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ABSTRACT

In this dissertation, we are interested in meromorphic maps of a complete Kdhler man-
ifold whose universal covering is biholomorphic to the ball in C"" into complex projective
manifolds. We first give a non-integrated defect for a meromorphic map of the above Kahler
manifold into P™(C) intersecting hypersurfaces in general position and an application of
this non-intetgrated defect to the Gauss map of a complete regular submanifold of C™.

We then focus on the uniqueness problem, i.e, to find how many hypersurfaces are
sufficient to uniquely determine a map which intersects them. The first result provides a
complement to the recent result of Min Ru on the defect relation for meromorphic mappings
from C™ into P"(C) intersecting hypersurfaces in general position and the second provides
a complement to the result of H. Fujimoto on the unicity theorem for meromorphic maps

of a complete Kdhler manifold into P"(C).
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Chapter

Introduction and background

1.1 Preface

Nevanlinna theory is a branch of complex analysis which studies the image of meromorphic
maps between complex manifolds. Foundational results are found in classical complex
analysis. For example the well-known fundamental theorem of algebra states that: for
every complezx polynomial P(z) of degree d and every complex number a, the equation
P(z) = a has d solutions on the complex plane, counting multiplicities. The little Picard
Theorem, viewed as a generalization of the above theorem, states that: If a meromorphic
function f (or equivalently a holomorphic mapping f : C — PY(C) = C U {oo} )omits
three distinct points in C U {oo}, then f must be constant. In 1929, by introducing the
functions T(r), N¢(r,00) and my(r,00) (See below for definitions), R. Nevanlinna gave
a quantitative version of the little Picard Theorem by establishing the so-called Second
Main Theorem for Meromorphic Functions. It was then extended by H. Cartan and L.

Ahlfors to case of meromorphic maps from C™ into P"(C) intersecting hyperplanes, and
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recently by Min Ru to the hypersurface case. The above mentioned Nevanlinna theory

generally works for meromorphic maps either on a parabolic-type complex manifolds, or
Tf (’I“, TO)

logl/(R—1)

T¢(r,ro) is the growth function of f. Example of the value distribution of the Gauss map

on the ball B(R) C C™ with the growth condition lim,__, sup = 00, where

of a complete minimal surface on the disc A(R) shows that this growth condition isn’t
always satisfied i.e, lim,__.p % may be finite. To deal with this case, a new theory
is needed. In this dissertation we develop a Nevanlinna theory for meromorphic mappings
on a (non-parabolic-type) Kahler manifold M with a complete metric into P"(C). In order
to develop a Nevanlinna theory for the above mentioned Kdhler manifold, we assume the
following growth condition for f: there exists a nonzero bounded continuous real-valued
function h on M such that p€dy + \/2?85 log h? > Ric w for some non-negative constant
p, where Q¢ is the pull-back of the Fubini-Study metric on P*(C) and Ric w is the Ricci
form of the Kahler form w. Using this new theory, we were able to give an extension (see
Theorem 2.1.6) of the defect relation for hypersurfaces given by M. Ru in [16]. We also gave

an application of our extension result to the Gauss map of a complete regular submanifold

of C™ (see Theorem 2.3.2).

Another remarkable result of Nevanlinna is the following identity result: If ai,...,as
are distinct points of the Riemann sphere, and f,g are mon-constant meromorphic func-
tions with f~'(a;) = g~ (a;) for each i = 1,...,5, then f = g. In the higher dimensional
generalization of Nevanlinna theory, the problem of extending these results has attracted
attention; most of which involve intersections of holomorphic maps with hyperplanes in
projective space. For example H. Fujimoto gave an extension of the uniqueness theorem to
meromorphic mappings of a complete kahler manifold whose universal covering is biholo-
morphic to the ball in C™ into P™(C) which intersect hyperplanes (cf. [11]). In this thesis,

we generalized Fujimoto’s result to the case where the map intersects with hypersurfaces
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instead hyperplanes (see Theorem 2.2.2).

In Chapter 1, we review the relevent topics in complex analysis and geometry that
are fundamental to our approach. In Chapter 2, we consider meromorphic maps on M
into projective space. We will prove a non-integrated defect relation for meromorphic
maps of complete Kdhler manifold under the assumption that the universal covering is
biholomorphic to a ball in C™. We then give a uniqueness theorem of meromorphic maps
on M into projective space. We end the chapter with the non-integrated defect for the

special case of the Gauss map of a complete regular submanifold of C™.

1.2 Nevanlinna theory of meromorphic functions on the disc

A(R) C C

In this section we recall the fundamental ideas of Nevanlinna theory of meromorphic func-
tions. We consider holomorphic maps f : C — M, where C is the complex number plane
and M is a complex manifold. In particular, it asks when is f forced to be constant. An
example is taking M as a disc of finite radius. In this case, the classical Liouville’s theorem
says that every holomorphic map sending C into the disc must be constant. In this chapter,

we consider the case where M = P!(C) , the complex projective space of dimension 1.

The fundamental tool of this subject is the measurement of the growth of the map f.
Given an entire function, there are two ways of measuring its rate of growth-its maximum
modulus on the disc of radius r (viewed as a function of r) and the maximum number
of times it takes a value in the image on the disc. Unfortunately, the maximum modulus
doesn’t work for meromorphic function since it may become infinite at some finite values

of . R. Nevanlinna found the right substitute for the maximum modulus by introducing



1.2. NEVANLINNA THEORY OF MEROMORPHIC FUNCTIONS ON THE DISC
A(R) C C

the characteristic function T (r) to measure the growth of f (see [1]). In this section,
we’ll recall Nevanlinna’s First and Second Main Theorem for meromorphic functions with

application to the uniqueness problem.

1.2.1 The first main theorem

We begin by recalling the following well-known Poisson-Jensen formula in classical complex

analysis. The proof can be found in [17].

Theorem 1.2.1 ( Poisson-Jensen Formula) Let f # 0 be a meromorphic function on
the closed disc D(R), R < oco. Let ay,...,a, denote the zeros of f in D(R), counting
multiplicities, and by, ...,b, denote the poles of f in D(R), also counting multiplicities.
Then for any z, with |z| < R, which is not a zero or a pole, we have

ﬁ
2

Zlog‘R _bz}

27 R2—|Z|2 )
1 = o log|f(Re"
ogls)l = | o o | F(Re)

Zlog‘R

Let zo0 € D(R). If f(z) = ¢(z — 20)™ + ..., where c is the leading nonzero coefficient,

then m is called the order of f at zp and is denoted by ord., f.

Corollary 1.2.2 (Jensen Formula) Let f # 0 be a meromorphic function on the closed
disc D(R), R < oo. Let ay,...,a, denote the zeros of f in D(R) — {0}, counting multi-
plicities, and by, ...,b, denote the poles of f in D(R) — {0}, also counting multiplicities.
Then

2
log |cy| :/ log | f( Reze
0

2 R
Zlog ‘b—‘ — (ordo f) log R,
j=1 J
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where f(z) = szordOf + ..., ordy f € Z, and cy is the leading nonzero coefficient.

Proof: Consider the function fz~°'0/ Then applying theorem 1.2.1 to it at z = 0 gives

the corollary. [J

We now proceed to define Nevanlinna functions. Let f be a meromorphic function on
the closed disc D(R), 0 < R < oo and let 0 < r < R. Denote the number of poles of f on
the closed disc D(R) by ng(r, o), counting multiplicity. We define the counting function

Ny(r,00) to be

Ny¢(r,00) =ny(0,00)log(r) + /T ny(t,00) —ng(0, Oo)dt,

0 t
where ns(0,00) is the multiplicity if f has a pole at z = 0. If a € C, define the counting

function with respect to a by
Ny(r,a) = N%(r, 00).
By the definition of the Lebesgue-Stieltjes integral, we have

N¢(r,0) = (ordg f)logr + Z (ord] f)log ‘i‘
z€D(r)z7#£0 &
where ord} f = max{0,ord. f} is the multiplicity of the zero at z. We note that N (r,a)
measures how many times f takes the value a. Define the prozimity function my(r,o0) by
2m

o\, a0

myrioe) = [ log" 1¢I5

0 2
where log* (z) = max(0, log ). For a complex number a, we define my(r,a) = m_a (r, 00).
The proximity function measures, on average, how close f is to a in the disk of radius r.

Finally, we let

Ty(r) = Ng(r,00) + mg(r, 00).
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The function T¢(r) is called Nevanlinna’s characteristic function. The fundamental idea
in Nevanlinna theory is that the growth of the characteristic function carries considerable
information about the meromorphic function f. Thus, producing bounds for T¢(r) can
be translated into statements about f. For example, T¢(r) = O(1) if and only if f is
a constant, and T¢(r) = O(log(r)) if and only if f is a rational function. Consequently,
one must develop techniques for estimating the characteristic function. Nevanlinna’s main
results show that in fact T’ (r) can be estimated using the counting and proximity functions.

We now state the First Main Theorem.

Theorem 1.2.3 (first main theorem) Suppose f % 0 be a meromorphic function on the

closed disk D(R), R < oo. Then, for any 0 <r < R,
(0) Ty(r) = N¢(r,0) + mg(r, 0) + log [ey|.
Given a complexr number a,
(i) |Ty(r) = my(r,a) = Ny(r,a)| < [logeiy(s—a)| +log™ [a] +log 2],

where ¢y /(f_q) 18 the leading nonzero coefficient in the Taylor expansion of 1/(f —a) around

0.

Proof: First note that Jensen Formula can be rewritten as

2m PN r
log |cy| :/0 log | f(re 9)\% - Z (ord, f) log’;‘ — (ordo f) logr

z€D(r),z#£0

2 0 do
:/ log | f(re )\2—+Nf(r,oo)—Nf(r,0)
0 T
2T
= [0l G + 1) = m(r.00) = Ny (r,0) (1.1)

Now if log | f(re®)| > 0, then f > 1, 1/f < 1 and
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fo% log |f(rei9)|% —mg(r,00) =0 =mg(r,0).
Iflog|f(rei9)| <0,then f <1, 1/f > 1, ms(r,00) = 0and ms(r,0) = —fo% log|f(7“ei6)|%.

Plug in these into (1.1) gives (7).

To prove (ii), we consider the function 1/(f — a) and apply Jensen Formula to it to
get:

2m 1 do
_ - @ — N, .
log |Cl/(ffa)| A log ‘f(rezg> _ CL| 27‘(’ + Nl/(f*(l) (T7 OO) (f*a) (T7 O)

Since logx = log™ x — log™*(1/x), we have that

do

log | | /27r log™ 1 d6 /27r log™ |f(rei9) al—+
oglei/ireay| = _ _
gle1/(f-a) 0 & | f( 0 2

re) —a| 2
Ny(r,a) — Ng(r,00).
Thus
2T
+ i0 do
log™ |f(re") —al5_— = my(r,a) = Ny(r,00) + Ny(r,a) —log|er(s-a)l-
0
Now, we note that for positive numbers = and y, we have
log® |(z + y)| < log™ 2max{xz,y} <log™ |z| + log™ |y| + log 2.
So
[log™ |(z +y)| —log™ |z|| <log™ |y[ +log2.
Therefore
|T¢(r) — my(r,a) — N¢(r,a) + log |Cl/(f—a)|| <logt a+log?2.

and (ii) follows. O

The First Main Theorem states that T¢(r) = mys(r,a) + N¢(r,a) + O(1). It gives an

upper bound for N¢(r,a) in terms of T(r), hence on the number of times f takes on
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the value a. Our next goal is to prove the Second Main Theorem which will provide a
lower bound for N¢(r,a) in terms of T¢(r). To do so, we first introduce the ”logarithmic

derivative lemma*.

1.2.2 The logarithmic derivative lemma

This section is concerned with the logarithmic derivative lemma as presented in [17].

Theorem 1.2.4 (Gol’dberg-Grinshtein estimate)
Let f be a meromorphic function on D(R), 0 < R < oo, and let 0 < a < 1, then , for

ro <1 < p< R, we have

2 f/(reie) adh N p a .
| Vel 5 < 2 () @) gl
ey 1\«

+2a+4sec(om'/2) (Mpip—rﬂ (Tf(,O) + lordo f| log™ %) :

where f(z) = sz‘”"dOf + ..., ordy f € Z, and cy is the leading nonzero coefficient.

Lemma 1.2.5 (Borel’s growth lemma,)
Let F(r) be a positive, non decreasing, continuous function defined on [rg,00) with ro > e
such that F(r) > e on [ro,00). Then, for every e > 0, there exists a closed set E C [rg,0)

of finite Lebesgue measure such that if we set p =r + 1 ) for all v > ro and not in

logtte F(r

E, we have
log F(p) <log F(r) +1

and

+ p

— < (1+¢€)log™ log F(r) + log 2.
<o ()

log
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Theorem 1.2.6 (lemma on the logarithmic derivative)
Let f be a non-constant meromorphic function on C. Assume that T¢(rg) > e for some 7.

Then, for any € > 0, the inequality
mf//f(r, 00) <logTy(r) 4+ (1 +¢€) log™ Ty¢(r)+C

holds for all r > 1o outside a set E C (0,400) with finite Lebesque measure, where C is a

constant which depends only on f.

Proof: Using the concavity of the log™ function, we have for o > 0

adf 1 2m
— < —log* /
2 T « 0

to the function F(r) = Ty(r) to get

f'(re?) o db
f(re?) o

1 27 l 0
mf//f(r, OO) = a/o log+ ‘ff((::w))

(1.2)

We now apply Lemma 1.2.5 with p = r + m

that, for every r > rg not in the set F,
log T¢(p) <logTy(r) +1

and

+ p

— < (1+¢)log logT¢(r) + log 2.
s ()

log
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By theorem 1.2.4, we have

p
w(o=7)

+ 2a+4sec(oz7r/2)<

1 « @ (63
mpyp(r,00) < —log* {27 ) (2T3(p) — Tog ey

r(p— T))a (Tf(/)) + |ordg f] log*+ Tlo)a}

< llogJr ( & )a—i-

% o=
1 (63 [e%
—log™ 12%(2Ty(p) — log |es])*+

1\«
29 sec(ar /2) (Tf(p) + |ordg f|log™ %) } + log 2

(p
< (14 ¢)log* log Ty(r) + log™ Ty(r) + C.

The theorem follows since 7 > rg and T(rp) > e. O

1.2.3 The second main theorem

For a meromorphic function f , we define a ramification term N,q,(p)(r) = Ny (r,0) +
2Nyf(r,00) — Ngi(r,00). Using this, we now introduce a much more subtle and powerful

estimate for T¢(r).

Theorem 1.2.7 (The second main theorem) Suppose ay, ..., aq are distinct complex num-
bers, and f is a non-constant meromorphic function on B(R) C C; 0 < R < oo. Then for

every € > 0, the inequality
(¢ = DT¢(r) + Nyam(p)(r)
< Eq:Nf(r, aj) + Ny(r,00) +log T¢(r) + (1 +¢€) log™ log T (r) + O(1),
j=1
holds for r > 1o outside of a set E C (0,400) of finite Lebesque measure.

10
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Proof: Let § = min,;+;{|a;—a;|,1}. For each z with f(z) # oo and f(2) # a; for 1 < j < g,
let jo be the index among {1,2, ..., ¢}, such that
|f(2) = ajo| <[f(2) —aj| forall 1 <j<q.
Then for j # jo, by the triangle inequality, |f(2) — a;| > 6/2. Thus, for j # j,,
log™ [f(2)| <log™ |f(2) — a;j| +log™ |a;| +log 2

1
= IOg ‘f(Z) — a]’ + 10g+ m + lOg+ |(1]’ + 10g2

jl
<log|f(z) — aj| +log™ /2 +log™ |a;| + log 2.

Therefore

q
2
(9= 1)log™ |f(2)] < D log|f(2) — a;| + D _log* |ay| + (q — 1)(log™* 5 log2).

J#do j=1
Now
: / ()
D log|f(2) —ajl = ) log| /(=) — ;| —log|f'(2)] +log 7 —
J#jo J=1 7
q
<3 log|£(2)  aj| ~log (- r+log(2|f'f”'a|)
= J
Thus

(- Vlog" 17(2)] < 3 log £(2) — ay] — log (= |+10g(Z’f|f()’ )+
7=1

(2) — aj
q
Zlog+ la;| + (¢ — 1)(IogJr 5 + log 2).
j=1

Now, we set z = re'? and integrate with respect to 6 to get

de 2m
(g = 1)mg(r, 00) <Z/ log | f(re®) _aj|27r_/0 log | f(re' )|—

/027r10g(z ‘f’f;zze_L |>d€+0( )

11
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From Jensen formula, we have
2T 0 d9
log | f(re") — a]|— = Ny(r,a;) — Ng(r,00) + log |Cf—aj|’
0
and
2 ) do
/ log |f’(rew)|% = Np(r,0) — Np(r, 00) + log |cpr|.
0

Thus, the last inequality above becomes

(g —1)mg(r,00) — ZNf(r, a;) + qNy(r,00) + Ny(r,0) = Ny (r, 00)
j=1

2 ey NdD 2
< 1 log™ —1)(log™ log 2)+
_/0 og(g Fire® —al] >2W Zog Jaj| + (¢ — 1)(log™* = +log2)+

q
Zlog|cf_a].] — log |cyp]. (1.3)
j=1

By the first main theorem and the definition of Nyam f(7), the left hand side of (1.3) is
(¢ = 1)T¢(7) + Nram, ¢ () ZNf (r,aj) — N¢(r,00).
To complete the proof, we’ll now estimate
2 | f! (ret® db
o8 (3 (v ) 0
/0 °8 Z |f(re?) —a;|/ 2n”

Let « be a real number between 0 and 1. Then

2m |/ (ret® o _1 L f(re o df
/0 log<2|f reif) — a; ) / ( F(ret) _a]|) by

M

]:1
d ’ a
/ (;‘ffeze —a]‘>;l707
flog Z/QW Z:zge_a] ‘a)%

where we have used the concavity of the logarithm and the inequality (}_;a;)* < 3, af

for positive numbers a; and o, 1 < o < 1.

12
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By theorem 1.2.4 and using the fact that log™ (x + ) <log™ x + log™ y, we have

og Z /27r

< 1ogi {2 (T(pp_ T))“@Tf_aj(p) —1og |cf—a, )"
j=1

f'(re? ai@)

7‘6”’ —a] 2T

+2sec(am/2) () (s () + 2ondf -l 1os” -}

q
p
< alog (m> + alog; 2Ts—a;(p) + aC(a)

q
) + alog™ Z 2Tfq,(p) + aC(a),
j=1

< +
<atog” (15,75

where C(«) is a constant depending on «. We now apply Lemma 1.2.5 with p = r 4+
to the function F(r) = T¢(r) to get that, for every r > 1o not in the set F,

1g”5 (1)

log T¢(p) <logTy(r) +1

and

< (1 +¢€)log™ log T¢(r) + log 2.

It then follows that for » > rg not in F,

p q
log™ (r(p - r)) +1log™ ; 2T¢—q,(p) + C(a)

< (1+¢)log™ log Ty(r) +log™ max {27}, (p)} + C()
<j<q ‘

< (14 ¢€)logtlog Tt (r) + log 2T¢(p) + C(a)

< (1+€)logtlog T¢(r) + log Tt (p) + C(e)

< (1+€)logtlog Ty (r) +log T¢(r) + C(a).

13
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Therefore (1.3) becomes
q
(¢ = 1)T¢(r) + Nram,f(r) Z (r,aj) — Ny(r,00) <

(1+¢€)logT log T¢(r) + log Ty(r) + O(1).

The proof of the theorem is therefore completed. [J

An appropriate version of the second main theorem will be used for our proves. In
this situation it is necessary to have a version of this theorem which involves the so-called
truncated counting functions. We define ngck) (r,00) by counting all poles with multiplicity
greater than %k as pole with multiplicity k. We define N ](ck) (r,0) accordingly. Then the

second main theorem can be used to deduce the following inequality:
Theorem 1.2.8 (second main theorem with truncation) let ay, ...,aq be complex numbers
and f be as in theorem 1.2.7, then for every e > 0, the inequality

(q—1)Ty(r (r,a;) N](cl)(r, 00)+

H M@

(1+e) log+ log T¢(r) +log T¢(r) + O(1),

holds for all r > 1y outside a set E C (0,00) with finite lebesque measure.

Proof: We note first that

q q
ZNf(r, aj) + Ng(r,00) — Nyam, ¢ (1) < Z (r,aj) Nj(cl)(r, 00).

From this theorem 1.2.8 follows. [

Corollary 1.2.9 (Picard’s theorem) If a meromorphic function f on C omits three distinct

points ay,as,a3 € CU{oo}, then f must be constant.

14
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Proof: We'll prove that if f is not constant, then we have a contradiction. Indeed, if f is

assumed nonconstant, then by theorem 1.2.7, we have

3
3T¢(r) = Y Np(r,a5) + Neam,g(r) < Ty(r) + Ny (r,00)+
j=1

(1+¢€)log® log T(r) +log Ty (r) + O(1).

Using the fact that Nyam, r(r) > 0 and Nf(r,00) < T¢(r), we have

3
me(r, aj) < 2T¢(r) + (1 + €) logt log T¢(r) + log T¢(r) + O(1)
j=1

holds outside a set E C (0,400) of finite Lebesgue measure. However since f omits the

points ajs, we have that ms(r,a;) = Tf(r) + O(1). Thus
3T¢(r) < 2T¢(r) + (1 +¢€)log™ log T (r) + log Tf(r) + O(1),

which is a contradiction since logz < z for positve number x. [

We now recall from elementary complex analysis the identity theorem.

Theorem 1.2.10 Suppose f,g : D — C are holomorphic on a domain D C C™, and

f =g on some set Z C D with a limit point in D. Then, f = g.

Proof: Set h = f —g. We must show that h = 0. Let A = {z € D|h("(z) = 0 for all n}
. We show that A is non-empty. Let a be a limit point of Z. Then there is a sequence

{zn} C Z so that z, # a, z, — a, and h(z,) = 0 for all n. Write

h(z) = ch(z —a)’.

Jj=0

Then, we have that —co = >272, ¢j(zn — a)) — 0 as n — oo. Hence, co = 0. Suppose we

have that cg = ... = ¢, = 0. Then we can write

0=h(zn) = (2n — a)kﬂ(ck“ + Crt2(zn — a)...).

15
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Since z, — @ is not zero, by passing to the limit again we see that cx11 = 0. Thus, by
induction all coefficients vanish, hence all derivatives at a vanish, proving A is non-empty.
We note that by continuity, A is closed. If z5 € A, then in a neighborhood of zg we can

write

h(z) = Z a;j(z — z)’.
=0

We then have all a; = 0 since 2y € A; hence, the entire neighborhood is contained in A,

which shows that A is open. By connectedness h must vanish identically on D. O

To prove our uniqueness result our approach shall be to prove that the two functions in
question f and g say, agree locally. In the higher dimensional setting this is still sufficient

to conclude that f = g by vertue of the following identity theorem.

Theorem 1.2.11 (Identity theorem) Suppose f,g: S — M are holomorphic, where S is
a connected Riemann surface and M a complex n—manifold. If there is an open set U C S

so that f =g on U then f =g.

Proof:

First we note that if the condition is satisfied for f,g : D — C™, where D C C is a
domain, then f = g by the previous theorem (since they are equal componentwise). Now,
let R denote the subset of S consisting of those points which have a neighborhood on which
f = g. By assumption R is non-empty and it is clear that R is open. We further claim that
R is closed. Suppose p is a point in closure of R. By continuity f(p) = g(p). Let V.C S
and W C M be connected coordinate neighborhoods with f(V') and ¢g(V') contained in W.
By composing with coordinate charts we may view f,g:V C C — W C C™. Then since

V! =V N R is open and non-empty, f = g on V/ and V is connected. It then follows that

16



1.2. NEVANLINNA THEORY OF MEROMORPHIC FUNCTIONS ON THE DISC
A(R) C C

f=gon V. Thus p € R and hence, R is closed. By hypothesis, R is non-empty, hence

R = S since S is connected. Thus f=g. U

Remark 1.2.12 In fact, the statement above is true if S is any connected complex mani-

fold, not merely a Riemann surface.

We now use the above machinery to give the proof to Nevanlinna five points uniqueness

theorem.

Theorem 1.2.13 (Nevanlinna five points uniqueness theorem) If ai,...,a5 are distinct
points of the Riemann sphere, and f,g are non-constant meromorphic functions with

fYa;) = g7 (a;) for eachi=1,...,5, then f = g.

Proof: Suppose f~1(a;) = g7'(a;) for j = 1,...,5, but f is not identical to g. By the

Second Main Theorem with truncation, we have:

5
3T1(r) < Y NW(r,a;) + O(log Ty (r)),

5
3Ty(r) < ZNél)(T7 a;) + O(log Ty(r)).
Adding these two inequalities we obtain:

5
3(Ty(r) + Ty(r) < S (N (r,a5) + N{V(r,a5)) + O(log Ty (r) +log Ty (r)).
j=1

Since f~!(aj) = g~'(a;), we obtain 235’:1 N](cl)(r, a;) < Ny_4(r,0) and similarly for g.

Hence,
3(Tr(r)+Ty(r)) < 2Ny_y(r,0) + O(log Ty(r) + log Ty(r)).

17
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But Ny_g(r,0) < Tr_g(r) + O(1) < T(r) + Ty(r) + O(1), and so the inequality above

implies
Ty(r) + Ty(r) < O(log Ty(r) +log Ty(r)),

which is a contradiction since f and g are not constant. Thus f=g¢g. O

1.3 Nevanlinna theory of meromorphic maps on the ball

B(R) € C™ into complex projective spaces

In this section, we will introduce Nevanlinna theory for meromorphic mappings on the ball
B(R) CC™, 0 < R < c0. There are two approaches in extending Nevanlinna theory for
holomorphic curves in P"(C). One is given by H. Cartan and the other is given by Ahlfors.

We'll follow Cartan’s approach which uses the logarithmic derivative lemma.

By a divisor on a domain G in C™ we mean a map v of G into Z such that, for each
zg € (G, there are nonzero holomorphic functions h and g on a connected neighborhood
U(C G) of z so that v(z) = vj)(z) — vJ(z) for each z € U outside an analytic set of

dimension < m — 2. Two divisors are regarded as the same if they are identical outside an

analytic set of dimension < m — 2.

Take a nonzero meromorphic function ¢ on a domain G in C™ . For each 2y € G, we
choose nonzero holomorphic functions g and h on a neighborhood U(C G) of 2y such that

¢ =% on U and dim(f~1(0)Ug~1(0)) < m — 2, we define Vg 1= Up, Vg = Vg—qp for a € C

and v, = 1/2 — vg°, which are independent of the choices of h and g and so is globally

well-defined on G. Let f be a meromorphic map of B(Ry) C C™ into P"(C). We take

holomorphic functions fo, fi,..., fn such that Iy := {z € B(Ry), fo(z) = --- = fu(z) = 0}

18
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is of dimension at most m — 2. Then, f(z) = [fo(z) : - -+ : fu(2)] on B(Ry) — I in terms of

homogeneous coordinates [wy : - -+ : wy,] on P*(C) is called a reduced representation.

For z = (21,..., 2m) € C™ we set ||z||= (|z1]® + - -- + |2m|?>)"/? and define B(r) = {z €

C™:z|| <r}, S(r)={z€C™:|z|]| =r} for 0 < r < +00. Define

O = d®log||z]|? A (dd°log|z|>)™"  on C™ — {0},

vy = (dd°||z||?)! for 1<i<m.

Let f(2) = [fo(2) : - -+ : fu(2)] be areduced representation of f. Set || f|| := (| fo|> + - + |fn|2)1/2.

Then the pullback of the normalized Fubini-Study metric form Q on P"*(C) by f is given

by

Qf = dd°log| f||*.

Fix rg < Ry, the characteristic function of f is defined by
"odt
Ty(r,ro) = =i Qf AN o1 (0 <19 <r < Rp).
0 B(t)
We then have (see [23], p. 251-255),

Ty (r, 1) = / log|| flom — / log || [om.
S(r) S(ro)

Let po be a positive integer or co and v be a divisor on a domain B(Rp) € C™. Set

|v] = {z € B(Ro) : v(2) # 0}. We define the counting function of v truncated by po by

7y [1o]
Ny‘o](ro,r):/ n 0<t>dt

0 13

where

nlwol(t) = tfm%z meB(t) min{v, pg }vm,—1 if m > 2,
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nlrol(t) = E|z\§t min{v(z),uo} ifm=1.

Consider a hyperplane
H:aqwo+ ... +a,w, =0

in P*(C), where A = (ag, ..., an) # (0, ...,0). Setting

R P %5Y]
VilH)(2) = e e e

we define the proximity function of H by

(. H) = /S log |4 (H) o, — /3 Lol (o,

(r)

The First Main Theorem is then stated as follows:

Theorem 1.3.1 Ty (r) = N(r,H) +my(r, H) for all hyperplanes H.

1.3.1 The lemma of the logarithmic derivative and the generalized Wron-

skian

Let ¢(z1,...,2m) be a nonzero meromorphic function on B(Ry), 0 < Ry < +oo. For

a set a« = (ap,...,q,) of integers a; > 0 and z = (21,...,2m) € C™, we set ol =
atlagl.on! ol = a1 + ..+ a2 = 2tz and DY = DP'..DSmp, where

Dip = (9/0z)¢p.

The purpose of this section is to prove the following lemma of the logarithmic derivative.

Theorem 1.3.2 (See [9],Theorem 3.1) Let ¢ be a meromorphic function on B(Ry) and

let « = (a1, ..., am) # (0,...,0), 0 < rg < Ry and take positive numbers p,p’ such that
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0 < pla| < p’ < 1. Then for ro <r < R < Ry,

Lo

2(D°9/6)(2)| om(2) < K (S

Before proving this, we give the following Corollary to the Theorem, which is essentially

the same as the lemma of logarithmic derivative in several variables given by Vitter (see

[21]).

Corollary 1.3.3 (See [9], Corollary 3.2) Let a = (v, ..., ) # (0,...,0), and 0 < 19 <
Ry. Forrg <r < R < Ry we have,

/S(T) log™ ‘ (D:@) (2)

RQm—l
om(2) < Klog" (——T,(R.0)).

For the proof of the theorem, we recall some known facts.

Lemma 1.3.4 ([10], Lemma 2.5) Let r > 0 and 0 < p < 1. For every a € C, we have

1 2m P _
/ .T df < 2-p .
2r o |rei? —alp 2(1 —p)

For z = (z1,..,2m) € C"™ set n = (21,..,2m-1), ¢ = 2zm, 2z = (1n,¢) and |n| =

(212 4 ... + |zm-1]?) /2.

Lemma 1.3.5 ([3/, P.35) Let h be an integrable function on S(r) (r >0). Then
| hon= s [ ot | 1,01 (<)
Om = 5.—5 m—1 6)01
S() o2 sy Cl=/r= T2
where B(r) := {n € C™ 1 :|n| <r}.
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For a nonzero meromorphic function ¢ on B(Ry), there exists a subset E of B(Ry) of

measure zero such that for each n € B(Rp)\E a meromorphic function (¢|n)(¢) = ¢(n, ()
is well defined on {¢ € C: [¢| < /R% — [n|?}.

Lemma 1.3.6 (/3], p.37) For each a € P(C) and 0 < r < Ry we have

1
L / na (VrE = TP om1(7) < g (7).
r B(r)\E

©eln

We now prove the following:

Lemma 1.3.7 ([9], Lemma 3.8) Let 0 < p < 1 and 0 < r < p < Ry. For everyn €

B(r)\E, we have

D ) D
((Gere) om0 = (52 [ e lemlet llon(©)
+K (o (Vp? = [nl?) + nuge (Vp? = [n]?)-

/cm

Proof: We may assume that ¢(¢) # 0, on {¢ : |¢| = \/p? — |n|?}, because each term is

continuous in p. By differentiating the equation in Theorem 1.2.1 applied to the function

¢ln and R = p := +/p? — |n|?, we obtain

()0 =2 [T R ae- 3 v - )

lul<p

Therefore,

‘C( C/sO)( C)‘ﬁ§(2ﬁ|§| Maﬂu))ﬁ

i<p lu—¢J?

> 0t + 5 (7o) + (ag) )

lul<p
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Integrating this and using Lemma 1.3.7, we see

/|<=\/W C(gﬁ/‘p)("’o‘ﬁ‘”@

N . [Log[(n: Ol )7
< <2p/|<—w2—w|<' 1“)/|u_,5 2 )

O (u) + v (u 1P ¢[P o
+|uzg:ﬁ( tpln( )+ goln( ))/C|:W(|u_dﬁ+ ‘(ﬁQ/u)qﬁ) 1(¢)

1 P
2T 10 , o (u _
: ( p/uléﬁ‘ 2lelm Ol )/(:W lu — (| 1(0) +

K(Y (v, () + v, ().

lul<p

On the other hand, we have

/ ! (©) - :

70'1 = —= =
(Cl=y/77—nE |u = ¢ pP= (=) p?—r?
for every u with |u| = p. From this we can conclude that

U
e Q] 1(0)

qu

< (2 [ okl Ollos )+ Klnug, () + g, 7)

< Prola =~ 5o ) ([ osleOlimn) )

+ K (ny (p) +nugs, (5))

< (p f , /Mﬁ | log |¢(n, C)Ho’l(u))ﬁ + K(n”gm(ﬁ) + 1 (5))-

This concludes the proof. [

Proof of Theorem 1.3.2 for the case |a| = 1.

Proof: We prove the Theorem by induction on |«|. We first consider the case |a| = 1.

Without loss of generality, we may assume D% = D,,. Let 1o < r < R < Ry, 0 <
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p<p <1landsetp=p/p, p=(R+r)/2. Since each pole of D, ¢ is of order
<1, |zm(Dg/9)(2)P is integrable on S(r). By Lemma 1.3.4, 1.3.5, 1.3.6, and the

Holder inequality, we get

| len(Dng /D))
S(r)

=9
= 55 Um—l(n)/
r2m=2 Joi<r ICl=/r2 T

G )
< ( /|| O () /<| sl Oller(c))”

K

+ s (nyo (Vp? = nP?) + 1w (Vp? = [101*)vm—1(n)

[n|<r Yeln

< (25 [ Tostelion)+ (2" g, )y

P ©ln @ln

[C(Dime,/ ) (1, Q)Po1(C)

(p))-

Moreover, using the fact that fS(r) | log [p||lom < 2T, (r,ro)+K ¢ and nya(p) < R2i (Ty(R,70)+

K) for a meromorphic map, we conclude that
[, JenDuo/ A on )

(/ |2m m‘P/(P)’pUm< ))p

/

< (G2 [ Nostellon)™ 5 5 (2) "ty o+ s o1
< (2 [ oelellon)” + K (T + 1)
< K(Rzm : (r, rg))p/.

To complete the proof of Theorem 1.3.2, we need

Lemma 1.3.8 Let ¢ be a nonzero meromorphic function on B(Ry) C C™ and 0 < ro <
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r < R < Ry. Then

Tp,p(r,r0) < Tp(r,m0) + Klog™ (};

Proof: Using the fact that for two meromorphic functions @1, p2 on B(Ry), Ty, 0, (7, 70) <
Ty, (r,1m0) + Ty (1, 70) + K and ‘Tso(r, ro) — (fs(r) log™ |plon + Ngo(r, r0)>’ < K, we see

that

TDiSO(T? 7’0) < TDM/SO(T: TO) + Tw(rv 7’0) + K

< /( )IOng \DzSO/SD’Um + NB?gp/(p(rv TO) + Tsﬁ(ra TO) + K.
S(r

On the other hand, since Ng(r,r9) < Ty(r,70) + K, we have

Ng;go/cp(r’ 7‘0) < TDinp (7“, T’o)

©

D;
:/ log || @HUm—i-K.
S(r) ¥

Since we have proved the Theorem for the case |a| = 1, we use Corollary 1.3.3 in this case

to get

/ log® |Dip,/ plom < K log™ (R
S(r) R—

We therefore conclude the Lemma. [

Proof of Theorem 1.2.3 for the general case.

Proof: Assume that the Theorem holds for the case |a| < k. Take an arbitrarily
o with |a] = k + 1 and write D* = D*D;, where 1 < i < m and |o/| = k. Then

D%/ ¢ = (Dip/p) (D (Di)/Dip),  2*=22% and |alp= (|o/| +1)p < p' < 1. Set
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p1 = 1/(]/| +1) and po := |&/|/(]e/| + 1). By the Hélder inequality and the induction

hypothesis, we have

| @ o)

S(r)

S/ |22 (Dig/9))(D® (Dip) | Disp) P (2)
S(r)

S/ |z:Dig/ 0|2 (D (Dig) / Digp) (2) P (2)
S(r)

= [ (e seP™)" (122 (D0 (Dig)/ D) ') 2
S(r)

< iDi ), “(D* (D) / D; o),

< [ (mnieserm) o [ (107 Dip)/Dip)(cP) o

< K(}:Ti; T,(R, ro))p/ (%TDM(R,rO))p/.

By Lemma 1.3.8,

R2m71
Tp,o(R,70) < T+ K log™ ( T (R, 7«0)). (1.4)

For € > 0 there exists a positive constant K. such that

log* (Ij;mlT@(R,ro» < K(}:ml

TLP(R,TO))E.

We can conclude that

N N » R2m71 P
[, e @ o) < K (o)

by the help of Lemma 1.3.8. This completes the proof of Theorem 1.3.2. [J

Definition 1.3.9 Assume that f in nondegenerate. We say that {aq,...,an+1} is an ad-

missible set if {D*f, ..., D +1 f} is a linearly independent set.

Definition 1.3.10 A meromorphic map f : B(Ry) C C"™ — P"(C) is said to be (linearly)

nondegenerate if f(Bo) € H for every hyperplane H in P™(C) .
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Proposition 1.3.11 (See [9], Proposition 4.5) Let f : B(Ry) — P"(C) be a linearly non-
degenerate meromorphic map. Then there exist of = (1, .., jm) with aj; > 0 be-

ing integers, and |at| + -+ + |a™" < n(n + 1)/2 such that the generalized Wronskian

Wal---a"+1(f) # 0.

Lemma 1.3.12 (See [8], Lemma 3.3) Let fo, ..., fn be non-zero holomorphic functions on
fi

the unit disc B(1) in C™, and set p; = f—(l < i < n). Then, there is a polynomial

n

P(...,;ug,...) with positive real coefficients not depending on each fo, ..., fn such that

(27

W(f0> ey fn)
fOfn

< P(...,

Definition 1.3.13 A holomorphic map f : B(1) — P"(C) is called transcendental if

Ty (r)

li —_— = 0.
i S e /(=) ~

Proposition 1.3.14 (See [8], Proposition 2.5) Let ¢ be a nowhere zero holomorphic func-
tion on the unit disk A(1) C C which is not transcendental. Then, for each positive integer

[, there exist a positive constant Ky such that

/27r
0

Lemma 1.3.15 (See [§8], Lemma 3.4) Let 1,2, ..., pi. be nowhere zero holomorphic func-

1
1—r

-1 / ) K,
d (%) (re’e)‘dﬁ < ( % _log (0<r<1).

dzl—1 1—r)t

tions on the unit disc A(1), Iy, ..., be positive real number with kt < 1. Assume that

©1, -, Pk are not transcendental. Then there exist a positive constant Ks such that

/027r ((Sil)(ll1)...<gl:>(lkl))(rew)’td9 < (1f_(3r)s (log 1 1 r)s7

O0<r<lands=tl+..+I).
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Take o/ = (aj1,...,ajm), 1 <j < n+l, so that the generalized Wronskian Wi gnt1(f) #

0. Let Ly,..., Ly be linear forms of n 4 1-variables. Theorem 1.3.2 implies :

Proposition 1.3.16 (See [9], Proposition 6.1) In the above situation, set ly = ||+ -+
| Y| and take t,p’ with 0 < tlp < p’ < 1. Then, for 0 < ro < Rq there exists a positive

constant K such that for ro < r < R < Ry,

/S(r)

Rmel /

n W n t
Lol et 11 Wat anii(f) HfHﬂq—n—J)ng<:}(<

Ly(f) - Lq(f) T \R-r

Definition 1.3.17 Let Hy,...,H, or aj,...aq be hyperplanes in P"(C) with coefficients
vectors ay, ..., aq in C"1. We say that Hy, ..., H, are in general position if for any injective

map p:{0,1,....,n} — {1,...,q}, a,(0), ---aum) are linearly independent.

Lemma 1.3.18 (¢f. [17]) Let Hy, ..., Hy be hyperplanes in P"(C) located in general posi-

tion. Then

q q
S Np(r Hy) — Ny (r,0) < S N (r, Hy),
j=1 j=1

where W denotes the Wronskian of f.

We now give the Second Main Theorem for meromorphic maps on the ball in C™ (cf.

[9))-

Theorem 1.3.19 Let f : B(Ry) — P"(C) with 0 < Ry < oo, be a meromorphic map
which is non-degenerate and Hy, ..., Hy be hyperplanes in P"(C) located in general position.

Then,

q
(4= n—1)Ty(r.ro) < Y Ny (o)™ + 5(r),
j=1
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where S¢(r) is evaluated as follows.

(i) In the case Ry < oo,

1
Sp(r) < C<log+ 7

0o—7T

+ log+ Tf (T‘, 7‘0))

for everyr € [0, Ry) excluding a set E with [, 1/(Ry—t)dt < co and where C is a constant.

(i) In the case Ry = oo,
S¢(r) < C’(logJr Ty(r,r0) + logr)

for every r € [0,00) excluding a set E' with fE, dt < oo and where C' is a constant.

Proof: Let

H;: a}wl + .+ a?“wnﬂ =0and L;(f) = ajl-fl + ..+ a}”lfnﬂ

Using the concavity of the logarithm function, Proposition 1.3.16 implies that

n W 1 n+1(f)
t log |z +-+a" ™! Om +t/ log | —& =2 2/ |5,
/S(T) el | S(r) g‘h(f) X 'Lq(f)‘

ttlg—n—1) / log || llom
S(r)
< log/
S(r)

pal+etantt W‘t!!f!!t(q_"_l)am

La(f) -+ Lo(f

R
< C’(log+ T + log™ Ty (R, 7’0)>.

On the other hand, by Lemma 1.3.18, we have
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Therefore,
q
(g —n—1)T¢(r,r0) §Z 5, rg) (1.5)

R
C’(logr—klog+ = + log™ T¢(R, 7"0)). (1.6)
—r
Since T (r,19) is continuous, increasing function, we may assume that T (r,rg) > 1.

If Ry < oo, we can apply Lemma 2.4 in [5] with R =r + (Ro —r)/eTs(r,r0) to get

Tf (7’ + T’o) < 2Tf(7’, T’[))

eTy(r,ro)’
outside a set E containing r with [, 1/(Ro — t)dt < co. Substituing R = r + (Ro —

r)/eT¢(r,rg) in (1.6) gives the desired inequality.
In the case Ry = oo, we apply Lemma 2.4 in [5] with R =7+ 1/T%(r, o) to get

Tf (T + 7"0) < QTf(T, T'o)

Tf (Tv 710) ’
outside a set E’ containing r with [y, dt < oo. Substituing R = r + 1/Ty(r, 7o) in (1.6)

gives the desired inequality. [

Definition 1.3.20 Let H be a hyperplane in P"(C) with f(C) € H and m a positive

integer or +oo. We define the defect (truncated by m) of H for f by
Ny(r, H)m
Sp(H)M =1 — lim sup — 21—
d r—c0 Ty(r)
For convenient’s sake, we set §;(H)I™) = 0 if f(C) C H and, for brevity, we denote
S (H) by 6, (H).

Note that we always have

0<d;(H)M <1
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for every hyperplane H in P"*(C).

The following Corollary gives the defect relation.

Corollary 1.3.21 In the same situation as in theorem 1.3.19, if

(i) Ry < oo and

i sup 00
r—Ro log 1/(R0 - T)

or (ii) Ry = oo, then

q

S o) <+t
j=1

Proof: Theorem 1.3.19, implies that

)Sn—i—l—FM

HJ' n
(- Nt |
( Ty(ro,)

= Tf ro,T
To conclude the proof, we observe that in the case (i), it is proven is [13], Proposition 5.5

that

i sup— T
ko log(1/Ro — 1)

is equivalent to

T
lim sup 7(r0)

g Plog(1)(Ro — 1)) *

for a set E with [ 1/(Ry —r)dr < oc.

In the case (ii), it always hold that

T
lim sup 7f(r’ o)
r—oo = log(r)
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g

In the following, we will give a generalization of Nevanlinna’s five points uniqueness

theorem to the case of holomorphic maps of B(Ry) € C™ into projective space sharing

hyperplanes in general position.

Let consider hyperplanes
Hj = ajowg + ... + ajw, (1<j<q)
in P"(C) which are in general position and satisfy the condition
dim g~ (H; N Hj) <m — 2.

Let f and g be a nondegenerate meromorphic map of B(Ry) C C™ into P"(C) satisfying

the conditions:

(¢) min(v(f, Hj),1) = min(v(g, H;),1) for 1 <j <q and (1.7)

(it)f =g on Ui g~ (Hj). (1.8)

With each ¢ = (cg, ..., ¢,) € C"1 — {0} associate a hyperplane

H.:={[wg: ...: wn];chwj =0}

and define
C={ceC™ —{0};dim fH(H.NH;) <m—2 for 1 <j <g}.
Lemma 1.3.22 (c¢f. [6]) The set C is dense in C*1 — {0}.

We now prove the following uniqueness theorem:
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Theorem 1.3.23 (See [7], Corollary 4.8)

Ifg>3n+2, then f=g .

Proof: Assume that f # ¢g. Take an arbitrary ¢ € C and define

» _7a§-)f0+...—|—a;?fn
B o fo + oo+ Cnfn

and

o '_aggo—l—...—i—a;?gn
i €0go + ... + Cngn

By Proposition 1.3.19 applied to f and g we have:

Ny (r, Hp)" + Sp(r),

M-

(g—n—1)Ts(r) <

<
Il
-

(q—n—1)T,(r) < Ny (r, Hj)[n] + Sg(r).

M-

<
Il
—

Adding these two inequalities and using the above assumptions, we get that:
q
(g —n = 1)(Ty(r) + Ty(r)) < > (Ny(r, Hp)" 4+ Ny (r, Hj)") + Sy (r) + Sy (r)
j=1
< n(Npy, (r,0W + Noy, (r,0)1) + Sg(r) + S5 (r)

< 9nNEy, Gu, (1,0) + Sy(r) + S5(r).

In the second inequality, we have used the fact that a nondegenerate meromorphic map can
not omit 3n+2 hyperplanes in general position. By the first main theorem, N, Fy, ~Gn, (r,0) <
0 0

TFHjO G, (1) +O0(1) < Ty(r) + Ty(r) + O(1). So
(¢ =3n = 1)(Ty(r) + Ty(r)) < Sy(r) + S¢(r) + O(1).

Divide both sides by T(r) + T4(r), we then obtain

Sy(r) + S5(r) + O(1)

qg—3n—1<
Ty(r) + Ty(r)

(1.9)
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In the case R = oo, taking the limit as r approaches oo in (1.9) leads to a contradiction.

o s . Ty (r,ro0) . . .
In the case R < oo if in addition we assume lim, g, Tog(1/(Ro=r)) — % then again taking
limit as r approaches Ry in (1.9) leads to a contradiction.

d
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Chapter

Meromorphic map of complete kahler

manifolds into projective space

In this chapter, we’ll give a non-integrated defect relation for a meromorphic map f on a
complete Kahler manifold, whose universal covering is biholomorphic to the ball in C™ |
into P"(C) intersecting hypersurfaces in general position. We first remark that in general
Nevanlinna theory introduced in chapter 1 doesn’t work on non-parabolic type complex
manifolds since lim,__.p % may be finite . Example of this is seen in the study of
the Guass map of complete minimal surfaces, where the order function is defined via the
Ricci form on M. In order to develop a Nevanlinna theory for the above mentioned Kahler
manifold, we assume the following growth condition for f: there exists a nonzero bounded
continuous real-valued function h on M such that pf1; + \/2?85 log h? > Ric w for some

non-negative constant p, where ¢ is the pull-back of the Fubini-Study metric on P"(C)

and Ric w is the Ricci form of the Kahler form w.
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2.1. NON-INTEGRATED DEFECT FOR MEROMORPHIC MAPS

2.1 Non-integrated defect for meromorphic maps

2.1.1 Currents and plurisubharmonic functions on complex manifolds

In this section we introduce the notion of currents on an m—dimensional complex mani-
fold M. The point here is to establish a relationship between complex submanifolds (or
subvarieties) and smooth differential forms. These two are connected by the notion of

distributions or generalized function for the case n = 1 and currents for the case n > 1.
Let f,g € C°(R). From Calculus, we have

foge /R f(@)d(x) = /R g@)b(z) Vo eCT(R).

Let A, B C R be closed intervals. Then

A=B<+— / o(z)dr = / o(x)dx Vo € Ci°(R).
A B
From these two observations, we can see that whether T is a function or an interval, it
can be viewed as a linear functional: T = Ty <= Ti(¢) = Ta(¢) V¢ € C§°(R). Such a
function ¢ is called a test function. This gives the notion of “generalized function® (n = 1)

and ”current” (for n > 1).

Let C2°(R™) be the vector space of compactly supported smooth functions on R™. If
x = (1, ,2y) are coordinates on R™, we let D; = 9/0x; and D* = D" --- D{™ for
a = (ag, - ,am,) € (ZT)™. The CP—topology is defined on C°(R™) by saying that a
sequence ¢, — 0 in case there is a compact set K with all suppy,, C K and with

D%, () — 0

uniformly for z € K and all « satisfying a1 + - -+ + a,, < p. The C®°—topology is defined
by saying that ¢, — 0 in case all suppy, C K and ¢,, — 0 in the C?—topology for each
p.
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Definition 2.1.1 A distribution on R™ is a linear map T : C°(R™) — C that is contin-
uwous in the C°° topology. The distribution is said to be of order p if it is continuous in the

CP—topology.

(p,q)-currents on complex manifolds

Let

EPY(M) = {smooth (p,q) — forms on M}

DPA(M) = {smooth (p,q) — forms on M with compact support}
and the dual space of DP?(M) is defined by:
(DPU(M))* =D, (M) = (D)™ P""4(M).

An element © € D, (M) is called a current of bidegree (m —p, m —q) or bidimension (p, ¢)

or simply a (m — p,m — q)-current. A (p,p) current 7T is real in case T = T in the sense

that T'(p) = T() for all ¢ € DPP(M) and a real current is positive in the case
(WD DRT(pAG) 0, e DPO(M).

Especially noteworthy are the closed, positive currents. Note that for the real current T

of type (p,p),
dT =0 <= 9T =0T = 0.

The positivity of a current implies that it is of order zero in the sense of distributions. For

example, a current 7' € DV1(M) is locally written as

J—1 3
T= 5 Ztijdzi A de,
z?]
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a differential form with distribution coefficients defined by
tij(@) = (=)™ (adzy A Adzg A+ Adz AdZLA - dZ; A - dZ).
The current is real if ;; = t;;, and positive if for any A, - - A, the distribution
o T)(@) = (3 tAy ) (@)
ihj
is nonnegative on positive functions.

For © € D'(M), we define the exterior derivative to be the current d® € D' (M)

given by
dO(p) := (-1)"'O(dyp), ¥ p € D"ITH(M).

A real function ¢ € L'(M,loc) is said to be plurisubharmonic in case /—199¢ is a

positive (1,1) current.

2.1.2 Non-integrated defect for meromorphic maps

Let M be an m-dimensional complex Kdhler manifold. Let f be a meromorphic map of
M into P*(C), up be a positive integer and D be a hypersurface in P*(C) of degree d with
f(M) ¢ D. We denote the intersection multiplicity of the image of f and D at f(p) by
v/ (D)(p) and the pull-back of the normalized Fubini-Study metric form ©Q on P*(C) by

;. The non-integrated defect of f with respect to D cut by jg is defined by
5£O(D) :=1—inf{n > 0: n satisfies condition ()}.

Here, the condition (*) means that there exists a bounded nonnegative continuous function

h on M with zeros of order not less than min(v/ (D), uo) such that

7['
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where d is the degree of D and we mean by [v] the (1, 1)-current associated with a divisor
v. Note that the condition (%) also means that, for each holomorphic function ¢(# 0) on
an open subset U of M with v, = min(v/ (D), uo) outside an analytic set of codimension
> 2, the function u := log(h?|| f]|?#/|¢|?) is continuous and plurisubharmonic on U, where
W12 = [fol> + -+ |ful? and f = [fo: ---: fa] is a (local) reduced representation of f.

So, similar to the classical Nevanlinna’s defect, we have the following properties:

e 0< (5,{0(D) < 1. To see 5,]:0(D) >0, take n = 1 and h = |Q(f)|/||f||¢, where Q is the

homogeneous polynomial defining D;
e If f(M)N D = (), then, by taking n = 0,h = 1, we have that 5,{0(D) =1;

e If v/ (D)(p) > pfor all p € f~1(D), with some positive integer uu > pg, then 650 (D) >

1 — po/p by taking n = po/p and h = |Q(f)|/|| f||Ho%/#.

The relationship between the non-integrated defect and the classical Nevanlinna’s defect

is given as follows.

Proposition 2.1.2 Iflim, .z, Ty(r,r9) = 00, then
0 <6/ (D) <8/*(D) <1,

where §* is classical Nevanlinna’s defect.

Proof: Take 7 satisfying the condition (x) in the definition of 5£O(D). The function

v := dnlog|| f[[+log h —log ||
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is then plurisubharmonic, where h is bounded and ¢ is holomorphic on B(Ry) with v, =

min(v7 (D), uo) outside an analytic set of codimension > 2. Therefore,

0 S/ VO, —/ VOm,
S(r) S(ro)

:dn/ log||f||0m—|—/ logham—/ log |plom + K
S(r) S(r) S(r)
< dnTy(r,ro) — Nf“\(r, D) + K

where K is a constant, because h is bounded from above. This implies that

Ny"l(r, D) . K
dTy(rr) — " Ty(rro)

As r — Ro, we obtain ¢3 (D) > 1 —mn. Hence d;, (D) > 5{;0 (D). O

Let Dy, ..., Dq be hypersurfaces in P"(C) of degree d, located in general position, and
let Q;,1 < j < g, be homogeneous polynomials defining D;. Let N be a large integer (to be
determined later), and let V be the space of homogeneous polynomials of n 4 1 variables
of degree N. Pick n distinct polynomials vi,..., 7, € {Q1,..,Qq}. Arrange the n—tuples
i = (i1,...,4,) of non-negative integers by lexicographic order. Define, for the n—tuples
i= (i1,...,in) of non-negative integers with o(i) := >_,i; < N/d, the spaces W; := Wi

by

Wii=> 2 1" Viv_do(e)-

e>i

Clearly, Wi, 0y = Vv and W D Wy if ' > i, so that the {W;} in fact defines a filtration

of V. We recall the following lemma due to [14].

Lemma 2.1.3 (See [1}], Proposition 3.3) For any nonnegative integer N and any {1, ..., n} C

{Q1,..,Qq}, the dimension of the vector space

VN
(Y1, ooy vn) N VN
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is equal to the number of n—tuples (i) = (i1, ...,in) € Z% such that iy + -+ + i, < N and

0<i1,..,in <d—1. In particular, for all N > n(d — 1), we have

VN _
(’717 7771) N VN

dim "

Lemma 2.1.4 (See [16], Lemma 3.2) There is an isomorphism

W ~ VN—dO’(i)

Wi~ (91, 9) N VN—do(i)’

where i > i are consecutive n—tuples with W} C Wj.

Let A = dim(W; /Wy ), where i’ > i are consecutive n—tuples with Wy C W;. By lemma
2.1.3, A; = d" for every i such that N — do(i) > n(d — 1). Moreover, Lemma 4.1 implies
that A\ is independent of the choice of 71, ...,7,. Hence, > ;4;/; is independent of the

choice of v1,...,v, and j for j =1,...,n. Set, for 1 < j < n,

A= i A (2.1)
Lemma 2.1.5 With N = 2d(n + 1)(nd + n)(2" — 1)(I(e™') + 1) + nd for any € > 0, we
have
IN
N <d(n+1)+¢/2, (2.2)
N+n
where | = . Moreover, | satisfies the following estimate
n
1< 27 e 2 (I (e 1)), (2.3)

where I(x) := min{k € N: k > z} for a positive real number x.
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Proof: First notice that

N+n (n+N)(n—|—N—1)---(n+1)N!<(N—|—n)”'

= - Nln! - n!
n

Now since N is divisible by d, it follows from lemma 2.1.3 that,

A= > Nz Y pil=dt Y g
o(i)<N/d o(i)<N/d—n o(i)<N/d—n
" n+1 ‘
T+l Z Z K
oc()=N/d—n J=1
d'r‘L
= > (N/d—n)

n+1
o(i)=N/d—n

I (N/d )(N/d—n)

n+1

_ NN —d)-- (N —dn)
B d(n +1)! ’

where i = (i1,...,in+1) and, in above, we used the fact that the number of nonnegative

integer m-tuples with sum < T for a positive integer T is equal to the number of non-

T+m
negative integer (m + 1)-tuples with sum exactly 7', which is ( )

For every integer j < n, (N —dj) > (N — dn); so

HNidj = <N—1dn>n

j=1
and thus
IN N +n\n
— <
A Sdnt U(N = nd)
Using

N =2d(n+1)(nd +n)(2" — D)(I(e 1) +1) +nd
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one finds that

() = (5 0)’

N —nd

=

nd+n
N —nd

= (1+

<14 (2" -1)

Therefore

% <d(n+1)+e¢€/2.

To estimate I, we use following inequality

T+y SW:(l"‘i)x <1+:yc>y: (e(l—i—gc))y

xryY
y Yy

for positive integers x,y. Hence, with N = 2d(n + 1)(nd +n)(2" — 1)(I(e™') + 1) + nd, we

have
N +n n
= <em <1 + N)
n
n
<e"(14+2dn+1)(d+1)©2" - 1) (e ) +1)+d)"
§ 2n2+4nend2n(nl(6—1))n‘
O

The main result of this chapter is the following theorem:

Theorem 2.1.6 Let M be an m-dimensional complete Kahler manifold and f : M —

P™(C) be a meromorphic map which is algebraically nondegenerate (i.e. it’s image is not
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contained in any proper subvariety of P"(C)). Assume that the universal covering of M is
biholomorphic to a ball in C™. Let Dy, ..., Dq be hypersurfaces of degree d; in P"(C), located
in general position. Let d = l.c.m.Ady,...,dq} (the least common multiple of {d1,...,d4}).
Assume that, there exists a nonzero bounded continuous real-valued function h on M such
that pr—i—\/Z?@é log h? > Ric w for some non-negative constant p. Then, for everye > 0,

pl(l—1)

q
S ol (Dj) <n+1+e+ T
j=1

where 1 < 27°Fnen@2n(nI(e= )" and I(z) = min{k € N : k > z} for a positive real

number x.

Proof: Since the universal covering of M is the unit ball in C™, by lifting f to the covering,
we may assume that M = B(1) C C™. So we let f: B(1) — P"(C) be an algebraically
nondegenerate map. The proof of the main theorem breaks into the following two cases:

the case

: Tf(T’, 7’0)
1 ___J N7 7
e P e 11—y ©

and the case

T
lim sup 7f(r7 o) =
r—1  logl/(1—r)

We first deal with the case when

. Tf(?", TO)
1 —_— .
ry SUP log1/(1—7) <

Let Dy, ..., Dg be hypersurfaces in P"(C) of degree di,...,d,, located in general position.

Let @j,1 < j < g, be the homogeneous polynomials defining D;. Replacing @; by Q;-l/ 4i
if necessary, where d is the l.c.m (the least common multiple) of d;’s, we can assume that

Q1,...,Qq have the same degree d. For N € N, let Viy be the space of homogeneous
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polynomials of n + 1 variables of degree N and fix a (arbitrary) basis ¢1, ..., ¢;, where
| = dimVy. Set F = [¢p1(f) : -~ : &(f)]. Then F : B(1) — P!I=}(C) is linearly non-
degenerate. By Proposition 1.3.11, there exist o/ = (aj1,...,a;) with aj; > 0 being
integers, |o/| < 1 —1for 1 < j <1, and |o!| + --- 4 || < I(I — 1)/2 such that the

generalized Wronskian W, (F') # 0.

Given z € B(1) there exists a numbering {i1,...,4,} of the indices 1, ..., ¢ such that

Qiy 0 F(2)] < -+ < Qi © f(2)]- (2.5)

Since (1, ..., Q4 are in general position, Hilbert Nullstellensatz implies that for any integer

k,0 < k < n, there is an integer m; > d such that

n+1
.%';nk = Z bjk(wo, ceey .I‘n)QZ] (.1'0, ceny .I‘n),
7=1

where bji, 1 < j <n+1,0 <k < n, are homogeneous forms with coefficients in C of degree

mg — d. So

[fu(2)™ < el f) 1™ max{|Qi, (F)(2)], s 1Qir (£ (2]}

where ¢ is a positive constant depending only on the coefficients of b, thus depends only

on the coefficients of ;. Therefore,

1F I < ermax{]Qu, () ()], -oes [ Qs (N ()1} (2.6)
By (2.5) and (2.6), we get

]Hl@j(fﬂz)igl ,H|Qik<f><z>|' (2.7)

Take v1 = Qiy,--- , 7 = @i, and let Vy = Wy D ---W; D Wy D --- be the filtration
of Vi, associated to {v1,...,7v,} as discussed earlier. We now choose a basis 1, ...,

for Viy in the following way: We start with the last nonzero Wj and pick a basis of it;
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Then, we continue inductively as follows: suppose i’ > i are consecutive n—tuples such
that do(i),do(i’) < N and assume that we have chosen a basis of W(y); Tt follows directly
from the definition that we may pick representatives in Wj for the quotient space Wi/ Wy,
of the form vil -y, where 1 € VN_do(i)- We extend the previously constructed basis
in Wy by adding these representatives. In particular we have obtained a basis for Wj and
our induction procedure may go on unless W; = V. Note that if we let ) be an element
of the basis constructed with respect to W; /Wy, then we may write ¢ = ’yil - yiny, where

1 € VN_do(i)- Thus we have a bound

() < 2l (HE - (N L)V (2.8)

where ¢ is a positive constant which depends only on f and Q1,...,Q,. Observe that there

are precisely A\; such functions 1 in our basis. Write 1, ...,%; as linear forms L1, ..., L; in

@1, ..., ¢ so that Y (f) = L(F), where F' = [¢1(f) : -+ : ¢(f)]. Then (2.8) implies that
l . . .
11 P <K | TT bR GE) 3 (FEDI | 1)V -5,
t=1 i=(i1,...,in)
where, as we noted earlier, K is a constant depending only on f and D1, ..., D, which may

be different each time. So

ZAH <z>ud2-0<if' < g @I
[T S FED b S G T | L)

thus, using (4.1),

O T (5]
SN FE T T |L(F )

Wlth 71 = Qi17 oy In = Qin7 it gives

IFEIe e 1IN
< : (2.9)
QEUED) QU EN T Ty [L(F ()|
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On the other hand, from (2.7),we get

QT (f(2) Qe (fN ~ 1R (N(E) Q5 (N(E)]
Combining (2.9) and (2.10), we derive that
O N 110
QLU QUGN ™ Ty |L(F ()
Hence,
dgA—IN
I N Wr ot (P o Wor ot (EI o)
Q1 (F(2)) - Qg (£(2))] (L (F(2)) - La(F(2))]
Note that although L1, ..., L; depend on z, there are only finitely many such choices since
there are only finite choices of {v1,...7} C{Q1,...,Qq}-
We continue with the proof of the Main Theorem by absurdity. We assume that
pQf + —”2_185 log h? > Ric w, (2.12)
T
and
g pl(1—1)
> 6 (Dy) > (1) +et+——— (2.13)
j=1

Then, from the discussion earlier, there exist constants 7; > 0 and continuous plurisubhar-

monic functions @;(# —oo) such that e%|p;| < ||f[|4" for j = 1,...,q, and

q
l(l—1
q—an>n+1+e+p(d),

j=1

(2.14)

where ¢; is a nonzero holomorphic function with ng = min(v/(D;),l — 1). Let uj =

@j +log|pj|. Then, u;(# —00),1 < j < ¢, are continuous plurisubharmonic functions,

e < | £l (2.15)
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and u; — log |p;| is plurisubharmonic, where ¢, is a nonzero holomorphic function with

I/gj = min(v/(D;),l — 1). Let

aldtal Wal...al(F)
QU (f) - QF

where A is the integer defined in (4.1). We now show that v is plurisubharmonic on

v :=log |z

G ’ + Zl Auy, (2.16)

M = B(1). To do so, we need the following lemma.

Proposition 2.1.7 In the above situation, set

= Wat i (F)
QY(f) - Q7 (f)
Then
q
vy <D Amin{g 1 -1}
j=1

outside an analytic set of codimension at least two.

Proof: Let Iy be the indeterminacy set of F, and take a € B(1)\Ip. We first show the
following claim: For h a holomorphic function around a, assume that Dh #Z 0 around
a. Then /9., (a) = max{0,v)(a) — |a|}. To see this, take a system of holomorphic local
coordinate z = (21, ..., 2y, ) in a neighborhood of a such that z(a) = 0 and h can be written
as h = zly’g(a)iz, and h has no zero in a neighborhood of a. From this representation of h,

we can easily conclude the claim.

Now for each a € B(1)\Ir, without loss of generality, we may assume that Q;(f)
vanishes at a for 1 < j < ¢; and Q;(f) does not vanish at a for j > ¢;. By the assumption

that the @Q;’s are in general position, we know ¢; < n.

For {Q1,...,Qn} C{Q1,...,Qq}, consider the filtration Vy = Wo D --- W; D Wy D - -+,

associated to {Q1,...,Qn,} as discussed earlier, and take a basis 91, ..., ¥ of Viy according
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to this filtration. Then, there are linearly independent linear forms L, ..., L; such that
Pi(f) = Ly(F),1 <t <. Denote by W := W_1 i (F), the generalized Wronskian of F'.

From the basic properties of generalized Wronskian (see [9] Proposition 4.9),

W= Wal...al(F) = CWal...al(Ll(F)v .- 7Ll(F)) = CWal...al(wl(f)v 7¢l(f))a

where C' is some constant. Let 1) be an element of the basis {¢1,...,1¢;}. As we discussed

earlier, we may write ¢ = Q%' - -- Q'ry with 7 € Viy_gp(s). Therefore
1 n (@)

G(f) = (@)™ - (@u(F))™n(f),

and note that there are /\; such 1 is our basis. Assume that V%j(f)(a) >l—1for1<j<qo
and V%j(f)(a) <l —1for ¢ < j < q1. Since, from above, W = Cdet(Dai(wj(f)))1§i7j§l,
by the claim (note that there are /\; such v is our basis), and noticing that |a/| <1 — 1
for 1 <j<I,

q0

viv(a) =) | D iy, (a) = 1= 1)) | &

=1

(Z @&) (1 (@) ~ (1= 1) = &Y (v, (@) ~ (1~ 1)
j=1

i

I
<.
i Mg -
I

On the other hand,

q n qo0 q1
0 _ 0 _ 0 0
D@ =D v,pn(@) =D vd pla) + Y vy, (@)
i=1

J=1 J=1 J=q0

Hence, vj°(a) < Z?ZO Amin{vg,p(a),l -1} O
From the above proposition, by the definition of v (see (2.16)), and using the fact

that u; — log|p;| is plurisubharmonic and l/g,j = min(v/(D;),l — 1), we see that v is

plurisubharmonic on M = B(1).
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2.1. NON-INTEGRATED DEFECT FOR MEROMORPHIC MAPS

We now continue our proof. By the growth condition of f (see (2.12)), there exists a

continuous plurisubharmonic function w Z —oo on B(1) such that

edV <||f|I**vm. (2.17)
Set
2p
- : 2.18
gd A —=IN — Ad(ni + -+ +14) ( )
and
ol edat Wal...al(F)
X =2z = A
Qy (f)-Qq (f)
Define

u:=w + tv.

Then w is plurisubharmonic and so subharmonic on the Kdhler manifold M.

By the result of S.T. Yau ([20]) and L. Karp (][22]), we have necessarily

/ e'dV = oo,
B(1)

because B(1) has infinite volume with respect to the given complete Kahler

metric (cf.[22], Theorem B). Now, from (2.15), (2.17) and (2.18)
e'dV = eV TV < e f||*Pvm

q
= xI" H BN | FIPPom < IxI%( HHthAd"J ) IF 110

7j=1

dny 4 . _
= |2 g = [y BN

m-

The contradiction will appear if we can show that

/ e*dV < oo.
B(1)
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2.1. NON-INTEGRATED DEFECT FOR MEROMORPHIC MAPS

From the lemma 2.1.5, % < d(n+1)+e Thus qd — % > d(qg— (n+1+4¢€)). So, using

(2.14),

q q
dg A —IN =AY dpy >dA(g—(n+14€)— A dn; > Apl(l— 1),
j=1 i=1

This implies that /(1 —1)/2 < 1. Since |a!|+ -+ +|al| < I(I —1)/2, we can choose p’ such

that t(|a!| + - +]al|) < t(l—1)/2 < p' < 1. By the help of the identity (cf. [23], p.226),
Uy = (dd°|2)?)™ = 2m|z|*™ Loy, Ad)2|,

we have

/ eMdv < / Ix[F] f[CaB—tNY
B(1) B(1)

<om [ ([ s, Yar
:2m/ r2m_1(/ z
0 S(r)

On the other hand, by (2.11),

et Wat ot (P F 405N Nar.  (219)

QL) Qe (f)

(Warot (F)[[|£][ 922~ (War ot (F)]
Q2 (f) -+ Q5 ()] SKLI;LZQLI( F)-- Ll(F)]>’ (2.20)

where the summation is taken for all the possible linear forms choices of the linear forms

Ly,...,L;. Note that the set of linear forms {Li, ..., L;} comes from the filtration of Vi
associated to the {v1,...,7} C {Q1,...,Qq}, hence the number of choices of the sets
{Li,...,L;} is the same as the number of the choices of the sets {v1,...,v,}, which is
finite. Hence the summation in (2.20) is a finite sum whose number of terms depends only
on f and Q1,...,Q,. By Proposition 1.3.16, for each Lq,..., L,

/S(T‘)

2m—1 ’

oddtal Wo, az(F) t R P
Lottt i LZ(F)’am§K<R TF(R,TO)) . (2.21)
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2.1. NON-INTEGRATED DEFECT FOR MEROMORPHIC MAPS

2m—1 '
Te(Rro) ,  (2:22)

Combining (2.20) and (2.21) thus gives
t
/ Za1+~~~+al AWal...al(FA) Hf”t(qu—lN)o,m < K(R
S(r) Qr(f)-Qq (f)

for ro < r < R < 1, where, as we noted that, we use the letter K to denote a constant

—-T

depending only on f and Dy, ..., D, even when it should be replaced by a new constant.

According to Lemma 2.4 in [5], if we choose R :=r + (1 — r)/eTr(r, o), then
Tr(R,ro) < 2Tp(r,m0) < 2dTy(r,70)

outside a set E with [, 1/(1 —r)dr < oco. If

Tf (7", TO)

I AT
M S 0e 1 /(1 — 1)

< 00,
T

then (2.22) becomes

/ zoc1+-~~+0cl Wozl...oel(F)
5(r) Qr(f)--Qr

for all r € [0,1) outside a set E with [,1/(1 —r)dr < co. Varying a constant K slightly,

K /
G ‘tIIfII“d"A“N)am S (1og - ! T)p (2.23)

we may assume that the above inequality holds for all r € [0, 1) because of Proposition 5.5

in [9]. Therefore, by (2.19) and (2.23), we have

1 ,.2m—1 1 /
/ e“dVSK/ T7,<log )pdr<oo,
B(1) o (I—r)P L—r

since p’ < 1. This contradicts the result of S.T. Yau ([20]) and L. Karp ([22]) mentioned

earlier. This completes the proof for the first case.

We now deal with the case where

This case is similar to the standard Nevanlinna theory. We use the logarithmic derivative
lemma and the previous discussions to prove the following refinement of the Second Main

Theorem (see [16]).
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2.1. NON-INTEGRATED DEFECT FOR MEROMORPHIC MAPS

Theorem 2.1.8 Let f : B(Ry) — P"(C), 0 < Ry < oo, be a meromorphic map which
is algebraically nondegenerate and D1, ..., Dy be hypersurfaces of degree d;,1 < j < q, in

P™(C) located in general position. Then, for every e > 0,

q
(= (n+14¢)Tt(r,r0) < Zdj_lN}l_l] (r,Dj) + S(r),
=1

where | < 27 F4nen@2n(n (1)), d = l.e.m{dy, iy dg}, and S(r) is evaluated as follows:

(1) In the case Ry < oo,

S(r) < K(logJr 7 !

— + log™ T (r, 7"0)>

for every r € [0, Ry) excluding a set E with fE ﬁdt < 00.
(2) In the case Ry = oo,
S(r) < K(log™ Ty(r,ro) + logr)
for every r € [0, Ry)excluding a set E' with [, dt < oc.

Proof: Without loss of generality, we assume that dy = --- = d, = d. Similar to the proof

of (2.22), by using (2.20) and Proposition 1.3.16, we have

aldtal Wal...al (F) t H(dgA—IN) R2m—1 o
A7 m <K Tr(R, . (224
/ﬂw ) Qf(f)m@f(f)’” ” o < K(G Teiro)) 229

for ro < r < R < Ry. Hence, by virtue of the concavity of the logarithm, the above
inequality implies that
W, F
t/ log ‘Za1+...+al|am + t/ ]og‘ ~ ool ( A) Ot
S(r) sty 1@y (f)--Qq (f)

t(dq & —N1) / tog]|fllom

S(r)

< K(logJr % +1logt Tr(R, r0)> +0(1), (2.25)

53



2.1. NON-INTEGRATED DEFECT FOR MEROMORPHIC MAPS

for ro < R < Rp. But, by the Jensen formula (see [9], p236),

Wal...al(F) d
™ 0 ) — A . D .
/S(T) log ‘ Qf(f) = QqA(f) o NVWalmaMF) (ro,7) ZNf(r Dj;)+0(1)

By Proposition 2.1.7, Azgzl N¢(r,Dj) — N,

12

j=1

-1
by 07) S XTI D)) and

(F)

al

therefore (2.25) becomes

q
-1, . + R +
(dg & —NITy(r) < ; ANE(r, D)) + K(log =+ log" Tn(R, ro)) +0(1).

By Lemma 2.1.5, with N = 2d(n + 1)(nd + n)(2" — 1)(I(e7!) + 1) + nd for any € > 0, we

have
IN
N <d(n+1)+e,
and moreover, | satisfies [ < 27" T4mend2n (n](¢=1))". Hence,

q
- R
— < —1p7li=1] . +_ " +
(q (n+1—|—e))Tf(r)_]Eld N; (r,DJ)—I-K(log R—r+10g TF(R,T()))

<S a NI D) + K(log+ % +1log" Ty(R, 7«0)). (2.26)

f

M=

[
Il
—

Since T¢(r,r9) is continuous, increasing and we may assume T¢(r,79) > 1, we can apply

Lemma 2.4 in [5] to show

Tf(T'—i- Fo —

- < 2T
eTy(r, TQ)7TO> < 2T(r,mo)

outside a set E of 7 such that [, 1/(Ro —r)dr < oo in the case Ry < co and

1
Ty (7‘ + W,To) < 2T%(r,ro)

Tf?“

Ro—r
6Tf (T’TO)

outside a set E’ of r such that fE, dr < oo in the case Ry = co. Substituting R = r+

if Rp <ooand R=1r+1/T¢(r,r) if Rg = oo in (2.26) proves the theorem. [
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2.1. NON-INTEGRATED DEFECT FOR MEROMORPHIC MAPS

Corollary 2.1.9 In the same situation in Theorem 2.1.8, if

T
(¢) limsup _Tinro) =00

r—R, 10g(1/Ry—1)

or

then

Z‘Slf—l( Zéf’ )<n+1+e,
J

where 61* is the classical Nevanlinna’s defect defined by

N[l_l] (r, Dj)
ﬁﬂ@%)zhmim 1_4éfﬂ7ﬂﬁf
r—Rop )

Corollary 2.1.9 gives the proof of the second case. The proof of the Main Theorem (Theorem

1.1) is thus complete. [

We remark that in the case M = C™ endowed with the flat metric, we also have the
following statement (see Corollary 2.1.9) which is essentially due to Min Ru (see [16] and

[18]) without the truncation and An-Phuong with the truncation (see [2]).

Theorem 2.1.10 Let f : C™ — P"(C) be a meromorphic map which is algebraically
nondegenerate. Let Dy, ..., Dy be hypersurfaces of degree d; in P"(C), located in general

position. Let d = l.c.m.{dy,...,dy}. Then, for every e >0,

2:5 Y<n+1+e,

where | < 2”2+4”e"d2"(nf(6_1))”, I(z) := min{k € N: k > x} for a positive real number

x, and 51]0;*1 (D) is the classical Nevanlinna’s (truncated) defect of f with respect to D.
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Note that, from the discussion above, we have that (5{71(D) < 5{;*1(D) (see Proposition

2.1.2). Thus, Theorem 2.1.6 and Theorem 2.1.10 are complementing each other.

2.2 Uniqueness theorem

In 1926, R. Nevanlinna proved that for two distinct nonconstant meromorphic functions f
and g on the complex plane C, they cannot share more than four distinct values; namely,

in [1], the following unicity theorem for meromorphic functions on C

Theorem 2.2.1 Let ¢, be nonconstant meromorphic functions on C. If there exist five

distinct values ay, ..., a5 such that ¢~1(a;) =¥~ (a;) (1 <i<5), then ¢ =1

Let M be a complete, connected Kdhler manifold, whose universal covering is biholomor-
phic to the ball in C"™ . Generalization of the above theorem to the case of meromorphic
maps of M into P"(C) satisfying certain growth condition (see the condition (C,) in The-
orem 2.1.6) and sharing hyperplanes is given by Fujimoto (see [11]). He obtained a lower
bound on the number of shared hyperplanes by two linearly nondegenerate meromorphic
mappings on M to be identical. In this section, we extend the result in [11] to the case
where the meromorphic maps share hypersurfaces instead of hyperplanes. The main result

of this section is:

Theorem 2.2.2 Let M be a complete, connected Kahler manifold whose universal covering
is btholomorphic to the unit ball in C™, and let f and g be algebraically nondegenerate maps

of M into P*"(C). If f and g satisfy the condition (C,) and there exist q hypersurfaces
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2.2. UNIQUENESS THEOREM

D;, j=1,...,q, of degree d located in general position in P"(C) such that

(i) f =g on U, (f{(Dj)Ug ' (Dy)),

(i) > (4 1) + % . 2n(ld— D pl(ld— D,

where 1 < 27° 40 (3n)end® | then f = g.

Proof: For the proof of the Main Theorem, we may assume that M = B(1)(C C™).

Indeed, if 7 : M — M is the universal covering map of M, then f = for and §=gom

also satisfy the assumption of the Main Theorem on the Kéhler manifold M and f = § on

M implies f = g on M. So we may assume that M = M. Let f, g : B(1) — P"(C) be

algebraically nondegenerate meromorphic maps satisfying all the assumptions in Theorem

2.2.2. We shall show that the assumption f # g leads to a contradiction. The proof of the

theorem breaks into the following two cases:

T
lim sup 00
r—1 logl/(1—r)

and the case

T
lim sup M = Q.
r—1 logl/(l—r)
We first deal with the case
. Ty(r,m0)
| _— .
Py SUP log1/(1—7) <0

Let

w= Z hijﬂ;Ddzi A dz;
.3
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2.2. UNIQUENESS THEOREM

be the given Kdhler metric form on B(1). By assumption there exist continuous plurisub-

harmonic functions u; and ug on B(1) such that

e det(hz)"* < [|f]”

¢ det(h;3)'/? < |g|1”

Set 1= 2@ T+ H and o := A" where

o F Ws(G
o= oD maw O
Qr (f)--Qq (f) Q1 (9)--Qq (9)
Now, we choose distinct indices ig and jg such that
X = fio%jo — fjoGio- (2.27)

Note that if x = 0 for all indices ig and jg, then f = g . For x not identically zero, if
v (p) > 0 for a point p € B(1), then Q;(f)(p) = 0 for some j < q. Then p € f~1(D;) C
U?Zl(f_l(Dj)Ug_l(Dj)) and so f(p) = g(p) = 0. This implies that x(p) = 0 and vg® < v7.
Hence, by proposition 2.1.7 and the fact that the hypersurfaces are in general position, we

can conclude that

Ng(r,m9) < An(l — 1)N£(r, 0)-
Similarly, we have

N (r,m9) < An(l — 1)N>(<)(r, 70)-

On the other hand, we have ||x|| < 2||f]|llg]]- It then follows that outside of an analytic set
of codimension > 2, the functions (]EXA"(Z*U and @XA”(Z*D are both holomorphic on B(1).
Set

ti= &
T dqgA—IN—2An(-1)
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2.2. UNIQUENESS THEOREM

and define a plurisubharmonic function u by
u = tlog |¢~>1/~1x2A”(l_1)].
Since p+2 Atn(l — 1) = t(dg A —IN) we obtain that

det(hyg)e itz < |G [ x>V £1°) g1?

< K‘(Z~5|tlqﬁ‘tH'prJFQAtn(l*l)HgHPJFQAtn(lfl)

< K[| ]| f|[ (4=t g || Hdas=tN)
for some constant K. The volume form on M is given by
dV = Cm, det(hﬁ)vm

Therefore,

I:= / eututuz gy
B(1)

<K [ B g et
B(1)

where K is some positive constant.

Let p1 = po = 2; then p% + p% = 1 and by Holder inequality we have:
I< K(/ |d~)|tp1 ||f||tp1(qu+lN)Um> 1/pm (/ m‘tpgHgHtpg(qu—lN)vm) 1/p2
B(1) B(1)
1 ~ 1/p1
<k ([ ([ gamse s e, )an)
0 S(r)

1
(/ T2m1(/ |1;|tp2HgHth(qule)O_m)dT)1/172.
0 S(r)

Using Lemma 2.1.5 with € = d, we have

—ZKN > —d(n+1)—d/2.
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So
qu—HV—2AnU—1%:AQM—%¥—ZML—D)
> A(dg — d(n+1) - g ~on( - 1))
:dA(q(nJrl);%(z_l))
> (H0)
= Apl(l —1).

So

tpal(l = 1)/2 =tpl(l - 1)/2=tI(l - 1) = dg A\ —ljl\(fl—_;)ﬁpn(l -1)

1

<
- A

<1

Take some p’ with 0 < tl(l—1) < p’ < 1. By the same argument as in the proof of Theorem

2.1.6, it follows from Proposition 1.3.16 that for rg < r < R < Ry,

/ P f e g / (1|1 £ @n-EWpit,
S(r) S(r)

:/ |Za1+,,,+an+1 Wa<F)HfH(qu*LN)
) QT ()--Q5(f)

1 T¢(R, ro))p

-Tr

|p1to.

m

éKi‘”(R

Likewise, we have

1 P’
7 Ty(R.0))

[ gt < g
S(r

We can conclude that

/ eututuz gy - oo
B(1)
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2.2. UNIQUENESS THEOREM

On the other hand, by the result of Yau ([20]) and Karp (][22]), we have

/ eltuituz g/ — 00,
B(1)

because u + w1 + usg is plurisubharmonic. This is a contradiction.

We now deal with the case

Tf (7“ 7"())

1 — L = =
m sup1 gl/(l—r)

Now, applying theorem 2.1.8 with € = 1/2 to the maps f and g, we get

£S

(q— (n+1) = 1/2)Ts(r,ro) < S d N}, D) + 54 (r),
J=1

L=}

(q— (n+1) = 1/2)Ty(r,ro) < Y _d 'NIU(r, Dj) + S,(r),
7=1

where S¢(r) and Sy(r) are giving like in theorem 2.1.8. Adding these two inequalities give
q
(0= -+ 1) =172) (Ty(ro. ) + Ty(ro,m)) < - Z (r.D;) + N}, D)
Sg(r) 4+ S¢(r).

Using the fact that the Djs are in general position, the sum 2521 (Nj[cl_l]( D; )+N[l 1]( Dj))
counts each point of the set A = U?Zl(ffl(Dj) Ug~1(D;)) with order at most 2n(l — 1).
Hence,
2n(l —1)
<q C(n+1)— 1/2) (Tf(ro, r) + Ty (o, r)) < RN A) + Sy(r) + S5(r). (2:28)

We now claim that

N(r,A) < Tf(?“o,?”) + Tg(To,T) + O(1).
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2.2. UNIQUENESS THEOREM

Indeed, consider the map x := fi;gj,—fjo 9i, defined in (2.27). If z € A, then f(z) = g(2)

and so x(z) = 0. It then follows that N(r, A) < NQ(r,ro). By the first main theorem,
Ng(r, ro) < Ty (r,ro) + O(1) < Ty(r,ro) + Ty(r,m0) + O(1),

where in the last inequality, we have used the fact ||x|| < 2||f|||lg]]. The claim then follows.

(2.28) therefore gives

(4= (n+1) = 1/2) (Ty(ro,m) + Ty(ro,7)) <
2n( —1)
d

<2n(ld— 1) I Pl(ld_ 1))(Tf(7”) + Ty(r)) + Sg(r) + Sp(r).

(Ty(r) + Ty(r)) + Sg(r) + S¢(r) <

So

2n(l—1) pl(l—1)
d d

(4= m+1)-1/2- )@y (r0,7) + Ty (ro, 7)) < Sy(r) + Sy (r).

(2.28) therefore gives

(= (4 1) = 1/2) (Tylro.r) + Ty(ro.r)) <
(1= 1)
d

(Qn(ld— 1) n pl(ld— 1))(Tf(7“) +Ty(r)) + Sg(r) + Sg(r).

(Ty(r) + Ty(r)) + Sg(r) + S¢(r) <

So

2n(l—1) pl(l—1)
d d

<q —(n+1)—1/2— )(Tf(ro,r) + Ty(ro, 7)) < Sy(r) + Sg(r).

If Ry = oo, then (2.28) leads to a contradiction since

f Si) + 84(r)

=0.
r—o0 Ty(ro, 1) + Ty(ro,7)
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In the case Ry < oo, if we assume

i sup — 70
r—Ro 10g(1/R0 —T‘) ’

then, again (2.28) leads to a contradiction. We conclude the proof of Theorem 1.2.3 by

observing that I(1/d) < I(2), where I(z) := min{k € N: k > z}.

d

2.3 The Gauss map of a complete regular submanifold of C"”

For a general oriented k—submanifold of R™ the Gauss map can be defined, and its target
space is the oriented Grassmannian G kn, i-e. the set of all oriented £—planes in R". In this
case a point on the submanifold is mapped to its oriented tangent subspace. One can also
map to its oriented normal subspace; these are equivalent as @kn = C?n_k’n via orthogonal
complement. In Euclidean 3—space, this says that an oriented 2-plane is characterized
by an oriented 1-line, equivalently a unit normal vector (as élm &~ §7~1) hence this is

consistent with the definition above.

Finally, the notion of Gauss map can be generalized to an oriented submanifold X of
dimension £ in an oriented ambient Riemannian manifold M of dimension n. In that case,
the Gauss map then goes from X to the set of tangent k—planes in the tangent bundle T'M.
The target space for the Gauss map N is a Grassmann bundle built on the tangent bundle
TM. In the case where M = R", the tangent bundle is trivialized (so the Grassmann

bundle becomes a map to the Grassmannian), and we recover the previous definition.

Let f = (fi,..., fm) : M — C™ be a regular submanifold of C™, namely, M be a

connected complex manifold and f be a holomorphic map of M into C™ such that rank

63



2.3. THE GAUSS MAP OF A COMPLETE REGULAR SUBMANIFOLD OF CM

dyf = dim M for every point p € M.

To each point p € M, we assign the tangent space T,(M) of M at p which may be re-
garded as an n—dimensional linear subspace of T'4(;,)C™. On the other hand, each T),(C™)
is identify with Tp(C™) = C™ by a parallel translation. Therefore, to each T},(M) corre-
sponds a point G(p) in the complex Grassmannian manifold G(n, m) of all n—dimensional

linear subspaces of C™, where n = dim M.

Definition 2.3.1 We call the map G : M — G(n,m) the Gauss map of f : M — C™.

m
The space G(n,m) is canonically embedded in PV (C) = P(A"C™), where N = < ) —1.
n

The Gauss map G may be identified with holomorphic map of M into PV (C) given as
follows:
Taking holomorphic local coordinates (z1, ..., z,,) defined on an open set U, we consider the

map
/\::le/\-u/\an:U—>/n\Cm—{0},

where D;f = ((0/0z)f1,---,(0/0z;) fn+1). Then,

G=m/\

locally, where 7 : CN+! — {0} — P¥(C) is the canonical projection map.

A regular submanifold M of C™ is considered a Kdhler manifold with the metric w
induced from the standard flat metric on C™. By dV we denote the volume form on M.

We can see that For arbitrarily holomorphic coordinates z1, ..., 2,

dV = \/\ y2<‘/2_71>ndz1 ANdzi A - ANdzn A dz,
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2.3. THE GAUSS MAP OF A COMPLETE REGULAR SUBMANIFOLD OF CM

where
a(f’L a"'?f’i ) 2
AR= > |G
I inzm | O 2n)
For a regular submanifold f : M — C™ the Gauss map G : M — PN (C) satisfies

condition
Qg + dd°logh® = ddlog| [\ |* = Ric (w)
where h = 1.
As a direct consequence of Theorem 2.1.6 , we have
Theorem 2.3.2 Let f : M — C™ be a complete regular submanifold such that the uni-
versal covering of M is biholomorphic to B(Ry) (0 < Ry < +o00). If the Gauss map
G : M — PN(C) is algebraically nondegenerate, then for every hypersurfaces D1, ..., D,

of degree d; j = 1,...,q in general position, by letting d =l.c.m. {di,...,dq} (the least

common multiple of {d1,...,dq}), we have, for every e >0,

q

(-1
Y 67 1(Dj) < N+14e+ ( g )
j=1

m
where | < 2N HANNP2N(NT(e )N p = dim M, and N = —1.

n
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