on lagged covariance

of fast variables in the L96 model. Due to the complexity of the equation of fast variables

in the L96 model, we can not evaluate "true" values of parameters analytically and hence

they are computed using one long simulation of the fast subsystem of L96. It can be hard

to resolve all the correlation of the fast variables in the fast subsystem (2.4) which can

make numerical computation of the "true" values of parameters very expensive. Hence, in

section 2.7, we derive an alternative formula for the "true" values of parameters using only

mean and variance of the slow variables. If we know the constant parameters of the fast

subsystem and one-point moments of the slow variables in the full model, we can compute

"true" value of α, given by (2.90), without a need to resolve all possible auto-correlations

of the fast variables in the fast subsystem.

Recall that our main objective is to estimate parameters of reduced model under the

Indirect Observability, i.e., using observations of the slow variables in the full model. Hence,

the "true" values for the reduced model are only used to test the behavior of the estimators

as scale separation parameter ε decreases. In section 2.5, we consider the first estimator

of parameters in the reduced model as approximate Maximum Likelihood estimator. Since
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the reduced model is the limiting process of the slow variables in L96 as ε → 0, it is

desirable that the approximate Maximum Likelihood parameter estimates computed from

discrete data of the slow variables in the full model converge to "true" parameter values

as ε → 0. Approximate Maximum Likelihood estimators α̂mle(ε) and σ̂mle(ε), given by

(2.52), depend on auto-correlations of the slow variables. In subsection 4.2.1, we observe a

considerable difference between the curvature of the auto-correlation of xk in the full model

and Xk in the reduced model for small time lag ∆. Hence, α̂mle(ε) and σ̂mle(ε) can loose

their consistency if we use the data of the slow variables of the full model at a very dense

time-step, referred as subsampling issue. Also, α̂mle(ε) and σ̂mle(ε) loose their consistency

at very large time-steps ∆ due to the use of the Euler discretization of the reduced model

in the derivation of the approximate Maximum Likelihood estimators, referred as Bias due

to the Euler discretization. Therefore, there is a need to subsample the data at an optimal

time-step ∆ such that the approximate Maximum Likelihood estimators approximate true

parameter well for small ε. It is not feasible to derive an analytical expression for the optimal

subsampling time-step in the approximate Maximum Likelihood estimators. Hence, the

only solution is to compare the approximate Maximum Likelihood estimator with "true"

values of parameter (2.30) and investigate numerically the optimal subsampling time-step.

This is computationally expensive and not a feasible solution. Therefore, our next objective

is to derive estimators which do not depend on subsampling time-step.

The second estimator we derive is the moment estimator α̂mom by applying "Method

of Moments" on the Euler discretized reduced model driving Xt. One advantage of this

estimator is its dependence on only one-point stationary moments.

Under Direct Observability, i.e. given observations of Xk from the reduced model (2.29),

we observe numerically that as number of discrete observations N increases, α̂mom has less

bias and mean square error than α̂mle. This observation implies that α̂mom estimates

83



2.8. CONCLUSION

parameter α more accurately than α̂mle using observations of the reduced model. Under

Indirect Observability, there is a need to subsample the observations of xk in the full model

at an optimal time-step ∆ to compute consistent α̂mle(ε) but there is no feasible solution

to find analytical expression for the optimal time-step ∆. On the other hand, we do not

need any subsampling to compute the moment estimator under Indirect Observability.

Overall, we conclude that if the mean of the slow variables in the multi-scale non-linear

model is relatively large and the reduced model is not very sensitive to the change in pa-

rameters then α̂mom(ε) is considered a more robust estimator compared with α̂mle(ε) since

it has no subsampling complexity. We need to study and analyze the statistics of the full

model to find an optimal subsampling time-step for consistent value of approximate Maxi-

mum Likelihood estimator α̂mle(ε). Another alternative solution is to plot both estimators

and we can assume from plot of both estimators in Figure 2.10 that the value of α near

intersection of both estimators will give acceptable value for α in the reduced model.

Recall that moment estimator α̂mom(ε) is valid only if the empirical mean of xk is not

too small. In practice for the α̂mom(ε) to be acceptable, the mean of xk should be O(1) or

larger. In the full model (2.2), if force F is close to zero, then the stationary mean of xk is

also close to zero. Hence, for small force F in the full model, α̂mom(ε) can have numerical

problems estimating α.
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CHAPTER 3

Stochastic Mode-reduction of Multi-scale Models with Energy as a Hidden

Slow Variable

3.1 Introduction

Motivation. In this chapter, we develop procedure of the stochastic mode reduction for

the parabolic-hyperbolic coupled systems. One of the main application of these systems are

in Thermo-elasticity. The system of the thermo-elasticity is the superposition of a wave-like

and a heat equation. While solutions of the wave equation do reproduce the same pattern

for all times, those of the heat equation are very quickly dissipated. In [54], a linear system

of thermo-elasticity is considered, consisting of a wave equation coupled to a heat equation.

The considered system of thermo-elasticity in [54] is given by

utt − c2∆u+ α∆θ = 0,

θt − ν∆θ + βut = 0.

(3.1)
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with certain boundary and initial conditions. The variable u is the slow variable representing

the wave vector coupled with equation of heat variable represented by fast variable vector

θ. The coupling parameters α, β and the viscosity ν are assumed to be positive constants.

The fast subsystem of the multi-scale model in (3.1) is the wave equation without cou-

pling terms and hence conserving energy. The wave equation is an important second-linear

partial differential equation for the description of waves. It has applications in acoustics,

electromagnetics, and fluid dynamics. Since there is no energy dissipation term in wave

equation, it conserves energy. There is similar model of thermo-elasticity as in (3.1), con-

sidered in [23]. In our work, we consider a prototype model as the generalization of Additive

Triad Model having energy conserved fast subsystem, as an example of parabolic-hyperbolic

coupled systems.

Outline of our work. In this chapter we consider an application of the stochastic

mode-reduction to multi-scale models with energy as a hidden slow variable. In particular,

we consider the situation when the stochastic terms are added to the slow variables in

energy-conserving nonlinear systems. Since the noise only affect the slow variables, the fast

subsystem is deterministic evolving on a sphere of constant energy. On the other hand,

the radius of the sphere slowly changes due to the coupling between the slow and fast

dynamics. Therefore, in order to apply the stochastic reduction techniques, one needs to

consider energy of the fast subsystem as an additional hidden slow variable.
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3.2 Generalized Triad Model

To illustrate our approach we first consider a prototype coupled triad model

dx =
n∑

j,k=1

Axyy1jk yjykdt− γxdt+ σdWt,

(3.2)

dyj =
n∑
k=1

Ayxyj1kxykdt+
n∑

i,k=1

Byyy
jik yiykdt,

where x is the slow variable, yk, k = 1, . . . , n are the fast variables, Axyy1jk , A
yxy
j1k , B

yyy
jik are

interaction coefficients obeying the relationships

Axyy1jk +Ayxyj1k +Ayxyk1j = 0,

Byyy
jik +Byyy

ikj +Byyy
kji = 0.

(3.3)

Note that if we ignore the damping and diffusion terms in equation for x in (3.2), then the

non-linear terms will be left in the Triad model conserving energy x2 +
∑
y2
k due to the

constraint on the coupling coefficients given by (3.3).

One can attempt to apply the stochastic mode-reduction strategy to the model in (3.2).

In the stochastic mode-reduction procedure one needs to consider the behavior of the fast

subsystem

ẏj =
n∑

i,k=1

Byyy
jik yiyk (3.4)

and integrated lagged correlations functions of y-variables typically enter as coefficients into

the reduced model. The behavior of the fast subsystem depends drastically on the energy

level, but the energy in the fast modes changes in time due to the interaction with the slow

variable. Therefore, we consider energy of the fast subsystem

E =
n∑
k=1

y2
k (3.5)
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as an additional slow variable and the full rescaled model becomes

dx =
1

ε

n∑
j,k=1

Axyy1jk yjykdt− γxdt+ σdWt,

dE = −2
1

ε

n∑
j,k=1

Axyy1jkxyjykdt, (3.6)

dyj =
1

ε

n∑
k=1

Ayxyj1kxykdt+
1

ε2

n∑
i,k=1

Byyy
jik yiykdt,

where we have used Ayxyj1k +Ayxyk1j +Axyy1jk = 0.

There are certain assumptions we apply on the full model (3.6) which as given as follows

• We take number of fast variables as large, i.e. n = 10 to ensure the ergodicity of the

fast subsystem (3.4).

• The energy conservation constraint of the coupling coefficients between x and y , i.e.

first equation in (3.3) is not an essential assumption for derivation of the reduced

model. It is considered to simplify certain computations in this chapter.

• The energy conservation constraint of the interaction coefficients in the fast subsys-

tem, i.e. the second equation in (3.3) is a mandatory constraint leading to the fact

that the fast subsystem conserves energy.

3.3 Stationary Distribution of the Generalized Triad Model

The stationary distribution of the generalized triad model (3.6) can be computed explic-

itly for any ε and it is easy to show that the stationary distribution for x, y1, . . . , yn is a

product of Gaussian distributions with mean zero and identical variances. The stationary

distribution does not depend on the small parameter ε.

Fokker-Planck equation for the invariant measure P = P (x, y1, .., yn) for x, y1, . . . , yn in
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(3.6) can be written as

0 =

(
A0 +

1

ε
A1 +

1

ε2
A2

)
P

where

A0 = −γx∂x +
σ2

2
∂xx,

A1 =
∑
j,k

Axyy1jk yjyk∂x +
∑
j,k

Ayxyj1kxyk∂yj ,

A2 =
∑
i,j,k

Byyy
jik yiyk∂yj .

The differential operator A0 annihilates Gaussian density
√

2γ√
2πσ

exp
(
− γ

σ2
x2
)

The operators A1 and A2 annihilate separately any function of the full energy x2 +E with

E in (3.5) due to the conservation of energy by the non-linear terms in (3.2) using the

constraints (3.3). Therefore, they will also annihilate the function

P =

( √
2γ√

2πσ

)n+1

exp

− γ

σ2

x2 +
∑
j

y2
j

 .

Therefore, the invariant measure for x, y1, . . . , yn in (3.6) is a product measure with

x, y1, . . . , yn ∼ N
(

0,
σ2

2γ

)
. (3.7)

The stationary distribution for the energy E in (3.5) can be easily derived since the sta-

tionary distribution of fast variables is a product of Gaussian densities.

ρE(E) = CE(n−2)/2e−
Eγ

σ2 . (3.8)

3.4 Limit of the Full Model as ε→ 0

We apply the stochastic mode-reduction to the model (3.6) treating the energy E of the fast

subsystem as a slow variable. The Kolmogorov backward equation associated with (3.6) for
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a scalar function u = u(t, x, E, y1, . . . , yn) is given by

− ∂tu = L0u+
1

ε
L1u+

1

ε2
L2u (3.9)

where the operators above are

L0 = −γx∂x +
σ2

2
∂xx, (3.10)

L1 =
∑
j,k

Axyy1jk yjyk∂x +
∑
j,k

Ayxyj1kxyk∂yj − 2
∑
j,k

Axyy1jkxyjyk∂E ,

L2 =
∑
i,j,k

Byyy
jik yiyk∂yj .

We introduce the projection operator

P g =

ˆ
g µ(~y|E)d~y,

where g is any bounded Borel function and µ(~y|E) is the invariant measure of the fast

subsystem (3.4) on the sphere of constant energy (3.5).

We follow same homogenization procedure as explained before in section 2.3.2. Consid-

ering the expansion

u = u0 + εu1 + ε2u2

and collecting powers of ε we obtain the same relations as in (2.14) with operators (3.11).

Similar as in section 2.3.2, from the relations in (2.14), we obtain that u0 is independent

of fast variables, i.e. u0 = u0(x,E), the compatibility condition PL1 = 0, and the reduced

operator

L = −PL1L
−1
2 L1.

We compute operator L and simplify it in later sections.

Note about the compatibility condition: The compatibility condition PL1 = 0

mean the following conditions on the averages of ~y in the fast subsystem

Eµyj = 0, Eµyjyk = 0 for j 6= k. (3.11)
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The first condition is quite plausible, it simply implies the symmetry of the flow. The

second condition is a bit more problematic, one simple way ensure the second condition

is to assume Eµyjyk = EµyjEµyk = 0, but this is not true since the ~y-variables are not

independent in the fast subsystem (3.4). If we assume that the stationary measure of the

fast subsystem is the uniform measure on the sphere, i.e. µ(~y|E0) = δ

(
n∑
k=1

y2
k − E0

)
(where

E0 is the particular energy level), then the marginal joint distribution for yj , yk converges

to a product of independent Gaussian distributions as n → ∞ (n = dim(~y)). Therefore,

we expect the second condition in (3.11) to become approximately true for large n. This

is similar to the condition for the mode-reduction in the TBH model considered in [62].

Therefore, the dimension n should be reasonable large, n = O(10) or larger. This is to be

investigated numerically.

Substituting L1 and neglecting the derivatives ∂yj on the right (since the effective op-

erator is applied to the function u0(x,E, t) which does not involve ~y)

L = −
ˆ ∑

j,k

Axyy1jk yjyk∂x +
∑
j,k

Ayxyj1kxyk∂yj − 2
∑
j,k

Axyy1jkxyjyk∂E

 L−1
2 ,

∑
j,k

Axyy1jk yjyk∂x − 2
∑
j,k

Axyy1jkxyjyk∂E

µ(~y|E)d~y. (3.12)

3.4.1 Derivation of diffusion coefficients for the reduced model

Operator L in (3.12) can be partitioned into infinitesimal generator of the drift and infinites-

imal generator of the diffusion process for the reduced model. We know in the Fokker-Planck

equation that ∂2
x leads to the diffusion terms in the equation of x, similarly the diffusion

terms for the reduced model is represented by ∂2
x and ∂2

E in (3.12). Thus, the diffusion part
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in (3.12) is derived by neglecting the terms which involve ∂yj in L1, i.e.

Ldiff = −
ˆ ∑

j,k

Axyy1jk yjyk∂x − 2
∑
j,k

Axyy1jkxyjyk∂E

 L−1
2 ,

∑
j,k

Axyy1jk yjyk∂x − 2
∑
j,k

Axyy1jkxyjyk∂E

µ(~y|E)d~y. (3.13)

Substituting the action of L−1
2 we obtain

Ldiff = A
[
∂xx + 4x2∂EE − 2∂xx∂E − 2x∂E∂x

]
, (3.14)

where

A =
∑

j,k,j′,k′

Axyy1jkA
xyy
1j′k′Qj,k,j′,k′ , Qj,k,j′,k′ =

∞̂

0

Eµ
[
yjykYj′(t)Yk′(t)

]
dt, (3.15)

where Yj(t) is the solution of the fast subsystem with Yj(0) = yj . The quantity Qj,k,j′,k′

is the area under fourth-order two-point moment in the fast subsystem (3.4) on the energy

level E.

The infinitesimal generator of the diffusion process given by (3.14) is not in the canonical

form, but can be easily rewritten as

Ldiff = A
[
∂xx + 4x2∂EE − 2x∂x∂E − 2x∂E∂x

]
− 2A∂E , (3.16)

Here we concentrate on the diffusion part of the operator, and the drift part will be con-

sidered later. The diffusion part in (3.16) can be written as

Ldiff =
1

2

∑
i,k=1,2

(DDT )ik∂zi∂zk (3.17)

where z1 ≡ x, z2 ≡ E,

DDT = 2A

 1 −2x

−2x 4x2

 , D =
√

2A

 1 0

−2x 0

 . (3.18)
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3.4.2 Rescaling the fast subsystem

In previous subsection 3.4.1, we defined Qj,k,j′,k′ as

Qj,k,j′,k′ =

∞̂

0

Eµ(~y|E)

[
yjykYj′(t)Yk′(t)

]
dt, (3.19)

where Yj(t) is the solution of the fast subsystem with initial condition Yj(0) = yj and fixed

energy E, µ (~y|E) is the stationary density of the fast subsystem (3.4) and Eµ(~y|E) repre-

sents the expectation of the lagged fourth-moment with respect to the stationary invariant

measure µ (~y|E) of the fast subsystem having conserved energy E. The quantity Qj,k,j′,k′

is the integrated fourth-order two-point moment in the fast subsystem (3.4) computed on

the energy level E.

It is not feasible to compute and tabulate the fourth-moment above on all energy levels

in order to perform simulations of the reduced model. Fortunately, the fast subsystem is

invariant under the rescaling

ynewj =
√
C yj , tnew =

1√
C
t

for any constant C. We use this property with C = n/E, i.e.

yj =

√
n

E
yj , t =

√
E

n
t, (3.20)

to rescale the fast subsystem to the energy level n.

Hence, the integrated lagged fourth-moment Q can be rewritten as

Qj,k,j′,k′ =

(
E

n

)3/2
∞̂

0

Eµ(y|E=n)

[
yjykYj′(t)Yk′(t)

]
dt =

(
E

n

)3/2

qj,k,j′,k′

where qj,k,j′,k′ is the integrated lagged fourth-moment in fast subsystem (3.4) with fixed

energy E = n. Therefore, we can perform only one microcanonical simulation of the fast

subsystem on the energy shell E = n to compute qj,k,j′,k′ , and quantities Qj,k,j′,k′ can be

obtained by rescaling.
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3.4.3 Deriving drift using Fokker-Planck equation

The drift in the effective equation can be computed directly by considering the part of

the effective operator which was neglected in the computation of the diffusion or we can

use the explicit knowledge of the stationary distribution for x and E to compute the drift

by imposing that the Fokker-Planck operator annihilates the joint stationary density. The

stationary density for x and E is the product of the Gaussian and the χ2 densities.

We can write the form for the reduced model, using the diffusion terms obtained in

(3.17), as

dx = −γx+ σdW1 − Γ1(x,E)dt+
√

2AdW2,

dE = −Γ2(x,E)dt− 2x
√

2AdW2, (3.21)

where A depends on E, i.e.

A =
∑

j,k,j′,k′

Axyy1jkA
xyy
1j′k′Qj,k,j′,k′ , Qj,k,j′,k′ =

(
E

n

)3/2

qj,k,j′,k′

or

A =

(
E

n

)3/2 ∑
j,k,j′,k′

Axyy1jkA
xyy
1j′k′qj,k,j′,k′ =

(
E

n

)3/2

β, (3.22)

where β does not depend on E and the model (3.21) can be rewritten as

dx = −γx+ σdW1 − Γ1(x,E)dt+
√

2

(
E

n

)3/4

βdW2,

dE = −Γ2(x,E)dt− 2
√

2x

(
E

n

)3/4

βdW2. (3.23)

The Fokker-Planck equation for the system (3.23) reads(
− ∂

∂x
Γ1 −

∂

∂E
Γ2 +

∂2

∂x2
Σ11 +

∂2

∂x∂E
Σ12 +

∂2

∂E∂x
Σ21 +

∂2

∂E2
Σ22

)
ρ(x,E),

=

−∂ziΓi +
∑
i,j

∂zi∂zjΣij

 ρ(x,E) = 0, (3.24)
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where Σ = 1
2DD

T with D in (3.44), i.e.

Σ = A

 1 −2x

−2x 4x2

 = β

(
E

n

)3/2

 1 −2x

−2x 4x2

 . (3.25)

Also, we have neglected the terms in Fokker-Planck equation (3.24) which correspond to

the OU terms in equation of x given by

dx = −γxdt+ σdW1,

since these terms will annihilate the Gaussian density separately from the rest of the Fokker-

Planck equation (3.24).

The Fokker-Planck equation for the system (3.23) can be rewritten as

0 =

−∂ziΓi(z) +
∑
i,j

∂zi∂zjΣij

 ρ(x,E)

with Σ in (3.25). The idea is to transform the stationary distribution for x and E in the

form e−v(x,E) and the diffusion terms in the form

∑
i

∂zi
∑
j

(
ρ(z)∂zjΣij + Σij∂zjρ(z)

)
.

Defining (Σij)x = ∂xΣij and (Σij)E = ∂EΣij , we open the summation in above equation as

∑
i,j

∂zi∂zjΣij =

∑
i

∂zi
∑
j

(∂zjΣij + Σij∂zj ) =

= ∂x ((Σ11)x + Σ11∂x + (Σ12)E + Σ12∂E)

+ ∂E ((Σ21)x + Σ21∂x + (Σ22)E + Σ22∂E) .

Therefore,

Γ1ρ(x,E) = [(Σ11)x + Σ11∂x + (Σ12)E + Σ12∂E ] ρ(x,E),

Γ2ρ(x,E) = [(Σ21)x + Σ21∂x + (Σ22)E + Σ22∂E ] ρ(x,E).
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Terms arising from differentiating Σik become

(Σ11)x + (Σ12)E = −3xβ
E1/2

n3/2
, (3.26)

(Σ21)x + (Σ22)E = −2β

(
E

n

)3/2

+ 6x2β
E1/2

n3/2
.

The stationary distribution for x and E can be written in the following form

ρ(x,E) = Ce
−
(
γ

σ2
(E+x2)−n−2

2
log(E)

)
= Ce−v(x,E)

with v(x,E) =
γ

σ2
(E + x2)− n− 2

2
log(E)

and ∂xv(x,E) =
γ

σ2
2x, ∂Ev(x,E) =

γ

σ2
− n− 2

2E
.

We use ∂xρ(x,E) = −ρ(x,E)vx(x,E) and ∂Eρ(x,E) = −ρ(x,E)vE(x,E) to compute

Σ11ρx(x,E) + Σ12ρE(x,E) =

−2xβ

(
E

n

)3/2 γ

σ2
+ 2xβ

(
E

n

)3/2 [ γ
σ2
− n− 2

2E

]
,

(3.27)

Σ21ρx(x,E) + Σ22ρE(x,E) =

4x2β

(
E

n

)3/2 γ

σ2
− 4x2β

(
E

n

)3/2 [ γ
σ2
− n− 2

2E

]
.

Combining (3.26) and (3.27) we obtain

Γ1 = −xβ(n+ 1)
E1/2

n3/2
,

Γ2 = −2β

(
E

n

)3/2

+ 2x2β(n+ 1)
E1/2

n3/2
.

And the reduced model for x and E becomes

dx = −γxdt− (n+ 1)βx
E1/2

n3/2
+ σdW1 +

√
2β

(
E

n

)3/4

dW2,

dE = −2β

(
E

n

)3/2

+ 2(n+ 1)βx2E
1/2

n3/2
− 2
√

2βx

(
E

n

)3/4

dW2. (3.28)
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3.5 Alternative Derivation of the Reduced Model using Uni-

form Stationary Measure on the Sphere

In this section, we derive the reduced model (3.28) using uniform measure on the sphere as

an explicit formula for the stationary distribution of the fast subsystem. The fast subsystem

(3.4) is a deterministic system which conserves energy E, given by (3.5). The energy E

of the fast variables changes in time due to the interaction with the slow variables and is

assumed to be a hidden slow variable in (3.6). In this section, we assume the stationary

distribution of the fast subsystem, for initial fixed energy as E, to be uniform on the sphere

of radius
√
E.

3.5.1 Stationary distribution of the fast subsystem

We assume that the fast subsystem (3.4) is ergodic on the hypersphere defined by energy of

the fast subsystem with respect to the uniform distribution on the sphere, i.e. the trajectory

of the fast subsystem comes arbitrary close to any point on the sphere and covers the sphere

randomly. As considered in [62], let yi(t, c) be the solution of the fast subsystem (3.4) at

time t for the initial condition

yi(0, c) = ci,

with fixed energy given by

E0 =

n∑
i=1

c2
i . (3.29)

Then the stationary distribution of the fast subsystem can be written as

µ(~y|E) = S−1
n E1−n/2δ (E − E0) , (3.30)

where n is the total number of fast variables, E is the given fixed energy (3.29) in the fast

subsystem, S−1
n E1−n/2 is the normalizing constant and δ is the dirac-delta function is to
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specify that energy is conserved at every point in the fast subsystem.

3.5.2 Limit of the full model as ε→ 0

We apply the stochastic mode reduction to the full model (2.2) exactly in similar way as

done in section 3.4 but using the stationary measure of the fast subsystem assumed in (3.30).

The Kolmogorov backward equation associated with (2.2) for a scalar function u is given

by (3.9) where the operators are same as defined in (3.11). The compatibility conditions

necessary for the stochastic mode reduction specified in (3.11) holds as the number of fast

variables converges to infinity. Assuming the stationary measure of the fast subsystem to

be the uniform measure on the sphere given by (3.30), the marginal joint distribution for

yj , yk converges to the product of independent Gaussian as n → ∞. Therefore, we expect

the second condition in (3.11) to become approximately true for large n. The effective

backward operator in (3.12) is rewritten as

L = −
ˆ ∑

j,k

Axyy1jk yjyk∂x +
∑
j,k

Ayxyj1kxyk∂yj − 2
∑
j,k

Axyy1jkxyjyk∂E

 L−1
2 ,

∑
j,k

Axyy1jk yjyk∂x − 2
∑
j,k

Axyy1jkxyjyk∂E

µ(~y|E)d~y, (3.31)

where the operator L−1
2 can be derived using Feynmann-Kac technique and is given by

L−1
2 f(y) = −

ˆ ∞
0

E [(f(yτ |y0 = y)] dτ, (3.32)

where yτ is the solution of the fast subsystem (3.4) at time τ and E [(f(yτ |y0 = y)] is the

conditional expectation with respect to yτ if given initial value of y is y0.

Since the stationary measure of fast variables in the fast subsystem depends on the

energy E and the y variables, hence the operator L−1
2 also depends on both, E and yi.
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Therefore, to understand the derivatives ∂EL−1
2 and ∂yiL

−1
2 , we split the effective operator

L in (3.31) into three parts, given by

L = −(I1 + I2 + I3), (3.33)

where the splitting is as follows after applying the action of L−1
2

I1 =

ˆ
µ(~y|E)

∑
j,k

Axyy1jk yjyk∂xL
−1
2

∑
j,k

Axyy1jk yjyk∂x − 2
∑
j,k

Axyy1jkxyjyk∂E

 d~y,
I2 =

ˆ
µ(~y|E)

∑
j,k

Ayxyj1kxyk∂yjL
−1
2

∑
j,k

Axyy1jk yjyk∂x − 2
∑
j,k

Axyy1jkxyjyk∂E

 d~y,
I3 =

ˆ
µ(~y|E)

−2
∑
j,k

Axyy1jkxyjyk∂EL
−1
2

∑
j,k

Axyy1jk yjyk∂x − 2
∑
j,k

Axyy1jkxyjyk∂E

 d~y.
(3.34)

Next, we will simplify all three terms in operator L separately.

Computing I1

Applying action of L−1
2 on the I1 term in (3.34), we obtain

I1 =

ˆ ∞
0

ˆ
µ(~y|E)

∑
j,k

Axyy1jk yjyk∂x

∑
j′,k′

Axyy1j′k′Yj′(t)Yk′(t)(∂x − 2x∂E)

 d~ydτ
where Yj(t) is the solution of the fast subsystem with Yj(0) = yj .

Since stationary measure of fast variables in fast subsystem is independent of x, the

partial derivatives can be pulled out and the I1 expression gets simplified as

I1 = A(∂xx − 2x∂xE − 2∂E), (3.35)

where

A =
∑

j,k,j′,k′

Axyy1jkA
xyy
1j′k′Q(j, k, j′, k′)
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and Qj,k,j′,k′ is the integrated fourth-order two-point moment, given by (3.15), in the fast

subsystem (3.4) on the energy level E. The expression for I1 in (3.35) can be further

simplified after rescaling of the fast subsystem as follows

I1 =

(
E

n

)3/2

β(∂xx − 2x∂xE − 2∂E), (3.36)

where the fast subsystem is rescaled to the system with fixed energy E = n, described in

(3.20) and (3.22).

Computing I2

Applying the action of L−1
2 (3.32) on I2 term in (3.34), we obtain

I2 =

ˆ ∞
0

ˆ
µ(~y|E)

∑
j,k

Ayxyj1kxyk∂yj

∑
j′,k′

Axyy1j′k′Yj′(t)Yk′(t)(∂x − 2x∂E)

 d~ydτ,
= x

∑
j,k,j′,k′

Ayxyj1kA
xyy
1j′k′

ˆ ∞
0

ˆ
µ(~y|E)

[
yk∂yj

(
Yj′(t)Yk′(t)(∂x − 2x∂E)

)]
d~ydτ,

(3.37)

where Yj(t) is the solution of the fast subsystem with Yj(0) = yj . The integration in the

expression for I2 (3.37) can be further simplified by integration by parts if we denote

u = ykµ(~y|E), dv = ∂yj
(
Yj′(t)Yk′(t) (∂x − 2x∂E)

)
d~y,

where u and v are two continuously differentiable functions and dv is the partial derivative

of v with respect to yj . We obtain partial derivative of u w.r.t. yj and integration of v as

du = −2yjykS
−1
n (E)1−n/2δ′

(
E −

n∑
r=1

y2
r

)
, v = Yj′(t)Yk′(t) (∂x − 2x∂E) ,

where δ′(·) is the distributional derivative of dirac-delta function δ(·). Above integration

by parts simplifies I2 term in (3.37) as follows

I2 = −2xS−1
n (E)1−n/2D (∂x − 2x∂E) ,

where D is defined as follows

D =
∑

j,k,j′,k′

Ayxyj1kA
xyy
1j′k′

∞̂

0

ˆ
yjykYj′(t)Yk′(t)δ

′

(
E −

n∑
r=1

y2
r

)
d~ydτ. (3.38)
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Computing I3

Applying the action of L−1
2 (3.32) on I3 term in (3.34), we obtain

I3 = −2

ˆ ∞
0

ˆ
µ(~y|E)

∑
j,k

Axyy1jkxyjyk∂E

∑
j′,k′

Axyy1jkYj′(t)Yk′(t)(∂x − 2x∂E)

 d~ydτ,
= −2x

∑
j,k,j′,k′

Axyy1jkA
xyy
1j′k′

ˆ ∞
0

ˆ
µ(~y|E)

[
yjyk∂E

(
Yj′(t)Yk′(t)(∂x − 2x∂E)

)]
d~ydτ.

Since the solution of the fast subsystem at time t, i.e., Yj′(t) depends on the fixed energy

E of the fast subsystem, the only way to simplify the partial derivative w.r.t. E in I3 term

is by using product rule as

I3 = −2x
∑

j,k,j′,k′

Axyy1jkA
xyy
1j′k′

ˆ ∞
0

ˆ
µ(~y|E)

[
yjyk∂E

(
Yj′(t)Yk′(t)

)]
d~ydτ (∂x − 2x∂E)

−2xA(∂Ex − 2x∂EE),

where A is the function of integrated fourth-order two-point moment, given by (3.15), in

the fast subsystem (3.4) on the energy level E.

Let the first term left for integration in I3 be denoted by I ′3 which can be simplified by

tedious but otherwise completely straightforward algebraic manipulation. Hence, I3 term

can be rewritten as

I3 = −2x
∑

j,k,j′,k′

Axyy1jkA
xyy
1j′k′I

′
3 (∂x − 2x∂E)− 2Ax(∂Ex − 2x∂EE), (3.39)

where I ′3 is given by

I ′3 =

ˆ ∞
0

ˆ
µ(~y|E)yjyk∂E

[
Yj′(t)Yk′(t)

]
d~ydτ. (3.40)

Note that we can’t pull partial derivative w.r.t. E out of integration in expression of I ′3

(3.40) since the fast variables and their density µ(~y|E) are functions of energy E in the

fast subsystem (3.4). Hence, we will consider separately the situation of having ∂E outside

the integral and manipulate the considered expression to simplify the required I ′3 (3.40).
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The expression similar to I ′3 but with ∂E outside the integration is given below with the

simplification of considered expression using the ’Fundamental Theorem of Calculus’,

∂E

[ˆ ∞
0

ˆ
µ(~y|E)yjykYj′(t)Yk′(t)d~ydτ

]
=

ˆ ∞
0

ˆ
µ(~y|E)∂E

[
yjykYj′(t)Yk′(t)

]
d~ydτ.

The partial derivative w.r.t. energy E in above expression can be split into the fourth

lagged moment of y variables and the measure µ(~y|E) using the product rule as

∂E

[ˆ ∞
0

ˆ
µ(~y|E)yjykYj′(t)Yk′(t)d~ydτ

]
=

ˆ ∞
0

ˆ
yjykYj′(t)Yk′(t)∂E [µ(~y|E)] d~ydτ + I ′3,

where I ′3 is given in (3.40). Therefore, the required I ′3 can be rewritten as

I ′3 = ∂E
[
Q(j, k, j′, k′)

]
−
ˆ ∞

0

ˆ
yjykYj′(t)Yk′(t)∂E [µ(~y|E)] d~ydτ, (3.41)

where Q(j, k, j′, k′) is the integrated fourth-order two-point moment, given by (3.19), in the

fast subsystem (3.4) on the energy level E. Since the stationary measure of fast variables

µ(~y|E) given by (3.30), is a function of E, we can simplify the second term in I ′3 using chain

rule as

∂E [µ(~y|E)] = (1− n/2)E−1µ(~y|E) + S−1
n E1−n/2δ′

(
E −

n∑
i=1

y2
k

)
,

where δ′(·) represent the distributional derivative of dirac-delta function δ(·). Substituting

the above specified chain rule in (3.41) simplifies I ′3 as

I ′3 = ∂E
[
Q(j, k, j′, k′)

]
− (1−N/2)E−1Q(j, k, j′, k′)

−S−1
n E1−n/2

ˆ ∞
0

ˆ
yjykYj′(t)Yk′(t)δ

′

(
E −

n∑
i=1

y2
k

)
d~ydτ,

where Q(j, k, j′, k′) is the function of the energy E and the fast variables, given by (3.19).

Note that rescaling of the fast subsystem, described in (3.20) factorizes Q(j, k, j′, k′) into

two separate functions of the energy E and the fast variables, respectively. Applying the

rescaling technique of the fast subsystem, given by (3.20), in first two terms of I ′3 and
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partially differentiating the factorization of Q(j, k, j′, k′) (3.21) w.r.t. energy E, simplifies

I ′3 as follows

I ′3 =
3

2n3/2
E1/2q(j, k, j′, k′)− 1− n/2

n3/2
E1/2q(j, k, j′, k′)

−S−1
n E1−n/2

ˆ ∞
0

ˆ
yjykYj′(t)Yk′(t)δ

′

(
E −

n∑
i=1

y2
k

)
d~ydτ,

=
n+ 1

2n3/2
E1/2q(j, k, j′, k′)− S−1

n E1−n/2
ˆ ∞

0

ˆ
yjykYj′(t)Yk′(t)δ

′

(
E −

n∑
i=1

y2
k

)
d~ydτ,

Substituting I ′3 back in the main equation of I3 (3.39) and substituting Q(j, k, j′, k′) with

rescaled version given by (3.21), we obtain

I3 = −xn+ 1

n3/2
E1/2β(∂x − 2x∂E)− 2x

E3/2

n3/2
β(∂Ex − 2x∂EE)

+2xS−1
n E1−n/2D(∂x − 2x∂E), (3.42)

where β is summations of the area under fourth-order two-point moment, given by (3.22),

in the rescaled fast subsystem (3.4) on the energy level n and D is given by (3.38).

Recall that the effective L operator is given by (3.31) which is splitted into I1, I2 and

I3 terms as in (3.33). Substituting I1, I2 and I3 from (3.36), (3.38) and (3.42), respectively,

effective L operator can be rewritten as

L =
1

n3/2
E3/2β(∂xx − 2x∂xE − 2∂E)− 2xS−1

n E1−n/2D (∂x − 2x∂E)

−n+ 1

n3/2
xE1/2β(∂x − 2x∂E)− 2

n3/2
xE3/2β(∂Ex − 2x∂EE)

+2xS−1
n E1−n/2D(∂x − 2x∂E),

= −E
1/2

n3/2
β
(
(n+ 1)x∂x + 2E∂E − 2x2(n+ 1)∂E

)
+
E3/2

n3/2
β
(
∂xx − 2x∂xE − 2x∂Ex + 4x2∂EE

)
,

where β is summations of the area under fourth-order two-point moment, given by (3.22),

in the rescaled fast subsystem (3.4) on the energy level n and D is given by (3.38). Let
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Ldiff represent the diffusion part and Ldrift part of the operator L in (3.43). The diffusion

part of L can be rewritten as

Ldiff =
1

2

∑
i,k=1,2

(DDT )ik∂zi∂zk (3.43)

where z1 ≡ x, z2 ≡ E,

DDT = 2β

(
E

n

)3/2

 1 −2x

−2x 4x2

 , D =
√

2β

(
E

n

)3/4

 1 0

−2x 0

 . (3.44)

Using the effective L operator in (3.43) and diffusion in (3.43), we obtain same reduced

model for x and E as in the first derivation (3.28), given by

dx = −γxdt− (n+ 1)βx
E1/2

n3/2
+ σdW1 +

√
2β

(
E

n

)3/4

dW2,

dE = −2β

(
E

n

)3/2

+ 2(n+ 1)βx2E
1/2

n3/2
− 2
√

2βx

(
E

n

)3/4

dW2. (3.45)

where β is the function of the integrated fourth-order two-point moment, given by (3.22),

in the rescaled fast subsystem (3.4) on the energy level n.

3.6 Numerical Simulations

We will fix the parameters in full model (3.2) as

γ = 1, σ = 2.236, dim(~y) = n = 10. (3.46)

Number of xyy triads = 10, Number of yyy triads = 19

Coefficients are given in Tables 3.2 and 3.1. We perform simulations with coefficients

A = A/4 where A is given in Table 3.1, the coefficients are divided by four to achieve

better scale separation between x and y variables.
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Numerical Method

We use a split-step method to integrate the full model (3.2). We perform a high-order

deterministic step for the deterministic part of the model and then use Euler discretization

to add a Gaussian random variable which approximates the increment in the Brownian

motion. The full model is sensitive to the deterministic integrator, thus we use RK5 formula

to integrate numerically the deterministic part of the system (3.2).

We use a time-averaging combined with Monte-Carlo approach to accelerate computa-

tions. In particular, we perform M runs of the full model with T = 40, 000 with different

initial conditions and then average over theM realizations. We chooseM = 3 for ε = 1, 0.5

andM = 10 for ε = 0.25, 0.1 because smaller values of ε are more sensitive and ε = 0.25, 0.1

are used to compare with the simulations of the reduced model. We use integration time-

step as δt = 10−6 and δt = 2× 10−5 for ε = 0.1 and ε = 0.25, respectively.

The reduced model is integrated using the same method with the RK5 deterministic

integrator and Euler discretization for the noise. We also perform a hybrid approach com-

bining time-averaging and Monte-Carlo simulations. We runM = 10 trajectories each with

T = 100, 000, ∆t = 0.00001, and different initial conditions, and then take the empirical

average of statistical quantities computed from all M trajectories. The coefficient β in

reduced model (3.28) is computed from the fast subsystem numerically and is

β = 1.2759.

Convergence of full model as ε→ 0. We perform simulations with

ε = 1, 0.5, 0.25, 0.1

too illustrate the convergence of the full model as ε→ 0. The stationary density for x and

E is reproduced quite accurately for any ε and we only depict the convergence of correlation

functions in Figures 3.1 and 3.2.
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Figure 3.1: Correlation function of x in full model (3.2) for ε = 1, 0.5, 0.25, 0.1.

Comparison with the Reduced Model.

We show the weak convergence of full model (3.2) to the reduced model (2.29) as ε → 0

by comparing the auto-correlation, density and Kurtosis of slow variables in the full and

reduced model. We perform simulations of full model with

ε = 0.25, 0.1

to illustrate the convergence of the full model to the reduced model as ε→ 0.

Convergence of auto-correlation. In figure 3.3, the left and right part shows the

convergence of auto-correlation of x and E, respectively, in the full model to the corre-

sponding auto-correlations in the reduced model as ε→ 0.

Convergence of density. In figure 3.4, the stationary density for x and E is repro-

duced quite accurately for any ε by the reduced model. Note that stationary density of
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Figure 3.2: Correlation function of E in full model (3.2) for ε = 1, 0.5, 0.25, 0.1.

energy E in right part of figure 3.4 is same as the density of the chi-square distribution

with nine degrees of freedom.

Convergence of kurtosis. Figure 3.5 shows the convergence of kurtosis of x and E

in the full model to the corresponding kurtosis in the reduced model as ε → 0. Left part

of figure 3.5 shows that at time lag τ = 0, x is Gaussian but has non-Gaussian behavior as

time lag τ increases and the figure shows that the reduced model is able to reproduce the

non-Gaussian behavior very well as ε→ 0.

Kurtosis of x at time lag τ is given by

Kurt(τ) =
Covx2(τ)

Cov2
x(0) + 2Cov2

x(τ)
, (3.47)

where the lagged covariance is as follows

Covx(τ) = E [x(t)x(t+ τ)] .
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Figure 3.3: Correlation function of x and E in the full model (3.2) with ε = 0.25, 0.1 and
in the reduced model (3.28).

3.7 Conclusion Remarks

In this chapter, we considered the system (3.6) where stochastic terms are added to the

slow variables in energy-conserving non-linear systems. Since the noise only affect the slow

variables, the fast subsystem is deterministic evolving on a sphere of constant energy. On

the other hand, the radius of the sphere changes in full model due to the coupling between

the slow and fast dynamics, we consider the energy of the fast subsystem as an additional

hidden slow variable. The main goal is to derive a closed form stochastic model for the slow

modes alone, i.e., x and hidden slow variable as energy E.

The reduced model for slow variables in full model (3.6) is derived using two similar

ways in this chapter. In section 3.3, it is shown that x and y variables follow independent

Normal distribution with identical mean and variance, their product measure is given by

(3.7). Also, hidden slow variable E in full model follow chi-square distribution, given by

(3.8). In 3.4, we use the explicit knowledge of the stationary distribution for x and E to

108



3.7. CONCLUSION REMARKS

Coefficients y variables A1 A2 A3

A1,1,2 y1, y2 4.8 −2.2 −2.6

A1,10,11 y10, y11 2.1 1 −3.1

A1,4,12 y4, y12 5.4 −2.9 −2.5

A1,7,8 y7, y8 4.5 −2 −2.5

A1,3,9 y3, y9 5.4 −2.9 −2.5

A1,1,12 y1, y12 2.1 1 −3.1

A1,2,4 y2, y4 4.8 −2.2 −2.6

A1,5,8 y5, y8 4.5 −2 −2.5

A1,7,9 y7, y9 3.5 −1.2 −2.3

A1,3,6 y3, y6 5.0 −2.5 −2.5

Table 3.1: Coefficients Axyy, Ayxy, Ayyx used in coupling of x and y variables in full model
(3.2).

Coefficients y variables B1 B2 B3

B1,2,3 y1, y2, y3 2 2.5 −4.5

B1,2,4 y1, y2, y4 4.2426 2.8284 −7.071

B1,2,9 y1, y2, y9 −1.2247 2.9393 −1.7146

B1,2,10 y1, y2, y10 2.1166 2.9103 −5.0269

B1,3,4 y1, y3, y4 1.7321 2.5981 −4.3302

B1,5,6 y1, y5, y6 3.8013 4.9193 −8.7206

B1,9,10 y1, y9, y10 3.9598 −2.2627 −1.6971

B2,3,4 y2, y3, y4 −2 4 −2

B2,5,6 y2, y5, y6 −4.5 2.1 2.4

B2,9,10 y2, y9, y10 1.7393 1.4230 −3.1623

B3,7,8 y3, y7, y8 1.1608 2.3217 −3.4825

B4,7,8 y4, y7, y8 −1.7321 −2.0785 3.8106

B5,6,7 y5, y6, y7 2.9566 2.0912 −5.0478

B5,6,8 y5, y6, y8 −2.6192 −1.4966 4.1158

B5,7,8 y5, y7, y8 4.6476 2.7111 −7.3587

B5,6,9 y5, y6, y9 −3 −1.8 4.8

B5,6,10 y5, y6, y10 1.8554 2.2677 −4.1231

B6,7,8 y6, y7, y8 4.6669 2.9698 −7.6367

B8,9,10 y8, y9, y10 3.923 2.3974 −6.3204

Table 3.2: Coefficients Byyy used in coupling of y variables in full model (3.2).
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Figure 3.4: Marginal density of slow variables x and E in the full model with ε = 0.25, 0.1
and in the reduced model.

derive the reduced model by imposing that the Fokker-Planck operator annihilates the joint

stationary density.

In section 3.5, we derive the reduced model in an alternative way using the stationary

distribution of y variables in fast subsystem, given by (3.30). The fast subsystem (3.4) is

deterministic, hence, we assume y variables to be uniformly distributed over the sphere of

radius as initial energy of the system. The alternative method provides the same reduced

model as derived using Fokker-Planck equation in section 3.4.

The reduced model consisting of variables x and E is given by (3.28) and the analytical

expressions for parameters of reduced model is dependent on the fourth-order two-point

moments of y variables, denoted as Q(j, k, j′, k′) which on other hand, is dependent on

initial energy of the fast subsystem. Since the radius of the sphere changes stochastically

in full model, we would need to simulate the fast subsystem with all possible values of

E as initial energy and compute Q(j, k, j′, k′) which is clearly not feasible. Fortunately,

the fast subsystem (3.4) is invariant under the rescaling given by (3.20) which factorizes

Q(j, k, j′, k′) into function of E and fourth-order two-point moment of fast subsystem with
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Figure 3.5: kurtosis (3.47) of slow variables x and E in full model with ε = 0.25, 0.1 and
in the reduced model. Note: variable x is only weakly non-Gaussian; the vertical scale for
the kurtosis of x is rather small; errors between the full and reduced model for the kurtosis
of x are approximately 1%.

fixed energy n, separately. The consequence of rescaling leads to simulation of the fast

subsystem only once with fixed initial energy E = n (n is number of y variables) and hence,

simplification of parameters in reduced model.

In section 3.6, fixing the coupling, drift and diffusion coefficients in full model (3.6), we

verify numerically the convergence of full model to reduced model as ε→ 0. The statistics

that we have used to verify the numerical convergence is auto-correlation, density and

kurtosis of x and E variables. The stochastic mode reduction technique developed in this

chapter works on certain assumptions on the full model which are as follows

• The number of fast variables needs to be large to ensure the ergodicity of the fast

subsystem.

• The fast subsystem needs to be chaotic to ensure the decay of the lagged fourth two-

point moment in finite time, i.e. fourth-order two-point moment used to compute

Q(j,k,j’,k’) in (3.15) should decay in finite time else it will be not feasible to compute
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accurate value of Q(j,k,j’,k’).

• Coupling coefficients of the fast subsystem needs to be energy conservative (second

equation in (3.3)) to ensure that the fast subsystem conserves energy.

• Energy E given by (3.5) is required to be slow variable.
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CHAPTER 4

Parametric Estimation for Fast-oscillating Potential Model under Indirect

Observability

In this chapter, we study the adequate data subsampling for consistent parametric estima-

tion of unobservable stochastic differential equations (SDEs) under Indirect Observability,

similar to the study done for Lorenz-96 model in chapter 2. Unlike non-linear reduced model

(2.29) in chapter 2, here, we consider the multi-scale model having linear reduced model. In

two recent papers [11, 10], authors have provided a rigorous foundation for the parameters

estimation of linear stochastic model under Indirect Observability. The authors in [11, 10]

considered the asymptotic behavior of the approximate Maximum Likelihood estimators for

the unknown parameters of the stochastic model, using the observations of multi-scale ap-

proximating process as scale separation parameter ε→ 0. In particular, they demonstrated

that for consistent estimation of the diffusion parameters the underlying dataset has to be

subsampled with time-steps constrained by specific subsampling criteria, depending on the
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value of the multi-scale parameter ε. Otherwise, if these subsampling criteria are violated,

the estimated underlying diffusion model will not reproduce the statistical features of the

data and the corresponding parameter estimators will be biased even in the limit ε→ 0.

We extend the results in [11, 10] on the model with the fast-oscillating potential to

illustrate the subsampling problem. First, the numerical investigation of the subsampling

criteria derived in [11, 10] in the context of homogenized models is performed.

Another important aspect discussed in the chapter is estimation of an effective model

from a dataset generated with a fixed but unknown value of the scale separation parameter

ε. This issue is important in practical situations, since there has been a considerable effort

to efficiently parametrize a stochastic model for the large-scale structures from numerical

simulations of various geophysical models. In [9], authors introduced a regression approach

for constructing bias-corrected estimators from a single dataset generated by a multi-scale

approximate dynamics with a fixed, but unknown value of the parameter ε. We extend the

regression approach introduced in [9] to the multi-scale fast-oscillating potential model and

verify it numerically.

4.1 Multi-scale Model with Fast-oscillating Potential

We consider the multi-scale model given by

dxt = −gV ′(xt)dt−
1

ε
p′
(xt
ε

)
dt+

√
2s dBt, (4.1)

where Bt is the Brownian motion, the large-scale potential is V (x) = 1
2x

2, and the fast-

oscillating part of the potential is p(x) = cos(x). The resulting SDE becomes

dxt = −gxtdt+
1

ε
sin
(xt
ε

)
dt+

√
2sdBt. (4.2)

The model in (4.2) has been considered previously in [68, 67] in which the authors

derived the reduced model for (4.2) and tested the subsampling issue for estimating the
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parameters of the reduced model when the data is generated by the model (4.2). In this

chapter, we perform a more detailed numerical study of parametric estimation under Indi-

rect Observability and state the explicit conditions for the consistency of the estimators.

Second, we describe the construction of new bias-corrected estimators from datasets gener-

ated by the multi-scale model (4.2) with an unknown fixed parameter ε.

The invariant density of the model (4.2) can be computed explicitly using the Fokker-

Planck equation and is equal to

ρinv(x) = Ce−v(x), where v(x) =
g

2s
x2 +

1

s
cos
(x
ε

)
, (4.3)

and C is the normalization constant. Therefore, the invariant density has a fast-oscillating

component, but converges to the Gaussian density weakly in the sense of test-functions.

4.1.1 Homogenization for the potential model

The homogenization for parabolic equations has been shown in [69] and the references

therein. As ε→ 0, the process xt in (4.2) converges to the Ornstein-Uhlenbeck process

dXt = −γXt + σdWt, (4.4)

with parameters γ and σ given by

γ = α
L2

ZZ̃
, σ =

√
2s
L2

ZZ̃
, (4.5)

where L is the period of function p(x) and hence equal to 2π and

Z =

ˆ L

0
ecos(y)/s dy, Z̃ =

ˆ L

0
e− cos(y)/s dy.

The convergence of xt → Xt as ε→ 0 is a weak convergence of generators, as proved in [69]

using homogenization technique for parabolic equations. Note that Z = Z̃ in the particular

case of model (4.2) due to the symmetry of the full model.
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In later sections, we fix the damping and diffusion coefficients of the full model (4.2) as

g = 0.5, s = 1, (4.6)

and thus obtain the corresponding homogenized coefficients using (4.5) as

γ = 0.3119, σ = 1.117. (4.7)

4.2 Parameter Estimation for the Model with the Fast-oscillating

Potential

The solution of Xt in the OU SDE (4.4) is well known having the covariances

r0 = E[X2
t ] =

σ2

2γ
, r1 = E

[
XtXt+∆

]
= r0 exp(−γ∆), (4.8)

where E[·] denotes the expected value with respect to the invariant distribution. There-

fore, the parameters γ and σ in the OU SDE (4.4) can be expressed through the lagged

covariances using the relationships in (4.8), as

γ = g(r0, r1) = − 1

∆
log

(
r1

r0

)
, σ2 = h(r0, r1) = −2r0

∆
log

(
r1

r0

)
= 2r0γ. (4.9)

The main goal is to estimate the parameters γ and σ efficiently in reduced model (4.4) using

the observations of xt in full model as ε→ 0. Assume to be given the discrete observations

of xt in full model (4.2) for fixed ε > 0, subsampled at time ∆ > 0, {xt, t = 0 : ∆ : T}

where T is the total time of the discrete observations and N = T/∆+1 is the total number

of observations. We define the estimators γ̂ε, σ̂2
ε in reduced model (4.4) under Indirect

Observability as

γ̂ε = γ̂ε(N,∆, ε) = g (r̂ε0, r̂
ε
1) , σ̂2

ε = σ̂2
ε (N,∆, ε) = h (r̂ε0, r̂

ε
1) , (4.10)
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where the covariance estimators are the standard empirical covariance estimators r̂εk given

by

r̂εk = r̂εk(N,∆, ε) =
1

N

∑
t=0:∆:T

xtxt+∆, for k = 0, 1.

Estimators in (4.10) are asymptotically equivalent to the approximate Maximum Likelihood

estimators for the OU SDE (4.4).

The main objective is to determine the necessary and sufficient conditions for the con-

sistency of parametric estimation under Indirect Observability, i.e. conditions to ensure

that estimators
(
γ̂ε, σ̂

2
ε

)
→ (γ, σ2) as ε → 0 when the estimators in (4.10) are computed

using the observations of xt in full model (4.2)..

4.2.1 Subsampling strategy

In [10] authors considered the full model as Smoothed Ornstein-Uhlenbeck process having

reduced model as OU model and derived the necessary and sufficient conditions for the con-

sistency of the approximate Maximum Likelihood estimators for parameters in OU model.

In [9], the similar procedure of finding the necessary and sufficient conditions for the con-

sistency of the approximate Maximum Likelihood estimators for parameters in OU model

is considered but for the full model as Additive Triad model. In [10, 9], the procedure of

deriving necessary and sufficient conditions for consistency of approximate Maximum Like-

lihood estimators under Indirect Observability is based on the comparison of correlation of

slow variables in full and reduced model. In this subsection, we show numerically that the

error between correlation of xt in potential model (4.2) and Xt in reduced model (4.4) is

same as the error shown for Triad model in [9]. Therefore, the conditions of consistency of

approximate Maximum Likelihood estimators is same as derived for Triad model.

The bias of the estimator γ̂ε in (4.10) compared to true value γ in (4.5) is dependent on

the difference between correlation of xt in full model (4.2) and correlation of Xt in (4.4) as
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ε→ 0. Fix the constant parameters g, s in full model same as specified in (4.6). Figure 4.1

shows the difference between the correlation function computed for the process xt in (4.2)

and the correlation function for the Xt in Ornstein-Uhlenbeck process with parameters (4.7)

as ε→ 0 for two different time lags ∆ = 0.2 (left part) and ∆ = 0.5 (right part). Figure 4.1

indicates that the correlation function for the process xt in (4.2) converges with the same

speed as the correlation function of the slow variable in the triad model in [9]. Therefore,

the errors between the correlation functions of xt in full model and Xt in reduced model

follows the ε2 power law decay as ε→ 0.
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Figure 4.1: Log-log plot for the decay of the error between correlation function |CFxt(∆)−
CFXt(∆)| for ε = 0.3, 0.25, 0.2, 0.15, 0.1 computed at a particular lag ∆ = 0.2 (left part)
and ∆ = 0.5 (right part) where xt is the process (4.2) and Xt is the Ornstein-Uhlenbeck
process with parameters (4.7).

Parameter estimate σ̂2
ε also depends on the estimator of second-moment r̂ε0 which also

needs to be analyzed as ε → 0. We show explicitly the convergence of the variance, i.e.

V ar{xt} → V ar{Xt} as ε → 0 in Appendix A. Using the proof sketched in the appendix
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A, one can derive that an upper bound for the speed of convergence of V ar{xt} as

|V ar{xt} − V ar{Xt}| ≤ Cε2.

Thus, similar to the Triad model in [9], the convergence of the estimators γ̂ε and σ̂2
ε in (4.10)

computed using the data of xt in (4.2) is determined by the behavior of the correlation

function r̂ε1/r̂
ε
0. Therefore, we conjecture using the results of Triad model in [9] that the

necessary conditions for consistency of the subsampling strategy for the potential model

(4.2) should be given by

∆ = ε2α, α ∈ (0, 1), N = ε−2β, α < β. (4.11)

and the bias for the parametric estimation under Indirect Observability is proportional to

γε2/∆, i.e.

γ̂ε − γ ∼ C
γε2

∆
for

Nε4

∆
>> 1. (4.12)

Thus, the bias γ̂ε−γ should be constant with respect to ε if γ̂ε is computed by subsampling

the observations of xt in the full model (4.2) with ∆ = ε2.

To support the above conjecture, we compare several subsampling strategies similar to

the ones done on Triad model in [9] numerically. In figure 4.2, we consider the numerical

simulations of xt in full model (4.2) subsampled at various time-steps ∆, the total number of

sample points N is much larger than ∆/ε4 for all the simulations. For the largest considered

∆ = 0.3, the number of sample points is N = 2 × 106, thus, Nε4/∆ ≈ 600 � 1 for the

smallest value of ε = 0.1 considered in the simulations.

Left part of figure 4.2 displays the behavior of the parameter estimator γ̂ε in (4.10)

computed using the discrete observations of xt in full model (4.2) for four distinct subsam-

pling strategies ∆ = ε, ∆ = ε2, ∆ = 4ε2, and ∆ = ε3. Right part of figure 4.2 displays

the subsampling strategies with ∆ = ε2, ε1.75, ε1.5, ε1.25, ε. Both left and right parts of
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figure 4.2 show the identical behavior of the estimator γ̂ε computed using the data of the

fast-oscillating potential (4.2) as the corresponding behavior of γ̂ε using the data of Triad

model in [9]. As conjectured, the error in the estimation |γ̂ε(∆ = ε2)− γ| remains constant

to ε as ε → 0 and becomes four times smaller if ∆ = 4ε2. Similar to the triad case, es-

timation errors decay to zero for subsampling strategies ∆ = εp with p < 2 and the bias

grows unboundedly for subsampling with ∆ = ε3. In particular, the relative errors for the

scaling ∆ = ε follow a linear relationship and the intercept of this line computed by the

linear regression is approximately 0.57 which corresponds to the estimated 0.57% relative

error as ε→ 0.

Therefore, calculations presented in this section confirm that the behavior of the bias

for the estimators γ̂ε computed from the data of xt in the model with the fast-oscillating

potential (4.2) is as given by (4.12), similar to the behavior of the bias for the estimators

in Triad model in [9].
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Figure 4.2: Relative errors (percent) in the estimator γ̂ computed from the data of xt
generated by the model with the fast-oscillating potential (4.2) subsampled with several
different strategies. Left part: subsampling with ∆ = ε3, ∆ = ε2, ∆ = 4ε2, ∆ = ε. Right
part: subsampling with ∆ = ε2, ∆ = ε1.75, ∆ = ε1.5, ∆ = ε1.25, ∆ = ε.
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4.2.2 Analysis of the data generated by the model with the fast-oscillating

potential for fixed but unknown ε

In the previous section, we used datasets of xt subsampled at various time-steps ∆ in

the potential model (4.2) with known values of ε to validate numerically the subsampling

strategy (4.11) which guarantees the convergence of bias to zero as ε→ 0. In this subsection,

we use numerical data generated by the full model (4.2) with a fixed particular value of

ε to demonstrate how to model a specific dataset when the scale parameter ε is fixed but

unknown. The goal is to determine from the data of xt (with fixed but unknown ε) alone

the correct subsampling regime corresponding to consistent estimation of the parameters

γ and σ. To this end, we analyze the behavior of γ̂ε(∆) computed using the data of xt

subsampled at several distinct values of ∆ in the full model with fixed ε.

In [9], authors develop an approach for constructing the bias-corrected estimators when

the data are generated from a trajectory of slow variables in full model with a fixed, but

unknown value of the multi-scale parameter ε. Authors show that the curve γ̂ε(∆) vs ∆

clearly identifies the correct subsampling regime. Moreover, the bias-corrected estimators

can then be easily computed by linear regression of γ̂ε(∆) ∆ versus ∆. We apply the similar

approach shown in [9] to our full model (4.2) and analyze the curve γ̂ε(∆) vs ∆ for fixed

value of ε in potential model.

We use the discrete observations generated by the xt in the fast-oscillating potential

model (4.2) with ε = 0.15 to investigate the behavior of the estimator γ̂ε(∆) as a function

of ∆. We assume that the value of ε is fixed but unknown and apply regression technique

specified in [9] to recover the correct value of the parameters. The left part of figure 4.3

illustrates the behavior of the estimator γ̂ε(∆) as a function of ∆. The behavior of γ̂ε(∆) vs

∆ exhibits a hyperbolic profile consistent with the estimate for the bias in (4.12). The “true”

homogenized value of the damping parameter is γ = 0.3119 and values of the estimator
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γ̂ε(∆) for ∆ ∈ [0.002, . . . , 0.22] are in the range [0.49, . . . , 0.326]. This is the consequence of

the fact that the correlation function for xt in the potential model (4.2) decays faster than

the homogenized correlation function e−γτ for small lags. Note that the critical scaling

threshold for ∆ is in this case ε2 = 0.0225, but we point out that the estimator γ̂ε is biased

for any value of ∆, including ∆ > 0.0225 when computed using observations of xt in full

model for ε = 0.15. The comparison of γ̂ε(∆) versus ∆ for a given dataset of xt in full model

(4.2) for a fixed but unknown value of ε does not provide direct quantitative information

about the unknown value of ε.

Similar to Triad model in [9], we consider the graph of the function γ̂ε(∆)∆ versus ∆

to deduce the value of the scale parameter ε. Right part of figure 4.3 shows the behavior

of γ̂ε(∆)∆ vs ∆ using the data set of xt in full model (4.2) for fixed ε = 0.15. The graph

γ̂ε(∆)∆ vs ∆ becomes approximately a straight line between ∆ = 0.02 and ∆ = 0.04

providing an approximate indication for the range of the multi-scale effects in the data

(ε2 = 0.0225 in this case). Therefore, we can also use the regression estimator to estimate

the effective damping parameter from the slope of the line γ̂ε(∆)∆ vs ∆ where γ̂ε(∆) is

computed from the dataset generated by the potential model (4.2) with ε = 0.15. It is

clearly visible from the graph of γ̂ε(∆)∆ vs ∆ that the first two points for ∆ = 0.002, 0.01

do not follow the linear relationship and should be neglected in the regression estimator.

This also can be quantified numerically by computing the goodness of fit for the linear

regression of the graph γ̂ε(∆)∆ vs ∆ on different intervals for the subsampling parameter

∆. Thus, the regression estimator computed using the data γ̂ε(∆) with 0.02 < ∆ ≤ 0.22

becomes

γ̂regression(ε = 0.15) ≈ 0.3139

which is in a very good agreement (only 0.6% relative error) with the analytical prediction
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for the homogenized coefficient γ = 0.3119. We would like to point out that if a straight-

forward estimation is used, the estimator γ̂ε(∆ = 0.22) = 0.326 which amounts to the 4.5%

relative error. Therefore, the regression estimator significantly outperforms the straightfor-

ward estimation in the Indirect Observability context. Moreover, the regression estimator

computed on the interval 0.02 < ∆ ≤ 0.22 is much more accurate than the standard esti-

mator γ̂ε(∆ = 0.22), but the regression estimator is computed using the same number of

observational point, N , as the standard estimator γ̂ε(∆ = 0.22).
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Figure 4.3: Left part: estimator γ̂ε(∆) for different values of ∆ computed from the data
generated by the SDE with the fast-oscillating potential (4.2) with ε = 0.15. Solid line:
γ̂ε(∆), dashed line: analytical asymptotic value in (4.5) computed from (4.7). Right part:
behavior of γ̂ε(∆)∆ with γ̂ε computed for different values of ∆ from the data generated by
the SDE with the fast-oscillating potential (4.2) with ε = 0.15. Solid line: γ̂ε(∆)∆, Dashed
line - straight line with the slope γ = 0.3119 given by the analytical formula in (4.5).

4.3 Conclusion

In this chapter we studied the parametric estimation of an effective SDE for Xt using the

subsampled observations of xt in fast-oscillating potential model (4.2). In section 4.1.1,
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we refer to [68] and show that the xt process in full model (4.2) converges weakly to the

Ornstein-Uhlenbeck process (4.4) as scale separation parameter ε→ 0. The homogenization

procedure also provides the explicit values of parameters γ and σ as given in (4.5). The

main goal is to test the estimation of parameters γ and σ under Indirect Observability, i.e.

estimators computed using the observations of xt in the full model (4.2). Therefore, the

homogenized coefficients γ and σ in (4.5) are used to test the estimators under Indirect

Observability.

We consider the estimators for the OU reduced model (4.4) as γ̂ε and σ̂ε in (4.10) under

Indirect Observability which are asymptotically equivalent to the approximate Maximum

Likelihood estimators for the OU SDE. The main objective is to determine the necessary

and sufficient conditions for the consistency of parametric estimation of γ and σ under

Indirect Observability, i.e. conditions to ensure that the estimators (γ̂ε, σ̂
2
ε ) → (γ, σ2) as

ε→ 0 when the estimators in (4.10) are computed using the observations of xt in full model

(4.2).

In [9], authors derived the necessary and sufficient conditions for the parametric estima-

tion of OU SDE under Indirect Observability using the approximate data of Triad model.

We extend the results in [9] to the fast-oscillating potential model (4.2) and analyze them

numerically. In section 4.2.1 we show that similar to the Triad model in [9], the convergence

of the estimators γ̂ε and σ̂2
ε in (4.10) computed using the data of xt in (4.2) is determined by

the behavior of the correlation function r̂ε1/r̂ε0. Therefore, we conjecture using the results of

Triad model in [9] that the necessary conditions for consistency of the subsampling strategy

for the potential model (4.2) should be

∆ = ε2α, α ∈ (0, 1), N = ε−2β, α < β. (4.13)

and the bias for the parametric estimation under Indirect Observability is proportional to
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γε2/∆, i.e.

γ̂ε − γ ∼ C
γε2

∆
for

Nε4

∆
>> 1. (4.14)

We verify the above conjecture numerically in section 4.2.1. Thus, the bias γ̂ε−γ is constant

with respect to ε if γ̂ε is computed by subsampling the observations of xt in the full model

(4.2) with ∆ = ε2.

The next important practical question discussed in this chapter is to construct the bias-

corrected estimators computed using the observations of xt in full model (4.2) for a fixed

but unknown value of the multi-scale parameter ε. The goal is to determine from the data

of xt (with a fixed but unknown ε) alone the correct subsampling regime ∆ which can lead

to consistency of estimators γ̂ε and σ̂ε given by (4.10). To this end, we analyze the behavior

of γ̂ε(∆) computed using the data of xt subsampled at several distinct values of ∆ in the full

model with fixed ε. In section 4.2.2, we extend the results of Triad model in [9] and show

numerically that the curve γ̂ε(∆) vs ∆ identifies the correct subsampling regime. Moreover,

the bias-corrected estimators can then be easily computed by linear regression of γ̂ε(∆) ∆

versus ∆.
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Computing Variance in the Model with the Fast-oscillating Potential

Consider function f(x) > 0 which is integrable onR and having the property limx→+∞ f(x) =

limx→−∞ f(x) = 0. We also assume that f ′(x) and f ′′(x) exist, are continuous and inte-

grable on R. Also, consider a bounded continuous function g(v) > 0 on R.

The goal is to compute the behavior of the fast-oscillating integral

J(ε) =

∞̂

−∞

f(x)g
(

cos
(x
ε

))
dx,

where the small parameter ε > 0 tends to 0.

Let us consider a partition Ik = [ 2πkε, 2π(k+ 1)ε ], k = −∞, . . . ,∞. Then the integral

J(ε) is equal to the infinite sum of integrals over elementary intervals Ik, i.e. J(ε) =∑
k Jk(ε) where

Jk(ε) =

ˆ
Ik

f(x)g
(

cos
(x
ε

))
dx.

Since the function f(x) is slowly varying, we use the Taylor expansion to obtain a quadratic
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approximation for f(x) on each elementary interval Ik. Then an approximation for Jk(ε)

can be computed as

Jk(ε) =

ˆ
Ik

[ f(2πkε) + (x− 2πkε)f ′(2πkε) +
1

2
(x− 2πkε)2f ′′(zk) ]g

(
cos
(x
ε

))
dx. (A.1)

with zk ∈ Ik.

Next, we can integrate explicitly the fast-oscillating function over each elementary in-

terval Ik in (A.1). In particular, if we define the following constants

ˆ
Ik

g
(

cos
(x
ε

))
dx = ε

ˆ 2π

0
g (cos(y)) dy = εZ0,

ˆ
Ik

(x− 2πkε)g
(

cos
(x
ε

))
dx = ε2

ˆ 2π

0
yg (cos(y)) dy = ε2Z1,

ˆ
Ik

(x− 2πkε)2g
(

cos
(x
ε

))
dx = ε3

ˆ 2π

0
y2g (cos(y)) dy = ε3Z2,

then the expression (A.1) for Jk(ε) becomes

Jk(ε) = Z0εf(2πkε) + Z1ε
2f ′(2πkε) +

1

2
Z2ε

3f ′′(zk). (A.2)

Substituting (A.2) into the summation for J(ε) we obtain an approximate expression for

J(ε)

2πJ(ε) = Z0

∑
k

f(2πkε)2πε+ εZ1

∑
k

f ′(2πkε)2πε+
ε2

2
Z2

∑
k

f ′′(zk)2πε,

where zk ∈ Ik and we also multiplied both sides by 2π. The final step is to treat the infinite

summations in the above expression as Riemann sums for the corresponding integrals and

obtain the approximation

2πJ(ε) = Z0

ˆ
R
f(x) dx+ εZ1

ˆ
R
f ′(x) dx+O(ε2)

where O(ε2) terms arise due to converting the Riemann sum into the integral and, also, from

estimating the remainder term with the second derivative. Since
´
R f
′(x) dx = f(+∞) −
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f(−∞) = 0, we obtain the second-order expansion

2πJ(ε) = Z0

ˆ
R
f(x) dx+O(ε2). (A.3)

The second-order expansion (A.3) for the integral J(ε) can be used to both, prove the

convergence of the variance for the process xt in the model (4.2) to the variance of the

Ornstein-Uhlenbeck process Xt with parameters in (4.5) and, also, to estimate the speed

of convergence. Clearly, since the linear term in ε is not present in (A.3), the speed of

convergence is at least as ε2.

128



Bibliography

[1] R. V. Abramov. Approximate linear response for slow variables of dynamics with
explicit time-scale seperation. Journal of Computational Physics, 229:7739–7746, 2010.

[2] R. V. Abramov. A simple closure approximation for slow dynamics of a multi-scale
system: non-linear and multiplicative coupling. Multi-scale Modelling and Simulation
(To appear), 2012.

[3] R. V. Abramov. A simple linear response closure approximation for slow dynamics
of a multi-scale system with linear coupling. Multi-scale Model Simulation, 10:28–47,
2012.

[4] R. V. Abramov and A. J. Majda. Blended response algorithms for linear fluctuation-
dissipation for complex non-linear dynamical systems. Nonlinearity, 20:2793–2821,
2007.

[5] R. V. Abramov and A. J. Majda. New approximations and tests of linear fluctuation-
response for chaotic non-linear forced-dissipative dynamical systems. Journal of Non-
linear Science, 18:303–341, 2008.

[6] U. Achatz and G. Branstator. A two-layer model with empirical linear corrections
and reduced order for studies of internal climate variability. Journal of Atmospheric
Sciences., 56:3140–3160, 1999.

[7] T. Alperovich and A. Sopasakis. Stochastic description of traffic flow. Journal of
Statistical Physics, 133(6):1083–1105, 2008.

[8] L. Arnold, P. Imkeller, and Y. Wu. Reduction of deterministic coupled atmosphere-
ocean models to stochastic ocean models: a numerical case study of the Lorenz-Maas
system. Dynamical Systems, 18(4):295–350, 2003.

129



BIBLIOGRAPHY

[9] R. Azencott, A. Beri, A. Jain, and I. Timofeyev. Subsampling and parametric estima-
tion for multi-scale dynamics. Communications in Mathematical Sciences (To appear),
2012.

[10] R. Azencott, A. Beri, and I. Timofeyev. Adaptive subsampling for parametric estima-
tion of Gaussian diffusions. Journal of Statistical Physics, 139(6):1066–1089, 2010.

[11] R. Azencott, A. Beri, and I. Timofeyev. Parametric estimation of stationary stochastic
processes under indirect observability. Journal of Statistical Physics, 144(1):150–170,
2011.

[12] J. Berner. Linking non-linearity and non-Gaussianity of planetary wave behavior by
the Fokker-Planck equation. Journal of the Atmospheric Sciences, 62:2098–2117, 2005.

[13] G. Branstator and S. E. Haupt. An empirical model of barotropic atmospheric dy-
namics and its response to tropical forcing. Journal of Climate, 11:2645–2667, 1995.

[14] P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods. Springer Series
in Statistics, New York, second edition, 1991.

[15] R. Buizza, M. Miller, and T. Palmer. Stochastic representation of model uncertainty
in the ECMWF ensemble prediction system. Quarterly Journal of the Royal Metereo-
logical Society, 125:2887–2908, 1999.

[16] A. Chertock, A. Kurganov, and A. Polizzi. Multi-class traffic flow model with lookahead
dynamics (in preparation).

[17] A. Chertock, A. Kurganov, A. Polizzi, and I. Timofeyev. Pedestrian flow models with
slowdown interactions. Mathematical Models and Methods in Applied Sciences (To
appear).

[18] A. J. Chorin, O. H. Hald, and R. Kupferman. Optimal prediction and the Mori-
Zwanzig representation of irreversible processes. Proceedings of the National Academy
of Sciences, 97:2968–2973, 2000.

[19] A. J. Chorin, O. H. Hald, and R. Kupferman. Optimal prediction with memory. Journal
of Physica D, 166:239–257, 2002.

[20] A. J. Chorin, A. P. Kast, and R. Kupferman. Optimal prediction of under-resolved
dynamics. Proceedings of the National Academy of Sciences., 95:4094–4098, 1998.

[21] A. J. Chorin, A. P. Kast, and R. Kupferman. Unresolved computation and optimal
prediction. Communications on Pure and Applied Mathematics, 52:1231–1254, 1999.

[22] A. J. Chorin, A. P. Kast, and R. Kupferman. Unresolved computation and optimal
prediction. Journal of Physica D, 24(2):99–112, 1999.

130



BIBLIOGRAPHY

[23] I. Chueshov. Invariant manifolds and non-linear master-slave synchronization in cou-
pled systems. Applicable Analysis, 86:269–286, 2006.

[24] D. Crommelin and E. Vanden-Eijnden. Sub-grid scale parameterization with condi-
tional Markov chains. Journal of Atmospheric Sciences, 65:2661–2675, 2008.

[25] J. Culina, S. Kravtsov, and A. H. Monahan. Stochastic parameterization schemes for
use in realistic climate models. Journal of Atmospheric Sciences, 68:284–299, 2011.

[26] T. Del-Sole. A fundamental limitation of Markov models. Journal of the Atmospheric
Sciences, 57:2158–2168, 2000.

[27] T. Del-Sole and B. F. Farrel. Quasi-linear equilibration of a thermally maintained,
stochastically excited jet in a quasigeostrophic model. Journal of Atmospheric Sciences,
53:1781–1797, 1996.

[28] P. Deuflhard and C. Schütte. Molecular conformation dynamics and computational
drug desgin. In Applied mathematics entering the 21st century: invited talks from the
ICIAM 2003 Congress, page 91. Society for Industrial Mathematics, 2004.

[29] S. I. Dolaptchiev, U. Achatz, and I. Timofeyev. Stochastic closure for local averages
in the finite-difference discretization of the forced Burgers equation. Theoretical and
Computational Fluid Dynamics (To appear), 2012.

[30] S. I. Dolaptchiev, U. Achatz, and I. Timofeyev. Subgrid-scale closure for the inviscid
Burgers-Hopf equation. Communications in Mathematical Sciences (To appear), 2012.

[31] J. Dorrestijn, D. T. Crommelin, A.P. Siebesma, and H.J.J. Jonker. Stochastic param-
eterization of shallow cumulus convection estimated from high-resolution model data.
Theoretical and Computational Fluid Dynamics (To appear), 2012.

[32] N. Dundon and A. Sopasakis. Stochastic modeling and simulation of multi-lane traffic,
pages 661–689. Transportation and Traffic Theory (Elsevier), New York, 2007.

[33] J. Egger. Master equations for climate parameter sets. Climate Dynamics, 18:169–177,
2001.

[34] J. Egger and K.-P. Hoinka. Covariance analysis of the global atmospheric axial angular
momentum budget. Monthly Weather Review, AMS Journal, 130:1063–1070, 2002.

[35] R.S. Ellis and M.A. Pinsky. The first and second fluid approximation to the linearized
Boltzmann equation. Journal of Pure and Applied Mathematics, 54(9):125–156, 1975.

[36] I. Fatkullin and E. Vanden-Eijnden. A computational strategy for multi-scale systems
with applications to Lorenz-96 model. Journal of Computational Physics, 200:605–638,
2004.

131



BIBLIOGRAPHY

[37] C. Franzke, A. Majda, and E. Vanden-Eijnden. Low-order stochastic model reduction
for a realistic barotropic model climate. Journal of Atmospheric Sciences, 62:1722–
1745, 2005.

[38] C. Franzke and A. J. Majda. Low-order stochastic mode reduction for a prototype
atmospheric GCM. Journal of Atmospheric Sciences, 63:457–479, 2006.

[39] D. Givon, R. Kupferman, and A. Stuart. Extracting macroscopic dynamics: model
problems and algorithms. Nonlinearity, 17:R55–R127, 2004.

[40] K. Hasselmann. Stochastic climate models, Part I: Theory. Tellus, 28:473–485, 1976.

[41] C. Hauck, Y. Sun, and I. Timofeyev. On cellular automata models of traffic flow with
look-ahead potential. Stochastics and Dynamics (submitted).

[42] I. Horenko, E. Dittmer, A. Fischer, and C. Schutte. Automated model reduction for
complex systems exhibiting metastability. SIAM Multi-scale Modeling and Simulation,
5(3):802–827, 2007.

[43] I. Horenko, C. Hartmann, C. Schutte, and F. Noe. Data-based parameter estimation
of generalized multidimensional Langevin processes. Physical Review E, 76(1):016706,
2007.

[44] I. Horenko and C. Schutte. Likelihood-based estimation of multidimensional Langevin
models and its application to biomolecular dynamics. Multi-scale Modeling Simulation,
7(2):731–773, 2008.

[45] G. Hummer. Position-dependent diffusion coefficients and free energies from bayesian
analysis of equilibrium and replica molecular dynamics simulations. New Journal of
Physics, 7(1):34, 2005.

[46] E. L. Kang and J. Harlim. Filtering non-linear spatio-temporal chaos with autoregres-
sive linear stochastic models. Journal of Physica D, 241(12):1099–1113, 2012.

[47] M. Katsoulakis, A. Majda, and A. Sopasakis. Multi-scale couplings in prototype hybrid
deterministic/stochastic systems: Part 1, deterministic closures. Communications in
Mathematical Sciences, 2:255–294, 2004.

[48] M. Katsoulakis, A. Majda, and A. Sopasakis. Multi-scale couplings in prototype hy-
brid deterministic/stochastic systems: Part 2, stochastic closures. Communications of
Mathematical Sciences, 3:453–478, 2005.

[49] M. Katsoulakis, A. Majda, and A. Sopasakis. Intermittency, metastability and coarse
graining for coupled deterministic-stochastic lattice systems. Nonlinearity, 19(5):1021–
1047, 2006.

[50] R. Z. Khasminsky. A limit theorem for the solutions of differential equations with
random right-hand sides. Theory Probability and its Applications, 11:390–406, 1966.

132



BIBLIOGRAPHY

[51] R. Z. Khasminsky. On stochastic processes defined differential equations with a small
parameter. Theory of Probability and its Applications, 11:211–228, 1966.

[52] T. G. Kurtz. A limit theorem for perturbed operator semigroups with applications to
random evolutions. Journal of Functional Analysis, 12:55–67, 1973.

[53] T. G. Kurtz. Semigroups of conditioned shifts and approximations of Markov processes.
Annals of Probability, 3:618–642, 1975.

[54] G. Lebeau and E. Zuazua. Null controllability of a system of linear thermo-elasticity.
Archive for Rational Mechanics and Analysis, 141:297–329, 1998.

[55] E. N. Lorenz. Predictability: A problem partly solved, pages 40–58. Cambridge Uni-
versity Press, New York, 2006.

[56] E. N. Lorenz and K. Emanuel. Optimal sites for supplementary weather observations.
Journal of Atmospheric Science, 55:399–414, 1998.

[57] A. Majda, R. Abramov, and M. Grote. Information Theory and Stochastic for Multi-
scale Nonlinear Systems (CRM Monograph Series), volume 25. American Mathemati-
cal Society, New York, 2005.

[58] A. Majda, I. Timofeyev, and E. Vanden-Eijnden. Models for stochastic climate pre-
diction. Proceedings of the National Academy of Sciences., 96:14687–14691, 1999.

[59] A. Majda, I. Timofeyev, and E. Vanden-Eijnden. A mathematical framework for
stochastic climate models. Communications in Pure and Applied Mathematics, 54:891–
974, 2001.

[60] A. Majda, I. Timofeyev, and E. Vanden-Eijnden. A priori tests of a stochastic mode
reduction strategy. Journal of Physica D, 170:206–252, 2002.

[61] A. Majda, I. Timofeyev, and E. Vanden-Eijnden. Systematic strategies for stochastic
mode reduction in climate. Journal of Atmospheric Sciences, 60:1705–1722, 2003.

[62] A. Majda, I. Timofeyev, and E. Vanden-Eijnden. Stochastic models for selected slow
variables in large deterministic systems. Nonlinearity, 19:769–794, 2006.

[63] K. Nimsaila and I. Timofeyev. Markov chain stochastic parameterizations of essential
variables. SIAM Multi-scale Modeling Simulation, 8(5):2079–2096, 2010.

[64] T. Palmer. A non-linear dynamical perspective on model error: A proposal for non-
local stochastic-dynamic parameterization in weather and climate prediction models.
Meteorological Society, 127:279–304, 2001.

[65] G. Papanicolaou. Introduction to the asymptotic analysis of stochastic equations (Mod-
ern modeling of continuum phenomena), volume 16, pages 109–149. The American
Mathematical Society, 1975.

133



BIBLIOGRAPHY

[66] G. Papanicolaou. Some probabilistic problems and methods in singular perturbations.
Rocky Mountain Journal of Mathematics, 6:653–673, 1976.

[67] A. Papavasiliou, G. A. Pavliotis, and A. M. Stuart. Maximum likelihood drift estima-
tion for multi-scale diffusions. Stochastic Processes and their Applications, 119:3173–
3210, 2009.

[68] G. A. Pavliotis and A. M. Stuart. Parameter estimation for multi-scale diffusions.
Journal of Statistical Physics, 127(4):741–781, 2007.

[69] G. A. Pavliotis and A. M. Stuart. Multi-scale methods: Averaging and homogenization.
Springer, New York, 2008.

[70] P. D. Sardeshmukh and J. A. Whitaker. A linear theory of extratropical synoptic eddy
statistics. Journal of Atmospheric Sciences, 55:237–258, 1998.

[71] C. Schutte, J. Walter, C. Hartmann, and W. Huisinga. An averaging principle for
fast degrees of freedom exhibiting long-term correlations. Multi-scale Modeling and
Simulation, 2(3):501–526, 2004.

[72] C. Schutte, J. Walter, C. Hartmann, and W. Huisinga. An averaging principle for
fast degrees of freedom exhibiting long-term correlations. Multi-scale Modeling and
Simulation., 2(3):501–526, 2004.

[73] A. Sopasakis and M. A. Katsoulakis. Stochastic modeling and simulation of traffic
flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics. SIAM
Journal of Applied Mathematics, 66(3):921–944, 2006.

[74] R. Tsay. Analysis of financial time series. Wiley Series in Probability and Statistics,
USA, 2005.

[75] E. Vanden-Eijnden. Numerical techniques for multi-scale dynamical systems with
stochastic effects. Communications in Mathematical Sciences, 1:385–391, 2003.

[76] V. Volosov. Averaging in systems of ordinary differential equations. Russian Mathe-
matical Surveys, 17:1–126, 1962.

[77] D. S. Wilks. Effects of stochastic parameterizations in the Lorenz-96 system. Quarterly
Journal of the Meteorological Society, 131:389–407, 2005.

134


	Introduction and Motivation
	Indirect Observability 
	Mathematical framework of Indirect Observability

	Outline of Dissertation

	Parameter Estimation of the Lorenz-96 Model 
	Introduction 
	Accelerated Lorenz-96 Model 
	Homogenization for the L96 Model 
	The fast subsystem and it's stationary distribution 
	Derivation of reduced model
	Numerical estimates of true parameters of L96 limiting equation
	Comparison of the full and the reduced model using true parameters 

	Numerical Method
	Parameter Estimation: Approximate Maximum Likelihood Approach
	Necessary conditions for consistency of approximate Maximum Likelihood estimators using the data of reduced model 
	Relation between the approximate Maximum Likelihood estimators and the derivative of the auto-correlation functions of slow variables
	Subsampling issue 
	Numerical comparison of approximate Maximum Likelihood estimator with true parameter under Indirect Observability 
	Optimal subsampling time-step for the approximate Maximum Likelihood estimator

	Parameter Estimation using the Method of Moments 
	Moment estimator as a function of subsampling time-step  under Indirect Observability 
	Moment estimator as a function of scale parameter  under Indirect Observability 
	Comparison between the approximate Maximum Likelihood estimator and the moment estimator using observations of the reduced model 
	Conclusion on comparison of estimators mom and mle

	True Values of Parameters in the Reduced Model as a Function of One-point Moments of the Slow Variables 
	True value new as function of , using observations from full model

	Conclusion

	Stochastic Mode-reduction of Multi-scale Models with Energy as a Hidden Slow Variable 
	Introduction
	Generalized Triad Model 
	Stationary Distribution of the Generalized Triad Model
	Limit of the Full Model as 0 
	Derivation of diffusion coefficients for the reduced model 
	Rescaling the fast subsystem
	Deriving drift using Fokker-Planck equation

	Alternative Derivation of the Reduced Model using Uniform Stationary Measure on the Sphere 
	Stationary distribution of the fast subsystem
	Limit of the full model as 0

	Numerical Simulations 
	Conclusion Remarks

	Parametric Estimation for Fast-oscillating Potential Model under Indirect Observability 
	Multi-scale Model with Fast-oscillating Potential 
	Homogenization for the potential model 

	Parameter Estimation for the Model with the Fast-oscillating Potential 
	Subsampling strategy 
	Analysis of the data generated by the model with the fast-oscillating potential for fixed but unknown  

	Conclusion

	Appendices
	Computing Variance in the Model with the Fast-oscillating Potential 
	Bibliography

