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Abstract

Noise is pervasive in the nervous system. Individual neurons and neuronal networks

respond unreliably to stimuli and exhibit unpredictable spontaneous activity. A number

of experimental studies show that variability in the activity of nearby cortical neurons is

often correlated. In addition, both experimental and theoretical studies show that neu-

ronal correlations can significantly impact network dynamics and sensory coding. It is

therefore important to understand how correlations develop and propagate in neuronal

networks. Due to the non-linearity of neuronal dynamics, this is an inherently difficult

problem. In this work, we use simplified integrate–and–fire neuron models to describe

several of the dominant mechanisms that determine how correlations between the input

signals received by two neurons are transferred to correlations between their response.

We subsequently describe how correlations between the activity of neurons propagate in

feedforward networks and how this propagation can result in highly synchronized spik-

ing activity.
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Chapter 1
Introduction

The nervous system is an inherently noisy environment where individual neurons and

neural populations respond seemingly unpredictably to sensory and artificial stimuli [38,

133, 152]. The unreliability of neuronal responses is partially due to unpredictable changes

in behavioral and mental states [7, 142] and to deterministic chaotic dynamics of neuronal

networks [4, 140, 157]. However, noise is also introduced at the cellular level by physi-

cal and molecular processes [39, 59, 91]. Regardless of the sources of unpredictability in

the nervous system, it is clear that a realistic model of neuronal activity must be stochas-

tic [38].

Due to their noisy environment, neurons must encode information in the statistics of

their responses. One of the fundamental statistics that a neuron uses to encode informa-

tion is its firing rate, the rate at which the cell emits action potentials (also referred to as

spikes) that are used to communicate with other neurons. Firing rates are widely believed

to be a primary statistic that neurons use to encode information about sensory stimuli and

behavioral states [30].
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Figure 1.1: Correlations cause population signal–to–noise ratios to saturate. The signal–
to–noise ratio of a population of neurons as a function of the population size, m. If the
individual neurons’ spike trains are uncorrelated (⇢ = 0), the population signal–to–noise
ratio is proportional to

p
m. However, when the cells are correlated, even weakly, the

signal–to–noise ratio saturates at a finite value. Calculations were obtained from Eq. (1.1)
with SNRN = 1.

Due to the magnitude of noise in the brain, the activity of a single neuron over a

short period of time yields an unreliable estimate of the neuron’s firing rate. In particular,

the mean number of action potentials emitted by a neuron in an interval of time is often

roughly equal to the variance. The brain overcomes this difficulty by encoding informa-

tion in the firing rates of large populations of neurons [30].

If the response of each neuron in a population were independent, then the fidelity of

the population activity would increase steadily without bound with the number of active

neurons in that population. However, the number of spikes emitted by nearby neurons is

often correlated [37, 133, 134, 139, 161]. These correlations cause the fidelity of population

spike counts to saturate with the number of neurons in the population. This effect was

famously discussed in [161] and we review their discussion here.

Consider a population of m neurons and let Ni be a random variable that represents

the number of action potentials fired by neuron i = 1, 2, . . . , m during a time interval of
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length T. For simplicity, assume that each neuron has the same spiking statistics so that

E[Ni] = µ and var(Ni) = �2 for all i. Assume further that each pair of cells has the same

correlation coefficient, ⇢ = cov(Ni, Nj)/�2 � 0 for i 6= j. The firing rate of the neurons

can be estimated by the population response M = Âm
i=1 Ni which has mean E[M] = mµ

and variance var(M) = m(m� 1)⇢�2 + m�2.

The fidelity of the population activity is measured by dividing the mean of M by its

standard deviation to obtain the signal–to–noise ratio,

SNRM =
E[M]p
var(M)

=
mp

m(m� 1)⇢+ m
SNRN , (1.1)

where SNRN = µ/� is the signal–to–noise ratio of each Ni. If the spike counts of the

individual neurons, Ni, are independent then ⇢ = 0 and therefore

SNRM =
p

m SNRN .

Thus, the signal–to–noise ratio of the population activity increases steadily and without

bound as the number of neurons is increased. This is a simple consequence of the central

limit theorem. However, if the spike counts are correlated, ⇢ > 0, then

SNRM =
SNRNp
⇢

+O �1/
p

m
�

so that the signal–to–noise ratio of the population activity saturates at a finite value. This

effect is illustrated in Fig. 1.1. Note that even small correlations can have a dramatic

impact on the fidelity of rate codes when m is sufficiently large.

The example discussed above shows that correlations can be detrimental to coding by

causing the fidelity of a rate code to saturate with the number of neurons in an encoding

population. However, since the publication of [161], several studies have shown that

correlations are sometimes beneficial to coding and that the brain can use correlations to

encode information [1, 11, 18, 51, 95, 122].
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Figure 1.2: Correlations between the inputs to a neuron increase its firing rate. A model
neuron receives n excitatory Poisson inputs, each correlated with pairwise input corre-
lation ⇢in. The rate, rs, at which the neuron emits action potentials increases with ⇢in.
Results were obtained from simulations of a leaky integrate–and–fire (LIF) model with
parameters ⌧m = 15ms Vth = 30, and Vlb = �2 (membrane potentials are measured in
units of one postsynaptic potential, see Sec. 4.2.1). Correlated inputs were generated us-
ing the MIP algorithm described in Sec. 2.4, each with a rate of 1.5/n kHz for a total input
rate of 1.5kHz.

In addition to their impact on neural coding, correlations between the spiking activ-

ity of neurons can modulate the firing rates of downstream neurons [32, 40, 78, 97, 129]

and can profoundly affect the dynamics of neuronal networks [35, 88, 112, 153]. The ef-

fects of correlations on network dynamics are believed to play a role in attention [22, 143],

epilepsy [28, 160], and Parkinson’s disease [55, 58, 128].

A simple example of the effect of correlations on the firing rate of downstream neurons

is illustrated in Fig. 1.2: many cortical neurons operate in a regime where their mean in-

put signals are insufficient to elicit action potentials and spiking is driven by fluctuations

in their inputs. Such neurons respond more strongly to inputs with a larger variance.

Positive correlations between the inputs to a neuron increase the variance of the neuron’s

input signal and therefore increase the neuron’s firing rate [129].

4



An example of the effects of correlations on network dynamics is discussed in Sec. 9.4

and illustrated in Fig. 9.3. Each layer in Fig. 9.3 contains 2000 neurons and each neuron

draws its inputs randomly from the output of neurons in the previous layer. When cor-

relations are introduced at the second layer by overlapping inputs (A) or at the first layer

artificially (B), neurons in deeper layers spike synchronously. In the absence of correla-

tions (C) neurons in each layer spike asynchronously. This phenomenon is explored in

more depth in Sec. 9.4.

Correlated neuronal activity in the brain exhibits rich spatio-temporal structure and

this structure has important implications for both coding and dynamics [51, 107, 139, 160].

Positive correlations between spike trains over short timescales indicate synchrony and

correlations over longer timescales indicate dependencies between sample firing rates [13,

51]. Due to the non-linearity of neuronal filtering, the magnitude and temporal structure

of correlations between two neurons in a population depend non-trivially on the statis-

tics of the neurons’ inputs, their dynamical properties, and the dynamical state of the

network in which they are embedded [8, 16, 31, 99, 111, 123, 136, 158]. These dependencies

are important in part because they determine the dependence of correlations on stimulus

features [67, 71, 75].

Thus, a description of dynamics and coding in the nervous system requires an under-

standing of the mechanisms that determine how the magnitude and temporal structure

of correlations are propagated in neuronal networks. The current work adds to a grow-

ing body of literature that seeks to expand this understanding. We examine a number of

mechanisms that determine how correlations are transferred from the inputs to the out-

puts of neurons and how they propagate in feedforward settings.

In Chapters 2 and 4, we describe the mathematical formalisms, notation and neuronal
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Figure 1.3: Circuit model for the correlation transfer problem. Two neurons ( j = 1, 2)
receive correlated stochastic input currents in j(t). We will often assume that each input
consists of a sum of excitatory and inhibitory spike trains, in j(t) = e j(t) � i j(t). The
inputs are non-linearly filtered by the neurons to produce output spike trains, s j(t). We
seek to understand how the correlation between the output spike trains are related to
the univariate and bivariate statistics of the inputs and the dynamical properties of the
neurons.

models that will be used throughout the work. In Chapter 3, we prove a theorem that

characterizes correlations between a class of bivariate point processes that arise in the

study of the models from Chapter 4. In Chapter 5, we analyze the statistics of the circuit

illustrated in Fig. 1.3 for neuronal models of increasing complexity.

In Chapter 6, we use the analysis from Chapter 5 to develop an intuitive and mech-

anistic understanding of how correlations between inputs are transferred to correlations

between the activity of the neurons in the circuit pictured in Fig. 1.3. First, we give an intu-

itive explanation of why the ratio of input to output correlations generally increases with

the firing rates of the neurons, a known phenomenon we refer to as the correlation-rate

relationship [31]. We then show that the correlation-rate relationship does not imply that

correlations necessarily increase with firing rate since input correlations generally change

with firing rates. We also show that the correlation-rate relationship does not make it dif-

ficult to modulate correlations and rates independently on one another. Finally, we show

that the ratio of membrane potential correlation to input correlation generally decreases
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with firing rate.

In Chapter 7, we show that synaptic variability can dramatically reduce correlations

between two cells’ output spike trains. In Chapter 8, we examine how synaptic coupling

between the cells in Fig. 1.3 affects the correlation between the cells’ output spike trains.

Finally, in Chapter 9 we explore some implications of a simple phenomenon, namely

that the correlation between two pooled sums of pairwise correlated signals is signifi-

cantly larger than the individual signals. We show that this phenomenon explains the

development of strong synchrony shown in Fig. 9.3 and can also have implications for

correlations between some experimental recordings.
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Chapter 2
Correlated stochastic processes and

spike trains

We model the input and output signals of neurons, as well as their membrane potential

fluctuations, as stochastic processes. We are primarily interested in correlations between

stochastic processes and how such correlations are affected by a layer of neurons. In this

section we introduce the mathematical formalisms, notation, and terminology that will be

used to describe these processes and correlations between them.

Most processes considered in this work are assumed to be stationary. For convenience,

we use a strong form of stationarity. A collection, {xj}n
j=1, of stochastic processes are

jointly strongly stationary if the joint distribution of u0 = (xj1(t1), xj2(t2), . . . , xjm(tm)) is

the same as that of u⌧ = (xj1(t1 + ⌧), xj2(t2 + ⌧), . . . , xjm(tm + ⌧)) for any finite sequence

{ti}m
i=1 of times, any { ji}m

i=1 ✓ {1, 2, . . . , n} and any ⌧ 2 R. For the remainder of this

work, we will use the term “stationary” to mean “jointly strongly stationary.”

8



2.1. CORRELATIONS BETWEEN STATIONARY PROCESSES

Most processes in this work are additionally assumed to be ergodic. Throughout this

work, a collection {xj}n
j=1 of stationary processes is said to be ergodic if 1

T
R T

0 f (u⌧ )d⌧ con-

verges almost surely to E[ f (u0)] as T ! 1 where u0 and u⌧ are as defined above and

whenever f : Rm ! R is Borel measurable and the expectation exists [68]. We addition-

ally assume that ergodic processes (sampled at fixed times) have finite fourth moments

and positive variance.

2.1 Correlations between stationary processes

The terms “cross-covariance,” “cross-correlation,” and “cross-correlogram” are used for

a variety of functions in signal processing and neuroscience literature. Generally, these

terms refer to the quantity E[x(t)y(t + ⌧)] normalized in various ways. Below, we define

the usage that will be applied throughout this work.

The simplest and perhaps most natural measure of correlation between two stationary

stochastic processes is the instantaneous correlation which is simply the Pearson correlation

coefficient of the two processes sampled at the same time,

Rxy(0) =
cov(x(t), y(t))p

var(x(t))var(y(t))
.

While often useful, this quantity does not capture the temporal structure of correlations

between two processes. In particular, one is often interested in correlations between the

processes sampled at different times and the timescale at which such correlations decay.

For jointly stationary processes, this is captured by the cross-covariance function,

Cxy(⌧) = cov(x(t), y(t + ⌧)), (2.1)

and the Pearson normalized cross-correlation function (hereafter simply referred to as the

9



2.1. CORRELATIONS BETWEEN STATIONARY PROCESSES

cross-correlation function),

Rxy(⌧) =
Cxy(⌧)q

Cxx(0)Cyy(0)
=

cov(x(t), y(t + ⌧))p
var(x(t))var(y(t + ⌧))

. (2.2)

Notice that Rxy(⌧) is a (Pearson) correlation coefficient and therefore lies in the interval

[�1, 1]. The lack of dependence of these quantities on t follows from the joint stationarity

of x(t) and y(t) (see above). Cross-covariance and cross-correlation functions have the

property that Cxy(⌧) = Cyx(�⌧) and Rxy(⌧) = Ryx(�⌧).

Estimators of cross-covariance functions from data often rely on the following identity,

Cxy(⌧) = lim
T!1

1
T

(xT ? yT)(⌧) (2.3)

where

xT(t) = (x(t)� E[x(t)]) 1[0,T](t)

is the mean-subtracted process restricted to [0, T], 1[0,T] is the indicator function of [0, T],

and

( f ? g)(⌧) =
Z 1

�1
f (t)g(t + ⌧)dt

is the cross-correlogram between f and g. The limit in Eq. (2.3) is valid in mean-square

under the ergodicity and stationarity assumptions made above [159].

The Fourier transform eCxy(!) =
R1
�1 Cxy(t)e�i!tdt of the cross-covariance function

is called the cross-spectrum and satisfies a bivariate form of the Wiener-Khintchine theo-

rem [14, 144],

eCxy(!) = lim
T!1

1
T

E
h
exT(!)eyT(!)

i
(2.4)

where the overbar denotes complex conjugation, exT(!) =
R T

0 (x(t) � E[x(t)])e�i!tdt is

the normalized random Fourier transform of x(t), and similarly for eyT(!). This relation,

10



2.1. CORRELATIONS BETWEEN STATIONARY PROCESSES

along with the ergodicity assumptions above, yields an estimator for the cross-covariance

function that can be computed quickly using the fast Fourier transform,

Cxy = lim
T!1

1
T
F�1

⇣
F (xT)F (yT)

⌘

where F is the Fourier transform, F�1 the inverse transform, and the limit is in mean-

square [159].

The cross-covariance function (cross-correlation function, cross-spectrum) between a

process and itself is called an auto-covariance (auto-correlation, auto-spectrum) function.

Auto-covariance and auto-correlation functions are symmetric about ⌧ = 0 and auto-

spectra are real-valued. The auto-spectrum is also sometimes referred to as the power

spectrum or the spectral density. The auto-correlation always satisfies Rxx(0) = 1.

Anticipating our discussion of spike trains and spike counts below, define the inte-

grated processes

Nx(t) =
Z t

0
x(s)ds and Ny(t) =

Z t

0
y(s)ds

and their second-order statistics

�2
x (t) =

1
t

var(Nx(t)), �xy(t) =
1
t

cov(Nx(t), Ny(t)), and ⇢xy(t) = �xy(t)/
�
�x(t)�y(t)

�
.

The statistics of the integrated processes are related to the cross-covariance functions ac-

cording to [144, 150]

�2
x (t) =

Z t

�t

✓
1� |s|

t

◆
Cxx(s)ds and �xy(t) =

Z t

�t

✓
1� |s|

t

◆
Cxy(s)ds. (2.5)

Alternatively, the integration above can be done in the spectral domain by applying Par-

seval’s theorem to obtain [136]

�2
x (t) =

Z 1

�1
eCxx(!)eKt(!)d! and �xy(t) =

Z 1

�1
eCxy(!)eKt(!)d! (2.6)

11



2.2. REPRESENTATION OF SPIKE TRAINS AS POINT PROCESSES

where eKt(!) = 4
t!2 sin2(!t/2) is the Fourier transform of Kt(s) = (1 � |s|/t)⇥(t � |s|)

and ⇥ is the Heaviside step function.

By a slight abuse of notation, we additionally define the asymptotic second order statis-

tics

�x = lim
t!1

�x(t), �xy = lim
t!1

�xy, and ⇢xy = lim
t!1

⇢xy(t)

which are related to the cross-covariance functions by [136]

�2
x =

Z 1

�1
Cxx(s)ds and �xy =

Z 1

�1
Cxy(s)ds (2.7)

or, equivalently,

�2
x = eCxx(0) and �xy = eCxy(0). (2.8)

For Eqs. (2.5-2.8), we assumed that the processes have finite correlation time, which sim-

ply means that correlations decay sufficiently quickly in time so that the auto- and cross-

covariance functions are L1 [144]. This property follows from the definition of ergodicity

above [68, 159].

2.2 Representation of spike trains as point processes

Neurons communicate primarily through the transmission of action potentials, or spikes,

in their membrane potentials. A sequence of such spikes is referred to as a spike train.

In computational and mathematical studies, spike trains are often modeled as point pro-

cesses, where each spike is represented by an “event” or “point” in time. There are several

mathematical formalisms that can be used to represent point processes. In this section, we

first review these formalisms then define the statistical measures we will use to quantify

properties of spike trains.

12



2.2. REPRESENTATION OF SPIKE TRAINS AS POINT PROCESSES

In the neuroscience literature, it is common to represent spike trains by partitioning

time into bins of sufficiently small width that more than one spike is unlikely to occur

in a single bin. For physiological data, it is also important that the bins are sufficiently

wide so that the duration of a spike is not longer than a single bin. A spike train is then

a sequence of Bernoulli variables such that the kth variable is 1 iff a spike occurs in bin

k. While this representation is mathematically simple and computationally convenient,

the use of discretized time can become cumbersome in proofs and imposes bounds on

cross-correlation values that depend on the bin size chosen [36].

To avoid discretizing time, one can represent spike trains as formal point processes. In

the mathematical literature, point processes are typically defined as random measures [25,

29]. While this representation is elegant and provides a great deal of generality, it is per-

haps a poor choice for applied studies because the statement and derivation of even sim-

ple propositions can be quite technical and alienate readers, especially non-mathematicians.

Moreover, the generality gained by using this representation is not necessary in most ap-

plications.

We choose to represent a point process as a stochastic process whose realizations are

generalized functions,

a(t) =
1

Â
i=1
�(t� ta

i )

where �(t) is the Dirac delta function and �a := {ta
i }i ⇢ R are the spike times ordered

chronologically (ta
i  ta

i+1). While this representation is essentially equivalent to the rep-

resentation in terms of random measures, spike trains in this sense can be treated like,

combined with, and compared to traditional stochastic processes with ease. Statements

13



2.2. REPRESENTATION OF SPIKE TRAINS AS POINT PROCESSES

about a spike train, a(t), can be translated into statements about its associated spike count-

ing process, which have real-valued realizations,

Na(t) =
Z t

0
a(s)ds = card(�a \ [0, t])

where card(A) gives the cardinality of the set A. A spike train can be thought of as the

derivative of its associated counting process. To generalize the counting process, we also

define

Na(t1, t2) =
Z t2

t1

a(s)ds = card (�a \ [t1, t2])

and more generally,

Na(B) =
Z

B
a(s)ds = card (�a \ B)

for Borel sets B ⇢ R. This last definition corresponds to the definition of a point process

as a random measure.

Since realizations of point processes are not number-valued functions, the definition

of stationarity and ergodicity made at the beginning of this chapter must be restated us-

ing the variables u0 = (Na1(B1), Na2(B2), . . . , Nan(Bn)) and u⌧ = (Na1(B1 + ⌧), Na2(B2 +

⌧), . . . , Nan(Bn +⌧)) where {Bk}k is a finite sequence of Borel sets and Bk +⌧ = {t +⌧ | t 2
Bk} and {aj}n

j=1 is a collection of spike trains. We further assume, as a form of ergodicity,

that limt!1 cov(Na(t), Nb(t))/t = � and limt!1 var(Na(t))/t = �2 for some �,� 2 R

with � > 0 [25, 29].

Unless otherwise specified, we also assume that all point processes are marginally or-

derly, meaning that Pr(Na(t, t + �) > 1)/� ! 0 as � ! 0. One can also define a notion of

bivariate orderliness by requiring that Pr (Na1(t, t + �) + Na2(t + ⌧ , t + ⌧ + �) > 1) /� !
0, which implies a zero probability of synchronous spikes or spikes at a fixed lag. We

will consider several instances of spike train pairs which do not satisfy this assumption
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and therefore we do not assume bivariate orderliness unless explicitly stated. Orderli-

ness is sometimes also referred to as regularity. A more complete review of stationarity,

ergodicity, and orderliness for point processes can be found in [25, 29].

2.3 Spike train statistics

We now define a number of statistical measures that are used to describe spike trains and

pairs of spike trains. A fundamental statistical measure of a spike train is its rate,

ra = E[a(t)] =
1
t

E[Na(t)]. (2.9)

The first equality in Eq. (2.9) is primarily symbolic since realizations of a(t) are not number-

valued functions. The equality can be interpreted by first convolving a(t) with an approx-

imate identity. In particular, let {xc(t)}c2(0,1) be a family of L1(R) functions such that for

all� 2 L1(R), limc!0(xc ⇤�) ! �where the limit is taken in L1. Such a sequence is called

an approximate identity [66] and the first equality in (2.9) can be interpreted as saying that

ra = lim
c!0

E[(xc ⇤ a)(t)].

A natural choice for the approximate identity above are pulse functions,

xc(t) =

8
>><

>>:

1
2c |t|  c

0 |t| > c
.

Another choice is a centered Gaussian with standard deviation c [77].

Defining the cross-covariance function between two point processes as cov(a(t), b(t +

⌧)) also presents difficulties because realizations of a(t) and b(t) are not number-valued.

15



2.3. SPIKE TRAIN STATISTICS

As above, we can interpret the definition using approximate identities or define the cross-

covariance in terms of the counting processes,

Cab(⌧) = cov(a(t), b(t + ⌧)) = ra(Hab(⌧)� rb) (2.10)

where

Hab(⌧) = lim
�!0

1
�

Pr
�

Nb(t + ⌧ , t + ⌧ + �) > 0
��Na(t, t + �) > 0

�
(2.11)

is the conditional intensity function, which measures the conditional firing rate of b given

that a spiked ⌧ units of time in the past [25, 26]. Auto-covariance functions of spike trains

necessarily contain a delta function at the origin with mass equal to the firing rate of

the process. Cross-covariance functions between two spike trains can also contain delta

functions if there is a positive probability that the two trains contain exactly synchronous

spikes or spikes at a fixed delay. The cross-covariance function between two point pro-

cesses is sometimes called the covariance density and its formal existence and properties

are discussed in [26, 29].

The fact that the auto-covariance of a stationary orderly point process has a delta func-

tion at the origin is due to the fact that such point processes have infinite variance [86, 150].

This can be seen by calculating

var(a(t)) = Caa(0) = lim
�!0

var(Na(t, t + �)/�)

= lim
�!0

��2 Pr(Na(t, t + �) > 0)

= lim
�!0

��1ra = 1.

Thus, the Pearson normalized cross-correlation function that was defined in Eq. (2.2) for

continuous processes is not useful for quantifying correlations between point processes.

An alternative correlation measure that is occasionally used in the literature [36] is the
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2.3. SPIKE TRAIN STATISTICS

Pearson correlation between spike counts over small bins (often taken to be � = 1ms

wide) at a lag ⌧ ,

R�ab(⌧) :=
cov(Na(t, t + �), Nb(t + ⌧ , t + ⌧ + �))p

var(Na(t, t + �))var(Nb(t, t + �))
.

This is a natural measure to use when sample spike trains are stored as binary sequences,

discretized with a bin size of �, since it can be estimated by calculating the correlation

coefficient between the two binary sequences with b shifted by ⌧ . However, R�ab(⌧) de-

pends sensitively on the bin size, �. Small bin sizes impose theoretical bounds on the

possible values of R�ab(⌧) [36]. Unless Cab(⌧) contains a delta function, R�ab(⌧) necessarily

converges to 0 as � ! 0. For these reasons, we will not use this measure of correlations in

this work.

The second-order statistics of spike counts are quantified by the spike count variance,

covariance and correlation coefficient,

�2
a (t) =

1
t

var(Na(t)), �ab(t) =
1
t

cov(Na(t), Nb(t)), and ⇢ab(t) = �ab(t)/ (�a(t)�b(t)) .

A measure of the regularity of spiking is provided by the Fano factor,

Fa(t) =
�2

a (t)
ra

. (2.12)

As a form of ergodicity, we assume that �a(t) has a finite non-zero limit, that �ab(t) has a

finite limit, and therefore ⇢ab(t) and Fa(t) have finite limits as t ! 1. As in Sec. 2.1, we

define the asymptotic spike count statistics

�a = lim
t!1

�a(t), Fa = lim
t!1

Fa(t) �ab = lim
t!1

�ab, and ⇢ab = lim
t!1

⇢ab(t).

The asymptotic variance divided by two, �2
a /2, is sometimes referred to as the effective

diffusion coefficient [86]. Eqs. (2.5) and (2.7) which relate the spike count statistics to the

integrals of the cross-covariance functions are valid for spike trains [25, 26, 150].
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When there is a positive probability of exactly synchronous spikes in a(t) and b(t), we

define the rate of synchronous spikes

ra·b = lim
�!0

��1 Pr(Na(t, t + �) > 0, Nb(t, t + �) > 0) = lim
�!0

Z �

��
Rab(t)dt (2.13)

which is the mass of the delta function in Cab(t) at the origin. We also define the normal-

ized synchrony

Sab =
ra·bp
rarb

= lim
t!0

⇢ab(t) (2.14)

which represents the proportion of spikes in a(t) and b(t) that are synchronous.

If Cab(t) does not have a delta function at the origin (i.e. if there is a zero proba-

bility of exactly synchronous spikes) then limt!0 �ab(t) = 0 from Eq. (2.5). However,

limt!0�
2
a (t) = ra > 0 since Caa(t) necessarily has a delta function at the origin. Hence,

if Cab(t) does not have a delta function at the origin then limt!0 ⇢ab(t) = 0, ra·b = 0, and

Sab = 0 (in fact, any one of these properties implies all others). Note that a delta function

at the origin of Cab(⌧) implies that eCab(!) has a non-zero limit as!! 1.

Statistical properties of spike trains can be extracted from the interspike intervals

(ISIs), {Ia
j }1

j=1, where Ia
j = ta

j+1 � ta
j is the amount of time that lapsed between the jth

and the ( j + 1)st spike. A renewal process is defined to be a process for which the set

{Ia
j }1

j=1 is i.i.d. For a renewal process to also be stationary, the first spike time must be

drawn from a specific distribution that is uniquely determined by the distributions of the

remaining ISIs (see [24]).

For a renewal process, the first two moments of the ISI distribution are related to the

first two moments of the spike counts according to the equations [24]

ra =
1

E[Ia
j ]

and �2
a =

var(Ia
j )

E[Ia
j ]3

. (2.15)
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which yields the well-known relation [44]

CVa :=

q
var(Ia

j )

E[Ia
j ]

=
�aprsa

=
p

Fa (2.16)

where we have assumed that j 6= 1. The conditional intensity function for a renewal

process is given by [24]

Haa(⌧) = �(⌧) +
1

Â
k=1

p(k)
Ia

(⌧)

where pIa is the density of the interspike intervals and p(k)
Ia

is the k-fold convolution of pIa

with itself. From Eq. (2.10) this gives the auto-covariance

Caa(⌧) = ra

 
�(⌧) +

1

Â
k=1

p(k)
Ia

(⌧)� ra

!
. (2.17)

The auto-spectrum of a renewal process is given by [41, 87]

eCaa(!) = ra + 2raRe
✓ bpIa(i!)

1� bpIa(i!)

◆
= ra

1� |epIa(!)|2
|1� epIa(!)|2 (2.18)

where bpIa is the one-sided Laplace transform and epIa is the Fourier transform of pIa (see

Table 2.1 for conventions).

Renewal processes also have the advantage that there are simple equations for the

moments of their “recurrence times” in terms of their ISI statistics. In particular, define the

recurrence time ⌧a = min{ta 2 �a | ta > t}� t, which is a random variable representing

the waiting time until a spike is observed when beginning from an arbitrary time (i.e. from

the steady state). If a(t) is a renewal process then [24]

E[⌧a] =
CV2

a + 1
2ra

. (2.19)

Higher moments of ⌧a for renewal processes are derived in [24].
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2.4 Generating correlated spike trains for simulations

We now present several algorithms for generating digital realizations of correlated spike

trains on a computer. All of these algorithims begin with the generation of several Poisson

point processes. A Poisson point process, a(t), is a stationary, orderly point process with

the memoryless property: that {Na(Bk)}n
k=1 is an independent set for any disjoint collec-

tion of Borel sets, {Bk}k. We will abbreviate the expression “Poisson point process” as

“Poisson process” and refer to the counting process Na(·) associated with a Poisson pro-

cess as a “Poisson counting process.” Note that in some literature the counting process is

referred to as a “Poisson process.”

The statistics of a Poisson process are completely determined by its firing rate, ra. The

auto-covariance of a Poisson process is a delta function, Caa(⌧) = ra�(⌧), which implies a

lack of correlations across time, i.e., cov(a(t), a(t +⌧)) = 0 for ⌧ 6= 0. The cross-covariance

function between a pair of Poisson processes need not be a delta function, as we will show

in Sec. 2.4.

We first present two methods for generating individual Poisson point processes. The

first method produces a collection of spike times and does not require binning time. The

second method assumes time has been binned and produces a vector in which a positive

value in the kth position represents a spike in bin k.

Poisson algorithm 1:

1. Draw a random number, N, from a Poisson distribution with mean raT.

2. Draw N independent, uniformly distributed numbers from the interval [0, T].
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The resulting numbers, �a = {ta
j} j, are the spike times of a realization of a Poisson point

process with rate ra over the time interval [0, T] [25]. Typically, a sorted list of spike times

is desired, which requires an additional sorting step above.

Poisson algorithm 2:

1. Allocate a vector of length T/dt.

2. Independently assign each element of the vector the value 1/dt with probability radt

and the value 0 otherwise.

If the bin size is chosen to so that radt is sufficiently small, then the resulting vector ap-

proximates a discretized Poisson process.

Independent Poisson processes generated according to the algorithms above can be

combined and modified in various ways to generate collections of correlated spike trains

with various statistical structures. We first describe two algorithms that generate arbi-

trarily large collections of Poisson processes with identical rates. These algorithms were

introduced in [78]. First choose a number r > 0 which will be the rate of the resulting

processes and a number c 2 (0, 1) which will be the (constant) spike count correlation

between the processes.

Single interaction process (SIP) algorithm:

1. Generate a “mother” Poisson process, m(t), with rate rc.

2. Generate N independent Poisson processes, {pj}N
j=1 each with rate r(1� c).

3. Form the summed processes aj(t) = pj(t) + m(t).
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Figure 2.1: A comparison of SIP and MIP spike trains. Raster plots for a collection of
N = 50 SIP (top) and MIP (bottom) spike trains generating according to the algorithms
described in Sec. 2.4. A point at coordinate (t, k) on the plot represents a spike in cell k
at time t. The first and second order statistics are identical for the two cases, but higher
order statistics are visibly different. Parameters are r = 10Hz and c = 0.2.

Multiple interaction process (MIP) algorithm:

1. Generate a mother Poisson process, m(t), with rate rm = ra/c.

2. Form each daughter process aj(t) ( j = 1, 2, . . . , N) by deleting spikes from m(t)

independently with probability 1� c, i.e., keep each spike with probability c.

For both the SIP and MIP algorithms, the resulting processes, aj(t), each have rate ra

and each pair of processes has a constant spike count correlation, ⇢aia j(t) = c. The cross-

covariance functions are delta functions with mass rac. The auto-covariance function of

a Poisson process is always a delta function with mass equal to the rate, r in this case.

When N = 2, the two algorithms are equivalent. For N > 2, the algorithms produce iden-

tical second order statistics, but produce different higher order statistics. The difference

22



2.4. GENERATING CORRELATED SPIKE TRAINS FOR SIMULATIONS

between the algorithms is illustrated in Fig. 2.1: the SIP algorithm produces synchronous

events where all spike trains share a spike time, whereas the synchrony produced by the

MIP algorithm is more spread out spatially since two trains can share a spike time that

other trains do not share. These differences and their consequences in neuroscience are

discussed extensively in [78].

Cross-covariance functions between SIP and MIP spike trains are delta functions, but

often it is desirable to generate Poisson spike trains with correlations over a larger range

of lags. This can be accomplished by jittering, as we describe next.

Jittered SIP/MIP algorithm:

1. Generate N SIP or MIP processes, {aj(t)}, according to the algorithms above.

2. Obtain the jittered spike train bj(t) by adding to each spike in aj(t) a number drawn

independently from a distribution with density f j. That is, �bj = {tbj
i + ⌧i j | ta j

i 2 �a j}
where each ⌧i j is independent with density f j.

The resulting processes are Poisson with rate rb = ra and their pairwise cross-covariance

functions are given by the convolution [25] Cbibj(⌧) = (F ⇤ Caia j)(⌧) where F(⌧) = ( f2 ?

f1)(⌧) =
R
R f2(t) f1(t + ⌧)dt. If f1 or f2 is an even function then F = f1 ⇤ f2. When a sorted

list of spike times is desired, an additional sorting step is required above. The jittered SIP

and MIP algorithms are equivalent to special cases of the algorithm described in [9].

All of the algorithms we have discussed so far produce Poisson spike trains. We now

discuss a method to produce certain non-Poisson spike trains with particular pairwise

cross-covariance functions.
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Gamma algorithm:

1. Generate N (jittered) SIP or MIP processes {aj(t)} with rates ra = nrb according to

the algorithms above, where n 2 N. Jittering is optional.

2. Obtain new spike trains, bj(t), by keeping every nth spike of each train aj(t). In

particular, set �bj = {ta j
k | ta j

k 2 �a j and (k + Kj)kn} where Kj is a random integer

drawn uniformly and independently from {0, 1, . . . , n} and xky means that y is an

integer multiple of x, and we have assumed that the elements of �a j are sorted so

that ta j
k < ta j

k+1.

The resulting processes are renewal with rate ra and the interspike intervals have a gamma

distribution with density

p(t) =
tn�1rn

a e�rat

�(n)
.

The Fano factor is given by Fbj = CV2
bj

= 1/n. From Eq. (2.17), the auto-covariance

function is given by Cbjbj(⌧) = rb�(t) + Â1
j=1 p(k)(t) where p(k) is p convolved with itself

k times. Interestingly, the pairwise cross-covariances are simply scaled by deleting every

nth spike so that Cbibj(⌧) = 1
n2 Caia j(⌧) for i 6= j. Thus, by Eq. (2.5), the pairwise spike count

covariances are also scaled, �bib j(t) = 1
n2�aia j . The spike count variances cannot be written

so simply, except in the t ! 1 limit where �2
bib j

= 1
n2�

2
aia j

= 1
n2 ra. Thus, the asymptotic

spike count correlation coefficients are identical, ⇢bib j = ⇢aia j . The random integer Kj

above was necessary to assure that the resulting spike trains are stationary. However, the

processes are ergodic so that, when only long timescale statistics are important, the term

can be ignored and we can simply take �bj = {ta j
k | ta j

k 2 �a j and k|n}.

All of the algorithms we have discussed so far produce collections of spike trains

with homogeneous pairwise correlations. The problem of generating spike trains with
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2.4. GENERATING CORRELATED SPIKE TRAINS FOR SIMULATIONS

pre-specified inhomogeneous pairwise correlations is difficult, but has been addressed to

some extent in the literature [9, 57, 65]. Here, we present a simple algorithm for generat-

ing quadruplets of spike trains with a specific heterogeneous correlation structure. We are

particularly interested in generating two pairs of spike trains that will be used as excita-

tory and inhibitory inputs to two cells later on. In particular, we would like to end up with

an excitatory pair e1(t) and e2(t) with the same rate, re, and with spike count correlation

⇢e1e2 = ⇢ee. We would also like an inhibitory pair i1(t) and i2(t) with rate ri and correla-

tion ⇢ii. Additionally, we would like to have ⇢e1i2 = ⇢e2i1 = ⇢ei and ⇢e1i1 = ⇢e2i2 = 0. Such

a quadruplet can be generated by the following algorithm.

Excitatory/inhibitory quadruplet algorithm:

1. Generate eight independent Poisson processes: p0e1(t), p0i1(t), p0e2(t), p0i2(t), pe1e2(t),

pi1i2(t), pe1i2(t), and pi1e2(t) with rates: r0e, r0i, r0e, r0i, ree, rii, rei, and rei respectively.

2. Form the sums, e1(t) = p0e1(t) + pe1e2(t) + pe1i2(t), i1(t) = p0i1(t) + pi1i2(t) +

pi1e2(t), e2(t) = p0e2(t) + pe1e2(t) + pi1e2(t), i2(t) = p0i2(t) + pi1i2(t) + pe1i2(t).

To obtain the rates and correlation values described above, take r0i = ri(1�⇢ii)�⇢ei
p

reri,

r0e = re(1 � ⇢ee) � ⇢ei
p

reri, rii = ⇢iiri, ree = ⇢eere, and rei = ⇢ei
p

reri. Note that we

must assume that ⇢ei  ri(1�⇢ii)p
reri

and ⇢ei  re(1�⇢ee)p
reri

for r0i and r0e to be non-negative and,

therefore, for the algorithm to work. The resulting processes contain synchronous pairs of

spikes, but the probability of synchronous triplets is zero. The resulting cross-covariances

are delta functions, but the jittering or Gamma algorithms above can be used to obtain

other cross- or auto-covariances.
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It should be noted that all of the algorithms given above, as well as the more gen-

eral algorithm in [9] generate processes with strictly positive cross-covariance functions.

Algorithms developed in [65] are able to generate Poisson processes with negative cross-

covariance functions. Furthermore, algorithms in [57] can generate a much wider class of

correlated point processes.
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Symbol Description Definition
ef (!) Fourier transform ef (!) =

R
R f (t)e�i!tdt

bf (s) Laplace transform

bf (s) =
R1

0+ f (t)e�tsds for
one-sided transform and
bf (s) =

R1
�1 f (t)e�tsds for

bilateral transform
z Complex conjugate a + bi = a� bi when a, b 2 R
( f ⇤ g)(t) Convolution ( f ⇤ g)(t) =

R
R f (s)g(t� s)ds

( f ? g)(t) Cross-correlogram ( f ? g)(t) =
R
R f (s)g(t + s)ds

Table 2.1: Mathematical notation Mathematical notation and conventions used through-
out the text.

Symbol Description Definition

Cxy(⌧), Rxy(⌧), Hxy(⌧)
Cross-correlation, cross-
covariance, and conditional
intensity functions

Eqs. (2.1)and (2.2) for contin-
uous processes and Eqs. (2.10)
and (2.11) for point processes.

Nx(t) Integrated process or spike
count

Sec. 2.1 for continuous pro-
cesses and Sec. 2.2 for point
processes

�2
x , �xy, ⇢xy

Variance, covariance, correla-
tion of integrated processes or
spike counts

Sec. 2.1 for continuous pro-
cesses and Sec. 2.3 for point
processes

�a Spike times Sec. 2.2

ra Spike rate Eqs. (2.9)

Fa Fano factor (2.12)

ra·b,Sab
Rate of synchronous spikes,
synchrony Eqs. (2.13) and (2.14)

Ia
j , CVa, ⌧a

Interspike interval, coefficient
of variation, recurrence time
for renewal processes

Sec. 2.3

⌧a|a,⌧a|b
Conditional recurrence times
for conditionally renewal pro-
cesses

Sec. 3

Table 2.2: Notation for statistics of stochastic processes and point processes. Notation
for statistical measures used throughout the text.
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Symbol Description Definition

V(t), Vth, Vre, Vlb
Membrane potential, thresh-
old, reflecting lower barrier Sec. 4

✓, � Normalized threshold and re-
flecting barrier Secs. 5.1.1 and 5.2

⌧m, IL
Membrane time constant and
leak current Secs. 4.2.1 and 4.2.2

Je, Ji
Excitatory and inhibitory
synaptic weights Sec. 4.2.1

e(t), i(t), in(t), s(t)
Excitatory input, inhibitory
input, total input, output
spike trains

Sec. 4.2.1, in(t) = Jee(t) �
Jii(t)

µ, D Mean and variance of white
noise input Eq. (4.4)

Table 2.3: Notation for neuron models. Parameter definitions for neuron models. When
two neuron are considered (see Fig. 1.3), subscripts will be used to distinguish parameters
for each cell.
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Chapter 3
Correlations between conditionally

renewal point processes

Renewal spike trains have the following Markov-like property,

Pr
�

Na(J1) = j1, . . . , Na(Jm) = jm
��Na(s, t) > 0, Na(I1) = i1, . . . , Na(In) = in

�

= Pr
�

Na(J1) = j1, . . . , Na(Jm) = jm
��Na(s, t) > 0

�

whenever Jk ⇢ [t, 1), Ik ⇢ (�1, s], and s < t. This property essentially states that after

a spike occurs, all events further in the past are forgotten. A similar property for pairs of

spike trains is

Pr
�

Na(J1) = j1, . . . , Na(Jm) = jm
��Na(s, t) > 0, Nb(I1) = i1, . . . , Nb(In) = in

�

= Pr
�

Na(J1) = j1, . . . , Na(Jm) = jm
��Na(s, t) > 0

�

whenever Jk ⇢ [t, 1), Ik ⇢ (�1, s], and s < t. This property states that after a spike

in process a occurs, all previous spikes in process b are forgotten by process a. We will
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Figure 3.1: Conditioned and unconditioned recurrence times Illustration of the differ-
ence between the stationary (unconditioned) recurrence time, ⌧a, and the conditional re-
currence times, ⌧a|b and ⌧a|a. Solid bars represent spikes in train a and dashed bars repre-
sent spikes in train b.

refer to pairs of renewal spike trains that satisfy this property, as well as the same prop-

erty with a and b switched, as conditionally renewal. Conditionally renewal spike trains

regain their renewal properties within one spike after conditioning on past events of the

other spike train. Several of the neuron models that we will consider produce output

spike trains that are conditionally renewal under certain conditions on their inputs. The

theorem below characterizes the asymptotic spike count correlation coefficient between

conditionally renewal processes.

First we introduce a new random variable related to conditionally renewal processes.

Recall from Sec. 2.3 that ⌧a is a random variable representing the waiting time until a

spike in a(t). As a bivariate generalization for conditionally renewal processes, define the

conditional recurrence time,

⌧a|b = ⌧a|b(t) = min{ta 2 �a \ (t, 1) | t 2 �b}� t,

which represents the waiting time until the first spike in a(t) after observing a spike in

b(t). The lack of dependence on t follows from the joint stationarity of a(t) and b(t). Note

that ⌧a|a and the interspike intervals, Ia
j , share the same distribution.
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Theorem 1. The asymptotic spike count covariance and correlation between a pair, (a(t), b(t)),

of stationary, orderly, conditionally renewal processes are given by

�ab = rarb(E[⌧a]� E[⌧a|b] + E[⌧b]� E[⌧b|a]) + ra·b (3.1)

and

⇢ab =

p
rarb

⇣
E[⌧a]� E[⌧a|b] + E[⌧b]� E[⌧b|a]

⌘
+ Sab

CVaCVb
(3.2)

respectively.

Proof. For t > 0, define Qba(t) to be the density of ⌧a|b, which can be written as

Qba(t) = lim
�!0

1
�

Pr
�

Na(0, t� �) = 0, Na(t� �, t) > 0
��Nb(��, 0) > 0

�

and similarly for Qab(t), Qaa(t) and Qbb(t). Note that Qaa(t) is the density of a single

interspike interval for the renewal process, a(t). More generally, the density of the interval

between the first spike and the (k + 1)st spike is given by the k-fold convolution of Qaa

with itself, Q(k)
aa (t) (where f (1) = f and f (k) = f ⇤ f (k�1)). Thus, the conditional intensity

function can be written as [24],

Haa(t) := lim
�!0

1
�

Pr
�

Na(t� �, t) > 0
��Na(��, 0) > 0

�
(3.3)

= lim
�!0

1
�

1

Â
k=1

Pr
�

Na(0, t� �) = k� 1, Na(0, t) = k
��Na(��, 0) > 0

�
(3.4)

=
1

Â
k=1

Q(k)
aa (t) (3.5)

for t > 0. In going from (3.3) to (3.4) above, we used the orderliness of a(t), which implies

that the probability of more than one spike in an interval of length � is o(�) as � ! 0. An

identical property holds for Hbb(t).
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To obtain a bivariate form of this relation, first note that, for t > 0,

Hba(t) := lim
�!0

1
�

Pr
�

Na(t� �, t) > 0
��Nb(��, 0) > 0

�

= lim
�!0

1
�

1

Â
k=1

Pr
�

Na(0, t� �) = k� 1, Na(0, t) = k
��Nb(��, 0) > 0

�
. (3.6)

By orderliness, the first term in the sum is

lim
�!0

1
�

Pr(Na(0, t� �) = 0, Na(t� �, t) = 1 | Nb(��, 0) > 0) = Qba(t).

The remaining terms (with k > 1) can be rewritten by conditioning on the time, s, of the

first spike after time 0:

lim
�!0

1
�

Pr
�

Na(0, t� �) = k� 1, Na(0, t) = k
��Nb(��, 0) > 0

�

= lim
�!0

1
�

Z t

�
Pr
�

Na(s, t� �) = k� 2, Na(s, t) = k� 1 (3.7)

��Na(0, s� �) = 0, Na(s� �, s) > 0, Nb(��, 0) > 0
�
Qba(s)ds

= lim
�!0

1
�

Z t

�
Pr
�

Na(s, t� �) = k� 2, Na(s, t) = k� 1,
��Na(s� �, s) > 0

�
Qba(s)ds (3.8)

=
Z t

�
Q(k�1)

aa (t� s)Qba(s)ds

=
⇣

Qba ⇤Q(k�1)
aa

⌘
(t).

In going from (3.7) to (3.8), we used the conditional renewal property of the spike trains.

Plugging this back into Eq. (3.6) and re-indexing the sum, gives

Hba(t) = Qba(t) +
1

Â
k=1

⇣
Qba ⇤Q(k)

aa

⌘
(t)

= Qba(t) + (Qba ⇤ Haa)(t) (3.9)

where the last step follows from Eq. (3.5). Similarly, Hab(t) = Qab(t) + (Qab ⇤ Hbb)(t) for

t > 0.
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From Eq. (2.7), the auto- and cross-covariance functions are related to the asymptotic

spike count statistics by [26],

�2
a = 2

Z 1

0+
Raa(t)dt + ra (3.10)

and

�ab =
Z 1

0+
Rab(t)dt +

Z 1

0+
Rba(t)dt + ra·b (3.11)

where the + on the lower limit of the integrals indicates that any delta function at the

origin is omitted. The term ra·b is the rate of synchronous spikes, which accounts for the

area of the omitted delta function at the origin. Similarly, ra accounts for the area of the

ommitted delta function in Raa(t). An identical expression to Eq. (3.10) relates�2
b to Rbb(t).

We proceed by considering the one-sided Laplace transform of the cross-covariance

functions. The one-sided Laplace transform of a function f (t) is given by bf (u) =
R1

0+ e�ut f (t)dt.

Using elementary properties of the Laplace transform, Eq. (3.9) can be rewritten as bHba(u) =

bQba(u) + bQba(u) bHaa(u). The Laplace transform of the cross-covariance function can then

be written as

bCba(u) = rb

⇣
bHba(u)� ra

u

⌘
(3.12)

= rb

⇣
bQba(u) + bQba(u) bHaa(u)� ra

u

⌘
(3.13)

= rb

 
bQba(u) +

1
ra
bQba(u) bCaa(u) + ra

 
bQba(u)� 1

u

!!
(3.14)

where (3.12) and (3.14) each follow from taking Laplace transform on either side of Eq. (2.10);

and (3.13) follows from the derivation above.

The integral of the right-half of the cross-covariance function is given by evaluating
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the limit,

Z 1

0+
Cba(t)dt = lim

u!0
bCba(u) (3.15)

= rb

✓
1 +

�2
a � ra

2ra
+ ra bQ0ba(0)

◆
(3.16)

= rb

 
CV2

a + 1
2

� raE[⌧a|b]

!
(3.17)

= rarb

⇣
E[⌧a]� E[⌧a|b]

⌘
. (3.18)

In going from (3.15) to (3.16), we used (3.14) and the fact that limu!0 bQba(u) = 1 (since

Qba is a density with positive support) and the fact that limu!0 bCaa(u) = (�2
a � ra)/2

(from Eq. (3.10)). In going from (3.16) to (3.17), we used that fact that �2
a /ra = CV2

a (from

Eq. (2.16)) and that bQ0ba(0) = �E[⌧a|b] (since Qba is the density of ⌧a|b). Finally, in going

from (3.17) to (3.18), we used Eq. (2.19).

An analogous expression for
R1

0+ Rab(t)dt is obtained from an identical argument. These

expressions combined with Eq. (3.11) yield Eq. (3.1), as asserted. From the definition of Fa

and from Eq. (2.16), the spike count variance can be written as�a = CVa
p

ra (and similarly

for �b). Also, recall that the spike synchrony is defined as Sab = ra·b/
p

rarb. Combining

these relations with Eq. (3.1) and the definition of ⇢ab gives Eq. (3.2) as asserted.

Eq. (3.2) will be used to calculate the spike count correlation between the outputs of

model neurons and also provides intuition about the dynamical and stochastic mecha-

nisms that determine this correlation. Some intuition for Eq. (3.2) can be gained by con-

sidering the case where the two spike trains are statistically identical,

⇢ab =
CV2

a + 1
CV2

a
M +

Sab

CV2
a

(3.19)
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where

M =
E[⌧a]� E[⌧a|b]

E[⌧a]

measures the relative impact of a spike in b on the waiting time until a spikes. When a and

b are independent, E[⌧a|b] = E[⌧a] and Sab = 0 so that ⇢ab = 0. If conditioning on a spike

in b shortens the expected waiting time until a spike in a, E[⌧a|b] < E[⌧a] so that M > 0 and

⇢ab > 0 (since Sab � 0 necessarily). Similarly, if conditioning on a spike in b lengthens the

expected waiting time until a spike in a, E[⌧a|b] > E[⌧a] so that M < 0 and ⇢ab < 0 if Sab is

sufficiently small. A deeper intuition is provided in Sec. 6.1.

In addition to the intuition Eq. (3.2) provides, it can also be used to estimate correla-

tions between simulated spike trains when these spike trains are conditionally renewal.

The rates and CVs can be estimated from the sample interspike intervals according to

Eqs. (2.15) and (2.16). The synchrony, Sab, can be estimated by counting the number of

synchronous spikes and dividing by the geometric mean of the spike counts since

Sab = E


Na·b(t)/
q

Na(t)Nb(t)
�

where Na·b(t) = card (�a \ �b \ [0, t]) is the number of synchronous spikes in [0, t]. The

expected conditional recurrence time, E[⌧a|b], can be estimated by computing the average

time that elapses between a spike in b and the next spike in a, and similarly for E[⌧b|a]. By

ergodicity, each of these estimates can be computed for one realization over a long time

period instead of over several trials.
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Chapter 4
Integrate–and–fire neuron models

There is an extensive literature on the dynamics of individual neurons [64]. Detailed

models of individual cells can contain tens or hundreds of coupled differential equa-

tions. However, much simpler models can be obtained that capture salient features of

neuronal dynamics. Here, we describe a number of simplified models that are particu-

larly amenable to mathematical analysis in a stochastic setting.

A primary quantity of interest in a neuron model is the electric potential across the

neuron’s membrane, called the membrane potential. A common simplification is to ignore

spatial variations in the membrane potential and quantify the membrane potential as a

single real-valued function of time, V(t). Such models are called point neuron models.

All models considered in this work are point neuron models.

Neurons in vivo are embedded in an noisy environment: irregular inputs and unre-

liable response properties cause their membrane potentials to fluctuate in an apparently

random fashion. These fluctuations are punctuated by occasional brief, large-amplitude

transients of the membrane potential, called action potentials or spikes. Action potentials

36



are a primary means of communication between neurons. Action potentials are captured

by non-linear terms in the differential equations that describe a neuron’s membrane po-

tential.

A common simplification in neuronal modeling is to replace the non-linear terms that

cause action potentials and replace with a simple threshold mechanism: each time the

membrane potential crosses some threshold, V(t�) = Vth, an action potential is recorded

and the cell’s membrane potential is reset to V(t+) = Vre < Vth. To simulate the duration

of an action potential and the time the cell spends recovering from it, the cell is held at Vre

for ⌧ref units of time, called the refractory period.

Models that replace spiking dynamics with such a threshold rule are called integrate–

and–fire (IF) models. IF models give rise to two processes associated with a cells’ response:

the membrane potential described above and the spike train, which records the times at

which the cell crossed threshold (spiked). We model spike trains as point processes (see

Sec. 2.2). All of the models considered in this work are integrate–and–fire models.

Neurons are connected through synapses, which transmit action potentials in the

presynaptic cell to produce a response in the postsynaptic cell’s membrane potential.

Most cortical neurons in the mamalian brain can be classified as either excitatory or in-

hibitory. Action potentials in excitatory neurons increase the membrane potential of the

cells to which they connect, pushing the postsynaptic cells’ membrane potentials closer

to threshold. Action potentials in inhibitory neurons decrease the membrane potential of

postsynaptic cells, pushing their membrane potentials away from threshold.

We therefore distinguish between the excitatory and inhibitory inputs to a cell. We

denote by e(t) = Ât j2�e �(t � t j) the point process containing the times of all excitatory

input spikes to a neuron. Similarly, write i(t) = Ât j2�i �(t� ti) for the inhibitory inputs.
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4.1. A CONDUCTANCE-BASED INTEGRATE–AND–FIRE MODEL

The rate of excitatory and inhibitory inputs are denoted re and ri respectively. When

considering inputs to several cells, we will subscript the expressions above with the cell

number (e.g. ek(t) and rek ).

We next define the models that will be considered in this work, starting from the most

detailed model and proceeding to increasingly simpler models.

4.1 A conductance-based integrate–and–fire model

An integrate–and–fire model that retains many of the passive, i.e., non-spiking, dynam-

ics of more detailed models is the conductance-based leaky integrate–and–fire model

(hereafter simply called the conductance-based model). The membrane potential of the

conductance-based model used in this work obeys the differential equation [30],

Cm
dV
dt

= �gL(V �VL)� ge(t)(V �Ve)� gi(t)(V �Vi). (4.1)

Here, Cm is the capacitance of the neuron’s membrane and gL is a conductance that de-

termines the leak of electric charge across the neuron’s membrane [30, 43]. The inputs are

determined by the synaptic conductances,

ge(t) = (↵e ⇤ e)(t) and gi(t) = (↵i ⇤ i)(t)

where ↵e(t) and ↵i(t) are postsynaptic kernels, which model synaptic filtering. In the

absence of inputs, the membrane potential relaxes exponentially to its resting potential,

VL, at a timescale given by the membrane time constant, ⌧m = Cm/gL. Excitatory inputs

push the membrane potential towards the excitatory reversal potential, Ve, and inhibitory

inputs towards the inhibitory reversal potential, Vi.
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4.2. CURRENT-BASED INTEGRATE–AND–FIRE MODELS

We add to Eq. (4.1) the integrate–and–fire conditions that each time V(t) reaches thresh-

old at Vth, a spike is recorded and the membrane potential is reset to Vre (see above). The

membrane potential is held at Vre for ⌧ref units of time before the dynamics of Eq. (4.1) are

recovered. This pause, known as a refractory period, represents the time period in which

a neuron is spiking and unresponsive to inputs [30]. The output spike train is given by

s(t) = Ât j2�s �(t� t j) where �s is the set of times at which V(t) crossed threshold.

Following [79] and [23], we derive a current-based approximation to the conductance-

based model. Let U = V �VL so that Eq. (4.1) becomes

Cm
dU
dt

= (�gL � ge(t)� gi(t))U � ge(t)(VL �Ve)� gi(t)(VL �Vi).

Define the effective membrane time constant, ⌧eff = Cm/ (E[gL + ge(t) + gi(t)]) = Cm/(gL +

re Je + ri Ji) where Je =
R
R↵e(t)dt and similarly for Ji. Substituting this average value in

the previous equation yields an approximation to the conductance-based model,

dU
dt

= � 1
⌧eff

U + J(t), (4.2)

where J(t) = (�ge(t)(VL � Ve)� gi(t)(VL � Vi))/Cm is the total input current to cell k.

Shifting by VL gives the approximation V(t) ⇡ U(t) + VL. This approximation has been

shown to be accurate in biologically relevant parameter regimes [114, 117].

4.2 Current-based integrate–and–fire models

The derivation of Eq. (4.2) shows how a conductance-based integrate–and–fire model can

be approximated by a current-based model. In this section, we explore current-based

models in more depth and under more general assumptions. The general equation used

39



4.2. CURRENT-BASED INTEGRATE–AND–FIRE MODELS

Figure 4.1: Illustrations of the models used in this work. Membrane potential traces
and spikes illustrated for the PIF (Top Left), dLIF (Top Right), and LIF (Bottom). Red
bars on the bottom indicate inhibitory input spikes, purple bars indicate excitatory input
spikes. Blue bars at top indicate output spikes. Voltage traces are shown in purple. For
the LIF, threshold (Vth) and reset (Vre) are shown as dashed lines. For the PIF, the rescaled
threshold (✓) and reset (0) are shown as dashed lines. For the dLIF rescaled the threshold
(✓) and lower boundary (�) are shown as dashed lines. For this example, � = 0, which
also the reset. The lower right LIF trace is in a regime where the diffusion approximation
is accurate (input spikes not pictured due to large rates).
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4.2. CURRENT-BASED INTEGRATE–AND–FIRE MODELS

in this work for a current-based model is,

dV
dt

= f (V, t) + in(t) + Ireset(V, t) + Ilb(V, t). (4.3)

Here, f (V) defines the neuron’s subthreshold dynamics and in(t) is the neuron’s input

current. The reset current is given by

Ireset(V, t) = �(Vth �Vre) s(t)

where s(t) = Âti2�s �(t� ti) is the neuron’s output spike train and �s is the set of all times

at which V(t) crosses Vth. This current acts to reset the membrane potential to Vre as soon

as it crosses Vth. The lower barrier current is given by

Ilb(V, t) = ⇥(Vlb �V)(in�(t) + f�(V, t))

where ⇥ is the Heaviside function and in�(t) = (|in(t)|� in(t))/2 is the negative part

of in(t) and similarly for f�. This current imposes a lower reflecting barrier on V(t) at

Vlb by eliminating any negative current once V(t) reaches Vlb. This lower barrier mimics

the effects of the inhibitory reversal potential, Vi, in the conductance-based model. We

assume that Vlb  Vre < Vth. To treat the quantities above as currents, we have implicitly

chosen units in such a way that the the cell’s capacitance is Cm = 1. For simplicity, we do

not consider a refractory period for current-based integrate–and–fire models.

In Eq. (4.2), we derived a current, in(t) = J(t), that allows a current-based model to

approximate a conductance-based model. However, we will typically use a simpler form

of input for current-based models. In particular, we will often consider delta-function

synapses, in(t) = Jee(t)� Jii(t), so that an excitatory (inhibitory) input causes an instan-

taneous increase (decrease) of amplitude Je (Ji) in the cell’s membrane potential. When

possible, proofs are given without specifying the form of in(t).
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We focus on integrate–and–fire models driven by stationary stochastic inputs. Unless

otherwise specified, we assume that the resulting membrane potential V(t) is ergodic and

that the initial condition, V(0), for Eq. (4.3) is drawn from the stationary distribution of

V(t). This assures that V(t) is a stationary ergodic process.

4.2.1 The leaky integrate–and–fire (LIF) model

The LIF model is defined by taking f (V, t) = �V/⌧m in Eq. (4.3). Taking ⌧m = ⌧eff and

in(t) = J(t) recovers the approximation derived in Sec. 4.1. Thus the LIF is capable of

approximating conductance-based models.

The LIF with point process inputs (e.g. in j(t) = Jee(t) � Jii(t)) is analytically in-

tractable: even the stationary firing rate with Poisson inputs must be obtained via Monte

Carlo simulations [17] (however, see [118] where it is shown that random, exponentially

distributed postsynaptic amplitudes renders the model tractable to some extent). How-

ever, when the inputs, e(t) and i(t) are independent Poisson processes and the distance

from reset to threshold is significantly larger than the amplitude of a postsynaptic po-

tential, Je, Ji ⌧ Vth � Vre, an approximation is obtained by taking in(t) = µ +
p

2D⌘(t)

where ⌘(t) is a standard Gaussian white noise process,

µ = Jere � Jiri, and D = (J2
e re + J2

i ri)/2. (4.4)

Under this approximation (which is exact in the limit where Je, Ji ! 0 and re, ri ! 1

with rxx/Jyy held constant for xx, yy 2 {e, i} [113]), Eq. (4.3) is transformed into an Itǒ

stochastic differential equation (SDE),

dV = (�V/⌧m + µ)dt +
p

2DdW + Ireset(V, t)dt + Ilb(V, t)dt

where dW = ⌘(t)dt is the differential of a Wiener process [45]. This model is commonly
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4.2. CURRENT-BASED INTEGRATE–AND–FIRE MODELS

referred to as the “diffusion approximation” to the Poisson driven LIF and is considerably

more tractable than the Poisson model itself.

4.2.2 The discrete LIF (dLIF) model

To obtain a model that is analytically tractable with Poisson inputs, we replace the leak

current with a Poisson process,

f (V, t) = IL(t) = Â
ti2�L

�(t� ti),

to obtain the discrete LIF (dLIF) model. Here, IL(t) is a Poisson process with rate ĪL that

models a leak current. Using Poisson jumps to model leak may at first seem unnatural.

However, the dLIF can be thought of as a noisy integrate–and–fire model with constant,

but random and discrete, leak [42]. The tractability of the model comes from the fact that

the membrane potential remains on a discrete state space.

The leak current, IL(t), is dynamically identical to the inhibitory input current, i(t), ex-

cept that when we consider two cells, the two leak currents will be assumed uncorrelated

while the inhibitory currents can be correlated. In parameter regimes where the input

currents dominate the leak current, the dLIF provides a good quantitative approximation

to the LIF. Outside of such regimes, it captures the qualitative dependence of the spiking

statistics on parameters. We emphasize that the purpose of the model is not to quantita-

tively approximate the LIF (which is itself a simplified model). Instead the dLIF serves as

an analytically tractable leaky model that can be used to understand the principal mech-

anisms that shape correlation transfer.

When e(t) and i(t) are Poisson and independent, the membrane potential V(t) for

the dLIF model is a continuous-time Markov process on a discrete state space and we
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can compute some stationary spiking statistics in closed form and compute time depen-

dent spiking statistics and first passage time distributions exactly by exponentiating the

infinitesimal generator matrix. We can also find the bivariate spiking statistics for a pair

of dLIF model neurons with correlated inputs (see Sec. 5.2). The dLIF model can easily be

generalized with non-stationary input statistics, synaptic coupling (in the two-cell case),

and a voltage dependent leak current ( ĪL(V)) without losing its mathematical tractability.

As with the LIF, the dLIF admits a “diffusion approximation” whose membrane po-

tential satisfies the SDE

dV = µdt +
p

2DdW + Ireset(V, t) + Ilb(V, t)

where dW = ⌘(t)dt is and µ = Jere � Jiri � ĪL, and D = (J2
e re + J2

i ri + ĪL)/2. This ap-

proximation is accurate when e(t) is independent from i(t) and Je, Ji, 1 ⌧ Vth. Several

univariate spiking statistics are derived for this model in [42]. However, we do not con-

sider this model here and instead focus on the dLIF with Poisson inputs, which is at least

as tractable.

4.2.3 The perfect integrate-and-fire (PIF) model

In drift dominated regimes, where the excitatory current dominates the inhibitory and

leak currents (Jere � Jiri + Vth/⌧m), the lower reflecting barrier at Vlb is visited rarely.

In addition, the dynamics of the neuron are dominated by the input and a good approx-

imation is obtained by ignoring the leak current (see Fig. 4.2). We therefore approximate

the LIF in drift dominated regimes by the analytically tractable perfect integrate-and-fire

(PIF) model which has f (V, t) = 0 and Vlb = �1. The PIF is the simplest and most

tractable model we will consider. Many spiking and subthreshold statistics are obtainable

in closed form for the PIF under general assumptions on the inputs.
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A B
Vth

Vre

C

Figure 4.2: An LIF in the drift dominated regime can be approximated with a PIF. (A)
The typical behavior of an LIF in the drift dominated regime (re = 2.5 kHZ, ri = 1 kHZ,
⌧m = 20 ms; voltage is rescaled so that Je = Ji = 1, Vre = 0 and Vth = 15). (B) Same
as (A), except time was rescaled using the fast input timescale, so that (B) represents the
region inside gray box in (A). (C) The response of a PIF driven by the same input. The
vertical axes are identical in each figure and the gray box is in (A) 500 ms wide, so that the
entire trace of (B) and (C) are each 500 ms.

It is important to note that when inputs are Poisson, the only difference between the

PIF and the dLIF models is the presence of a reflecting barrier (since IL(t) in the dLIF can

be replaced by increasing the rate of inhibitory spikes in the PIF). Below, we show that

unless excitation is much stronger than inhibition and leak, this difference is substantial

(see for example Fig. 5.5).
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Chapter 5
Analysis of spiking and membrane

potential statistics for

integrate–and–fire models with

correlated stochastic inputs

In this section, we analyze the univariate and bivariate spiking and membrane potential

statistics of a pair of integrate–and–fire models with correlated inputs (see Fig. 1.3 for a

circuit diagram). We begin with a PIF model and proceed to increasingly complex models.

The notation for this section will be consistent with the notation described in Secs. 2 and

4, except that two cells ( j = 1, 2) are considered, so that many expressions now require

subscripts. For example, the membrane potentials are denoted Vj(t) and the output spike

trains are s j(t) with rates rsj . When there is no ambiguity, numerical subscripts are omit-

ted, e.g., ⇢ss = ⇢s1s2 and Se1e2 = See. Double subscripts will be separated by a comma. For
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5.1. THE PIF

example, the threshold of neuron j is denoted Vth, j.

For all models discussed below, the inputs to the neurons will be assumed to be

jointly stationary and the membrane potentials jointly ergodic with the initial condition,

(V1(0), V2(0), drawn from the stationary distribution of (V1(t), V2(t)). As a result, the

bivariate membrane potential process, (V1(t), V2(t)), is ergodic and stationary and the

bivariate spike train process, (s1(t), s2(t)), is stationary.

5.1 The PIF

The PIF is an especially tractable model that reproduces some of the basic response prop-

erties of more realistic models when excitation is strong (see Sec. 4.2.3). Below, we derive

closed form expressions for the output firing rates, asymptotic spike count statistics, and

membrane potential statistics for the PIF under different assumptions on the inputs.

5.1.1 Excitatory input

The simplest model we consider is the PIF model driven solely by excitatory input. Many

of the univariate statistics for the PIF with Poisson inputs were derived in the classic

article, [48]. We review, extend, and generalize this analysis here and also analyze the

bivariate spiking statistics for a pair of PIFs receiving correlated inputs. The PIF with

excitatory input is a tractable model that approximates more realistic models like the LIF

in regimes where excitation dominates inhibition and leak, see Sec. 4.2.3 and Fig. 4.2.

The input to neuron j is a constant multiple of a point process,

in j(t) = Je j e j(t) = Je, j Â
ti2�e j

�(t� ti)
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where �e j is the set of input spike times to neuron j. Without loss of generality, we can

shift our measure of membrane potential so that reset occurs at Vre, j = 0. Additionally,

assume that Vth, j is a integer multiple of Je j and rescale Vj(t) by Je j . Then, defining the

new threshold ✓ j = Vth, j/Je j 2 N the membrane potential of cell j obeys the differential

equation (see Sec. 4.2.3)
dVj

dt
= e j(t)�✓ j s j(t). (5.1)

The tractability of this model comes from the following simple relationship between

the inputs, spike counts, and membrane potentials that follows directly from integrating

Eq. (5.1),

Vj(t1)�Vj(t0) = Ne j(t0, t1)�✓ j Nsj(t0, t1) (5.2)

a.s. for all t0 < t1.

The membrane potential Vj(t) of cell j is a stochastic process on the discrete state space

⇧ j = {0, 1, . . . ,✓ j � 1}. From Eq. (5.2) and the fact that Nsj(t0, t1) is an integer, the state of

Vj can be written in terms of the input spike count and an initial state as

Vj(t1) = Vj(t0)� j Ne j(t0, t1) (5.3)

where � j represents addition modulo ✓ j.

To obtain the stationary firing rates, rsj , first note that Vj(t)/t ! 0 as t ! 1 since

Vj(t) is bounded. Thus, from Eq. (5.2) we have

rsj = lim
t!1

Nsj(t)/t = ✓�1
j lim

t!1
Ne j(t)/t = ✓�1

j re j (5.4)

given that e j(t) and s j(t) are ergodic and stationary in the sense discussed in Sec. 2.

The asymptotic spike count variance and covariance will be treated in Sec. 5.1.3 under

more general assumptions. Here, we derive the output cross-covariance function, the
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derivation of which depends on our assumption that inputs are excitatory. First, we show

that the membrane potentials have a uniform stationary distribution:

Theorem 2. Consider two PIFs with excitatory input described above. Assume that the bivariate

membrane potential process (V1(t), V2(t)) is ergodic on ⇧ = ⇧1 ⇥ ⇧2 in the sense that there

exists a steady-state probability mass function p : ⇧⇥R2 ! R+ such that

p(v1, v2; t1, t2) = lim
t!1

Pr
�
V1(t1 + t) = v1, V2(t2 + t) = v2

��V1(0) = u1, V2(0) = u2
�

and p(v1, v2; t1, t2) > 0 for all t1, t2 2 R+ and (v1, v2), (u1, u2) 2 ⇧. Then p is uniform with

p(v1, v2; t1, t2) = (✓1✓2)�1

for all t1, t2 2 R+ and (v1, v2) 2 ⇧.

Proof. Suppose (v1, v2), (w1, w2) 2 ⇧ and t1, t2 2 R+. From Eq. (5.3), the event that

(V1(t1 + t), V2(t2 + t)) = (v1, v2) given (V1(0), V2(0)) = (0, 0) is equivalent to the event

that
⇣

Ne j(t j + t) mod ✓ j

⌘
= Vj(t j + t) for j = 1, 2. By the same reasoning, this is in turn

equivalent to the event that (V1(t1 + t), V2(t2 + t)) = (w1, w2) given (V1(0), V2(0)) =

(w1 �1 �v1, w2 �2 �v2) where � j denotes addition modulo ✓ j. Thus,

p(v1, v2; t1, t2) = lim
t!1

Pr
�
V1(t1 + t) = v1, V2(t2 + t) = v2

��V1(0) = 0, V2(0) = 0
�

= Pr
�
V1(t1 + t) = w1, V2(t2 + t) = w2

��V1(0) = w1 �1 �v1, V2(0) = w2 �2 �v2
�

= p(w1, w2; t1, t2)

and therefore p is uniform. Since p is a probability mass function with respect to its first

two arguments, we may conclude that

p(v1, v2; t1t2) =
1

card(⇧)
= (✓1✓2)�1

as asserted.
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A univariate version of Theorem 2 when in j(t) is assumed to be a Poisson process was

discovered independently and shown in [60]. Theorem 2 generalizes the result in [60] and

extends it to the bivariate case. Using an identical argument, the theorem can easily be

extended to arbitrarily many cells. However, two cells is sufficient for our purposes.

Recall that we assumed the initial condition (V1(0), V2(0)) to be drawn from the sta-

tionary distribution of (V1(t), V2(t)). Thus, (V1(0), V2(0)) is uniformly distributed on ⇧.

We must prove one more theorem before we can derive the output cross-covariance

function.

Theorem 3. Under the assumptions of Theorem 2, the membrane potentials are independent of

the input history in the following sense. Suppose E1 and E2 are sets of events for the stochastic

processes e1(t) and e2(t) over the intervals (t, t + t1) (t, t + t2) respectively (i.e, E j is a subset of

the natural filtration of Ne j over (t, t + t j) for j = 1, 2). Then

Pr(V1(t + t1) = v1, V2(t + t2) = v2 | E1, E2) = (✓1✓2)�1.

Proof. The argument is nearly identical to that in the proof of Theorem 2. Using the same

reasoning from the proof of Theorem 2, the event that Vj(t + t j) = vj given Vj(t) = u1 is

equivalent to the event that Vj(t + t j) = wj given Vj(t) = xj where xj = wj � (uj � vj).
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This fact remains true when conditioning on the events E1 and E2. Thus

Pr(V1(t1) = v1, V2(t2) = v2 | E1, E2)

= Â
u12⇧1,u22⇧2

Pr(V1(t1) = v1, V2(t2) = v2 | E1, E2, V1(t) = u1, V2(t) = u2)

Pr(V1(t) = u1, V2(t) = u2 | E1, E2)

= Â
u12⇧1,u22⇧2

Pr(V1(t1) = w1, V2(t2) = w2 | E1, E2, V1(t) = x1, V2(t) = x2)

Pr(V1(t) = x1, V2(t) = x2 | E1, E2)

= Â
x12⇧1,x22⇧2

Pr(V1(t1) = w1, V2(t2) = w2 | E1, E2, V1(t) = x1, V2(t) = x2)

Pr(V1(t) = x1, V2(t) = x2 | E1, E2)

= Pr(V1(t1) = w1, V2(t2) = w2 | E1, E2).

We conclude that the conditional probability is uniform and therefore

Pr(V1(t1) = v1, V2(t2) = v2 | E1, E2) = (✓1✓2)�1

implying that (V1(t1), V2(t2)) is independent from (E1, E2).

Even though the membrane potentials are independent, the output spike trains are

correlated. This can be explained by noting that the times at which the membrane poten-

tials jump are correlated even though the states that they occupy are not. Suppose that

Ce1e2(⌧) > 0 and that cell 1 spikes at time t. Then cell 1 necessarily received an excitatory

input at time t. Even though the events in cell 1 do not affect the distribution of V2(t + ⌧),

the fact that cell 1 received an input at time t increases the probability that cell 2 receives

an input near time t + ⌧ since Ce1e2(⌧) > 0. This in turn increases the probability that

cell 2 spikes near time t + ⌧ . We now formalize this argument, using Theorems 2 and

3, to prove that the cross-covariance function between the output spike trains is a scaled

version of the input cross-covariance function.
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Theorem 4. Under the assumptions of Theorem 2, the cross-covariance function, Rs1s2(⌧), be-

tween the output spike trains is given by

Cs1s2(⌧) =
1
✓1✓2

Ce1e2(⌧). (5.5)

Proof. First note that a spike occurs in s j at time t iff a spike occurs in e j at time t and

Vj(t) = ✓ j� 1. Thus, by the orderliness of e j (see Sec. 2), the probability that Nsj(t, t +�) >

0 is, up to order o(�), equal to the joint probability that Ne j(t, t +�) > 0 and Vj(t) = ✓ j� 1.

This gives

Cs1s2(⌧) = lim
�!0

��2 Pr
�

Ns1(t, t + �) > 0, Ns2(t + ⌧ , t + ⌧ + �) > 0
�� rs1 rs2 (5.6)

= lim
�!0

��2 Pr
�
V1(t) = ✓1 � 1, Ne1(t, t + �) > 0, (5.7)

V2(t + ⌧) = ✓2 � 1, Ne2(t + ⌧ , t + ⌧ + �) > 0
�� (✓1✓2)�1re1 re2

= lim
�!0

��2 Pr
�
V1(t) = ✓1 � 1, V2(t + ⌧) = ✓2 � 1

�
(5.8)

Pr
�

Ne1(t, t + �) > 0, Ne2(t + ⌧ , t + ⌧ + �) > 0
�� (✓1✓2)�1re1 re2

= lim
�!0

��2(✓1✓2)�1 Pr
�

Ne1(t, t + �) > 0, Ne2(t + ⌧ , t + ⌧ + �) > 0
�� (✓1✓2)�1re1 re2

(5.9)

= (✓1✓2)�1
✓

lim
�!0

��2 Pr
�

Ne1(t, t + �) > 0, Ne2(t + ⌧ , t + ⌧ + �) > 0
�� re1 re2

◆

= (✓1✓2)�1Ce1e2(⌧). (5.10)

where: (5.6) and (5.10) follow from the definition of spike train cross-covariance functions

in Sec. 2.3; (5.7) follows from the discussion above and from Eq. (5.4); and (5.8)-(5.9) follow

from Theorem 3.

When there is a positive probability of exactly synchronous input spikes (Se1e2 > 0)

there is also a positive probability of synchronous output spikes (Ss1s2 > 0). A proportion
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✓�1
j of the input spike times to cell j elicit an output spike. Since the membrane potentials

are independent, the probability that a synchronous input spike to the two cells elicits

an output spike in both cells is product ✓�1
1 ✓

�1
2 . Thus, we should expect the rate of syn-

chronous spikes to be rs1·s2 = ✓�1
1 ✓

�1
2 re1·e2 . This intuition is confirmed in the following

corollary to Theorem 4.

Corollary 1. Under the assumptions of Theorem 4, the rate of synchronous output spikes is given

by

rs1·s2 =
re1·e2

✓1✓2

and the output synchrony (i.e. the proportion of synchronous output spikes) is given by

Ss1s2 =
Se1e2p
✓1✓2

.

Proof. Recall from Sec. 2.3 that rs1·s2 =
R �
�� Cs1s2(t)dt is the mass of the delta function in

Cs1s2(t) at the origin, and similarly for re1e2 . Directly from Eq. (5.5), therefore, rs1s2 = re1 ·e2
✓1✓2

.

Now recall that Ss1s2 = rs1·s2/
prs1 rs2 and similarly for Se1e2 . Thus, from the result

above and from Eq. (5.4) we have

Ss1s2 =
(✓1✓2)�1re1·e2p
(✓1✓2)�1re1 re2

=
Se1e2p
✓1✓2

.

When there is zero probability of exactly synchronous input spikes, Se1e2 = 0, there is

also zero probability of exactly synchronous outputs, Ss1s2 = 0. Additionally, ⇢s1s2(t) ! 0

as t ! 0 (see Sec. 2.3). However, from the output cross-covariance function and the

output rates, we can derive the small t asymptotics of ⇢s1s2(t), which represent the degree

to which the output spike trains are synchronized.
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Corollary 2. Under the assumptions of Theorem 4 and the additional assumption that Se1e2 = 0,

the spike count correlation over short windows is given by

⇢s1s2(t) =
⇢e1e2(t)p
✓1✓2

t + o(t)

where o(t)/t ! 0 as t ! 0.

Proof. Since Se1e2 = 0, there is a zero probability of synchronous input spikes and there-

fore a zero probability of synchronous output spikes (since each output spike time is also

an input spike time). Thus Ce1e2(t) and Cs1s2(t) do not have delta functions at the origin.

From Eqs. (2.5) and (5.5), we have

lim
t!0

�s1s2(t)
t

= lim
t!0

R t
�t(1� |s|/t)Cs1s2(t)

t
= Cs1s2(0) =

Ce1e2(0)
✓1✓2

.

However, limt!0�
2
s j
(t) = rsj = ✓�1

j re j = limt!0✓
�1
j �

2
e j
(t). Thus

lim
t!0

⇢s1s2

t
= lim

t!0

�s1s2(t)q
�2

s1
(t)�2

s2
(t)

=
Cs1s2(0)prs1 rs2

=
1p
✓1✓2

Ce1e2(0)pre1 re2

= lim
t!0

1p
✓1✓2

⇢e1e2(t)
t

.

Together, Corollaries 1 and 2 show that, in general, the degree of synchrony between

the inputs is reduced by a factor of
p
✓1✓2 in being transferred to the outputs. Thus, PIFs

reduce synchrony.
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5.1.2 Excitatory Poisson input

In general, the output auto-covariance function for the PIF cannot be written as a simple

function of the input statistics. However, in the case that the inputs are Poisson processes,

the model is especially tractable as the following theorem from [106] shows.

Theorem 5. ([106]) If, in addition to the assumptions made in Theorem 2, each of the two input

point processes, e1(t) and e2(t), are Poisson then the output spike trains are renewal processes

whose interspike intervals are gamma-distributed random variables with density

pIj(t) =
t✓ j�1r✓ j

e j e
�re j t

�(✓ j)
.

From Eq. (2.16) coefficient of variation of the outputs, which is the square root of the

Fano factor can then easily be calculated [44]

CVs j =
q

Fsj =
1p
✓ j

.

Thus the spiking is more regular when ✓ j is large. To better quantify this regularity, we

next derive the auto-covariance function.

Corollary 3. The output auto-covariance functions are given by

Csjs j(⌧) = rsj

 
�(t) +

1

Â
k=1

p(k)
Ij

(⌧)� rsj

!
(5.11)

where

p(k)
Ij

=
tk✓ j�1rk✓ j

e j e�re j t

�(k✓ j)

is the k-fold convolution of pIj with itself.

Proof. The conclusion follows directly from Theorem 5 and Eq. (2.17).
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Figure 5.1: Output auto-covariances for the PIF with excitatory Poisson inputs. Auto-
covariance, C(⌧) = Csjs j(⌧), of the output spike train from a PIF with excitatory inputs,
calculated from Eq. (5.11). Left: re j = 5 kHZ and✓ j = 5. Right: re j = 1.5 kHZ and✓ j = 15.
The firing rates are the same in both cases, rsj = 100 Hz, but the firing is more regular and
the auto-covariance more oscillatory on the right, when✓ j is larger. The vertical axes have
units ms�2.

When the thresholds, ✓ j, are large (i.e. several inputs are required to reach threshold),

spiking in the output becomes more regular and the auto-covariance become oscillatory.

This effect is illustrated in Fig. 5.1.

Note that the PIF in this case simply implements step 2 of the Gamma algorithm in

Sec. 2.3 with aj = e j, bj = s j, and n = ✓ j. Thus, Theorems 4 and 5 as well as Corollary 3

verify the statistics given for that algorithm. The asymptotic spike count statistics will be

derived in the next section, under more general assumptions.

5.1.3 More general stationary input

In the previous section, we derived the firing rate and output cross-covariance function

for a pair of PIF model neurons receiving excitatory point process input. Here, we con-

sider a pair of PIF model neurons with arbitrary stationary input, which allows us to

model excitation and inhibition. The model is less tractable in this case. In particular, the
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5.1. THE PIF

output cross-covariance function is generally not obtainable in closed form to the author’s

knowledge. However, the asymptotic spike count statistics are easily derived.

As in Sec. 5.1.1, we shift our measure of the membrane potential so that Vre, j = 0. The

membrane potential of cell j then obeys the differential equation (see Sec. 4.2.3)

dVj

dt
= in j(t)�Vth, j s j(t). (5.12)

The analogue to Eq. (5.2), obtained by integrating both sides of Eq. (5.12), is

Vj(t1)�Vj(t0) = Nin j(t0, t1)�Vth, j Nsj(t0, t1) (5.13)

a.s. for all t0 < t1 where

Nin j(t0, t1) =
Z t1

t0

in j(s)ds

generalizes the input spike count (since in j(t) is not necessarily a point process).

The output spike rate can be derived in terms of the stationary mean of the inputs,

µin j = E[in j(t)] =
1
t

E[Nin j(t)]

where

Nin j(t) =
Z t

0
in j(s)ds.

Note that when in j(t) is a point process µin j is its rate, but the definition applies to any

stationary inputs with finite first moments. Since the PIF does not have a lower reflecting

barrier on the membrane potential, a non-positive value of µin j would generally prevent

Vj(t) from being ergodic and result in a firing rate of zero. Hence, we assume that µin j > 0

when considering the PIF model. Under this assumption, the firing rate is given by the

theorem below,
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Theorem 6. Consider a PIF with stationary input in j(t) such that µin j > 0, as described above.

Assume that the membrane potential Vj(t) is ergodic with finite first moment. Then the output

firing rate is given by

rsj = Vth, j
�1 µin j .

Proof. The result follows directly from taking expectations on either side of Eq. (5.13)

since, by stationarity, E[Vj(t)] = E[Vj(0)].

The asymptotic output spiking statistics can be derived in terms of the asymptotic

input statistics, defined by

�in1in2 = lim
t!1

1
t

cov (Nin1(t), Nin2(t)) ,

�2
in j

= lim
t!1

1
t

var
⇣

Nin j(t)
⌘

,

and

⇢in =
�in1in2

�in1�in2

.

When in1(t) and in2(t) are point processes, these quantities measure the statistics of spike

counts over large windows (see Sec. 2.3). As a form of ergodicity we assume that 0 <

�in j < 1 and �in1in2 < 1.

Before deriving the asymptotic output spiking statistics, we must prove a simple lemma.

Note that the notation f (t) ⇠ o(t) below means that limt!1 f (t)/t = 0.

Lemma 1. Suppose Xt and Ct are stochastic processes such that limt!1 var(Xt)/t = c for some

finite positive number c and var(Ct) ⇠ o(t). Then cov(Xt, Ct) ⇠ o(t).

Proof. By the Cauchy-Schwarz inequality,

lim
t!1

|cov(Xt, Ct)|
t

 lim
t!1

p
var(Xt)var(Ct)

t
= lim

t!1

r
var(Xt)

t

r
var(Ct)

t
= 0.
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We now use Lemma 1 to derive the output spike count variance, covariance, and correla-

tion.

Theorem 7. Consider a pair of PIFs with correlated inputs as described above. Assume that

µin j > 0, that (V1(t), V2(t)) is ergodic with finite second moments, and that 0 < �in j < 1.

Then

�s j = V�1
th, j�in j ,

�s1s2 = (Vth,1Vth,2)�1�in1in2 ,

and therefore asymptotic correlations are preserved in the sense that

⇢s1s2 = ⇢in1in2 .

Proof. First note that cov(Vi(t), Vj(t)) ⇠ o(t) and cov(Vi(t), Vj(0)) ⇠ o(t) for i, j 2 {1, 2}
(in fact, they are constant) since (V1(t), V2(t)) is ergodic with finite second moments. Now

calculate

�s1s2 = lim
t!1

1
t

cov (Ns1(t), Ns2(t))

= lim
t!1

1
t

cov
✓

Nin1(t) + V1(0)�V1(t)
Vth,1

,
Nin2(t) + V2(0)�V2(t)

Vth,2

◆
(5.14)

=
1

Vth,1Vth,2
lim
t!1

1
t

[cov (Nin1(t), Nin2(t)) + o(t)] (5.15)

=
�in1in2

Vth,1Vth,2

where (5.14) follows from Eq. (5.13) and (5.15) follows from Lemma 1 combined with the
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bilinearity of covariances. The variance can be computed similarly,

�2
s j

= lim
t!1

1
t

cov
⇣

Nsj(t), Nsj(t)
⌘

= lim
t!1

1
t

cov

 
Nin j(t) + Vj(0)�Vj(t)

Vth, j
,

Nin j(t) + Vj(0)�Vj(t)
Vth, j

!

=
1

Vth, jVth, j
lim
t!1

1
t

h
cov

⇣
Nin j(t), Nin j(t)

⌘
+ o(t)

i

=
�2

in j

V2
th, j

.

It follows directly that ⇢s1s2 = ⇢in1in2 .

The fact that PIFs preserve asymptotic spike count correlations (i.e. ⇢s1s2 = ⇢in1in2 ) was

discovered independently for the special case of biased white noise inputs in [158]. The

PIF approximates leaky models in drift dominated regimes (i.e. when excitation domi-

nates inhibition and leak, Jere � Jiri + Vth/⌧m, see Sec. 4.2.3 and Fig. 4.2). Thus, the

fact that a pair of PIFs preserves asymptotic spike count correlations suggests that a pair

of LIFs nearly preserves these correlations in drift dominated regimes. In the following

sections we will see that this is indeed the case.

Although asymptotic spike count correlations are preserved by a pair of PIFs, spike

count correlations over finite windows are not generally preserved. Indeed, as we saw in

Sec. 5.1.1, the correlation over vanishingly small windows is decreased by a factor pro-

portional to the geometric mean of the thresholds when the cells are driven by excitation

only. Thus, spike count correlations over large windows are preserved while spike count

correlations over short windows are decreased. The PIFs effectively spread correlations

out from shorter to longer timescales.
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5.1.4 Excitatory and inhibitory Poisson input

We now consider the PIF with Poisson inputs. This model has the advantage that the

membrane potentials are Markov processes. The auto-covariance function can be derived,

as we show below, and the model is also closely related to the dLIF model that we analyze

in the following section.

To define the model, we take in j(t) = Je j e j(t)� Ji j i j(t) where e1(t), i1(t), e2(t), and

i2(t) are Poisson processes and Je j = Ji j . For simplicity, we also assume that e j(t) is

independent from i j(t). As in Sec. 5.1.2, we additionally assume that Vth, j is an integer

multiple of Je j and we rescale Vj(t) by Je j so that the model can be re-written as

dVj

dt
= e j(t)� i j(t)�✓ js j(t).

The membrane potential of this model takes values on the discrete, but infinite state space

⇧ j = {n 2 Z | n < ✓ j}.

The total asymptotic input correlation for this model is given by

⇢in1in2 =
re⇢e1e2 + ri⇢i1i2 �

pre1 ri2⇢e1i2 �
pri1 re2⇢i1e2p

(re1 + ri1)(re2 + ri2)
. (5.16)

From Theorem 7, the asymptotic output correlation is equal to the total asymptotic input

correlation: ⇢s1s2 = ⇢in1in2 . In Fig. 6.2, we plot the output correlation as a function of the

excitatory input rate when the correlation parameters are fixed. We compare the predic-

tion from the PIF to simulations of the LIF with the same inputs. As discussed above, the

PIF provides a good approximation to the LIF when re j is large compared to ri j and✓ j/⌧m.

Several univariate statistics can be derived for the PIF with Poisson inputs that are not

so easily derived under more general assumptions on the inputs. The stationary distribu-

tion of Vj(t) is given by the following theorem. For notational convenience, we omit the

subscripts for the remainder of this section since we only consider univariate properties.
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Theorem 8. Consider a PIF driven by Poisson excitation and inhibition as described above with

re > ri > 0. The membrane potential process V(t) has a stationary probability mass function

given by

p(v) := lim
t!1

Pr(V(t) = v |V(0) = u)

=

8
>><

>>:

1� q�(✓�v) 0  v  ✓� 1

1
✓

⇣
qv � q�(✓�v)

⌘
v < 0

(5.17)

where q = re
ri

> 1 and u, v 2 ⇧ = {n 2 Z | n < ✓ j}.

Proof. Since the inputs are Poisson and e(t) is independent from i(t), the membrane po-

tential is a continuous time Markov chain on ⇧. Consider a state v /2 {0,✓ � 1}. The

probability flux out of a state v is given by

lim
h!0

h�1 Pr(V(t + h) 6= v |V(t) = v) = re + ri,

the probability flux from state v� 1 to v is given by

lim
h!0

Pr(V(t + h) = v |V(t) = v� 1) = re

and, similarly,

lim
h!0

Pr(V(t + h) = v |V(t) = v + 1) = ri.

Thus [68]

(re + ri)p(v) = re p(v� 1) + ri p(v + 1).

An identical derivation can be made for the cases where v = 0 and v = ✓� 1 to give the
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Figure 5.2: Stationary membrane potential distribution for the PIF with excitatory and
inhibitory Poisson input. The probability mass function of V(t) for the PIF with excita-
tory and inhibitory input from Eq. (5.17). Parameters are ✓ = 30 with q = 1.75 (Left) and
q = 1.2 (Right).

detailed balance equations,

(re + ri)p(v) =

8
>>>>>><

>>>>>>:

re p(v� 1) + ri p(v + 1) v 2 ⇧, v /2 {0,✓� 1}

re p(�1) + re p(✓� 1) + ri p(1) v = 0

re p(✓� 2) v = ✓� 1

.

Since p is a probability mass function, we also require that Â✓�1
v=�1 p(v) = 1. It can be

checked by direct substitution that this system is satisfied by Eq. (5.17).

The stationary probability mass function, p(v), derived in Theorem 8 is plotted in

Fig. 5.2 for two different sets of parameter values.

Since the output spike trains are renewal, their auto-covariance can be written in terms

of their interspike-interval (ISI) density (see Sec. 2.3). This is given by the first passage

density of V(t) from 0 to ✓, which is derived in [155]:

Theorem 9. ([155]) Under the assumptions made in Theorem 8, the output spike train, s(t), from
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5.1. THE PIF

a pair of PIFs with excitatory and inhibitory Poisson input is renewal with an ISI density given by

pIs(t) = t�1✓e�(re+ri)t
✓

re

ri

◆✓/2
I✓ (2

p
rerit) (5.18)

where

Ik(t) =
1
⇡

Z ⇡

0
et cos(u) cos(ku)du

is the modified Bessel function.

From the ISI density, we can derive the output auto-covariance function, which is

plotted in Fig. 5.3.

Corollary 4. Under the assumptions in Theorem 8, the output auto-covariance is given by

Css(⌧) = rs

 
�(⌧) +

1

Â
k=1

fk✓(⌧)� rs

!
(5.19)

where

fn(t) = t�1 ne�(re+ri)t
✓

re

ri

◆n/2
In (2

p
rerit) .

Proof. The Laplace transform of fn(t) (found using Wolfram Mathematica) is given by

bfn(s) = �(s)�n where

�(s) =
re + ri + s +

p
(re + ri + s)2 � 4reri

2re

is a root of the quadratic rex2 � (re + ri + s)x + ri. Note that bfnk(s) = bfn(s)k and therefore

f (k)
n (t) = fnk(t) where f (k)

n is the k-fold convolution of fn with itself. Also note that f✓(t) =

pIs(t) from Theorem 9 so that p(k)
Is

= fk✓. Eq. (5.19) therefore follows from Eq. (2.17).

To the author’s knowledge a closed form expression for the output cross-covariance

for this model is not known. The difficulty lies in computing the bivariate stationary
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Figure 5.3: Output auto-covariances for the PIF with excitatory and inhibitory Poisson
inputs. Auto-covariance, C(⌧) = Csjs j(⌧), of the output spike train from a PIF with exci-
tatory and inhibitory inputs, calculated from Eq. (5.19). Left: re j = 1 kHZ, ri j = 0.5Khz,
and ✓ j = 5. Right: re j = 3 kHZ, ri j = 1.5 kHZ, and and ✓ j = 15. The firing rates are the
same in both cases, rsj = 100 Hz. Axes have units ms�2. Compare to Fig. 5.1 which has
the same firing rates, but no inhibition.

distribution of membrane potentials. However, when the state space is bounded, this

distribution can be computed numerically from the infinitesimal generator matrix and

the cross-covariance functions can be computed, as we show in the following section.

5.2 The dLIF with Poisson input

The PIF model presented in the previous section is mathemtically quite tractable, but

to have positive firing rates and ergodic membrane potentials we had to assume that

the total input current was positive, effectively that excitation is stronger than inhibition.

Additionally, the model only approximates more realistic leaky models in regimes where

the excitation is significantly stronger than inhibition and leak combined. The dLIF model

introduced in Sec. 4.2.2 retains much of the tractability of the PIF model, but captures

many properties of more realistic leaky models in settings where the PIF does not.

The dLIF is defined by adding a lower reflecting barrier to the PIF with excitatory and
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inhibitory Poisson input (see Sec. 5.1.4 and additionally adding a Poisson leak current,

ILj(t), so that the membrane potential of cell j satisfies

dVj

dt
= e j(t)� i j(t)� ILj(t)

with a threshold at ✓ > 0, a reset at Vre = 0 and a lower reflecting barrier at �  0 with

� 2 Z. These boundary conditions are taken into account explicitly in the equation (see

Sec. 4.2.2)

dVj

dt
= e j(t)� i j(t)� ILj(t)�✓ js j(t) + ⇥(� j �Vj)(i j(t) + IL j(t))

the last two terms represent the reset current and the lower barrier current. The leak

current ILj(t) = Âti2�L j
�(t � ti) is a Poisson process with rate ĪL j . If ri j + ĪL j > 0 then

the state space for Vj(t) is ⇧ j = {n 2 Z |� j  n < ✓ j}. However, if ri j + ĪL j = 0

then the membrane potential never visits negative states and the model is equivalent to

the PIF with excitatory input discussed at length in Sec. 5.1.1. We hereafter assume that

ri j + ĪL j > 0 for the dLIF.

We assume that e j(t) and i j(t) are independent and we assume that ILj(t) is inde-

pendent from all inputs (ek(t) and ik(t) for k 2 {1, 2}) and from the other cell’s leak

current (ILk(t), k 6= j). We additionally assume that the bivariate process (V1(t), V2(t))

is a Markov process, which requires that the inputs e1(t), i1(t), e2(t), and i2(t) are syn-

chronously correlated (i.e. that all of their pairwise cross-covariance functions are mul-

tiples of a delta function). For simplicity, we assume that e j(t) and i j(t) are indepen-

dent. If they were (synchronously) correlated, the effects of their synchronous spikes

on the membrane potentials would cancel, and the same effect can be obtained by de-

creasing their rates. Inputs that satisfy these assumptions can be generated using the ex-

citatory/inhibitory quadruplet algorithm described in Sec. 2.4, although this algorithm

66



5.2. THE DLIF WITH POISSON INPUT

yields spike trains that additionally satisfy the symmetry conditions re1 = re2 = re,

ri1 = ri2 = re, and ⇢e1i2 = ⇢i1e2 = ⇢ei. Since (V1(t), V2(t)) is a Markov process, the

output spike trains s1(t) and s2(t) for the dLIF model are a pair of conditionally renewal

processes (see Sec. 2.3).

The correlation between the total input currents in1(t) and in2(t) is given by (see

Sec. 5.1.4)

⇢in1in2 =
re⇢e1e2 + ri⇢i1i2 �

pre1 ri2⇢e1i2 �
pri1 re2⇢i1e2p

(re1 + ri1)(re2 + ri2)
.

Note that the leak current IL j(t) and the inhibitory input i j(t) have the same impact

on the membrane potential, Vj(t). The only difference is that the two leak currents are

independent from one another and from all of the inputs, whereas the inhibitory inputs

can be correlated with one another and with the excitatory inputs. When ĪL j > 0, the

model can be replaced by an equivalent model with ĪL j = 0 and where ri j is replaced by

bri j = ri j + ĪL j ,

⇢i1i2 is replaced by

b⇢i1i2 = ⇢i1i2

r ri1 ri2

(ri1 + ĪL1)(ri2 + ĪL2)
,

⇢e1i2 is replaced by

b⇢e1i2 = ⇢e1i2

r ri2

ri2 + ĪL2

,

and ⇢i1e2 is replaced by

b⇢i1e2 = ⇢i1e2

r ri1

ri1 + ĪL1

.

In parameter regimes where the input currents dominate the leak current, the dLIF

provides a good quantitative approximation to the LIF. Outside of such regimes, it cap-

tures the qualitative dependence of the spiking statistics on parameters. We emphasize
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that the purpose of the model is not to quantitatively approximate the LIF (which is itself

a simplified model). Instead the dLIF serves as an analytically tractable leaky model that

can be used to understand the principal mechanisms that shape correlation transfer. A

suite of Matlab programs that calculate the quantities described below can be found at:

http://www.mathworks.com/matlabcentral/fileexchange/28686.

5.2.1 Stationary univariate statistics

Several univariate statistics can be derived for the dLIF in closed form. First we derive the

stationary distribution of the membrane potentials, then we derive some univariate spik-

ing statistics. For notational convenience, we omit subscripts in the univariate expressions

and their derivations (i.e. rsj = rs and re j = re).

Theorem 10. Consider the dLIF driven by Poisson excitation and inhibition as described above. If

re 6= ri + ĪL then the membrane potential process V(t) has a stationary probability mass function

given by

p(v) := lim
t!1

Pr(V(t) = v |V(0) = u)

=
bq� 1

bq� � bq✓(bq� +✓� bq✓) ⇥

8
>>><

>>>:

(bq✓+v � bqv) �  v  0

(bq✓ � bqv) 0 < v < ✓

(5.20)

where bq = re
ri+ ĪL

and u, v 2 ⇧ = {n 2 Z |�  n < ✓}. When re = ri + ĪL, the stationary

density is given by taking the limit bq ! 1 above to give

p(v) =

8
>><

>>:

2
✓+1�2� �  v  0

2(✓�v)
✓(✓+1�2�) 0 < v < ✓

.
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Proof. The proof is identical to the proof of Theorem 8 except that the lower reflecting bar-

rier must be accounted for in the detailed balance equtions. Since the inputs are Poisson

and e j(t) is independent from i j(t), the membrane potential is a continuous time Markov

chain on the discrete state space ⇧. Consider a state v /2 {�, 0,✓� 1}. The probability flux

out of a state v is given by

lim
h!0

h�1 Pr(V(t + h) 6= v |V(t) = v) = re + ri + ĪL.

The probability flux from state v� 1 to v is given by

lim
h!0

Pr(V(t + h) = v |V(t) = v� 1) = re

and, similarly,

lim
h!0

Pr(V(t + h) = v |V(t) = v + 1) = ri + ĪL.

Thus [68]

(re + ri + ĪL)p(v) = re p(v� 1) + (ri + ĪL)p(v + 1)

which is equivalent to the equation

p(v) =
re p(v� 1) + (ri + ĪL)p(v + 1)

(re + ri + ĪL)
.

When � 6= 0, an identical derivation can be made for the cases where v = �, v = 0, and

v = ✓� 1 to give the detailed balance equations,

p(v) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

re p(v�1)+(ri+ ĪL)p(v+1)
(re+ri+ ĪL) v 2 ⇧, v /2 {0,✓� 1}

re p(�1)+re p(✓�1)+(ri+ ĪL)p(1)
(re+ri+ ĪL) v = 0

re p(✓�2)
(re+ri+ ĪL) v = ✓� 1

(ri+ ĪL)p(�+1)
re

v = �

.
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Figure 5.4: Stationary membrane potential distribution for the dLIF model. The prob-
ability mass function of V(t) for the dLIF from Eq. (5.20). Parameters are � = �2 and
✓ = 30 with bq = 1.75 (Left), bq = 1.2 (Center) and bq = 0.85 (Right). Compare to Fig. 5.2.

When � = 0, the reflecting and reset boundary conditions collide (since reset is also a

reflecting barrier) and the detailed balance equations become

p(v) =

8
>>>>>><

>>>>>>:

re p(v�1)+(ri+ ĪL)p(v+1)
(re+ri+ ĪL) v 2 ⇧, v /2 {0,✓� 1}

re p(✓�2)
(re+ri+ ĪL) v = ✓� 1

(ri+ ĪL)p(1)+re p(✓�1)
re

v = 0

.

Since p is a probability mass function, we also require that Â✓�1
v=� p(v) = 1. It can be

checked by direct substitution that each of these systems is satisfied by Eq. (5.20).

The stationary probability mass function, p(v), derived in Theorem 10 is plotted in

Fig. 5.4 for two different sets of parameter values.

From the univariate stationary distribution derived above, we can easily derive the

firing rate as shown in the following theorem.

Theorem 11. When re 6= ri + ĪL, the output firing rate for the dLIF model described above is

given by

rs =
(bq� 1)2

bq
�
bq�(✓��) � bq� + q✓�✓� re (5.21)
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where bq = re/(ri + ĪL) measures the ratio of excitation to leak and inhibition. When re = ri + ĪL,

the rate is obtained by taking the bq ! 1 limit above to obtain

rs =
2

✓(✓+ 1� 2�)
re.

Proof. A spike can only occur if the membrane potential is at ✓� 1 at the time of an exci-

tatory input. Thus,

rs = lim
�!0

��1 Pr(Ns(t, t + �) > 0)

= lim
�!0

��1 Pr(V(t) = ✓� 1), Ne(t, t + �) > 0)

= re p(✓� 1)

which, upon substituting Eq. (5.20) and simplifying gives Eq. (5.21).

The output firing rate is plotted as a function of re for various values of ✓ in Fig. 5.5A.

The dependence on re follows an approximately threshold linear trend: firing rates are

small and grow slowly when re < ri + ĪL, but increase approximately linearly (with slope

1/✓) when re > ri + ĪL. This shape is typical of integrate–and–fire models.

To derive the asymptotic spike count variance, �2
s , the output coefficient of variation,

CVs =
p

Fs, and the expected recurrence time, E[⌧s], we must first determine some first

passage time moments. For this, we rely on results from [70].

Theorem 12. ([70]) For the dLIF model described above, the expected first passage time of V(t)

to ✓ starting from V(0) = v is1

µv!✓ =
bq
��bq��v � vbq + v + bq��✓ + bq✓�✓�

(bq� 1)2 re
(5.22)

1To get this expression, we needed to correct an error in [70] in going from their Eq. (6) to Eq. (7): the inner expres-
sion in their Eq. (7) should read (m�m0) + ( f�m � f�m0 )/( f � 1) instead of (m�m0)� ( f�m � f�m0 )/( f � 1).
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5.2. THE DLIF WITH POISSON INPUT

where bq = re/(ri + ĪL).

Note that the firing rate derived in Theorem 11 using the univariate stationary distri-

bution can alternatively be derived from Theorem 12 using the relation rs = 1/µ0!✓. We

obtain the variance of the first passage time from 0 to ✓ from the same article.

Theorem 13. ([70]) For the dLIF model described above, the variance of the first passage time of

V(t) to ✓ starting from V(0) = 0 is

�2
0!✓ =

bq2
⇣
�4(�(bq� 1)� bq(✓+ 1) +✓)bq��✓ + bq2(��✓) � bq2� + 4(�(bq� 1)� bq)bq� +

�
bq2 � 1

�
✓
⌘

(bq� 1)4re2

The output Fano factor is Fs = CV2
s = �2

0!✓/µ2
0!✓ = �2

s /rs (see Sec. 2.3 and [24]),

which simplifies to

Fs = CV2
s (5.23)

=
4(bq(✓��+ 1)�✓+�)bq✓+� + bq2� + bq2✓ �� �bq2� � 4(bq(�� 1)��)bq� � bq2✓+✓

��

(bq� � bq✓ (bq� � bq✓+✓))2

where bq = re/(ri + ĪL) 6= 1. When bq = 1, the Fano factor is obtained by evaluating the

q̂ ! 1 limit above to obtain,

Fs = CV2
s =

2
�
2�2 � 2�(✓+ 1) +✓2 +✓+ 1

�

3✓(�2�+✓+ 1)

The asymptotic spike count variance is given by �2
s = rsFs and the expected recurrence

time is given by E[⌧s] = (Fs + 1)/(2rs) (see Sec. 2.3).

The output CV is plotted in Fig. 5.5 as a function of re for various values of ✓. In the

fluctuation dominated regime, CVs ⇡ 1 since firing is approximately Poisson, while in

the drift dominated regime, CVs is decreased and approaches 1/
p
✓ as re ! 1.

The output CV exhibits non-monotonic dependence on re when � is large and neg-

ative. This is due to the fact that near the balanced regime when q̂ ⇡ 1, the membrane
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Figure 5.5: Univariate spiking statistics for the dLIF. The output firing rate (Left) and the
output CV (Right) as functions of the excitatory input rate, re, for bri = 1 kHZ, � = �2 and
for ✓ = 20, 30, 50, and 120. The dashed lines show the output statistics of the PIF when
✓ = 20 and ri = 1 kHZ.

potential behaves like an unbiased random walker, only to be reflected once reaching �

which is far from 0. This results in a heavier tail of the interspike interval density and co-

efficient of variation larger than one. However, when q̂ is small, the coefficient of variation

is approximately one and when q̂ is large the coefficient of variation approaches 1/
p
✓ < 1

as discussed above. Thus, the coefficient of variation is peaked near (but not precisely at)

q = 1. This effect is illustrated Fig. 5.6.

5.2.2 Transient univariate statistics

So far we have focused on stationary statistics for the dLIF model, which we have derived

in closed form. We have been unable to derive transient or time dependent statistics in

closed form, but most quantities of interest can be found numerically using the membrane

potential’s infinitesimal generator matrix.

The off-diagonal terms (i 6= j) of the infinitesimal generator matrix, B, are given by
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Figure 5.6: Behavior of the dLIF when � is large and negative. The output CV (Left)
and interspike interval density (Right) when � = �25, ✓ = 20, and ri = 1. The CV is
plotted for a range of values of re. The interspike interval density is plotted at re = 1. The
dashed line shows the output CV of the PIF when ✓ = 20 and ri = 1 kHZ. The filled circle
marks the CV at re = 1, where the negative and positive input currents are balanced. The
CV was computed using Eq. (5.23) and the methods for computing the ISI density are
described in Sec. 5.2.2.

the probability flux between states,

Bi j := lim
h!0

1
h

Pr(V(t + h) = j |V(t) = i) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

re j = i + 1

bri j = i� 1

re i = ✓� 1, j = 0

0 otherwise

(5.24)

for i, j 2 ⇧ = {n 2 Z |�  n < ✓} where bri = ri + ĪL. The diagonal terms are then chosen

so that each row sums to zero: Bii = �Â j 6=i Bi j [68].

Note that we have defined the infinitesimal generator with unconventional indexing:

the first entry occurs at index (i, j) = (�,�) (where �  0) and the last at index (i, j) =

(✓ � 1,✓ � 1). That is, B is a mapping from ⇧2 to R. This convention has the advantage

that the component of B at the (i, j)th index represents the flux from state V(t) = i to

V(t + h) = j. Conventional indexing (from (i, j) = (1, 1) to (i, j) = (✓��,✓��)) can be
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5.2. THE DLIF WITH POISSON INPUT

recovered trivially by shifting the indices.

The transient distribution of V(t) is then given by P(t) = P(0)eBt where P(t) is a time

dependent vector with Pj(t) = Pr(V(t) = j) and P(0) is the initial distribution. More

generally Pr(V(t + ⌧) = j |V(t) = V0) =
⇥
P0eB⌧

⇤
j where P0 is the distribution of V0 and

[·] j denotes the jth component [68].

The stationary distribution p = limt!1 P(t) is then given by the left eigenvector

corresponding to the dominant left eigenvalue, �0 = 0, equivalently the stationary dis-

tribution, p, satisfies the detailed balance equation p = peB (see the proof of Theorem

10). The remaining eigenvalues of B have negative real part and the non-zero eigenvalue

with maximal real part, �1, determines the timescale with which P(t) ! p. In particular,

|P(t)� p| ⇠ e�t/⌧mem where ⌧mem = �1/Real(�1).

Given an initial distribution P(0) such that Pr(V(0) = j) = [P(0)] j, the transient firing

rate at time t can be computed by

rs (t | P(0)) = [P(t)]✓�1 re (5.25)

where P(t) = P(0)eBt and [·]✓�1 denotes the last component. The proof of this fact is

identical to the proof of Theorem 11 above.

The output auto-covariance function can be computed directly from Eq. (5.25) as

Css(⌧) = rs (�(⌧) + rs(⌧ | P(0))� rs) (5.26)

where

[P(0)] j = � j,0 =

8
>><

>>:

1 j = 0

0 otherwise

represents the distribution of V(t) immediately after a spike. The time-dependent spike

count variance can be computed from the auto-covariance from Eq. (2.5), but recall that
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Figure 5.7: Output auto-covariances for the dLIF. Auto-covariance, C(⌧) = Css(⌧), of
the output spike train from a dLIF with excitatory and inhibitory inputs, calculated from
Eq. (5.26). Left: re = 1 kHZ, bri = 0.5Khz, ✓ j = 5, and � = �2. Right: re = 3 kHZ,
bri = 1.5 kHZ, ✓ j = 15, and � = �2. The firing rates are rs = 105.1 Hz (Left) and
rs = 101.7 Hz (Right). Vertical axes have units ms�2. Compare to Figs. 5.1 and 5.3.

the asymptotic spike count variance is derived in closed form (by multiplying the expres-

sion for Fs and rs) in Sec. 5.2.1.

Similar methods can be used to compute the first passage density of V(t) over thresh-

old and the cumulative distribution of the first passage time. To do this, define a new

stopped process V(t) that is identical to V(t) except that its state space has an additional

absorbing state at V(t) = ✓. The infinitesimal generator of V(t) is the same as that of V(t)

except that the reset boundary condition is replaced by an absorbing boundary condition

at ✓. The off-diagonal terms are given by

Bi j =

8
>>>>>><

>>>>>>:

re j = i + 1

bri j = i� 1, i 6= ✓

0 otherwise

for i, j 2 {n 2 Z |�  n  ✓}. As above, the diagonal terms are again chosen so that each

row sums to zero: Bii = �Â j 6=i Bi j. Note that the last row is zero, B✓ j = 0, corresponding

to the absorbing boundary at V(t) = ✓.
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5.2. THE DLIF WITH POISSON INPUT

Now assume that the membrane potential starts from the initial distribution P(0) such

that [P(0)] j = Pr(V(0) = j) = Pr(V(0) = j). Let ⌧s be the random variable representing

the time of the first spike after time 0. The density of ⌧s, equivalently the first passage time

of V(t) to threshold, is given by

f⌧ (t) = re
⇥
P(t)

⇤
✓�1 (5.27)

where [·] j denotes the jth component and P(t) = P(0)eBt is the time dependent distri-

bution of V(t). The cumulative distribution of the first passage time is given by F⌧ (t) =
R t

0 f⌧ (s) ds, but we find that numerical computations are more accurate using the form

F⌧ (t) =
⇥
P(t)

⇤
✓

(5.28)

where P(t) is as above. The inter-spike interval (ISI) density and cumulative distribution

function (see Sec. 2.3) can easily be computed from Eqs. (5.27) and (5.27) by taking

[P(0)] j = � j,0 =

8
>><

>>:

1 j = 0

0 otherwise

which represents the distribution of V(t) immediately after a spike. Similarly, the density

and cumulative distribution of the recurrence time, ⌧s, can be computed by taking P(0) to

be the stationary distribution of V(t), that is [P(0)] j = p( j). In Fig. 5.8 we compare the ISI

density to the density of the recurrence time.

5.2.3 Bivariate statistics and correlation transfer

The bivariate membrane potential process, V(t) = (V1(t), V2(t)), takes values on the

two-dimensional discrete state space ⇧ = ⇧1 ⇥ ⇧2 where ⇧ j = {n 2 Z |� j  n <

✓ j} = � j,� j + 1, . . . ,✓ j � 1}. The bivariate statistics for two dLIF neurons with correlated
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Figure 5.8: Inter-spike interval and recurrence time density for the dLIF. ISI density
(Left) and recurrence time density (Right) for the dLIF with re = 1.5 kHZ, bri = 1 kHZ,
✓ = 30, and � = �2. The firing rate for this example is rs = 17.2 Hz.

inputs can be found from the infinitesimal generator matrix, A, of the bivariate process.

Since V(t) is two-dimensional, the generator is actually a tensor with four indices, but for

numerical purposes it is easier to enumerate the (discrete) two-dimensional state space as

a one-dimensional vector so that the generator is a conventional matrix. Below, we use

the indexing convention A( j1, j2),(k1,k2) where j1, k1 2 ⇧1 and j2, k2 2 ⇧2. Note that, as for

the univariate generator, we chose an indexing convention such that the indices of A run

from �1 to ✓1 � 1 and �2 to ✓2 � 1 respectively. That is, A is a function from ⇧⇥⇧ to R.

See Sec. 5.2.1 for a discussion of this indexing convention in the univariate case.

The off-diagonal (( j1, j2) 6= (k1, k2)) elements of the bivariate generator matrix are
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5.2. THE DLIF WITH POISSON INPUT

given by

A( j1, j2),(k1,k2) = lim
h!0

1
h

Pr
⇣
(V1(t + h), V2(t + h)) = ( j1, j2) | (V1(t), V2(t)) = (k1, k2)

⌘

= {re1 � re1·e2 � re1·i2 if (k1, k2) = (�1 j1, j2)}

+ {re2 � re1·e2 � ri1·e2 if (k1, k2) = ( j1,�2 j2)}

+ {re1·e2 if (k1, k2) = (�1 j1,�2 j2)}

+ {ri1 � ri1·i2 � ri1·e2 if (k1, k2) = ( 1 j1, j2)}

+ {ri2 � ri1·i2 � re1·i2 if (k1, k2) = ( j1, 2 j2)}

+ {ri1·i2 if (k1, k2) = ( 1 j1, 2 j2)}

+ {ri1·e2 if (k1, k2) = ( 1 j1,�2 j2)}

+ {re1·i2 if (k1, k2) = (�1 j1, 2 j2)} .

Here, �1 represents the effect of an excitatory input spike on V1(t) in the sense that

�1 j =

8
>><

>>:

0 j = ✓1 + 1

j + 1 otherwise
. (5.29)

Similarly,  1 represents the effect of an inhibitory input spike,

 1 j =

8
>><

>>:

j j = �1

j� 1 otherwise
(5.30)

where we remind the reader that✓1 and �1 are the threshold and lower boundary of V1(t)

and that the reset occurs at V(t) = 0. The definition of�2 and 2 is identical. The notation

{x if P} above evaluates to x if P is true and 0 otherwise. Recall from Sec. 2.3 that ra·b rep-

resents the rate of synchronous spikes in the spike trains a(t) and b(t). The diagonal terms

of A are chosen so that the rows sum to zero: A(i1,i2),(i1,i2) = �Â( j1, j2) 6=(i1,i2) A(i1,i2),( j1, j2).
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Given an initial distribution P(0) of V(t) = (V1(t), V2(t)), the distribution at time t is

given by

P(t) = P(0)eAt

where P(t) is defined by

[P(t)]( j1, j2) = Pr(V1(t) = j1, V2(t) = j2)

and [·]( j1, j2) denotes the ( j1, j2) component. For our purposes, however, only the station-

ary distribution p( j1, j2) = limt!1 [P(t)]( j1, j2) needs to be computed. We show below

that all quantities of interest can be computed using the bivariate stationary distribution,

p and the univariate statistics from the previous sections.

The bivariate stationary distribution, p, is the the basis vector for the one-dimensional

nullspace of the transpose of A, equivalently it is the left eigenvector of A associated with

the left eigenvalue � = 0. There are a variety of numerical techniques for finding this vec-

tor. Two of these are implemented in the Matlab code linked above. Note that the vector

must be normalized so that its elements sum to 1 since p is a probability distribution.

All of the spiking statistics that we are interested in can be calculated from the bivariate

generator matrix combined with some of the univariate statistics discussed above. The

simplest statistic to calculate is the spiking synchrony. A synchronous output spike occurs

only if both cells are near threshold when a synchronous excitatory input arrives. Thus

the rate of synchronous output spike is given by

rs1·s2 = lim
�!0

��1 Pr(Ns1(t, t + �) > 0, Ns2(t, t + �) > 0)

= lim
�!0

��1 Pr(V1(t) = ✓1 � 1, V2(t) = ✓2 � 1) Pr(Ne1(t, t + �) > 0, Ne2(t, t + �) > 0)

= p(✓1 � 1,✓2 � 1)re1·e2

= p(✓1 � 1,✓2 � 1)
p

re1 re2⇢e1e2 . (5.31)
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Dividing by the geometric mean of the output firing rates (which are given in Eq. (5.21))

gives the output synchrony,

Ss1s2 =
rs1·s2prs1 rs2

. (5.32)

The remaining spiking statistics that we are interested in can be found from the con-

ditional distribution,

p1|2(v1) := lim
�!0

Pr(V1(t) = v1 | Ns2(t� �, t) > 0)

which represents the distribution of V1(t) given that cell 2 just spiked (i.e. V2(t) just

crossed threshold). Cell 2 spikes only when its membrane potential is at ✓2 � 1 when

the cells receives an excitatory input spike. There is a probability ⇢e1e2 that this excita-

tory input is synchronous with an excitatory input to cell 1 and a probability ⇢i1e2 that it

is synchronous with an inhibitory input to cell 1. Thus, p1|2 can be found by taking the

conditional distribution of V1(t) given that V2(t) = ✓2 � 1 and evolving a fraction ⇢e1e2 of

its mass ahead by the effects of one excitatory input and evolving a fraction ⇢i1e2 by one

inhibitory input. First define

p1(v1 |V2 = ✓2 � 1) = Pr(V1(t) = v1 |V2(t) = ✓2 � 1) =
p(v1,✓2 � 1)

p2(✓2 � 1)

where p2 is the univariate stationary distribution for V2(t) from Theorem 10. Then p1|2(v1)

is given by

p1|2(v1) = (1� ⇢e1e2 � ⇢i1e2)p1(v1 |V2 = ✓2 � 1)

+ ⇢e1e2 p1(�1v1 |V2 = ✓2 � 1) (5.33)

+ ⇢i1e2 p1( 1v1 |V2 = ✓2 � 1)

where �1 and  1 are as defined in Eqs. (5.29) and (5.30). The conditional distribution
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Figure 5.9: Stationary and conditional membrane potential distribution for the dLIF.
Left: The stationary distribution, p1(v) of V1(t). Center: The conditional distribution,
p1|2(v), of V1(t) conditioned on a spike at time t in neuron 2 when input correlations
are positive. Right: The conditional distribution of V1(t) when input correlations are
negative. In all three plots re1 = re2 = 1.15 kHZ, bri1 = bri2 = 1 kHZ, ✓ = 30, � = �2.
Correlation parameters for the Center plot are: ⇢e1i2 = ⇢i1e2 = 0, and ⇢e1e2 = ⇢i1i2 = 0.5.
Correlation parameters for the Right plot are: ⇢e1i2 = ⇢i1e2 = 0.2, and ⇢e1e2 = ⇢i1i2 = 0.

p2|1(v2) is defined and derived analogously. Fig. 5.9 compares the conditional distribu-

tion p1|2(v1) to the stationary distribution p1(v). When the inputs are positively corre-

lated (Center), conditioning on cell 2 having just spiked pushes the distribution of cell 1

towards threshold. When the inputs are negatively correlated (Right), conditioning on

cell 2 having just spiked pushes the distribution of cell 1 towards threshold. Large input

correlations were chosen to highlight this effect.

The output spike trains s1(t) and s2(t) for the dLIF model form a conditionally renewal

pair (see Sec. 2.3). For such pairs, recall that the conditional recurrence time, ⌧1|2, is a

random variable representing the waiting time for a spike in cell 1 after a spike in cell 2

occurs. The density and cumulative distribution of the conditional recurrence time can

be computed from Eq. (5.27) by taking the initial distribution, P1(0), to be the conditional

distribution p1|2 from Eq. (5.33), that is [P1(0)] j = p1|2( j).

The density of the conditional recurrence time is plotted in Fig. 5.10 for positive (Cen-

ter) and negative (Right) input correlation. Comparing this to the density of the recur-

rence time in the stationary state (Left), we see that when input correlations are positive
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Figure 5.10: Stationary and conditional recurrence time density for the dLIF. Left: The
density of the stationary unconditioned recurrence time, ⌧1. Center: the density of the
conditional recurrence time ⌧1|2 when input correlations are positive. Right: The density
of the conditional recurrence time when input correlations are negative. Parameters are
the same as those in Fig. 5.9.

the waiting time for a spike in cell 1 is decreased by conditioning on a spike in cell 2 (the

Left plot has more mass near t = 0 than the Center plot). This can be explained by the

results of Fig. 5.9(Center): V1(t) is more likely to be near threshold after a spike in cell

2 and is therefore more likely to spike soon after. Similarly, when input correlations are

negative, the waiting time for a spike in cell 1 is increased by conditioning on a spike in

cell 2 (see Fig. 5.10(Right) and compare to Fig. 5.9(Right)).

For notational simplicity, abbreviate the conditional recurrence time E[⌧s1|s2 ] as E[⌧1|2],

which can be computed by combining the expected first passage time from Eq. (5.22) and

the conditional distribution from Eq. (5.33) to obtain

E[⌧1|2] =
✓�1

Â
v=�

p1|2(v)µv!✓1 . (5.34)

The mean conditional recurrence time E[⌧2|1] := E
h
⌧s2|s1

i
can be computed analogously.

When ⇢e1e2 > 0, the output cross-covariance has a delta function at the origin with

mass given by re1·e2 = pre1 re2⇢e1e2 , which can be calculated from the bivariate stationary

distribution according to Eqs. (5.31) and (5.32). The cross-covariance function away from

lag zero is given by the conditional firing rate of one neuron, given that the other spiked
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at time zero. This can be computed in a similar fashion as the output auto-covariance (see

Eq. (5.26)). In particular, for positive lags (⌧ > 0), we have

Cs2s1(⌧) = rs1·s2�(⌧) + rs2

⇣
rs1(⌧ | p1|2)� rs1

⌘
(5.35)

where rs1(⌧ | p) is the conditional firing rate of cell 1 at time ⌧ given the initial distribution

P(0) = p (see Eq. (5.25)). An analogous expression holds Cs2s1(⌧), which determines the

cross-covariance at negative lags since Cab(⌧) = Cba(�⌧) (see Secs. 2.1 and 2.3)

The time dependent spike count variance and correlation can be computed from the

auto- and cross-covariance functions using Eq. (2.5). The asymptotic spike count vari-

ance is derived in closed form in Sec. 5.2.1 and Theorem 1 can be used to calculate the

asymptotic spike count covariance and correlation directly. Recall from Theorem 1 that

the asymptotic covariance and correlation are given by

�s1s2 = rs1 rs2(E[⌧1]� E[⌧1|2] + E[⌧2]� E[⌧2|1]) + rs1·s2

and

⇢s1s2 =
prs1 rs2

⇣
E[⌧1]� E[⌧1|2] + E[⌧2]� E[⌧2|1]

⌘
+ Ss1s2

CVs1 CVs2

respectively where we have written E[⌧ j] for E[⌧s j ] and E[⌧ j|k] for E[⌧s j|sk
] to simplify no-

tation. For convenience, we remind the reader where each of the quantities above are

derived. The output firing rates, rsj are given in closed form in Eq. (5.21). The output CVs,

CVs j are given in closed form in Eq. (5.23). The expected recurrence time is given in closed

form by E[⌧ j] = (CV2
j + 1)/(2rsj) as discussed in Sec. 5.2.1. The rate of synchronous out-

put spiked and the output synchrony , Ss1s2 and rs1·s2 , can be calculated from the bivariate

stationary distribution using Eqs. (5.31) and (5.32) respectively. The expected conditional

recurrence time, E[⌧ j|k], can be calculated from the conditional distribution, pj|k, using

Eq. (5.34).
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5.3 The LIF with Gaussian white noise input

As discussed in Sec. 4.2.1, the LIF with point process inputs is relatively intractable mathe-

matically, but can be approximated by an LIF model with white noise inputs which is con-

siderably more tractable. In this section, we review the existing literature on this model

and derive some additional results. The membrane potential of cell j = 1, 2 obeys

dVj

dt
= �Vj(t)/⌧m, j + µ j +

q
2Dj⌘ j(t)� (Vth, j �Vre, j)s j(t) (5.36)

where, as before, the output spike train is given by s j(t) = Âti2�s j �(t � ti) and �s j is

the set of all times at which Vj(t) crosses Vth, j. Thus, the membrane potential is reset

to Vre, j each time it crosses Vth, j. The terms ⌘ j(t) are zero-mean Gaussian noise with

E[⌘ j(t)⌘ j(t + ⌧)] = C⌘ j⌘ j(⌧) = �(⌧). Marginally, Eq. (5.36) should be interpreted as an Itǒ

stochastic differential equation (SDE) [45] where the reset term (Vth, j �Vre, j)s j(t) is taken

into account by boundary conditions on the probability flux [92]. Thus, the marginal

processes Vj(t) are diffusion processes. Though we assume that ⌘ j is marginally white,

we allow for the possibility that ⌘1 and ⌘2 are correlated in time and therefore the bi-

variate process (V1(t), V2(t)) is not necessarily a diffusion process. If (⌘1(t), ⌘2(t)) is

bivariate Gaussian white noise (i.e. E[⌘1(t)⌘2(t)] is a multiple of a delta function), then

(V1(t), V2(t)) is a diffusion process.

Note that, since C⌘ j⌘ j(⌧) = �(⌧), we have that eC⌘ j⌘ j(!) = 1 and therefore eC⌘1⌘2(!) 
1 and hence

c := ⇢⌘1⌘2 =
Z 1

�1
C⌘1⌘2(⌧)d⌧ = lim

!!0
eC⌘1⌘2(!) 2 [�1, 1]. (5.37)

We exclude the possibility that the inputs are perfectly correlated or perfectly anti-correlated

so that c 2 (�1, 1).

Eq. (5.36) can be used to approximate a pair of LIFs with Poisson input (see Sec. 4.2.1)
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when e j(t) is uncorrelated from i j(t). In this case, we should choose µ j = Je j re j � Ji j ri j ,

D = (J2
e j

re j + J2
i j

ri j)/2, and

C⌘1⌘2(⌧) = E[⌘1(t)⌘2(t + ⌧)] =
1
2

s
1

D1D2
Cin1in2(⌧)

where

Cin1in2(⌧) = Je1 Je2 Ce1e2(⌧) + Ji1 Ji2 Ci1i2(⌧)� Je1 Ji2 Ce1i2(⌧)� Ji1 Je2 Ci1e2(⌧). (5.38)

This approximation is often referred to as the diffusion approximation and assures that the

inputs have the same second order statistics.

5.3.1 A review of existing univariate results

Much of the existing literature on the LIF with white noise inputs focuses on univariate

statistics. For notational convenience, we omit subscripts when referring to univariate

statistics (e.g. we write rs in place of rsj and Vth in place of Vth, j). The univariate mem-

brane potential V(t) is a Ornstein-Uhlenbeck diffusion process with absorbing and reset

boundary conditions. The output firing rate is derived in [86] as

rs =

 
⌧m
p
⇡

Z (⌧mµ�Vre)/
p

2D⌧m

(⌧mµ�Vth)/
p

2D⌧m
ex2

erfc(x)dx

!�1

(5.39)

where erfc(x) = (2/
p
⇡)
R1

x e�t2 dt is the complementary error function. Since s(t) is a

renewal process, the mean interspike interval (ISI) is given by E[Is] = r�1
s (see Sec. 2.3).

The variance of the ISIs (equivalently, the variance of the first passage time of V(t) from 0

to Vth) is derived in [86] as

�2
Is

= 2⇡⌧2
m

Z 1

⌧mµ�Vthp
2D⌧m

ex2
(erfc(x))2 dx

Z x

⌧mµ�Vthp
2D⌧m

ey2
⇥
⇣
(⌧mµ �Vre)/

p
2D⌧m � y

⌘
dy (5.40)
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where ⇥(x) is the Heaviside step function. The asymptotic spike count variance is then

given by �2
s = �2

Is
r3

s (see Sec. 2.3) and the output CV and Fano factor are given by Fs =

CV2
s = �2

s /rs. The univariate stationary density of the membrane potential is also derived

in [86] as

p(v) = lim
t!1

lim
�!0

��1 Pr(V(t) 2 (v� �/2, v + �/2) |V(0) = V0)

=
rs

D
e�(v�⌧mµ)2/(2D⌧m)

Z Vth

max(v,Vre)
e(⌧mµ�x)2/(2D⌧m)dx (5.41)

and the auto-spectrum is given in [86] as

eCss(!) =

���Di!⌧m

⇣
⌧mµ�Vthp

D⌧m

⌘���
2 � e2�

���Di!⌧m

⇣
⌧mµ�Vrep

D⌧m

⌘���
2

���Di!⌧m

⇣
⌧mµ�Vthp

D⌧m

⌘
� e�Di!⌧m

⇣
⌧mµ�Vrep

D⌧m

⌘���
2 rs (5.42)

where

� =
V2

re �V2
th + 2⌧mµ(Vth �Vre)

4D⌧m
.

and D⌫(z) is the parabolic cylinder function. The auto-covariance, Css(⌧), is then given

by taking the inverse Fourier transform of eCss(!).

Another quantity of interest, which we will use to approximate the output cross-

covariance, is the response of the firing rate to a periodic perturbation in the input bias,

µ. Specifically, for a fixed angular frequency ! and a fixed phase ', define µ(t) =

µ0 +✏ cos(!t +') and consider the LIF defined by Eq. (5.36) with µ replaced by the time-

dependent signal µ(t). To first order in ✏, the time-dependent firing rate can be written

as [15, 86]

rs(t) = r0 +✏|�s(!)| cos (!t +'+ ) + o(✏) (5.43)

where = arg(�s(!)) and where r0 is the firing rate in the ✏ = 0 case, given by Eq. (5.39)

with µ = µ0. The function �s(!) is called the susceptibility function (of the firing rate)

and quantifies the spectral response of the output spike train to small perturbations in the
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cell’s input. A second interpretation of the susceptibility function is given by considering

a complex perturbation, µ(t) = µ0 + ✏ei!t in which case the complex time-dependent

firing rate is given to first order in ✏ by [115]

rs(t) = r0 +✏�s(!)ei!t + o(✏).

The susceptibility function is derived in [86] as 2

�s(!) =
i!⌧2

m r0p
D⌧m(i!⌧m + 1)

D�i!⌧m�1

⇣
⌧mµ�Vthp

D⌧m

⌘
� e�D�i!⌧m�1

⇣
⌧mµ�Vrep

D⌧m

⌘

D�i!⌧m

⇣
⌧mµ�Vthp

D⌧m

⌘
� e�D�i!⌧m

⇣
⌧mµ�Vrep

D⌧m

⌘ . (5.44)

The susceptibility of the firing rate to a perturbation in D is also considered in [86], but

this quantity is not necessary for our purposes.

The univariate probability density of V(t), defined by

p(v, t) = lim
�!0

��1 Pr(V(t) 2 (v� �/2, v + �/2)),

satisfies the Fokker-Planck equation

∂p
∂t

= �∂(µ � v/⌧m)p
∂v

+ D
∂2 p
∂v2 . (5.45)

The reset and threshold boundary conditions imply zero probability mass at threshold:

p(Vth, t) = 0. The probability flux mass escapes at threshold is re-injected at reset. This

causes the derivative of the density to have a jump discontinuity at reset with


∂p
∂v

�V+
re

v=V�re

=
∂p
∂v

����
v=Vth

where [ f (v)]x+

v=x� = limv!x+ f (v) � limv!x� f (v) denotes the jump discontinuity in a

function f at the point x. In addition, the probability density is continuous and decays

2The function discussed in [86] is the complex conjugate of the one here, since the Ansatz there is the same
as Eq. (5.43) with  replaced by � .
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to zero as v ! �1 and
R Vth�1 p(v, t) = 1. These conditions are sufficient to uniquely

determine the solution to (5.45) [92].

The steady-state Fokker-Planck equation (for the stationary density) can be found

by setting ∂p
∂t to zero in Eq. (5.45). However, an alternative approach was developed

in [115, 116]. The underlying concept is to include the boundary conditions explicitly

in the equation for the steady-state density, p, which gives

�∂p
∂v

=
1
D

((v/⌧m �µ)p + J) (5.46)

� ∂J
∂v

= rs (�(V �Vth)� �(V �Vre))

where p(v) = limt!1 p(v, t) is the stationary density and J(v) is the probability flux in

the steady-state when µ = µ0 is constant.

The same approach is used in [115] to derive an equation for the susceptibility that can

be easily solved numerically. Given a periodically perturbed bias, µ(t) = µ0 +✏ei!t, the

probability density can be written to first order in ✏ as p(v, t) = p0(v) +✏p1(v)ei!t + o(✏)

and similarly for the flux, J(v, t) = J0(v) + ✏J1(v)ei!t where p0 and J0 are the solutions

when✏ = 0 (which satisfy Eq. (5.46)). Isolating the first-order terms of the time-dependent

Fokker-Planck equation gives

�∂p1

∂v
=

1
D

((v/⌧m �µ0)p1 + J1 � p0) , (5.47)

�∂J1

∂v
= i!p1 + �s(!) (�(v�Vth)� �(v�Vre))

where �s(!) is the susceptibility of the firing rate (see Eq. (5.44) and the discussion pre-

ceding it).

The integrals in Eqs. (5.39), (5.40), and (5.41) as well as the parabolic cylinder functions

in Eqs. (5.42) and (5.44) are computationally expensive to evaluate numerically. Alterna-

tively, the statistics they describe can be obtained numerically by solving Eqs. (5.46) and
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(5.47), integrating backwards from Vth [115, 116]. Additionally, we will show in Sec. 5.3.2

that Eqs. (5.46) and (5.47) simplify the derivation of membrane potential statistics.

5.3.2 Univariate membrane potential statistics

Though the spiking statistics for the LIF with Gaussian white noise inputs has been stud-

ied extensively (see Sec. 5.3.1), the statistics of the membrane potential V(t) have not been

investigated fully. We provide an analysis here.

Much of this analysis uses properties of bilateral Laplace transforms, which we will

first review. The transform is defined by

L[ f (x)](s) = bf (s) =
Z 1

�1
f (x)e�sxdx

and has the following properties

L[ f 0(x)](s) = �s bf (s) (5.48)

L[�(x� c)](s) = ecs (5.49)

L[x f (x)](s) =
∂ bf
∂s

. (5.50)

Also, when X is a random variable with density f , then bf (0) = 1, bf 0(0) = E[X] and

bf 00(0) = E[X2].

We first derive the stationary mean of the membrane potentials. Taking the bilateral

Laplace transform on either side of Eq. (5.46) and using properties (5.48)-(5.50) above

gives

sbp =
1
D

✓
1
⌧m

∂bp
∂s
�µbp + bJ

◆

sbJ = rs

⇣
eVths � eVres

⌘
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which can be solved to obtain

∂bp
∂s

= ⌧m(µ + sD)bp� ⌧m

s

⇣
eVths � eVres

⌘
rs. (5.51)

Now taking s ! 0, we obtain

E[V] = ⌧m
�
µ � (Vth �Vre)rs

�
. (5.52)

The gain of the membrane potential is related to the gain of the firing rates by

�V(0) :=
dE[V]

dµ
= ⌧m (1� (Vth �Vre)�s(0)) (5.53)

where �s(0) := drs/dµ is the gain of the firing rates.

To derive the variance of the membrane potentials, first differentiate Eq. (5.51) to ob-

tain

∂2bp
∂s2 = ⌧m

∂bp
∂s

(µ + sD) + ⌧mDbp� ⌧m

s2

⇣
eVths(sVth � 1)� eVres(sVre � 1)

⌘
rs

which, upon taking s ! 0, gives

E[V2] = ⌧m

✓
µE[V] + D� 1

2
(V2

th �V2
re)rs

◆

so that

var(V) = D⌧m � ⌧m

2

⇣
(V2

th �V2
re)� 2µ⌧m(Vth �Vre)

⌘
rs � ⌧2

m(Vth �Vre)2r2
s . (5.54)

The mean and variance of the membrane potential derived above can also be ob-

tained by integrating the stationary density, which is given in closed form in Eq. (5.41),

but Eqs. (5.52) and (5.54) are easier to evaluate and have an intuitive interpretation: Tak-

ing rs ! 0 gives the mean and variance without thresholding and the remaining terms

quantify the effect of a threshold in terms of rs.
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Similar methods can be used to derive the response properties of the mean membrane

potential. Analogous to the definition of �s(!), define �V(!) to be the first order response

of E[V(t)] to a periodic perturbation in µ. In particular, consider a periodically perturbed

bias current µ(t) = µ0 +✏ei!t in Eq. (5.36) and define r0, �s, p1, p0, J1, and J0 as in Sec. 5.3.1

then the susceptibility of the membrane potential is defined to be

�V(!) =
Z Vth

Vlb

vp1(v)dv

and satisfies

E[V(t)] = E[V0] +✏�V(!)ei!t + o(✏)

where E[V0] =
R Vth

Vlb
vp0(v)dv is the stationary mean membrane potential when ✏ = 0 and

is given by Eq. (5.52).

Taking the bilateral Laplace transform on either side of Eq. (5.47) and using proper-

ties (5.48)-(5.50) above gives

sbp1 =
1
D

✓
1
⌧m

∂bp1

∂s
�µ0bp1 + bJ1 � bp0

◆

sbJ1 = i!bp1 + �s(!)
⇣

eVths � eVres
⌘

,

which can be solved to obtain

1
⌧m

∂bp1

∂s
=
✓

µ0 + sD� i!
s

◆
bp1 � 1

s

⇣
esVth � esVre

⌘
�s(!) + bp0. (5.55)

Now note that �V(!) = ∂bp1/∂s|s=0. Thus, taking the limit as s ! 0 on both sides of (5.55)

gives

�V(!) =
⌧m

1 + i!⌧m
(1� (Vth �Vre) �s(!)) . (5.56)

Since �s(!) is known in closed form (see Eq. (5.44)), this expression effectively gives

�V(!) in closed form. In addition the expression links the response properties of the

membrane potentials to the response properties of the output spike trains.
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Figure 5.11: Comparing spike train and membrane potential response properties A) Fir-
ing rate (rs, dashed red, top), mean membrane potential (hVi, solid blue, top) and gains
(drs/dµ, dashed red, bottom; dhVi/dµ, solid blue, bottom) plotted as a function of the
excitatory input rate, re. B) Susceptibility magnitude of the firing rate. C) Susceptibil-
ity magnitude of the mean membrane potential. When re is small (and therefore µ is
small), membrane potentials respond more sensitively to inputs (|�V(!)| is larger), but
the firing responds weakly (|�s(!)| ⇡ 0). When re is large, the firing rate responds sensi-
tively to input (|�s(!)| ⇡ (Vth � Vre)�1 = 1), but membrane potentials respond weakly
(|�V(!)| ⇡ 0). For all three plots, we take ri = 2 kHZ, ⌧m = 20 ms, and rescale voltage so
that Vth �Vre = 1. Frequencies,! and re, are given in kHZ.

5.3.3 Spike trains and membrane potentials are sensitive to perturbations in

opposite regimes

Eq. (5.56) has an interesting consequence, namely that firing rates and mean membrane

potentials are sensitive to perturbations in opposite parameter regimes. To see this, take

the norm squared on either side of Eq. (5.56) to obtain

|�V(!)|2 =
⌧2

m
1 + ⌧2

m!
2 |1� (Vth �Vre)�s(!)|2 .

When µ is large, firing rates are high and the LIF transfers inputs and their perturba-

tions nearly linearly to output spiking so that �s(!) ⇡ (Vth �Vre)�1 and therefore (from

Eq. 5.56) membrane potentials are insensitive to perturbations, �V(!) ⇡ 0. When µ is
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smaller, firing rates are low and threshold has a smaller impact on the dynamics of V(t).

In this regime, inputs and their perturbations are filtered nearly linearly to V(t) so that

�V(!) ⇡ ⌧m/(1 + i!⌧m), but the firing rate is insensitive to perturbations, �s(!) ⇡ 0,

from Eq. 5.56. This phenomenon is illustrated in Fig. 5.11.

5.3.4 Linear response approximations of spiking and membrane potential cor-

relations

The definition of the susceptibility functions above only apply to the case where the bias

current is perturbed periodically, µ(t) = µ0 +✏ei!t. However, it is useful to extend this

definition to approximate the response to non-periodic perturbations of the form µ(t) =

µ0 +✏I(t) using the following principle from [121].

Linear response principle Consider an LIF with time dependent bias current µ(t) =

µ0 +✏I(t). The Fourier transform of the time dependent firing rate and mean membrane

potential are approximated by
Z 1

�1
(rs(t)� r0)e�i!tdt = �s(!)eI(!) + o(✏) (5.57)

Z 1

�1
(E[V(t)]� E[V0])e�i!tdt = �V(!)eI(!) + o(✏) (5.58)

where r0 and E[V0] are the firing rate and mean membrane potential when ✏ = 0. Apply-

ing inverse Fourier transforms above gives an approximation in the time domain,

rs(t) = r0 + (bs ⇤ I)(t) + o(✏) (5.59)

E[V(t)] = E[V0] + (bV ⇤ I)(t) + o(✏) (5.60)

where bs = F�1(�s) and bV = F�1(�V) are the inverse Fourier transforms of the suscep-

tibility functions, called the linear response functions [121].
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To the author’s knowledge these equations have not been rigorously proven for the

LIF model, but they are often implicitly or explicitly assumed in the literature and Monte

Carlo simulations show that they yield accurate approximations [31, 88, 102, 136, 158].

5.3.4.1 Linear response approximation to the output cross-covariance function

We now return to the bivariate model defined in Eq. (5.36). To the author’s knowledge,

exact closed form expressions are unknown for the bivariate spiking statistics when the

inputs are correlated. However, when input correlations are weak (
R1
�1 |C⌘1⌘2(⌧)|d⌧ ⌧

1), the cross-covariance function between the output spike trains can be approximated

using the linear response principle from above [31, 88, 102, 136, 158]. We now review this

approximation and extend it to approximate the cross-covariance between the membrane

potentials.

When input correlations are weak, the output cross-covariance function is approxi-

mated using linear response theory by

Cs1s2(⌧) ⇡
p

2D1D2 (bs1 ? bs2 ⇤ C⌘1⌘2)(⌧) (5.61)

where bsj = F�1(�s j) is the linear response function of s j(t) when c = 0 (see Eq. (5.59)

and the surrounding discussion) and (bs1 ? bs2)(⌧) =
R1
�1 bs1(⌧)bs2(t + ⌧). Applying the

Fourier transform to Eq. (5.61) gives an approximation of the cross-spectrum in terms of

the susceptibility,

eCs1s2(!) ⇡
⇣p

2D1D2

⌘
�s1(!)�s2(!) eC⌘1⌘2(!) (5.62)

where �s j(!) is the susceptibility function of s j(t) when c = 0 (see Eq. (5.44)) and z de-

notes the complex conjugate of z.
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To derive Eqs. (5.61-5.62), first approximate Eq. (5.36) as

dVj

dt
= �Vj(t)/⌧m, j + µ j +

q
2Dj

⇣p
1� c⇠ j(t) +

p
c(Fj ⇤⇠c)(t)

⌘
� (Vth, j �Vre, j)s j(t)

(5.63)

where ⇠1(t), ⇠2(t), ⇠c(t) are independent zero-mean standard Gaussian white noise pro-

cesses and c =
R1
�1 C⌘1⌘2(⌧)d⌧ 2 (�1, 1) is the total input correlation (see Eq. (5.37) and

the surrounding discussion). The process ⇠c(t) is shared input noise that is “colored” by

the filters Fj.

To assure that Eq. (5.63) and (5.36) have the same input correlation structure, F1 and

F2 must be chosen so that E[(
p

c(F1 ⇤ ⇠c)(t))((
p

c(F2 ⇤ ⇠c)(t + ⌧)))] = E[⌘1(t)⌘2(t + ⌧)]

which implies cF1 ? F2 = C⌘1⌘2 . In the frequency domain, this requirement becomes

ceF1(!)eF2(!) = eC⌘1⌘2(!). From Eq. (5.37) this implies that
R1
�1 F1(t)F2(t)dt = hF1, F2i =

1. To assure that the perturbations of each cell are equally small, we can also require that
R1
�1 Fj(t)dt = 1, but this is not necessary for the calculations below. These conditions on

F1 and F2 can be achieved, for example, by choosing F1(⌧) = �(⌧) and F2(⌧) = C⌘1⌘2(⌧)/c.

When C⌘1⌘2(t) = c�(t), Eq. (5.63) is exactly equivalent to Eq. (5.36) and the bivari-

ate membrane potential process (V1(t), V2(t)) is a Markov diffusion process, but the as-

sociated two-dimensional Fokker Planck equation is difficult to solve numerically [124].

When C⌘1⌘2(t) is not a delta function, the membrane potentials from Eq. (5.63) are not

marginally or jointly Markov. Therefore, since the membrane potentials from Eq. (5.36) are

marginally Markov, the two models are not equivalent. However, when c ⌧ 1, Eq. (5.63)

approximates Eq. (5.36) even when C⌘1⌘2(t) is not a delta function.

The idea behind the linear response approximation of the cross-covariance is to con-

dition on the shared input to reduce the problem to a univariate one. Conditioning on ⇠c
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in Eq. (5.63) allows the term
p

2Djc (Fj ⇤⇠c)(t) to be treated as a deterministic perturba-

tion of µ (in particular, µ(t) = µ j +
p

2Djc (Fj ⇤⇠c)(t)) and reduces the noise magnitude

to D = (1 � c)Dj. From Eq. (5.59) therefore, the firing rate of cell j conditioned on the

shared input, ⇠c, is approximated by

E[s j(t)|⇠c] = rsj(t|⇠c) ⇡ r0, j +
q

2Djc (bsj ⇤ Fj ⇤⇠c)(t) (5.64)

where bsj is the linear response function evaluated at D = (1 � c)Dj and r0, j is the sta-

tionary firing rate of cell j with bias µ = µ j and noise coefficient D = (1 � c)Dj. An

application of the law of total covariance then gives

Cs1s2(⌧) = cov(s1(t), s2(t + ⌧))

= cov(s1(t), s2(t + ⌧) |⇠c) + cov (E[s1(t)|⇠c], E[s2(t + ⌧)|⇠c]) (5.65)

= 0 + cov (E[s1(t)|⇠c], E[s2(t + ⌧)|⇠c]) (5.66)

⇡ c
p

2D1D2 cov((bs1 ⇤ F1 ⇤⇠c)(t), (bs2 ⇤ F2 ⇤⇠c)(t + ⌧)) (5.67)

= c
p

2D1D2 ((bs1 ? bs2) ⇤ (F1 ? F2) ⇤ C⇠c⇠c)(⌧) (5.68)

= c
p

2D1D2 ((bs1 ? bs2) ⇤ (F1 ? F2))(⌧) (5.69)

=
p

2D1D2 (bs1 ? bs2 ⇤ C⌘1⌘2)(⌧) (5.70)

where

• (5.65) follows directly from the law of total covariance,

• (5.66) follows from the fact that s1 and s2 are independent conditioned on ⇠c,

• (5.67) follows from Eq. (5.64) and the fact that r0, j is a deterministic constant,

• (5.68) follows from elementary properties of convolutions,
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• (5.69) follows from the fact that ⇠c is Gaussian white noise so that C⇠c⇠c(⌧) = �(⌧),

and

• (5.70) follows from the assumptions made on F1 and F2 above.

This concludes the derivation of Eq. (5.61), except for one caveat: the derivation above

suggests that the linear response functions bsj in Eq. (5.61) should be evaluated at a noise

magnitude of D = (1 � c)Dj. However, the approximation tends to agree better with

Monte Carlo simulations when the linear response functions are evaluated at D = Dj.

Other authors have noticed this effect, but to the author’s knowledge, an explanation has

not been offered in the literature. For all results shown in this work, the linear response

functions are evaluated at D = Dj.

5.3.4.2 Linear response approximation to the output spike count covariance and cor-

relation

The spike count covariance, �s1s2(t), can be approximated by first approximating the out-

put cross-covariance via Eq. (5.61) or the cross-spectrum via Eq. (5.62), then integrating

this approximation via Eq. (2.5) or Eq. (2.6). An especially simple approximation can be

derived for the asymptotic spike count covariance, �s1s2 = limt!1 �s1s2(t), using Eq. (5.62).

First note that the susceptibility at zero frequency, �s j(0), is simply the derivative of the

firing rate with respect to the parameter µ j [31, 86, 136],

� j(0) =
drsj

dµ j

since a small zero-frequency perturbation, µ(t) = µ0 + ✏ei0t, is equivalent to a time-

independent perturbation in µ j. Thus, combining Eq. (2.8) and Eq. (5.62) gives [31, 136]

�s1s2 ⇡
p

2D1D2
drs1

dµ1

drs2

dµ2
c (5.71)
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where we remind the reader that c =
R1
�1 C⌘1⌘2(⌧)d⌧ is the total input correlation. Since

the output spike trains from Eq. (5.36) are renewal processes (though those from the ap-

proximation (5.63) are not necessarily renewal), the square root of the asymptotic spike

count variance is given by �s j = CVs j
prsj (from Eq. (2.16)) so that the asymptotic spike

count correlation is [31, 136]

⇢s1s2 ⇡
p

2D1D2
drs1
dµ1

drs2
dµ2

CVs1 CVs2

prs1 rs2

c. (5.72)

5.3.4.3 Linear response approximation to the cross-covariance function between mem-

brane potentials

Using an identical argument to the one in Eqs. (5.65-5.70), the cross-covariance function

between the membrane potentials is approximated by

CV1V2(⌧) ⇡
p

2D1D2 (bV1 ? bV2 ⇤ C⌘1⌘2)(⌧) (5.73)

where bVj = F�1(�Vj) is the linear response function of E[Vj(t)] when c = 0 (see above)

and (bV1 ? bV2)(⌧) =
R1
�1 bV1(⌧)bV2(t + ⌧). Applying the Fourier transform to Eq. (5.73)

gives an approximation of the cross-spectrum in terms of the susceptibility,

eCV1V2(!) ⇡
⇣p

2D1D2

⌘
�V1(!)�V2(!) eC⌘1⌘2(!). (5.74)

As with spiking cross-covariance functions, we find that Eqs. (5.73) and (5.74) better

approximate the cross-covariance obtained from simulations whenever �Vj is evaluated

at the noise intensity D = Dj instead of D = (1� c)Dj. See the discussion at the end of

Sec. 5.3.4.1.
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5.3.5 A Gaussian approximation for low firing rate regimes

In Sec. 5.3.4, we showed that linear response theory can be used to approximate correla-

tions between the activity of two LIFs when input correlations are weak. However, the

applicability of this approach is limited. For example, the method does not allow for the

analysis of time-dependent correlations or the computation of transient spiking statistics.

In this section, we derive a low firing rate approximation to the white noise driven LIF

when the inputs are delta-correlated bivariate white noise. In regimes where firing rates

are low, this approach provides closed form approximation to time-dependent and tran-

sient rates and correlations.

Assume that ⌘ j(t) =
p

1� c⇠ j(t) +
p

c⇠c(t) with ⇠1, ⇠2, and ⇠c independent standard

Gaussian white noise. Then the membrane potentials are Markov diffusion processes and

their bivariate density, P(v1, v2, t), obeys the two-dimensional Fokker-Planck equation

∂tP = �∂v1(µ1 � v1/⌧m)P� ∂v2(µ2 � v2/⌧m)P + D1∂2
v1

P + D2∂2
v2

P + 2cD∂2
v1v2

P (5.75)

with absorption of flux at threshold and re-injection at reset (see above) and where D =
p

D1D2.

When the fluxes across threshold are small, i.e., in the low firing rate regime, the solu-

tion to (5.75) is well approximated by the solution without boundary conditions, which is

simply an Ornstein-Uhlenbeck process [45].

For simplicity in this section, we assume that the two neurons receive statistically

identical inputs, µ1 = µ2 = µ and D1 = D2 = D and further assume that ⌧m,1 = ⌧m,2

and Vth,1 = Vth,2. We can then rescale time so that ⌧m = 1 and rescale space so that

Vth,1 = Vth,2 = 1. All of the results below can be generalized to the asymmetric case, but

the expressions obtained are more complicated.
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The approximation in this section is similar to a low firing rate approximation dis-

cussed in [147], which is obtained using “threshold crossing neurons.” For threshold

crossing models, one calculates spiking rates by essentially counting the number of thresh-

old crossings in a time interval. This approach requires that the membrane potential paths

are differentiable, which is not the case for white noise driven LIF. Instead of counting the

number of threshold crossings, we calculate the probability flux across threshold. This

method allows us to derive simple closed form approximations for instantaneous firing

rates, cross correlation functions, and spike count correlation coefficients for time homo-

geneous and time inhomogeneous inputs.

In [124], the Gaussian approximation described here was compared to results obtained

by solving the full Fokker-Planck equation directly using finite volume methods. The ap-

proximation was found to be quantitatively accurate only when firing rates are extremely

low (a fraction of 1 Hz), but several qualitative predictions made by studying the approx-

imation were found to be valid for the full solution.

5.3.5.1 Time independent inputs

Suppose the initial condition to (5.75) is a Gaussian with marginal means m(0) = E[V1(0)] =

E[V2(0)], variance�2(0) = var(V1(0)) = var(V2(0)), and covariance�(0) = cov(V1(0), V2(0)).

Then the solution at any time t � 0 (in the absence of boundary conditions) is a Gaussian

with mean, variance and covariance given by

m(t) = e�tm(0) +
�
1� e�t�m(1),

�2(t) = e�2t�2(0) +
�
1� e�2t��2(1)

�(t) = e�2t�(0) +
�
1� e�2t��(1)
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where
m(1) = µ,

�2(t) = D

�(t) = cD

are the stationary mean, variance, and covariance.

The firing rate in terms of D, µ, and �2 At any time t, the firing rate of neuron j is

given by the flux across threshold, rsj(t) = �D ∂
∂vj

Pvj(t, vj)
���
vj=Vth, j

where Pv1(t, vj) =
R Vth,1
�1 P(t, v1, v2)dv1 and Pv2(t, v2) =

R Vth,2
�1 P(t, v1, v2)dv2 are the marginal densities. This

quantity can be written in terms of the input diffusion coefficient (D) and the mean (m)

and variance (�2) of the membrane potential at time t,

rs(t) = ⌫(m,�2, D) =
(1�m)Dp

2⇡�3
e
�(m�1)2

2�2 . (5.76)

In the stationary case, we have �2 = D which gives the approximation

⌫1 := lim
t!1

rs(t) = ⌫(µ, D, D) =
↵p
⇡

e�↵
2

for any initial condition [136], where↵ = 1�µp
2D

.

Stationary CCG and spike count correlation We can also use the results above to derive

an approximation of the cross-correlation function, Cs1s2(⌧). Since the joint distribution of

(V1, V2) is a bivariate Gaussian, the distribution of V1 given that V2 = Vth,2 = 1 is a

univariate Gaussian. The conditional mean and variance are mc(0) = c(1� µ) + µ and

�2
c (0) = D(1� c2) respectively. As time evolves, the conditional density of V1 returns to

its stationary state. The density during this transience is a univariate Gaussian with mean

mc(⌧) = e�⌧mc(0) +
�
1� e�⌧

�
mc(1)
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and variance

�2
c (⌧) = e�2⌧�2

c (0) +
⇣

1� e�2⌧
⌘
�2

c (1)

where mc(1) = µ and �2
c (1) = D are the stationary mean and variance. Note that

for c near 1, mc(0) is near Vth,1 = 1 which violates the assumptions of our approxima-

tion, namely that the mass near threshold is small. In this case, the conditional flux across

threshold is large even if the marginal fluxes across threshold are small. Thus, for this

approximation of the cross-correlation to be valid, we must assume that↵ is large (equiv-

alently, the firing rates are low) and that c is small.

The conditional intensity function (see Sec. 2.3) is given by the conditional firing rate,

Hs1s2(⌧) = ⌫(µc(⌧),�2
c (⌧), D)

where ⌫(µ,�2, D) is as defined in (5.76). This yields the cross-correlation function, which

we simplify to obtain

Cs1s2(⌧) = ⌫1(H(⌧)� ⌫1)

=
1
⇡
↵2e�↵

2

0

@ et�↵2(e⌧�c)
c+e⌧p

1� c2e�2⌧ (c + e⌧ )
� e�↵

2

1

A

where ⌫1 = ⌫(µ, D, D) is the stationary firing rate given above. To first order in c, we

have

Cs1s2(⌧) =
c
⇡
↵2
⇣

2↵2 � 1
⌘

e�2↵2�⌧ + o(c2). (5.77)

See Figure 5.12.

The asymptotic output spike count correlation can be written as

⇢s1s2 =
R1
�1 C(⌧)
CV2

s⌫1

where CVs is the coefficient of variation of the output spike train. When firing rates are

low, spiking is approximately Poisson and CVs ⇡ 1 (see Sec. 5.2 and [136]) and we can
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Figure 5.12: Output cross-covariance function and correlation susceptibility for the
Gaussian approximation Left: An output cross correlation function found using the ap-
proximation (5.77). We set µ = 0, D = 0.2, c = 0.1 and ✓ = 1. Right: Correlation sus-
ceptibility S = ⇢s1s2

c versus output rate predicted from (5.78) (solid line) and from (5.79)
(dashed line).

write the output correlation to first order in c and ⌫1 as

⇢s1s2 =
2
⌫1

Z 1

0
C(t) =

cp
⇡

2↵
⇣

2↵2 � 1
⌘

e�↵
2
+ o(c2). (5.78)

Since both ⌫1 and S = ⇢s1s2
c are functions of the single parameter ↵ and since ⌫1 is

monotonic with ↵, we may conclude that ⇢s1s2 is a function of ⌫1 to first order in c and

⌫1. This same conclusion was reached in [136] using linear response theory, though the

expression derived for ⇢s1s2 ,

⇢s1s2 =
cp
⇡
↵

✓
2↵ � 1

↵

◆2
e�↵

2
+ o(c2) (5.79)

differs from the one derived above. For both expressions, we have that ∂⇢s1s2
∂⌫1

⇠ 4c↵2 as

⌫1 ! 0 (however, note that ∂⇢s1s2
∂⌫1

diverges as ⌫1 ! 0). See Figure 5.12.

5.3.5.2 Time dependent inputs

We will now investigate how the spiking statistics track time dependent changes in the

inputs. When the input parameters to the neurons are time dependent, the solution to

104



5.3. THE LIF WITH GAUSSIAN WHITE NOISE INPUT

(5.75) at any time t is a bivariate Gaussian whenever the initial condition is a bivariate

Gaussian. Thus we can use the same methods as above to derive the time dependent

firing rates and cross-correlation. To illustrate the effects of time-dependent inputs, we

concentrate on a simple time-dependent input model. We assume that each cell receives

input with mean µ0, diffusion D0, and correlation c0 for t < 0 and, at time t = 0, the

input parameters change instantaneously to µ1, D1, and c1. At some later time t0 > 0, the

inputs change back to the original values, µ0, D0, and c0. A small value of t0 models a

pulse change in the inputs. Taking t0 = 1 models a step change. The discussion here can

easily be generalized to arbitrary time-dependent input (e.g. sinusoidally varying inputs)

by solving a simple linear ODE for the subthreshold mean, variance, and covariance [45].

We first derive the time dependent solutions to (5.75). As mentioned above, the solu-

tion at any time t is a Gaussian. The mean, variance and covariance for t  0 are given

by

m(t) = µ0,

�2(t) = D0

�(t) = cD0

9
>>>>>>=

>>>>>>;

t  0.

At time t = 0, the input changes and the mean and covariance matrix begin to track this

change. We have

m(t) = e�tµ0 +
�
1� e�t�µ1,

�2(t) = e�2tD0 +
�
1� e�2t�D1

�(t) = e�2tc0D0 +
�
1� e�2t� c1D1

9
>>>>>>=

>>>>>>;

t 2 [0, t0].
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At time t0, the solutions begin changing back to their original values. We have

m(t) = e�(t�t0)m(t0) +
⇣

1� e�(t�t0)
⌘

µ0,

�2(t) = e�2(t�t0)�2(t0) +
⇣

1� e�2(t�t0)
⌘

D0

�(t) = e�2(t�t0)�(t0) +
⇣

1� e�2(t�t0)
⌘

c0D0

9
>>>>>>=

>>>>>>;

t � t0

where µ(t0), �2(t0) and �(t0) are given by the previous set of equations. In general, we

see that the variance and covariance of the solutions change with half of the time constant

that the mean changes with.

The time-dependent firing rate In this section we investigate how the firing rate changes

in respose to a pulse or a step change in the input statistics. The firing rate at time t is given

by rs(t) = ⌫(µ(t),�2(t), Dt) where ⌫(µ,�2, D) is defined in (5.76), µ(t) and �2(t) are as

derived above, and

Dt =

8
>>>>>><

>>>>>>:

D0 t  0

D1 t 2 (0, t0]

D0 t > t0

is the time dependent diffusion coefficient.

We can simplify the expression to get

rs(t) =

8
>>>>>>>>><

>>>>>>>>>:

↵(t)p
⇡

e�↵2(t) t  0

⇣
D1

e�2tD0+(1�e�2t)D1

⌘
↵(t)p
⇡

e�↵2(t) t 2 (0, t0]

✓
D0

(1+e�2t�e�2(t�t0))D0+(e�2(t�t0)�e�2t)D1

◆
↵(t)p
⇡

e�↵2(t) t > t0

where

↵(t) =
1�m(t)p

2�2(t)
.
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Figure 5.13: The time dependent firing rate for the Gaussian approximation. In the left
figure there is a step change in µ (dashed line) or D (solid line). In the right figure there is
a pulse change in µ (dashed line) or D (solid line). The initial input parameters (up to time
t = 0) are µ0 = 0 and D0 = 0.1. For the solid lines D was changed to D1 = 0.2 at time
t = 0 and µ was kept constant at 0. For the dashed line µ was changed to µ1 = 0.293 so
that the final stationary firing rates ⌫1 are identical in the left figure. In the right figure,
µ or D were changed back to their original values at time t1 = 0.25. Note that in both
figures, a change in D is tracked more quickly than a change in µ.

Note that ↵(t) changes continuously with t. Thus any discontinuities in the expression

above are from the factors multiplying the ↵(t)p
⇡

e�↵2(t) term. In particular, the firing rate

jumps discontinuously by a factor of D1
D0

at time 0 and by a factor of D1
e�2t0 D0+(1�e�2t0)D1

at

time t0. If we change the mean of the input signal, but do not change the variance of the

input signal (by setting µ0 6= µ1 and D0 = D1), then the firing rate changes continuously

with time constant ⌧m (here assumed to be 1). If, instead, we change D and keep µ constant

(by setting µ0 = µ1 and D0 6= D1), the firing rate jumps discontinuously at time 0 and time

t0 and changes with a faster time constant of ⌧m
2 = 1

2 . See Figure 5.13.

The time dependent cross-correlation We now look at the effects of changes in the input

parameters on the bivariate spiking statistics. Since the spike trains are not stationary, we
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use a two-point cross-covariance function to measure time-dependent correlation

Cs1s2(⌧ , t) = cov(s1(t + ⌧), s2(t)) = ⌫0(t)(H(⌧ , t)� ⌫0(t + ⌧))

where

Hs1s2(⌧ , t) = lim
�!0

1
�

Pr (N1(⌧ + t, ⌧ + t + �) > 0 | N2(t, t + �) > 0) .

is the time-dependent conditional intensity function and ⌫0(t) is the marginal firing rate

at time t. We first derive these quantities for lag ⌧ = 0. The quantity Hs1s2(0, t) quantifies

the tendency of the neurons to fire together and Cs1s2(0, t) corrects for the firing rates to

measure the tendency over pure chance that they fire together.

The conditional distribution, P(t, V1 |V2(t) = 1), of V1(t) given that V2 crossed thresh-

old at time t is given by

mc(0, t) = m(t) + ⇢(t)(1�m(t))

and

�2
c (0, t) = �2(t)(1� ⇢(t))

where ⇢(t) = �(t)
�2(t) is the subthreshold correlation and m(t),�2(t), and �(t) are as derived

above. The conditional intensity function at lag ⌧ = 0 is the instantaneous firing rate of

V1 at time t given that V2 spiked at time t, which is given by

Hs1s2(0, t) = ⌫(mc(0, t),�2
c (0, t), Dt).

To get the cross-correlation function at lag ⌧ = 0 we normalize by the marginal firing rate

⌫0(t) = ⌫(m(t),�2(t), D(t)), to get

Cs1s2(0, t) = ⌫0(t)(H(0, t)� ⌫0(t)).

Conditioning on a spike in W at time t 2 [0, t0], the conditional distribution of V(t +⌧)
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when t + ⌧  t0 is a Gaussian with mean and variance

mc(⌧ , t) = e�⌧mc(0, t) + (1� e�⌧ )µ1

�2
c (⌧ , t) = e�2⌧�2

c (0, t) + (1� e�2⌧ )D1

9
>=

>;
t 2 [0, t0], t + ⌧  t0.

If t 2 [t, t0], but t + ⌧ > t0, the distribution is a Gaussian with mean and variance,

mc(⌧ , t) = e�((t+⌧)�t0)mc(t0 � t, t) + (1� e�((t+⌧)�t0))µ0

�2
c (⌧ , t) = e�2((t+⌧)�t0)�2

c (t0 � t, t) + (1� e�2((t+⌧)�t0))D0

9
>=

>;
t 2 [0, t0], t + ⌧ > t0.

Finally, when t > t0, the conditional distribution is a Gaussian with mean and variance

mc(⌧ , t) = e�⌧mc(0, t) + (1� e�⌧ )µ0

�2
c (⌧ , t) = e�2⌧�2

c (0, t) + (1� e�2⌧ )D0

9
>=

>;
t > t0

and the conditional firing rate is

Hs1s2(⌧ , t) = ⌫(mc(⌧ , t),�2
c (⌧ , t), D(t + ⌧)).
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Figure 5.14: The time dependent zero-lag cross-covariance for the Gaussian approxima-
tion. The time dependent cross-correlation at lag ⌧ = 0, R(0, t). In the left figure there is
a step change in µ (dashed line), D (solid line), or c (dotted line). In the right figure there
is a pulse change in µ (dashed line), D (solid line), or c (dotted line). The initial input
parameters (up to time t = 0) are µ0 = 0, D0 = 0.1, and c0 = 0.1. For the solid lines D
was changed to D1 = 0.2 at time t = 0 and µ was kept constant at 0. For the dashed line
µ was changed to µ1 = 0.293 so that the final R(0, t) values R(0, 1) are identical in the
left figure. For the dashed line c was changed to c1 = 0.575 so that the final R(0, t) values
R(0, 1) are identical in the left figure. In the right figure, µ, D, or c were changed back
to their original values at time t1 = 0.25. Note that in both figures, a change in D or c is
tracked more quickly than a change in µ.
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Chapter 6
Correlation transfer and the

correlation-rate relationship

In Chapter 5, we derived univariate and bivariate spiking and membrane potential statis-

tics of two cells receiving correlated inputs for several cell models. In this chapter we

use these results to provide an intuitive and qualitative picture of how correlations are

affected by a layer of cells. The underlying circuit model for this chapter is illustrated in

Fig. 1.3. We first explore the transfer of correlations from inputs to output spike trains,

then explore the transfer of correlations from inputs to membrane potentials. Counter to

intuition, we find that spike train correlations and membrane potential correlations re-

spond distinctly to changes in the cells’ firing rates: while spiking correlations increase

with firing rates when input correlations are fixed [31, 136], membrane potential correla-

tions typically decrease with firing rates when input correlations are fixed.

For simplicity and ease of notation in this chapter, we assume symmetry between the

cells and omit unnecessary subscripts. In particular each of the two cells being considered
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is dynamically identical (✓1 = ✓2 = ✓, ⌧m1 = ⌧m2 = ⌧m, etc.) and receives statistically

identical input (re1 = re2 = re, ⇢e1i2 = ⇢i1e2 = ⇢ei, etc.). Thus the two cells’ marginal

statistics are identical (rs1 = rs2 = rs, E[V1(t)] = E[V2(t)] = E[V], etc.).

6.1 The transfer of input correlations to spiking correlations

The authors of [31] noticed that when a pair of LIFs receive correlated inputs with a fixed

input correlation, the asymptotic correlation between their output spike trains tends to in-

crease with the geometric mean of the cells’ firing rates. In Fig. 6.1, we illustrate this phe-

nomenon for three models. Furthermore, if the input correlations are allowed to change

at the same time as the firing rate, the ratio of output to input correlation increases with

the cells’ firing rates. In particular, define the correlation susceptibility T = ⇢ss/⇢in. Then

T ⇡ 0 when the cells’ firing rates are low and T ⇡ 1 when the cells’ firing rates are high.

We hereafter refer to this phenomenon as the correlation-rate relationship. In this section,

we use the theory from Secs. 3 and 5 to develop an intuitive and mechanistic explanation

of the correlation-rate relationship.

6.1.1 Spiking correlations are nearly preserved in drift dominated regimes

When excitation is stronger than inhibition and leak (re � ri + Vth/⌧m for the LIF and

re � ri + ĪL for the dLIF), the cells’ firing rates are high and the membrane dynamics of

a leaky model can be approximated by the PIF (see Sec. 4.2.3 and Fig. 4.2). We showed in

Theorem 7 that a pair of PIFs perfectly preserve asymptotic spiking correlations, so that

⇢ss = ⇢in.

We conclude that a pair of dLIFs or LIFs in the drift dominated regime nearly preserve
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Figure 6.1: Spiking correlation versus firing rate for the dLIF and LIF models. Asymp-
totic output correlation plotted as a function of output rate for three models: analytical re-
sults for the dLIF (solid blue line), simulations of an LIF with Poisson inputs (heavy dots),
and a linear response approximation to an LIF with Gaussian white noise input (dashed
line). Analytical results were obtained for the dLIF from the results in Sec. 5.2.3 and for
the LIF with Gaussian input from the linear response approximation in Sec. 5.3.4.2. For
the Poisson LIF simulations, ⇢ss was calculated from simulated data using Eq. (3.1) (see
the discussion following the proof of Theorem 1). For this and all subsequent figures, er-
ror bars are omitted when standard errors are smaller than the radii of the filled circles.
For the dLIF parameters were ri = 1kHZ, ĪL = 0.5kHZ, ⇢ee = ⇢ii = 0.2, ⇢ei = 0, ✓ = 30,
� = �2, and re was modulated to change rs and ⇢ss. For LIF with Poisson inputs, pa-
rameters are the same as for the dLIF and ⌧m = 20 ms. For the LIF with Gaussian white
noise inputs, parameters were obtained from the diffusion approximation described in
the beginning of Sec. 5.3 with Je j = Ji j = 1.
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correlations. That is,

⇢ss ⇡ ⇢in =
re⇢ee + ri⇢ii � 2

p
reri⇢ei

re + ri

when excitation is strong. This conclusion is consistent with previous observations for

LIF models driven by correlated, positively biased white noise [31, 136, 147, 158] and is

verified for the LIF with Poisson inputs in Fig. 6.2. In the drift dominated regime, output

correlations for a pair of LIFs approximately match the theoretical values obtained for

PIFs. Outside of this regime, the LIF output correlations are reduced in magnitude. We

investigate this reduction of correlations next.

6.1.2 Spiking correlations are reduced in fluctuation dominated regimes

When input to the cells is weaker and firing rates lower, correlations are reduced in the

output [31, 136, 145, 147]. In this section, we provide a mechanistic explanation of this re-

duction in correlations, which can be observed in the LIF simulations in Fig. 6.2. Although

our explanation applies to a wide class of neuron models, we illustrate the results with

the dLIF model. This model is simple enough that the output correlation and other quan-

tities of interest can be computed exactly, yet it captures the overall features of correlation

transfer in both the drift and fluctuation dominated regimes.

The fact that the PIF preserves correlations relies on an asymptotically linear and de-

terministic relation between the input and output spike counts, cf. Eq. (5.13). The same

relation holds approximately for leaky models in drift dominated regimes since leak has

a small effect, and the lower boundary of the membrane voltage is visited rarely in this

regime (see Fig. 4.2).

However, in the fluctuation dominated regime where spiking is caused by rare ran-

dom fluctuations of the membrane potentials, the output spike count over large windows
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Figure 6.2: Output correlation for the LIF and PIF models as re varies. In each panel
a set of input correlations, ⇢ee, ⇢ii and ⇢ei is fixed. Output correlations, ⇢ss = ⇢s1s2 , are
shown as functions of the excitatory input rate when ri = 1kHZ. The dashed blue lines
are exact results for the PIF model and the solid lines are from simulations of the LIF with
Poisson inputs, generated using the excitatory/inhibitory quadruplet algorithm (without
jittering) from Sec. 2.4. Along each solid line the membrane time constant is held fixed
and is larger for darker lines (see legend). As the rate of excitation increases relative to
inhibition and relative to leak, the LIF is better approximated by the PIF. The output rates
for the LIF varied from < 10�3 Hz to 216 Hz. The PIF and LIF agree well (equivalently,
correlations are nearly preserved) for moderate firing rates, e.g., |⇢LIF � ⇢PIF|  0.1⇢PIF
when rs � 40 Hz and ⌧m = 20 ms in (A). Correlation parameters used for the quadruplet
algorithm are (A) ⇢ee = ⇢ii = 0.2 and ⇢ei = 0. (B) ⇢ii = 0.2 and ⇢ee = ⇢ei = 0. (C)
⇢ei = 0.2 and ⇢ee = ⇢ii = 0. (D) ⇢ee = ⇢ii = ⇢ei = 0.2. Here, and in all subsequent figures,
sample points from simulations are marked with dots and error bars are not drawn when
the standard errors are smaller than the diameter of the dots. Otherwise, error bars have
radius of one standard error.
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depends on the timing of input spikes, instead of the input spike count alone. As a re-

sult, the relationship between input and output spike counts is stochastic and non-linear

so that Eq. (5.13) is no longer valid. To understand correlation transfer in the fluctuation

dominated regime, we instead consider the following equation for the output correlation

derived in Chapter 3,

⇢ss =
CV2

s + 1
CV2

s

 
E[⌧1]� E[⌧1|2]

E[⌧1]

!
+

Sss

CV2
s

. (6.1)

Here E[⌧1|2] is the expected time until the next spike in neuron 1 given that neuron 2 has

just spiked, E[⌧1] =
⇣

CV2 + 1
⌘

/ (2rs) is the expected recurrence time of neuron 1, CVs

is the output coefficient of variation, Sss is the proportion of output spikes caused by a

shared excitatory input spike (and therefore occurring synchronously). This expression is

exact for uncoupled integrate–and–fire models with white inputs.

When the excitatory inputs are correlated synchronously (Se1e2 > 0), there is a non-

zero probability of an exactly synchronous spike in neuron 1 and neuron 2. This leads to

positive values of Sss and thereby increases ⇢ss. However, in the fluctuation dominated

regime, Sss is small and can be ignored (see Fig. 6.4 inset). Also, in this regime firing is

approximately Poisson so that CV2
s ⇡ 1 (see Fig. 5.5) and (CV2

s + 1)/CV2
s ⇡ 2. Therefore,

in the fluctuation dominated regime, changes in ⇢ss are dominated by the “memory”,

M =
E[⌧1]� E[⌧1|2]

E[⌧1]

which quantifies the relative impact of a spike in neuron 2 on the time until the next spike

in neuron 1. In particular, ⇢ss ⇡ 2M in the fluctuation dominated regime.

When inputs are independent, E[⌧1|2] = E[⌧1] and Sss = 0 so that ⇢ss = 0. When

V1 and V2 are positively correlated, conditioning on V2 being at threshold increases the

probability that V1 is near threshold. This decreases the expected time for V1 to reach
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threshold, yielding E[⌧1|2]  E[⌧1], and a positive value of M. A positive value of M

implies a positive value of ⇢ss since Sss � 0. Similarly, when V1 and V2 are negatively

correlated, the expected time until V1 reaches threshold is lengthened by conditioning on

V2 being at threshold. Therefore E[⌧1|2] � E[⌧1], resulting in negative output correlations

when Sss is sufficiently small.

When excitation is weak in relation to inhibition and leak, firing is due to rare excur-

sions of the membrane potential across threshold [104, 120]. The stationary distribution of

the membrane potentials is concentrated near rest, but conditioning on a spike in neuron 2

pushes the distribution of V1 closer to threshold. The distribution of V1 then relaxes back

to its stationary distribution. The timescale of this relaxation, which we call the memory

timescale, ⌧mem, is related to the spectrum of the univariate infinitesimal generator matrix

(see Sec. 5.2.2). In Fig. 6.3A, we show that the memory timescale is much faster than the

spiking timescale (⌧mem ⌧ E[⌧1]) in the fluctuation dominated regime. This is due to the

fact that the spiking dynamics are much slower than the subthreshold dynamics in this

regime. The result of this effect is illustrated in Fig. 6.3B: The distribution of V1 settles to

its stationary state long before the next spike. Neuron 1 effectively forgets the effects of

the spike in neuron 2 before it has a chance to spike [74]. Therefore a spike in cell 2 has a

small impact on the waiting time to the next spike in cell 1 and the output spike trains are

nearly independent. As a result, E[⌧1] ⇡ E[⌧1|2] (the arrows in Fig. 6.3B are close together)

so that M ⇡ 0, and therefore ⇢ss ⇡ 0.

6.1.3 The correlation-rate relationship explained

Combining the observations of Sec. 6.1.1 and Sec. 6.1.2 provides and explanation of the

correlation-rate relationship. In the fluctuation dominate regimes, where re and rs are
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Figure 6.3: The forgetfulness of cells in the fluctuation dominated regime. (A) The
memory timescale (⌧mem) and the spiking timescale (E[⌧1]) plotted as a function of re for
the dLIF model with ri = 1 and ĪL = 0.5. The filled circles indicate the boundary between
the fluctuation and drift dominated regimes: re = ri + ĪL. (B) Top: The mean membrane
potential of neuron 1 conditioned on a spike in neuron 2 at time t = 0 (solid line) for
the dLIF model. The shaded region represents the mass within one standard deviation
of the mean and the dashed line indicates the stationary mean. Bottom: The cumulative
probability distribution of the waiting time, ⌧1, of the next spike in neuron 1, conditioned
on a spike in neuron two at time t = 0 (solid line) and in the stationary case (dashed line).
Arrows indicate the expected value of ⌧1 in the stationary (solid) and conditional (dashed)
cases. The distance between the two arrows is M =

⇣
E[⌧1]� E[⌧1|2]

⌘
/E[⌧1]. Parameters

in (B) are re = 1.25, ri = 1, ĪL = 0.5, ⇢ee = ⇢ii = 0.5 and ⇢ei = 0.
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Figure 6.4: Dependence of M on re for the dLIF model. Here ⇢ee = ⇢ii = ⇢in and ⇢ei = 0
for lines in the upper half. For lines in the lower half, ⇢ee = ⇢ii = 0, and ⇢ei is chosen so
that ⇢in = �0.2 and �0.1, respectively. For all four lines, ri = 1 and ĪL = 0.5 are fixed
(so that re and ĪL are given in units of ri). The inset shows the output synchrony, Sss, as
a function of re with ⇢ee = ⇢ii = 0.2 and ⇢ei = 0. Filled circles indicate the values for
which re = ri + ĪL = 1.5, which defines the boundary between the fluctuation and drift
dominated regimes. When re ⌧ ri + ĪL, M is approximately 0. As the cell approaches
the drift dominated regime, |M| increases. Interestingly, |M| decreases with re in the drift
dominated regime. However, in this regime S is no longer negligible and CVs decreases
with re (see inset and Fig. 5.5), so that the value of M alone is no longer a good indicator
of the value of ⇢ss.
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Figure 6.5: Correlation transfer as a function of re. The output correlation as a function
of the excitatory input rate, re, for different combinations of the correlations parameters,
⇢ee, ⇢ii, ⇢ei, and the mean leak current, ĪL. We fixed ri = 1 and varied re and ĪL, thus re and
ĪL are given in units of ri. The solid lines represent the output correlations for the dLIF
and the dashed blue lines represent values for the PIF (equivalently the input correlation,
⇢in). The mean leak current, ĪL, decreases with the darkness of the solid lines. The darkest
solid line is obtained by setting ĪL = 0, eliminating the leak current altogether. In this
case, the dLIF differs from the PIF only by the presence of a lower reflecting barrier at �.
When re < ri, this lower barrier has a decorrelating effect. When excitation is stronger,
the lower barrier has an insignificant effect on correlations since it is visited rarely. The
filled circles indicate the boundary between the drift and fluctuation dominated regimes,
re = ri + ĪL. The correlation parameters are (A) ⇢ee = ⇢ii = 0.2 and ⇢ei = 0. (B) ⇢ii = 0.2
and ⇢ee = ⇢ei = 0. (C) ⇢ei = 0.2 and ⇢ee = ⇢ii = 0. (D) ⇢ee = ⇢ii = ⇢ei = 0.2.
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small, conditioning on a spike in neuron 2 has a vanishing impact on the waiting time

until the next spike in neuron 1 and spiking correlations are nearly zero as a result. As re

increases towards the drift dominated regime, conditioning on V2 being at threshold has

an increasing relative impact on the expected waiting time until V1 spikes and, as a result,

|M| increases (see Fig. 6.4). Since |M| dominates in Eq. (6.1), |⇢ss| also increases as the

drift dominate regime is approached. Inside the drift dominated regime, spike counts are

transferred almost linearly from input to output and ⇢ss ⇡ ⇢in as a result. The dependence

of ⇢ss on the level of excitation is illustrated for the dLIF in Fig. 6.5 and is consistent with

the LIF simulations in Fig. 6.2.

Some combinations of the correlation parameters can lead to non-monotonic behavior

of ⇢ss with respect to re. For instance, in Fig. 6.5B, ⇢in > 0 so that ⇢ss initially increases

with re from 0 towards ⇢in > 0. However, as re continues to grow, uncorrelated excitation

dominates and ⇢ss decreases towards ⇢in ⇡ ⇢ee = 0. The opposite occurs in Fig. 6.5C:

correlation initially decreases from 0 towards ⇢in < 0 then increases towards ⇢ee = 0.

A non-monotonic relationship between re and ⇢ss yields a non-monotonic relationship

between rs and ⇢ss since rs increases with re. Therefore, correlations do not necessarily in-

crease with firing rate. Such mechanisms could underly the attention induced decreases

in correlations accompanied by increases in firing rates [22]. This result is not necessar-

ily in opposition to the central result in [31], which implies an increase in the correlation

susceptibility, ⇢ss/⇢in, with respect to firing rates. In Fig. 6.5 A, B, and C the correlation

susceptibility increases with rs. However in Fig. 6.5D, ⇢in = 0 when re = ri, but ⇢ss > 0

so that the correlation susceptibility is undefined at this point.

When 2⇢ei
p

reri = ⇢eere + ⇢iiri, positive and negative sources of correlations can-

cel [37, 101, 111] and the correlation between the total input currents, ⇢in, is zero. In such
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cases, output correlations for the dLIF are positive, but very small – about two orders

of magnitude smaller than ⇢ee and ⇢ii (See Fig. 6.6). Note that small correlations on this

scale have the potential to significantly impact coding and downstream activity when the

output from several neurons is pooled (see Chapter 9 and [111, 161]). This might explain

why large correlations are observed in deeper layers of feedforward networks even when

excitation and inhibition are balanced [89, 125].

Integrate-and-fire models are able to transfer uncorrelated input currents to correlated

outputs because uncorrelated input currents are not necessarily independent. Since the

integrate-and-fire filter is non-linear, it is possible for moments to “mix” so that higher

order input correlations are transferred to second order output correlations. This phe-

nomenon cannot be observed when inputs are modeled by Gaussian processes, since un-

correlated Gaussian processes are necessarily independent. Furthermore, when 2⇢ei
p

reri ⇡
⇢eere + ⇢iiri correlations nearly cancel and ⇢in ⇡ 0. In such cases it is possible that

|⇢ss| > |⇢in| > 0 for the dLIF model (See Fig. 6.6). This would again be impossible if

inputs were modeled using Gaussian processes [84].

6.1.4 The correlation-rate relationship for a conductance based model with a

refractory period

We now compare the results above to simulations of a conductance based integrate-and-

fire model similar to the model used in [129]. In particular, we use the model from Sec. 4.1

with parameters VL = �60 mV, Ve = 0 mV, Vi = �62 mV, Vth = �54 mV, and ⌧m :=

Cm/gL (note that gL varies in Fig. 6.7). The excitatory and inhibitory postsynaptic kernels

are given by

↵e(t) = ḡee�t/⌧e
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Figure 6.6: Output correlations when positive and negative input correlation sources
cancel. Results are from the dLIF model with ri = 1, ĪL = 0.5, ⇢ee = 0.5, and ⇢ii = 0.5
fixed. The filled circles indicate the boundary between the drift and fluctuation domi-
nated regimes, re = ri + ĪL. As re changes, ⇢ei is varied so that ⇢in = 0 and ⇢in = 0.005
respectively. Output correlations are positive even when ⇢in = 0. When ⇢in = 0.005, cor-
relations can double from input to output. Gaussian models cannot exhibit such increases
in correlations.

↵i(t) =
ḡi

D

⇣
e�t/⌧ (1)

i � e�t/⌧ (2)
i

⌘

where ḡe = Cm/(909ms) so that 30 synchronous excitatory input spikes are required

to bring the cell from reset to threshold and where ḡi = 10.3215ge so that an IPSP is

about twice the size of an EPSP when the membrane potential is halfway between rest

and threshold.

Fig. 6.7 shows that the conductance based model transfers correlations in accordance

with the theory developed above and illustrated in Figs. 6.2 and 6.5. However, in Fig. 6.7

the magnitude of correlations begin to decay with re when re gets large. This is consistent

with [136] where such a decrease in correlations is attributed to the refractory period. The

effect is only significant when rs is on the same order as 1/⌧ref. To illustrate this point,

we plotted the correlation when ⌧ref = 0 and ⌧m = 30 ms as a dashed line in Fig. 6.7

(compare to the darkest solid line). The presence of a refractory period causes noticeable

decorrelation only once re � 3kHZ at which point rs ⇡ 60 Hz.
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Figure 6.7: Output correlation as a function of re in a conductance based model. Results
from Figs. 6.2 and 6.5 are reproduced with a conductance based model. Here, re and
⌧m = Cm/gL are varied while ri = 1kHZ is fixed. The membrane time constant, ⌧m,
is varied by changing gL and keeping Cm fixed, so that synaptic conductances are not
affected. Inputs are correlated Poisson processes. Output rates varied from < 0.01 Hz to
130 Hz. For the dashed line in (A), we set ⌧ref = 0 and ⌧m = 30 ms to illustrate the effect
of a refractory period. Correlations in the inputs are (A) ⇢ee = ⇢ii = 0.2 and ⇢ei = 0. (B)
⇢ii = 0.2 and ⇢ee = ⇢ei = 0. (C) ⇢ei = 0.2 and ⇢ee = ⇢ii = 0. (D) ⇢ee = ⇢ii = ⇢ei = 0.2.
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6.1.5 Implications of the correlation-rate relationship

When the statistics of the inputs to two cells are modulated, the ratio of output to input

correlation (the correlation susceptibility) tends to increase with the geometric mean of the

cells’ firing rates. The mechanisms responsible for this phenomenon are described in the

previous sections and the phenomenon has been observed in several mathematical mod-

els and in vitro recordings [31, 136, 147].

It is not presently clear to what extent the correlation-rate relationship is corroborated

by in vivo recordings. Several studies have found that spiking correlations measured

in vivo increase with firing rates [53, 69, 71, 141, 148], while other studies show a lack of

significant dependence of correlations on firing rates [33, 56, 154]. At least one study

finds a decrease in spiking correlations with firing rates [22], while other studies find

that the dependence of correlations on firing rates changes with dynamical or behavioral

states [49, 63, 130]. These results raise an important question:

Does the correlation-rate relationship predict that spike train correlations should

generally increase with firing rate in vivo?

The implications of the correlation-rate relationship on neural coding are not imme-

diately obvious. Several theoretical and experimental studies show that correlations and

synchrony can be used by the brain to encode information [11, 18, 51, 122]. However, it has

been suggested that the correlation-rate relationship precludes the possibility that corre-

lations and firing rates could be utilized by the brain as independent coding channels.

These considerations raise a second important question:

Does the correlation-rate relationship suggest that spike train correlations and
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firing rates cannot easily be used as independent channels to encode informa-

tion?

In this section, we show that both of these questions have negative answers: in a set-

ting where the correlation-rate relationship is present, we use simple population models

to show that spiking correlations do not generally increase with firing rate and that corre-

lations and rates can easily be modulated independently from one another.

6.1.5.1 Spiking correlations do not necessarily increase with firing rate

Fig. 6.5 shows that, depending on the structure of their input correlations, correlations

between the outputs of two neurons can increase or change non-monotonically with their

firing rates when the rate of excitation in the cells’ inputs is modulated. Thus, spiking cor-

relations do not necessarily increase with firing rate, even when the correlations within

and between the excitatory and inhibitory input populations is fixed. However, a pri-

ori, there is no apparent reason to expect that these excitatory and inhibitory correlations

remain fixed as the cells’ firing rates change.

In Fig. 6.8, we sample ⇢ee, ⇢ii, ⇢ei, re, and ri several times from uniform distributions

and plot the resulting output correlations and output firing rates. Although the absolute

value of the output correlations tends to increase with firing rate, this trend is relatively

weak and might be missed in recordings of actual neurons where limited data are usually

available. However, plotting the correlation susceptibility against the firing rates shows

an extremely clear trend: the degree to which correlations are preserved from input to

output increases with firing rate. It is important to note that this trend is compromised to

some degree when refractory effects are considered [31, 136].
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Figure 6.8: Spiking correlations do not necessarily increase with firing rate, but cor-
relation susceptibility does. Left: Output firing rate versus asymptotic output spiking
correlation for 1000 randomly generated excitatory/inhibitory input rates and correla-
tions. Right: Dividing the output correlations by the input correlations shows that the
correlation-rate relationship is obeyed in this example. Results are from a linear response
calculation for an LIF with white noise inputs (see Sec. 5.3.4.2) with ⌧m = 20 ms, Vth = 30
and Je = Ji = 1. Input parameters were drawn independently from uniform distribu-
tions over the intervals: re 2 [2, 4]kHZ, ri 2 [0, 1]kHZ, ⇢ee 2 [0, 0.2], ⇢ii 2 [0, 0.2], and
⇢ei 2 [0, 0.2] respectively.

6.1.5.2 Spike train correlations and firing rates can independently encode information

Above, we showed that, although spiking correlations do not necessarily increase with

firing rate, there is a robust relationship between firing rates and correlation susceptibility

(see Fig. 6.8), which we refer to as the correlation-rate relationship. It is not immediately

clear whether this relationship precludes the use of correlations and firing rates as inde-

pendent coding channels.

To address the question of whether correlations and firing rates can independently

encode information, we use the simple input model shown in Fig. 6.9: Two neurons re-

ceive Poisson excitatory and inhibitory inputs, some of which are shared. Assuming for

simplicity that the input populations fire independently, the correlation between the cells’

127



6.1. THE TRANSFER OF INPUT CORRELATIONS TO SPIKING CORRELATIONS



















Figure 6.9: Input population model: Two cells (LIF1 and LIF2) receive inputs from ex-
citatory and inhibitory populations. We distinguish between the inputs that are shared
(esh and ish) and those that are not shared (eind j and iind j). All inputs are assumed to be
independent so that correlations are only introduced by overlap.

input currents is given by

⇢in =
resh + rish

re + ri

where resh is the rate of shared excitatory spikes (and similarly for other terms) and re =

resh + reind . We have assumed for simplicity that the independent input populations have

the same statistics (e.g. reind1 = reind2 = reind) and therefore the two neurons fire with the

same rate.

The firing rates, rs, and the output correlation, ⇢ss, are modulated by changes in the

input rate parameters. To illustrate that correlations and rates can be used as independent

coding channels, we sampled the rate parameters at n = 88 different values as plotted in

Fig. 6.10. At each point, we used the diffusion approximation and linear response theory

to calculate the output correlation and firing rates of the cells.

The result is plotted in Fig. 6.11 (Left): The input parameters were chosen so as to

128



6.1. THE TRANSFER OF INPUT CORRELATIONS TO SPIKING CORRELATIONS

20 40 60 80
sample
index

1

2

3

reind HKHzL

20 40 60 80
sample
index

1

2

3
resh HKHzL

20 40 60 80
sample
index

1

2

riind HKHzL

20 40 60 80
sample
index

0.25

0.5

0.75

rish HKHzL

Figure 6.10: Input rates used for the population model in Fig. 6.9 that were used to gener-
ate the output rates and correlations in Fig. 6.11.

draw the name of a famous neuroscientist in rs-⇢ss space. Presumably, if the x- and y-

coordinates of an arbitrarily chosen image can be independently coded in the firing rate

and correlation of two neurons, we may conclude that correlations and firing rates can act

as independent coding channels.

Fig. 6.11 (Right) illustrates that the correlation-rate relationship was not violated in this

example and therefore does not preclude the possibility of using correlations and firing

rates as independent coding channels. Input parameters plotted in Fig. 6.10 that produced

the output statistics in Fig. 6.11 were chosen by performing least squares optimization at

each sample point. The cost function that was minimized contained a penalty for deviat-

ing from the desired point in rs-⇢ss space, a penalty for deviating from the parameters of

the previous point, and a large penalty for negative input rates or extremely large input

rates.
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Figure 6.11: Left: Output firing rate versus output correlation for the input rates in
Fig. 6.10. Right: Dividing the output correlations by the input correlations shows that
the correlation-rate relationship is obeyed in this example.

6.2 Comparing spiking and membrane potential correlations

In the previous section, we showed that spiking correlation susceptibility generally in-

creases with firing rate. In this section, we show that membrane potential correlations ex-

hibit a nearly opposite dependence on firing rate: the degree to which membrane potential

correlations reflect input correlations decreases with firing rate. We begin by discussing the

correlation between the membrane potentials in two distinct limits: strong excitation and

weak excitation. We then use linear response theory to connect these two limits and gain

more insight into the relationship between spiking and membrane potential correlations.

6.2.1 Weak excitation limit

We first consider correlations between two LIFs with point process inputs, in j(t) = Jee j(t)�
Jii j(t) (see Sec. 4.2.1), in the limit of weak excitation. When excitation is weak (Jere ⌧
Jiri + Vth/⌧m), spiking is infrequent and thresholding has a vanishing impact on sub-

threshold dynamics. In the limit of weak excitation, the membrane potentials of the two
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LIFs can be approximated by ignoring threshold to obtain

dVj

dt
= �Vj/⌧m + in j(t).

The membrane potentials for this model are linearly filtered versions of the inputs. Stan-

dard signal processing identities then give the membrane potential statistics [159].

The stationary mean of the membrane potentials is proportional to the mean of the

input current, E[Vj(t)] = µ⌧m, and the auto- and cross-covariance functions are given by

CVjVj(⌧) = (K ⇤ Cin jin j)(⌧) and CV1V2(⌧) = (K ⇤ Cin1in2)(⌧)

where K(t) = ⌧me�|t|/⌧m/2. This gives the stationary variance, var(Vj(t)) = CVjVj(0) =
R1
�1 Cin jin j K(t)dt and the cross-correlation function, RV1V2(⌧) = CV1V2(⌧)/var(Vj(t)). Since
R1
�1 K(t)dt = ⌧2

m, we may conclude that

�2
Vj

:=
Z 1

�1
CVjVj(⌧)d⌧ = ⌧2

m�
2
in j

and

�V1V2 :=
Z 1

�1
CV1V2(⌧)d⌧ = ⌧2

m�in1in2

so that

⇢V1V2 :=
�V1V2

�V1�V2

= ⇢in1in2 .

Thus, the asymptotic correlation (see Sec. 2.1) of the membrane potentials is equal to the

asymptotic correlation of the input.

As discussed in Sec. 6.1.2 and in [31, 136], spiking correlations vanish in the limit of

weak excitation. Thus, when excitation is weak, membrane potential correlations reflect

input correlations, but spiking correlation vanish. We show next that the situation is op-

posite when excitation is strong.
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6.2.2 Strong excitation limit

When Jere � Jiri + Vth/⌧m, excitation dominates the current across the membrane and an

approximation can be obtained by ignoring the effects of inhibition and leak to obtain

dVj

dt
= Je e j(t) + Ireset(Vj, t). (6.2)

This model is equivalent to the PIF with excitatory input analyzed in Sec. 5.1.1. In that

section, we showed that V1(t1) is independent from V2(t2) for any sample times t1 and t2.

Thus correlations between membrane potentials vanish in the limit of strong excitation,

CV1V2(⌧) ⇡ 0. We also showed in that section that spike count correlations over large

windows are equal to input correlations for this model. Thus, when excitation is strong,

membrane potential correlations vanish, but spike count correlations over long time win-

dows reflect input correlations. However, we also showed in Sec. 5.1.1 that spike count

correlations over shorter time windows are reduced for this model. We further explore

the timescale of spiking correlations in Sec. 6.3.

6.2.3 Connecting the limits with the diffusion approximation

The LIF with point process inputs is difficult to analyze outside of the limits discussed

above, so we instead consider the diffusion approximation (see Secs. 4.2.1 and 5.3). When

input correlations are weak, linear response functions can be used to approximate cross-

covariances between membrane potentials and between spike trains (see Sec. 5.3.4). In

particular, from Eqs. (5.38) and (5.73) and using the symmetry assumptions from this

section,

eCV1V2(!) ⇡ |�V(!)|2 eCin1in2(!) (6.3)
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Figure 6.12: Comparing spiking and membrane potential cross-covariance functions.
Cross-covariance function between spike trains (Left) and membrane potentials (Right),
calculated from Eqs. 6.3-6.5 as re increases. Insets compare the exact linear response cal-
culation (solid) to the weak excitation limit (Left, dashed) when re = 2.15kHZ and to the
strong excitation limit (Right, dashed) when re = 4.5kHZ. In all plots, ri = 2kHZ, ⌧m = 20
ms, and Cin1in2(⌧) = ⇢inDe�|⌧ |/⌧in/(⌧in⌧m) with ⇢in = 0.1 and ⌧in = 5 ms. Voltage is scaled
so that Vre = 0 and Vth = 1 with Je = Ji = 1/30. Firing rates range from 10�2 Hz to 57.7
Hz. The axes have units ms for ⌧ , kHZ for re, Hz2 for Cs(⌧), and (Vth�Vre)2 for CV1V2(⌧).
In this and all subsequent figures, we use the threshold integration method from [115] to
compute spiking statistics.

and, similarly,

eCs1s2(!) ⇡ |�s(!)|2 eCin1in2(!). (6.4)

Thus, spiking and membrane potential cross-covariances can be compared by comparing

the magnitude of their susceptibility functions which are related by, from Eq. (5.56),

|�V(!)|2 = eK(!) |1� (Vth �Vre)�s(!)|2, (6.5)

where eK(!) = ⌧2
m/(1 + ⌧2

m!
2) is the Fourier transform of the kernel K(t) from Sec. 6.2.1.

Taken together, Eqs. 6.3-6.5 and the results in Sec. 5.3.3 provide insight into the re-

lationship between spiking and membrane potential correlations. When firing rates are

low, eCs1s2(!) ⇡ 0 and eCV1V2(!) ⇡ eK(!) eCin1in2(!), consistent with our conclusions in

Sec. 6.2.1. When excitation is strong, eCs1s2(!) ⇡ (Vth �Vre)�2 eCin1in2(!) and eCV1V2(!) ⇡
0, consistent with the strong excitation limit discussed above. Eqs. 6.3-6.5 interpolate these
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Figure 6.13: Normalized membrane potential cross-correlation function and spike
count correlations as firing rates vary. Spike count correlations (A) and normalized mem-
brane potential cross-correlation (B) for the LIF. Linear response approximations (solid)
are compared to simulations with Poisson inputs (dashed). Firing rates were modulated
by changing re. All other parameters are as in Fig. 6.12.

two limits. Fig. 6.12 shows how CV1V2(⌧) and Cs1s2(⌧) change with re.

Cross-covariances are not normalized to account for noise magnitude. In Fig. 6.13, we

show how spike count correlations and normalized membrane potential cross-correlations

change with firing rate. In general, spike count correlations increase with firing rates

while membrane potential correlations decrease, consistent with recordings from the rat

hippocampus [160]. Additionally, Fig. 6.13 shows that the linear response and diffusion

approximations agree with simulations. In Fig. 6.14, we show that the overall trends are

the same if ri is varied along with re, but the decrease in membrane potential correlations

is less dramatic.

So far, we have only compared spiking and membrane potential correlations when

input correlations are fixed and we have concluded that, in such cases, they respond op-

positely to changes in firing rate. However, as suggested by the discussion in Sec. 6.1.5.1,

this does not imply that spiking correlations and membrane potential correlations neces-

sarily change oppositely with firing rates in realistic situations where input correlations
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Figure 6.14: Changes in spiking and membrane potential correlations when re and ri are
varied simultaneously. Asymptotic spike count correlation (Left) and peak membrane
potential correlation (Right) plotted against firing rate as re and ri vary along linear paths:
re � 500Hz = ↵(ri � 500Hz) for different values of the slope, ↵ (see inset). All other
parameters are as in Fig. 6.12.

change with firing rate.

Fig. 6.15 shows output and spiking correlations plotted together in two different sit-

uations. On the left, variations in both the spiking and membrane potential correlations

are due primarily to changes in correlation susceptibility. Since spiking and membrane

potential correlation susceptibility change oppositely with input rates (see above), ⇢s1s2

decreases with RV1V2(0) in the left panel of Fig. 6.15. On the right, variations in spiking

and membrane potential correlations are due primarily to changes of the input correla-

tions. Since both ⇢s1s2 and RV1V2(0) increase with an increase of input correlations, ⇢s1s2

increases with RV1V2(0) in the right panel of Fig. 6.15.

6.3 The timescale of spiking correlations

So far we have focused on the magnitude of correlations over asymptotically large win-

dows. However, the timescale over which correlations occur is often of interest in both
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Figure 6.15: Comparing spiking and membrane potential correlations as input cor-
relations and firing rates vary. Zero-lag membrane potential correlation, RV1V2(0),
versus asymptotic spike count correlation, ⇢s1s2 , for 1000 randomly generated excita-
tory/inhibitory input rates and correlations. Results are for the same LIF model as in
Fig. 6.8. Left: input rates were drawn from wider uniform distributions (re 2 [2, 4]kHZ
and ri 2 [0, 1.75]kHZ) and input correlations from narrower uniform distributions (⇢ee 2
[0.15, 0.2], ⇢ii 2 [0.15, 0.2], and ⇢ei = 0). Right: input rates were drawn from narrower
uniform distributions (re 2 [2.2, 2.4]kHZ and ri 2 [1.3, 1.4]kHZ) and input correlations
from wider uniform distributions (⇢ee 2 [0, 0.2], ⇢ii 2 [0, 0.2], and ⇢ei = 0).

theoretical and experimental studies [13, 32, 51, 75, 93, 98, 99, 102]. The timescale over which

two spike trains are correlated can be measured by their auto- and cross-covariance func-

tions, which can be computed exactly for the dLIF model (see Sec. 5.2.3) and approxi-

mated using linear response theory for the LIF model (see Sec. 5.3). When inputs are

delta-correlated, the tail of the cross-covariance function, Cs1s2(⌧), decays exponentially

as ⌧ ! 1. The timescale of this decay is given by the memory timescale, ⌧mem, of neuron

2 (see dotted line in Fig. 6.16) and the ⌧ ! �1 tail decays as the memory timescale of

neuron 1. In Fig. 6.3, we showed that the memory timescale for the dLIF model changes

non-monotonically with re.

To address the question of how correlation timescales are transferred, the timescale

of input correlations must be taken into account. The analysis of the dLIF model re-

quired “delta-correlated” inputs, i.e., inputs whose cross-covariance is a delta function

136



6.3. THE TIMESCALE OF SPIKING CORRELATIONS

A

-40 -20 0 20 40

0.5

1
R12HtL B

-40 -20 0 20 40 t HmsL

0.5

1
R12HtL

Figure 6.16: Output cross-covariance functions for the dLIF and LIF models with delta-
correlated and temporally correlated inputs. The output cross-covariance function when
inputs are delta-correlated (blue lines) decay with a timescale of ⌧mem (heavy dots follow
e�⌧/⌧mem). The red lines show the output cross-covariance when the input cross-covariance
is a double exponential, (�in/2)e�|⌧ |/5, instead of a delta-function. The dashed red lines
were obtained by convolving the input cross-covariance functions with the output cross-
covariance function obtained in the delta-correlated case. Left: Cross-covariance func-
tions for the dLIF with re = 3, ri = 2, ⇢ee = ⇢ii = 0.2, ⇢ei = 0, and ĪL = 0.877 chosen
so that the output rate (rs = 8.4 Hz) matches with the LIF simulations on the Right. The
black solid and dashed lines were obtained exactly, without simulations. The pink line is
from simulations. Right: Cross-covariance function from LIF simulations with the same
parameters as one the Left and ⌧m = 20 ms. In both plots, inputs are Poisson and cross-
covariance functions are normalized to have a peak value of 1.
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(see Sec. 4.2.2). In Fig. 6.16, we show that the cross-covariance obtained from delta-

correlated inputs can be used as an impulse response function for the transfer of cross-

covariance functions: The output cross-covariance is well approximated by convolving

the input cross-covariance with the output cross-covariance obtained with delta-correlated

inputs (compare gray and dashed lines in Fig. 6.16). The same conclusion is implied by

the linear response approximation in Eq. (6.4). Thus, the ⌧ ! 1 tail of the output cross-

covariances decays with a timescale given by ⌧out = max{⌧mem, ⌧in} where ⌧in is the

timescale for the tail of the input cross-covariance function.

However, the asymptotic timescale of the cross-covariance functions as ⌧ ! 1 does

not necessarily represent the decay rate nearer to ⌧ = 0. In Fig. 6.12, the timescale of spik-

ing correlations when excitation is strong appear to be shorter than the timescale of mem-

brane potential correlations when excitation is weak. This is consistent with recordings in

the cat visual cortex [83], and can be understood from the following approximation. First

note that, for the LIF model with white noise input,

Cs1s2(⌧)/rs + rs + o(�) = ��1 Pr(Ns2(⌧ , ⌧ + �) > 0 | Ns1(0, �) > 0)

= ��1 Pr(Ne2(⌧ , ⌧ + �) > 0, V2(⌧) � Vth � Je|Ne1(0, �) > 0, V2(0) � Vth � Je)

where the first line follows from definition and the second line follows from the fact that

cell j spikes only when Vj(t) � Vth � Je when an excitatory input arrives. When inputs

are Poisson, the events Ne2(⌧ , ⌧ + �) > 0 and V2(⌧) � Vth � Je are independent so that

Cs1s2(⌧)/rs + rs + o(�) =

��1 Pr(Ne2(⌧ , ⌧ + �) > 0|Ne1(0, �) > 0, V2(0) � Vth � Je)

Pr(V2(⌧) � Vth � Je|Ns1(0, �) > 0).

When inputs are not Poisson, the relation above is an approximation. Although the event
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that Ne2(⌧ , ⌧ +�) > 0 is not independent from the event that V2(0) � Vth� Je, we assume

that their dependence is weak and approximate the relation above as

Cs1s2(⌧)/rs + rs + o(�) ⇡

��1 Pr(Ne2(⌧ , ⌧ + �) > 0|Ne1(0, �) > 0) Pr(V2(⌧) � Vth � Je|Ns1(0, �) > 0)

= (Ce1e2(⌧)/re + re) Pr(V2(⌧) � Vth � Je|Ns1(0, �) > 0)

⇡ (Ce1e2(⌧)/re + re)(c1e�⌧/⌧mem + c0)

where c1 represents the magnitude of the perturbation of V2(t) from the condition V1(t) =

Vth, c0 = Pr(V2(⌧) � Vth � Je) is a constant, and ⌧mem is the timescale at which the distri-

bution of V2 relaxes to its steady state after a perturbation (see above). The tail of Cs1s2(⌧)

is dominated by the tail of e�⌧/⌧mem or Ce1e2(⌧), whichever decays slower. However, when

excitation is strong, V1 and V2 are nearly independent and c1 is small as a result. Thus,

when excitation is strong, the decay of Cs1s2(⌧) around its peak is dominated by Ce1e2(⌧),

consistent with results in [102].

Spike count correlations over finite windows can be computed from auto- and cross-

covariance functions cf. Eq. (2.5). Correlations are smaller for smaller window sizes for

an LIF model [136], but finite window correlation susceptibility still increases with firing

rates. Fig. 6.17 shows how correlations over finite time windows change with the excita-

tory input rate for the dLIF model.
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Figure 6.17: Correlation over finite windows. The output spike count correlation, ⇢ss(t),
over a window of size t, plotted as a function of the input excitatory rate, re for various
values of t. Correlations are smaller for smaller window sizes, but obey the same general
dependence on re.
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Chapter 7
The impact of synaptic variability on

spike train correlations

Synapses can have a range of efficacies and spikes in presynaptic neurons can elicit a va-

riety of post-synaptic response amplitudes. Furthermore, synaptic failure and random

response amplitudes result in variability at the level of single synapses. Release probabil-

ities at a synapse range between less than 0.1 and up to 0.9 [5, 151], and the magnitude

of the postsynaptic response, evoked by the same cell, can vary with a CV from .25 to

1.5 [12, 62, 94]. In this section, we show that synaptic variability significantly decreases

correlations.
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VARIABILITY

7.1 The effective input correlation in the presence of synaptic

variability

To model synaptic variability, assume that the ith excitatory input to neuron j increments

its membrane potential, Vj(t), by a random amount di
e j

and that the ith inhibitory input

to neuron j decrements Vj(t) by a random amount di
i j

. Each di
e j

(di
i j

) is drawn indepen-

dently from a distribution with mean de j (di j ) and variance �2
de j

(�2
di j

) for j = 1, 2. We are

interested in the statistics of the effective inputs

Yj(t) = Â
ti2�e j

di
e j
�(t� ti)� Â

ti2�i j

di
i j
�(t� ti), j = 1, 2.

The accumulated effective input processes NYj(t) =
R t

0 Yj(s)ds, which generalize the input

spike counts, can be written as

NYj(t) =
Ne j (t)

Â
i=1

di
e j
�

Ni j (t)

Â
i=1

di
i j

. (7.1)

The two terms on the right-hand side of Eq. (7.1) are random sums with variances given

by [68]

var(NYj(t)) = var(Ne j(t))d2
e j

+ E[Ne j(t)]�2
de j

+ var(Ni j(t))di j + E[Ni j(t)]�2
di j

.

Dividing by t relates the effective input count variance over a window of size t to the

actual spike count variances of the excitatory and inhibitory inputs over the same window,

�2
Yj

(t) :=
1
t

var(NYj(t)) = �2
e j
(t)d2

e j
+ re j�

2
de j

+�2
i j
(t)d2

i j
+ ri j�

2
di j

.

Covariances can be derived similarly to obtain,

�Y1Y2(t) = de1 de2�e1e2(t) + di1 di2�i1i2(t)� de1 di2�e1i2(t)� di1 de2�i1e2(t).
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The effective input correlation is therefore given by

⇢Y1Y2(t) =
de1 de2�e1e2(t) + di1 di2�i1i2(t)� de1 di2�e1i2(t)� di1 de2�i1e2(t)r⇣

�2
e1

(t)d2
e1

+ re1�
2
de1

+�2
i1
(t)d2

i1
+ ri1�

2
di1

⌘ ⇣
�2

e2
(t)d2

e2
+ re2�

2
de2

+�2
i2
(t)d2

i2
+ ri2�

2
di2

⌘ .

(7.2)

Under the symmetry assumptions discussed above, and also assuming that excitatory and

inhibitory inputs have the same postsynaptic amplitude distributions, this reduces to

⇢Y1Y2(t) =

 
F(t)

F(t) + CV2
d

!
⇢in1in2(t) (7.3)

where F(t) = (Fe(t)re + Fi(t)ri)/(re + ri) is the weighted average of the excitatory and

inhibitory input Fano factors over a window of size t, CVd = �d/d is the coefficient of

variation of the synaptic amplitudes, and ⇢in1in2(t) is the correlation between the total

input processes in1(t) = e1(t)� i1(t) and in2(t) = e2(t)� i2(t).

To combine variable PSP amplitudes (i.i.d. random jumps with coefficient of variation

CVd) with synaptic failure (probability of release p), we can multiply each jump di by an

i.i.d. binomial variable, bi (with Pr(bi = 1) = p) to obtain the “effective” jumps. Under

the same symmetry assumptions made for Eq. (7.3), the CV of this product is given by
q

(CV2
d + 1� p)/p. Making the substitution CVd !

q
(CV2

d + 1� p)/p in Eq. (7.3) gives

⇢Y1Y2(t) =

 
p F(t)

p F(t) + (1� p) + CV2
d

!
⇢in1in2(t). (7.4)

7.2 Synaptic variability significantly reduces correlations

We now discuss and interpret the equations for effective input correlation in the pres-

ence of synaptic noise derived above. For simplicity, we only treat the symmetric case

in this interpretation, so that we can use Eqs. (7.3) and (7.4) in place of the more compli-

cated general equation, Eq. (7.2). In particular, assume that each cell receives statistically
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Figure 7.1: The effects of synaptic variability on correlation transfer. Solid lines indicate
the effective input correlation (equivalently, the output correlation for a pair of PIFs) and
thin dashed lines represent output correlations obtained from simulations of a pair of
LIFs. For the LIF simulations, ri = 1 kHz and ⌧m = 20 ms are fixed and the excitatory
input rate, re, increases with the darkness of the lines (see legend). The input correlation
parameters are ⇢ee = ⇢ii = 0.2 and ⇢ei = 0. Inputs are renewal with gamma distributed
ISI’s generated using the Gamma algorithm from Sec. 2.4 and postsynaptic amplitudes are
random, with peak values drawn independently from a gamma distribution with mean 1
and coefficient of variation CVd. In the limit of strong excitation (darkest dashed lines), the
LIF approximately preserves effective input correlations. Outside of this regime (lighter
dashed lines), correlations are reduced but obey the same dependence on the parameters.
Left: The input Fano factor, F, is fixed at unity (inputs are Poisson), and the magnitude
of synaptic noise, CVd, is varied. Right: The degree of synaptic variability is fixed at
CVd = 1 and F is varied.
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7.2. SYNAPTIC VARIABILITY SIGNIFICANTLY REDUCES CORRELATIONS

identical input and obeys identical dynamics. Additionally assume that each excitatory

and inhibitory input increments a cell’s membrane potential by an amount di drawn in-

dependently from a distribution with mean d, variance �2
d , and coefficient of variation

CVd = �d/d.

Synaptic noise adds stochasticity to the relationship between input and output spike

counts, but randomness is only introduced at each input spike. As a result, the variance

is increased by an amount which depends on the input rates. In particular, if we rescale

membrane potentials so that d = 1, the effective input variance is �2
eff = �2

in + CVd
2(re +

ri). Since synaptic noise was assumed to be independent, the covariance of the outputs is

not changed by the noisiness of the synapses and�eff = �in. The effective input correlation

is therefore given by

⇢eff(t) =

 
F(t)

F(t) + CV2
d

!
⇢in1in2(t)

as shown above. Whenever the synapses are variable (CVd 6= 0), correlations are reduced

by the synapses.

This decrease in correlations due to synaptic variability is illustrated in Fig. 7.1 (Left).

Noisier synapses (CVd larger) result in smaller effective input correlations. Perhaps sur-

prisingly, an increase in the randomness of the input, as measured by the input Fano factor

F, increases the effective input correlation and therefore the output correlation, but only in

the presence of synaptic noise. This effect is illustrated in Fig. 7.1 (Right).

Note that since the PIF preserves asymptotic input correlations (see Theorem 7), the

asymptotic output spike count correlation for a pair of PIFs with synaptic variability is

given by ⇢eff. Additionally, from Theorem 7, the output variance and covariance for a pair

of PIFs are given by�eff/✓2 and�eff/✓2 respectively. Leaky models will reduce correlations

further, so that the correlation between their outputs is smaller than the effective input
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Figure 7.2: The effects of synaptic variability on correlation transfer in a conductance-
based model. Results in Fig. 7.1 are reproduced. Parameters ri = 1 kHz and ⌧m = 20
ms are fixed and the excitatory input rate, re, increases with the darkness of the lines (see
legend). The input correlation parameters are ⇢ee = ⇢ii = 0.2 and ⇢ei = 0. Inputs are
renewal with gamma distributed ISI’s (see Sec. 2.4) and EPSCs are random, with peak
values drawn independently from a gamma distribution with mean ḡe and coefficient of
variation CVd. (A) The input Fano factor, Fe = Fi = Fin = 1, is fixed and CVd is varied.
(B) The synaptic variability, CVd = 1, is fixed and Fe = Fi = F is varied.

correlation: ⇢s1s2 < ⇢eff. This reduction is most dramatic when firing rates are low, see

Sec. 6.1 and Fig. 7.1. In Fig. 7.2, we show that correlations between conductance models

are decreased similarly by synaptic variability.

Synaptic failure can be modeled by assuming that dk
e and dk

i are binary random vari-

ables in which case CV2
d = (1� p)/p, where p is the probability of release. For example

when inputs are Poisson (F = 1), ⇢s1s2 = p for the PIF model. Hence, ⇢s1s2 decreases with

an increase in the probability of synaptic failure. When p is small [5, 151], correlations are

significantly reduced by synaptic failure. Combining the effects of synaptic failure and

variable postsynaptic amplitudes gives

⇢eff(t) =

 
p F(t)

p F(t) + (1� p) + CV2
d

!
⇢in1in2(t)

where we have assumed that a proportion p of the inputs successfully elicit a response,

and the amplitudes of the successful synaptic responses are variable with a CV of CVd.
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7.2. SYNAPTIC VARIABILITY SIGNIFICANTLY REDUCES CORRELATIONS

Realistic choices of parameters yield dramatic reductions in correlations. Taking p =

0.5, CVd = 1, and CVe = CVi = 0.6 (where F = CV2
e), correlations are reduced by

nearly an order of magnitude by synaptic variabilty (⇢eff = 0.107⇢in1in2 ). Correlations

are reduced even further by leaky models, especially when excitation is weak and firing

rates are low (see Sec. 6.1). In Fig. 7.3 we illustrate the effects of synaptic variability on

correlations in a simple population model.

As the probability of release and PSP amplitude are dependent on input statistics [27],

the independence assumptions made in this section can only be taken as a first approxi-

mation. However, the model can be extended to take such dependencies into account.
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0.1 ree 0.1 rii

0.1 rei 0.1 rie

rin = ree + rii - rei - rie

-0.2 0.2 rin

Synaptic failure,
Variable PSP amplitudes

-0.02 0.02 reff

Leak,
Threshold

-0.01 0.01 rss

Figure 7.3: Correlations are dramatically reduced by unreliable synapses. The in-
put population has excitatory-to-excitatory, inhibitory-to-inhibitory, and excitatory-to-
inhibitory correlations distributed according to a normal distribution with a mean of 0.1
and a standard deviation of 0.05. Assuming homogeneous rates and balanced excitation
and inhibition, the input correlations to downstream cells are normally distributed with a
mean of 0 (the ei correlations “cancel” with the ee and ii correlations), and a standard de-
viation of 2⇥ 0.05 = 0.1 (the variances sum). However, realistic levels of synaptic failure,
variability of synaptic amplitudes, and non-Poisson input statistics (CVd = 1, p = 0.5,
CVe = CVi = 0.6, F = CV2

e) decrease correlations by almost an order of magnitude,
std(⇢eff) = 0.0107. Correlations are reduced even further for leaky models, especially in
fluctuation dominated regimes.
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Chapter 8
The impact of synaptic coupling on

spike train correlations

Recurrent connections are common in many parts of the central nervous system, and may

play an important role in information processing [46, 50, 73, 82, 103]. Synaptic coupling

or gap junctions can actively modulate the transfer of correlated inputs [90, 131], and thus

affect the information carried by a population of cells [56, 67]. To model recurrent coupling

between two cells, suppose that an action potential in one cell instantaneously raises the

membrane potential of the other.
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8.1. ANALYSIS OF A PAIR OF COUPLED PIFS

8.1 Analysis of a pair of coupled PIFs

Suppose that the subthreshold membrane potentials V1(t) and V2(t) of the PIFs driven by

the stationary signals in1(t) and in2(t) obey the coupled equations

dV1 = in1(t)dt + c1s2(t)dt

dV2 = in2(t)dt + c2s1(t)dt,

with s1 and s2 the output spike trains. Thus, each output spike from neuron 2 increments

V1 by an amount c1 and vice versa. We assume that c j < ✓ j so that a spike from one

neuron cannot drive the other from reset to threshold. Then the output spike counts obey

the coupled equations,

Ns1(t) =
Nin1(t) + c1Ns2(t) + V1(0)�V1(t)

✓
(8.1)

Ns2(t) =
Nin2(t) + c2Ns1(t) + V2(0)�V2(t)

✓
.

Defining nj(t) = Nin j(t) + Vj(0)�Vj(t), we can solve Eq. (8.1) for Nsj(t) to obtain

Ns1(t) =
✓2n1(t) + c1n2(t)
✓1✓2 � c1c2

, Ns2(t) =
✓1n2(t) + c2n1(t)
✓1✓2 � c1c2

. (8.2)

Thus, in order to have non-zero firing rates, we must assume that✓2E[in1(t)]+ c1E[in2(t)] >

0 and✓1E[in2(t)]+ c2E[in1(t)] > 0 and the firing rates are rs1 = (✓2E[in1(t)]+ c1E[in2(t)])/(✓1✓2�
c1c2) and rs2 = (✓1E[in2(t)] + c2E[in1(t)])/(✓1✓2 � c1c2).

The following theorem gives the total output correlation.

Theorem 14. The output correlation coefficient between the output of a pair of coupled PIFs driven

by correlated stationary inputs, in1(t) and in2(t) with coupling terms c1 and c2 is

⇢ss =
(✓1✓2 + c1c2)�in + c2✓2�

2
in1

+ c1✓1�
2
in2r⇣

✓2
2�

2
in1

+ c2
1�

2
in2

+ 2c1✓2�in

⌘ ⇣
✓2

1�
2
in2

+ c2
2�

2
in1

+ 2c2✓1�in

⌘ . (8.3)
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8.1. ANALYSIS OF A PAIR OF COUPLED PIFS

Proof. From Eq. (8.2)

�ss = lim
t!1

1
t

cov (Ns1(t), Ns2(t))

= lim
t!1

1
t

cov
✓
✓2n1(t) + c1n2(t)
✓1✓2 � c1c2

,
✓1n2(t) + c2n1(t)
✓1✓2 � c1c2

◆

=
1

(✓1✓2 � c1c2)2 lim
t!1

1
t

cov (✓2n1(t) + c1n2(t),✓1n2(t) + c2n1(t))

=
1

(✓1✓2 � c1c2)2

⇣
(✓1✓2 + c1c2)�n1n2 + c2✓2�

2
n1

+ c1✓1�
2
n2

⌘
.

By an identical argument,

�2
s1

=
1

(✓1✓2 � c1c2)2

⇣
✓2

2�
2
n1

+ c2
1�

2
n2

+ 2c1✓2�n1n2

⌘
,

with a a symmetric expression for �2
s2

. Therefore,

⇢ss =
�ss

�s1�s2

=
(✓1✓2 + c1c2)�n1n2 + c2✓2�

2
n1

+ c1✓1�
2
n2q�

✓2
2�

2
n1

+ c2
1�

2
n2

+ 2c1✓2�n1n2

� �
✓2

1�
2
n2

+ c2
2�

2
n1

+ 2c2✓1�n1n2

� . (8.4)

All that is left is to is to show that �nj = �in j and �n1n2 = �in. We have

�n1n2 = lim
t!1

1
t

cov (n1(t), n2(t))

= lim
t!1

1
t

cov (Nin1(t) + V1(0)�V1(t), Nin2(t) + V2(0)�V2(t))

= lim
t!1

1
t

(cov (Nin1(t), Nin2(t)) + o(t)) (8.5)

= �in

where (8.5) follows from Lemma 1 and the assumption that (V1(t), V2(t)) is ergodic with

finite second moments. By an identical argument, we have �2
nj

= �2
in j

, j = 1, 2.
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8.2. WEAK SYNAPTIC COUPLING HAS A MINIMAL EFFECT ON PAIRWISE
CORRELATIONS
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Figure 8.1: The effect of coupling on correlation transfer. Solid lines indicate theoretical
values for a pair of PIFs (cf. Eq. (8.6)) and thin dashed lines on the left plot were obtained
from simulations of a pair of LIFs with ⇢ee = ⇢ii = 0.2, ⇢ei = 0 so that ⇢in = 0.2. Parame-
ters are the same as in Fig. 7.1, except that inputs are strictly Poisson and synapses are not
random.

8.2 Weak synaptic coupling has a minimal effect on pairwise cor-

relations

We now discus and interpret the result of the previous section. For simplicity in this

section, we assume symmetry between the cells and omit unnecessary subscripts. The

membrane potentials of a pair of coupled PIFs are described by the coupled differential

equations.

dV1 = in1(t)dt + c s2(t)dt, dV2 = in2(t)dt + c s1(t)dt,

with the usual threshold and reset boundary conditions. The analogue of Eq. (5.2) in

this case is a coupled set of linear equations. Their solution can be used to compute the

output variance and covariance for the PIF (see Theorem 14), , which under symmetry

assumptions take the form

�2
s =

�2
in

(✓2 � c2)2

h
(✓2 + c2) + 2c✓⇢in

i
, and �ss =

�in

(✓2 � c2)2


(✓2 + c2) +

2c✓
⇢in

�
.
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Figure 8.2: The effects of coupling on correlation transfer in a conductance-based
model. Results in Fig. 8.1 are reproduced for a conductance based model. Parameters
are the same as in Fig. 7.2, except inputs are strictly Poisson and synapses are determin-
istic. When u > 0, a spike in one neuron adds a PSC to the AMPA conductance of the
second. The peak value of the EPSC is given by u · ḡAMPA/30 so that the corresponding
PSP amplitude is roughly a proportion u of the distance from rest to threshold. When
u < 0 spikes in one neuron add a PSC with peak value u · ḡGABA/60 to the GABA con-
ductance of the other, to obtain a similar scaling.

Since |⇢in| < 1, it follows that coupling has a larger effect on the covariance than on the

variance. This can be understood by noting that coupling affects the covariance directly

and affects the variance only indirectly [109]: when neuron 1 spikes, the membrane poten-

tial of neuron 2 (and therefore the timing of its spikes) is affected directly due to coupling.

However, the effect on neuron 1 itself is indirect – a spike in neuron 1 affects the propen-

sity of neuron 2 to spike, which in turn affects the timing of spikes in neuron 1.

The output correlation is

⇢ss =
(1 + u2)⇢in + 2u
(1 + u2) + 2u⇢in

, (8.6)

where u = c/✓ < 1 is synaptic amplitude relative to the distance from reset to threshold,

and measures the strength of the coupling. If the coupling is not too strong, then to first

order in u, ⇢ss = ⇢in + 2(1� ⇢2
in)u +O �u2� . Fig. 8.1 illustrates the dependence of ⇢ss on

u when ⇢in is fixed. Not surprisingly, excitatory coupling (u > 0) increases correlations

and inhibitory coupling (u < 0) decreases correlations. Frequently, the amplitude of a
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single PSP is much smaller than the distance from reset to threshold (i.e. u is small) and

therefore the effect of coupling on correlations is small. Fig. 8.2 shows that correlations

between a pair of coupled conductance based integrate–and–fire neurons obey the same

dependence on coupling strength and excitatory input strength as the LIFs in Fig. 8.1.
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Chapter 9
The impact of pooling on correlations

The total input to a cortical neuron often represents the pooled activity of hundreds or

thousands of afferent cells. Similarly, voltage sensitive dye (VSD) and multi-unit (MU)

recordings can represent the pooled activity of many nearby cells [52, 54]. It is known that

weak dependencies between the response of cell pairs in a population can have a signifi-

cant impact on the variability and signal-to-noise ratio of the pooled signal [99, 129, 133]. It

has also been observed that weak correlations between cells in two populations can cause

much stronger correlations between the pooled activity of the populations [10, 20, 57, 111].

In this section, we systematically explore the effects of pooling on correlations and the im-

plications for pooled recordings and for the development of synchrony in feedforward

chains.
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9.1. CORRELATIONS BETWEEN SUMS OF RANDOM VARIABLES

9.1 Correlations between sums of random variables

The effects of pooling on correlations can be understood by calculating the correlation be-

tween two variables that are each obtained by summing a collection of pairwise correlated

variables.

Given two collections of correlated random variables {xi}nx
i=1 and {yj}ny

j=1, define the

pooled variables, X = Âi xi and Y = Âi yi. Since covariance is bilinear (cov
⇣

Âi xi, Â j y j

⌘
=

Âi j cov(xi, yj)), the variance and covariance of the pooled variables are

�2
X =

nx

Â
i=1

nx

Â
j=1
j 6=i

�xi�xj⇢xix j +
nx

Â
i=1
�2

xi
, and �XY =

nx

Â
i=1

ny

Â
j=1
�xi�yj⇢xi y j ,

and similarly for �2
Y.

Using these expressions along with some algebraic manipulation, the correlation co-

efficient, ⇢XY = �XY/
p
�X�Y, between the pooled variables can be written as

⇢XY =
⇢xyrh

wx⇢xx + 1
nx

⇣
vx
�x�y

� wx⇢xx

⌘i h
wy⇢yy + 1

ny

⇣
vy
�x�y

� wy⇢yy

⌘i (9.1)

=
⇢xyp
⇢xx⇢yy

+O
 

1pnxny

!
, (9.2)

where

wx =
�x�x

�x�y
, vx =

1
nx

nx

Â
i=1
�2

xi
,

�x�y =
1

nxny

nx

Â
i=1

ny

Â
j=1
�xi�yj , �x�x =

1
nx(nx � 1)

nx

Â
i=1

nx

Â
j=1
j 6=i

�xi�xj ,

⇢xy =
1

nxny�x�y

nx

Â
i=1

ny

Â
j=1
�xi�yj⇢xi y j , ⇢xx =

1
nx(nx � 1)�x�x

nx

Â
i=1

nx

Â
j=1
j 6=i

�xi�yj⇢xix j
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9.2. POOLING AMPLIFIES CORRELATIONS

and similarly for wy, vy, �y�y, and ⇢yy. In deriving Eq. (9.2) we assumed that all pairwise

statistics are uniformly bounded away from zero in the asymptotic limit.

Each overlined term above is a population average. Notably, ⇢xy represents the av-

erage correlation between xi and yj pairs, weighted by the product of their standard

deviations, and similarly for ⇢xx and ⇢yy. Correlation between weighted sums can be

obtained by substituting xi ! wxi xi and yj ! wyj y j for weights wxi and wyj and mak-

ing the appropriate changes to the terms in the equation above (e.g. �xi ! |wxi |�xi ,

⇢xi y j ! sign(wiwj)⇢xi y j ). Overlap between the two populations can be modeled by taking

⇢xi y j = 1 for some pairs.

9.2 Pooling amplifies correlations

In this section, we give an interpretation of the expressions derived in Sec. 9.1 by consid-

ering simplified homogeneous population models. To simplify the exposition we assume

homogeneity in the populations: All variables have the same variance, �2 = var(xi) =

var(yj), and the populations have equal size, n = m. We consider two idealized popula-

tion models.

The first population model (Fig. 9.1A) captures the fundamental effects of pooling

on correlations between two populations. For simplicity, we assume that the popula-

tions are non-overlapping. The correlation coefficients between two cells from separate

populations (the between correlations) are denoted by ⇢b = cov(xi, yj)/�2. The corre-

lation coefficients between pairs from the same population (the within correlations) are

⇢w = cov(xi, xk)/�2 = cov(yi, yk)/�2, for i 6= k. The correlation coefficient between the
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9.2. POOLING AMPLIFIES CORRELATIONS

Figure 9.1: Pooling amplifies correlations. A) Two electrodes record from non-
overlapping populations. Cells from separate (same) populations are correlated with coef-
ficient ⇢b (⇢w). The traces above the populations were obtained by convolving the pooled
spike trains with an exponential kernel. Here ⇢b = ⇢w = 0.05 and n = 500. Although
⇢b is small, the traces are strongly correlated. B) Two cells receiving input from overlap-
ping populations. Each of the two subpopulations on the left contain n cells. All pairs of
cells within these subpopulations are correlated with coefficient ⇢. The two cells on the
right share np of their inputs from these subpopulations (purple intersection). Addition-
ally, each cell receives nq uncorrelated inputs (smaller populations on top and bottom).
C) The dependence of the pooled correlation, ⇢XY, on population size, n, for the exam-
ples in (A) and (B). Green line corresponds to population model (A) with ⇢b = 0.05 and
⇢w = 0.1, while the blue line corresponds to (B) with ⇢ = 0.05 and p = q = 0 (solid
line); p = 0 and q = 1 (dashed line); p = 0.25 and q = 0 (dotted line). A moderate
amount of overlap between the populations or independent inputs do not significantly
affect the pooled correlation when n is large. The pink line corresponds to model (A) with
⇢b = ⇢w = 0.005. D) The cross-correlation function from the population model in (A)
with Rb(t) = Rw(t) = 0.05e�|t|/5(1 + |t|/5) and for various values of n. The case n = 500
corresponds to the traces in (A) and the filled circles are from simulations.
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pooled variables can be derived directly from Eq. (9.1) to obtain [10]

⇢XY =
⇢b

⇢w + 1
n (1� ⇢w)

=
⇢b
⇢w
�O (1/n) . (9.3)

Hence, for large n, the correlation between the pooled signals approaches the ratio of

the between and within correlations (see Fig. 9.1C). More generally, |⇢XY| � |⇢b| so that

pooling amplifies correlations for any value of n.

If the recordings are from two subsets of a larger, homogeneous population then ⇢b =

⇢w = ⇢. When pooling from a smaller number of neurons, ⇢XY = n⇢+O(⇢2), and pooled

activity increases approximately linearly with population size [111]. For large populations

correlations saturate and ⇢XY = 1�O (1/n).

This analysis also provides simple bounds on pairwise correlations in a population.

For example in the population model considered in Fig. 9.1A, the fact that |⇢XY| < 1 com-

bined with Eq. (9.3) tells us that that |⇢b|  |⇢w|+O(1/n). That is, pairwise correlations

between two populations are bounded by the correlations within the two populations. As

the input population size grows, this bound becomes tighter and ⇢b cannot be much larger

than ⇢w.

The second population model (Fig. 9.1B), illustrates the case when X and Y repre-

sent the activity of overlapping populations. We assume that a proportion p of the n

recorded cells in a population are shared between the populations. This implies that

cov(xi, yj)/�2 = 1 for n p separate xi, yj pairs. The remaining n (n� np) pairs have cor-

relation ⇢ = cov(xi, yj)/�2. For simplicity, assume that the within correlations are the

same as the between correlations: ⇢ = cov(xi, yj)/�2 = cov(xi, xk)/�2 = cov(yi, yk)/�2

for i 6= k. We also include inputs from two external, statistically independent popula-

tions, modeled by m = q n independent variables. Hence, X = Ân
i=1 xi + Âm

j=1 wj and

Y = Ân
i=1 yi + Âm

j=1 zj where zj and wj are independent from all other variables, i.e.,
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9.3. POOLING AMPLIFIES CROSS-CORRELATION FUNCTIONS

cov(wj, u) = 0 for all u 6= wj and cov(zj, u) = 0 for all u 6= zj. The correlation coeffi-

cient between the pooled variables can be derived from Eq. (9.1)

⇢XY =
⇢+ p

n (1� ⇢)
⇢+ 1

n (1� ⇢+ q)
= 1�O(1/n). (9.4)

Overlap between the two populations, as well as uncorrelated input, does not signifi-

cantly affect the pooled correlation, ⇢XY, when n is large (see Fig. 9.1C). For smaller val-

ues of n and when ⇢ is small, correlations are dominated by overlap and ⇢XY ⇡ p. The

equations discussed in this section have been studied in the context of multiunit record-

ings [10] and VSD signals [20].

9.3 Pooling amplifies cross-correlation functions

In the previous section, we showed that sums of random variables, perhaps representing

spike counts, are more strongly correlated than the individual variables. In this section,

we gives a similar result that has implications for correlations between membrane poten-

tial traces and experimental recordings. In particular, we show that the cross-correlation

function between two pooled stochastic processes is larger than the cross-correlation be-

tween the component processes, but has the same shape.

Assuming two signals, x(t) and y(t), are jointly stationary, their temporal correlation

structure is captured by the cross-correlation function (see Sec. 2),

Rxy(⌧) =
cov(x(t), y(t + ⌧))p
var(x(t)) var(y(t))

.

Due to stationarity, var(y(t)) = var(y(t + ⌧)) so that �1 < Rxy(⌧) < 1 is simply the

correlation coefficient between the random variables x(t) and y(t + ⌧). Thus, the impact

of pooling on cross-correlation functions can be understood in terms of the results in the

previous section.
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9.4. POOLING INDUCES SYNCHRONIZATION IN FEEDFORWARD NETWORKS

We derive the analogue of Eq. (9.3) for cross-correlation functions. Assume that {xi(t)}n
i=1

and {yi(t)}n
i=1 are populations of stationary stochastic proceses with �2 = var(xi(t)) =

var(yi(t)), Rb(⌧) = Rxi yj(⌧), and Rw(⌧) = Rxixk(⌧) = Ryi yk(⌧) for i 6= k. The cross-

correlation function between the pooled processes, X(t) = Ân
i=1 xi(t) and Y(t) = Ân

i=1 yi(t),

is given by

RXY(⌧) =
Rb(⌧)

Rw(0) + 1
n (1� Rw(0))

=
Rb(⌧)
Rw(0)

�O (1/n) . (9.5)

This equation can be related to Eq. (9.3) intuitively by recalling that RXY(⌧) is the correla-

tion coefficient between X(t) = Âi xi(t) and Y(t + ⌧) = Âi yi(t + ⌧). The “between” cor-

relations in this case are given by the correlation coefficient between xi(t) and yj(t + ⌧),

i.e, Rb(⌧) = cov(xi(t), yj(t + ⌧)/�2. Similarly, the “within” correlations are given by

Rw(0) = cov(xi(t), xj(t))/�2 = cov(yi(t + ⌧), yj(t + ⌧))/�2.

From Eq. (9.5) we see that pooling scales the entire cross-correlation function by Rw(0)+

(1� Rw(0))/n so that correlations over all time lags are scaled by the same factor. We also

see that the cross-correlation function is generally amplified by pooling in the sense that

|RXY(⌧)| � |Rb(⌧)|. For homogeneous populations, where Rb(⌧) = Rw(⌧) = R(⌧), the

zero-lag cross-correlation, RXY(0), approaches 1 for large n, as illustrated in Fig. 9.1D.

9.4 Pooling induces synchronization in feedforward networks

Layered feedforward networks (Fig. 9.2) provide a simple setting to study the propagation

of neuronal activity [80, 81]. In general, neurons in the deeper layers of such networks

tend to synchronize [34, 35, 80, 89, 112, 149, 156]. Propagation of synchronous activity is

important for some neural codes [2, 3, 34], but the tendency of feedforward networks to

synchronize generally reduces information encoded in deeper layers [81, 156].
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The amplification of correlations due to pooling promotes the development of syn-

chrony in feedforward networks. This effect can be understood using the diagram in

Fig. 9.2B: The input to layer k + 1 is obtained by pooling the output of layer k, leading

to a large gain in correlations. This pooled input is then passed through the cells of layer

k + 1. Due to cellular dynamics and the effects of thresholding, a layer of neurons typically

reduces correlations, especially when the cells are operating in a fluctuation dominated

regime (see Sec. 6.1) and in the presence of synaptic variability (see Sec. 7). However, the

correlating effects of pooling will often outweigh the decorrelating effects of cellular dy-

namics. Correlations between cells in layer k + 1 will therefore be greater than those in

layer k. Thus, correlations increase and are large in deeper layers. This phenomenon is

studied in more detail using a dynamical mean field model in [125, 126, 149].

Based on this argument, we conclude that the development of synchrony in large feed-

forward networks is primarily due to the pooling of correlated inputs. Overlapping in-

puts introduce correlations in early layers, but the layer-to-layer increase in correlations

downstream is primarily a result of pooling and not overlap. This point is illustrated by

comparing a network with overlapping inputs (Fig. 9.3A) to a network without overlap

(Fig. 9.3B). In Fig. 9.3B, correlations are introduced in the input to the first layer, whereas

in Fig. 9.3A input to the first layer are uncorrelated, but correlations are introduced to the

second layer by overlap. Comparing layer k in Fig. 9.3B to layer k + 1 in Fig. 9.3A, we see

that spiking in the two networks becomes correlated at about the same rate, suggesting

that pooling, not overlap, is the mechanism most responsible for the gain in correlations

across layers.

In Fig. 9.3 we see that the activity in deeper layers is not only highly correlated, but

tightly synchronous. We can explain this fact by appealing to Eq. (9.5) which shows that
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Figure 9.2: The effect of pooling in feedforward networks A) A schematic diagram of a
feedforward network with random connectivity. Each layer consists of N cells. Each cell
in layer k + 1 receives a fixed number of randomly selected inputs from layer k. B) The
stages of processing in the network pictured in (A). Outputs from layer k are pooled to
form the input to each cell in layer k + 1. These inputs are, in turn, decorrelated by the
cells in layer k + 1. The combined effect can lead to large gains in correlation from layer
to layer.

163



9.4. POOLING INDUCES SYNCHRONIZATION IN FEEDFORWARD NETWORKS










  

Figure 9.3: Development of synchrony in feedforward networks (A) Spike rasters from
a simulation of a randomly connected feedforward network. Each cell receives ne = 1400
excitatory and ni = 600 inhibitory inputs. In addition, two cells in a layer share, on av-
erage, a proportion p = 0.05 of their inputs. Each cell in layer 1 receives an independent
Poisson excitatory input, so that outputs from the first layer are uncorrelated. (B) A feed-
forward network with no overlap. Each cell receives the same number of inputs as in (A),
but there are no shared inputs (p = 0). Correlated inputs are introduced to the first layer,
⇢in

1 = 0.05, to match the level of correlation introduced by overlap in the input to layer 2 in
(A). (C) A feedforward network with no overlap receiving independent input. All model
parameters are the same as in (B). However, the input to the first layer is uncorrelated
(⇢in

1 = 0), and synchrony does not develop. The spike count correlation over a window of
width 50ms averaged over all pairs is ⇢ = 0.02, 0.18, and 0.59 for layers 2, 3, and 4 in (A);
and ⇢ = 0.03, 0.21, and 0.63 for layers 1, 2, and 3 in (B). Cells in all other layers are not
correlated.
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if the “within” and “between” correlation coefficients at lag zero are not significantly dif-

ferent, then RXY(0) ⇡ 1 (see Fig. 9.1D) for large input populations. In a feedforward

network, this effect is compounded across layers and cells in deeper layers will tend to

spike synchronously.

Synchrony in feedforward networks has received much attention, especially in the

context of the propagation of pulse packets [34, 80]. While synchrony may benefit tempo-

ral codes, it can make rate coding difficult [156]. The tuning of feedforward networks for

rate or temporal coding and the impact on information transmission is reviewed in [81].

An alternative to the present approach is to use Fokker-Planck equations to describe the

evolution of the size and shape of pulse packets [19, 35]. Closer to the present approach,

one can develop probabilistic models of randomly connected feedforward networks of

binary threshold neurons [100]. However, this approach makes the effects of pooling dif-

ficult to isolate.

The lack of recurrence in feedforward networks makes them more amenable to math-

ematical analysis. However, biophysically realistic layered neuronal networks are em-

bedded within larger, recurrent networks. Moreover, connectivity between cells is not

random. Additional structure can lead to richer dynamics and functionality. For instance,

the inclusion of disynaptic inhibitory circuits (which amounts to adding lateral inhibitory-

to-excitatory and inhibitory-to-inhibitory connections to the purely feedforward network)

allows the network to selectively propagate only strongly synchronous inputs [76]. More-

over, balanced excitation and inhibition can give rise to a stable asynchronous state in

recurrent settings [111].
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9.5 Impact of pooling on VSD and MU recordings

We next explore the effects that pooling can have on recorded signals. First, we show

that pooling can mask stimulus dependent changes in spiking correlations. Second, we

show that poor discrimination between cells when sorting spikes can artificially increase

measured correlations.

9.5.1 Pooling can conceal stimulus dependent changes in correlation

A stimulus [21, 31, 56, 75], as well as the behavioral state of the animal [22, 53, 72, 119] can

modulate the firing rates and correlations in neuronal responses. Stimulus dependent

changes in correlation can have a significant impact on the neural code [67, 135]. However,

such changes may be masked in recordings that reflect the pooled activity of large groups

of cells.

Pooling can impact correlations between recordings of population activity obtained

from voltage sensitive dyes (VSDs), multi-unit recordings and other techniques. Such sig-

nals might each represent the summed activity of hundreds or thousands of neurons. Let

two recorded signals, X1(t) and X2(t), represent the weighted activity of cells in two pop-

ulations. If we assume homogeneity in the input variances and equal size of the recorded

populations, Eq. (9.1) simplifies to give the correlation between the recorded signals

⇢X1X2 =
⇢12q⇥

⇢11 + 1
n (1� ⇢11)

⇤ ⇥
⇢22 + 1

n (1� ⇢22)
⇤ =

⇢12p
⇢11⇢22

+O(1/n). (9.6)

Here n represents the number of neurons recorded, ⇢kk, k = 1, 2 represents the average

correlation between cells contributing to signal Xk(t), and ⇢12 represents the average cor-

relation between cells contributing to different signals. The averages are weighted so that

cells that contribute more strongly to the recording, such as those closer to the recording
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site, contribute more to the the average correlations (see Methods). Cells common to both

recorded populations can be modeled by setting the corresponding correlation coefficients

to unity. A form of Eq. (9.6) with ⇢11 = ⇢22 was derived by [10].

When the two recording sites are nearby, so that ⇢12 ⇡ ⇢11 ⇡ ⇢22, even small correla-

tions between individual cells are amplified by pooling so that the correlations between

the recorded signals can be close to 1. This effect was observed in experiments and ex-

plained in similar terms in [141].

A significant stimulus-dependent change in correlations between individual cells might

be reflected only weakly in the correlation between the pooled signals. This can occur, for

instance, in recordings of large populations when ⇢12, ⇢11, and ⇢22 are increased by the

same factor when a stimulus is presented. Similarly, an increase in correlations between

cells can actually lead to a decrease in correlations between recorded signals when ⇢11 and

⇢22 increase by a larger factor than ⇢12.

To illustrate these effects, we construct a simple model of stimulus dependent cor-

relations motivated by the experiments in [20], in which VSDs were used to record the

population response in visual area V1 during an attention task. In their experiments, the

imaged area is divided into 64 pixels, each 0.25mm⇥ 0.25mm in size. The signal recorded

from each pixel represents the pooled activity of n ⇡ 1.25⇥ 104 neurons.

We model correlations between the signals, X1(t) and X2(t), recorded from two pixels

in the presence or absence of a stimulus (See Fig. 9.4B), using a simplified model of stim-

ulus dependent rates and correlations. The firing rate of a cell located at distance d from
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the center of the retinotopic image of a stimulus is

r(d) =

8
>><

>>:

B + (1�B)(1+cos(d⇡))�
2 stimulus present

B stimulus absent.
(9.7)

Here, B 2 [0, 1] represents baseline activity and � � 1 controls the rate at which activity

decays with d. Both d and r were scaled so that their maximum value is 1 (See Fig. 9.4A).

We assume that the correlation between the responses of two neurons is proportional

to the geometric mean of their firing rates [31, 136], and that correlations decay exponen-

tially with cell distance ([139]; see however [108] and [37]). We therefore model the cor-

relation between two cells as ⇢ jk = S
q

r(dj)r(dk)e�↵Dj,k where dj and dk are the distances

from each cell to the center of the retinotopic image of the stimulus, Dj,k is the distance

between cells j and k,↵ is the rate at which correlations decay with distance, and S  1 is

a constant of proportionality.

If pixels are small compared to the scales at which correlations are assumed to de-

cay, then the average correlation between cells within the same pixel are ⇢11 = Sr(d1)

and ⇢22 = Sr(d2). The average correlation between cells in different pixels is ⇢12 =

S
p

r(d1)r(d2)e�↵D1,2 .

In this case, whether a stimulus is present or not, the correlation between the pooled

signals is of the form ⇢X1X2 = e�↵D1,2 +O(1/n). Thus, even significant stimulus depen-

dent changes in correlations would be invisible in the recorded signals. This overall trend

is consistent with the results in [20] (compare Fig. 9.4C to their Fig. 2f). In such settings,

it is difficult to conclude whether pairwise correlations are stimulus dependent from the

pooled data.

However, in Supplementary Fig. 3 of [20] the presence of a stimulus apparently results

168



9.5. IMPACT OF POOLING ON VSD AND MU RECORDINGS

   









   








 





   










Figure 9.4: The effect of pooling on recordings of stimulus dependent correlations. A) The
response amplitude of a model neuron as a function of its distance from the retinotopic image of
a stimulus (Eq. (9.7)) with B = 0.05 and � = 10. B) A diagram of our model. Signals X1(t) and
X2(t) are recorded from two pixels (red and blue squares). The activity in response to a stimulus
is shown as a gradient centered at some pixel (the center of the retinotopic image of the stimulus).
C) The prediction of the correlation between two pixels obtained using the stimulus-dependent
model considered in the text with stimulus present (red) and absent (green). We assumed that one
pixel is located at the stimulus center (d1 = 0). Parameters are as in (A) with ↵ = 1, S = 0.1, and
n = 1.25⇥ 104. A stimulus dependent change in correlations is undetectable. D) Same as in (C),
except that baseline activity, B, was scaled by 0.5 in the presence of a stimulus. Compare to Fig. 2f
in [20].
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in a slight decrease in correlations between more distant pixels. In Fig. 9.4D this effect was

reproduced using the alternative model described above, with the additional assumption

that baseline activity, B, decreases in the presence of a stimulus [96]. The effect can also

be reproduced by assuming that spatial correlation decay,↵, increases when a stimulus is

present.

As this example shows, care needs to be taken when inferring underlying correlation

structures from pooled activity. The statistical structure of the recordings can depend on

pairwise correlations between individual cells in a subtle way, and different underlying

correlation structures may be difficult to distinguish from the pooled signals. However,

downstream neurons may also be insensitive to the precise structure of pairwise correla-

tions, as they are driven by the pooled input from many afferents.

9.5.2 Pooling amplifies correlations when spikes are poorly discriminated in

multi-cell recordings

Spike sorting methods are used to assign action potentials recorded by a single electrode

to different cells. Insufficient separation may result in treating spikes from different cells

as coming from a single cell [85]. Thus the response attributed to a single cell can re-

flect the pooled activity of a small population. Errors in spike sorting can therefore affect

estimates of correlations [37, 47, 105, Cohen & Kohn, private communication].

To illustrate this effect, consider an example where m + n cells with equal spike count

variance,�2, are recorded using an extracellular electrode (or several electrodes). Assume

that the spikes from m of the cells are mistakenly attributed to a single cell and spikes from

the other n are mistakenly attributed to a separate single cell, so that the experimenter

sees two cells where there are actually m + n. For simplicity, assume that the spike count
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correlation between all of the cells is identically ⇢. Then the correlation, ⇢rec, between the

recorded spike counts is given by

⇢rec =
⇢q�

⇢+ 1
m (1� ⇢)� �⇢+ 1

n (1� ⇢)�
=
p

mn⇢+O(⇢2).

Thus, when cells are weakly correlated, the correlation coefficient between the recorded

spike counts is a factor of
p

mn larger than the actual spike count correlation. In practice,

it is unlikely that m and n would be large, but even in the simplest case where two cells

are mistaken for one and another cell is isolated correctly (m = 2, n = 1), the recorded

correlation is a factor of
p

2 larger than the actual correlation.

171



Chapter 10
Discussion

We have provided an in-depth analysis of several models of neurons with stochastic in-

puts and investigated the mechanisms that determine how a pair of such neurons transfer

input correlations to spiking and membrane potential correlations, as well as the effects

of synaptic variability and synaptic coupling on spiking correlations. Additionally, we

explored the effects of pooling on correlations between stochastic processes and some im-

plications that these effects have for synchronization in feedforward networks and for the

interpretation of some experimental recordings.

Recent experimental and theoretical studies [61, 111] suggest that recurrent network

dynamics can modulate correlations to prevent the potential blowup of correlations ob-

served in a feedforward setting. These studies agree with in vivo recordings that show

small [37, 111] or moderate [161] correlations between cells. We showed that correlations

are also strongly modulated by dynamics at the cellular level. The correlation structure

at the level of networks is shaped by the interplay between such cellular and network

effects.
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Figure 10.1: An alternate measure of correlation. The covariation factor (solid line) and
Fs⇢in (dashed line) as a function of re for the dLIF with ri = 1, ĪL = 0.5, ⇢ee = ⇢ii = 0.2
and ⇢ei = 0. The filled circle indicates the boundary between the drift and fluctuation
dominated regimes, re = ri + ĪL. The covariation factor is nearly zero for small values
of re. As re grows, the cells become less forgetful and CFs increases initially. In the drift
dominated regime, CFss decreases towards Fs ⇢in since ⇢ss % ⇢in (see Sec. 6.1.1) and ⇢ss =
CFss/Fs.

Analytical approximations of the correlation between the outputs of two current or

conductance based LIF neurons in the diffusive limit have been obtained previously [31,

102, 136, 147]. Since integrate-and-fire models are only caricatures of actual neurons, it is

useful to complement such analytical approaches with a mechanistic understanding. We

characterized the mechanisms that shape correlation transfer in an intuitive way, provid-

ing insights into how correlations are affected by various aspects of neural dynamics.

We have primarily focused on bivariate statistics between integrate–and–fire neurons

with stationarity inputs. Below, we describe some potential generalizations and exten-

sions of our work.

173



10.1. NON-STATIONARY INPUTS

10.1 Non-stationary inputs

Throughout the text, we have assumed that inputs are stationary. Although this assump-

tion is frequently made in theoretical studies [31, 98, 102, 136], neurons in vivo receive in-

puts with time-dependent statistics. The assumption of stationarity is a good approxima-

tion when the input statistics change more slowly than the timescale of correlations and

synaptic responses.

The dLIF model can be extended to take time dependent rates and correlations into

account whilst maintaining its numerical tractability. The master equation for the mem-

brane potentials is transformed from an linear autonomous system of ODEs to a linear

non-autonomous system, p0(t) = A(t)p(t) where A(t) is the time-dependent infinites-

imal generator matrix [45, 68]. The methods in the Appendix can then be extended to

investigate time-dependent spiking statistics.

10.2 Alternate measures of correlation

There is no unique way to quantify dependencies between pairs of spike trains. We chose

to use the Pearson correlation coefficient because it is a dimensionless quantity that is

widely used and understood. However, the models we presented are mathematically

tractable and our analysis can be applied to other measures of statistical dependence.

For example, measures of correlation where the covariance is normalized by the firing

rates have been proposed and may offer information theoretic advantages [6, 127]. As an

example, we consider the dimensionless covariation factor, CFss = �ss/rs. This quantity is

an extension of the Fano factor that measures the dispersion of a bivariate distribution.
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To analyze the covariation factor for the dLIF model, reorganize Eq. (6.1) as

Fs = CV2
s , and CFss = (Fs + 1)

 
E[⌧1]� E[⌧1|2]

E[⌧1]

!
+ Sss.

The behavior of CFss now parallels that of ⇢ss: In the fluctuation dominated limit, when

re ⌧ ri + ĪL, the effect of a spike in one neuron is forgotten by the time the second spikes,

so that CFss ⇡ 0. As re increases towards the drift dominated regime, the cells become

less “forgetful” and |CFss| increases. As re increases into the drift dominated regime, the

cells behave like PIFs, transferring spike counts linearly and preserving correlations, so

that CFss = ⇢ssFs ⇡ ⇢inFs (See Fig. 10.1B).

The “forgetfulness” of cells diminishes the dependence between the output of the cells

in the fluctuation dominated regime. The effect of a spike in one neuron is forgotten before

the second neuron spikes, and the output spike trains are nearly independent as a result.

This is a fundamental property of excitable systems, and not due to the particular choice

of the Pearson correlation coefficient or the neuron model employed.

10.3 Higher-order correlations

Pairwise correlations play a significant role in the neural code, and it has been proposed

that the first and second order statistics may fully characterize the response of a popu-

lation [132, 137, 138, 146], although see [127]. However, the higher-order structure of the

population response can have significant effects on the firing of downstream neurons [78],

and the information carried by the response [127].

Eq. (5.2) can be used to show that a pair of PIFs preserve higher-order correlations,

and we therefore expect that a pair of leaky neurons in the drift dominated regime ap-

proximately preserve higher-order correlations. In the fluctuation dominated limit, the
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forgetfulness of cells causes spiking to become independent and therefore higher-order

correlations are reduced. The analysis of synaptic noise and coupling can also be extended

to higher-order moments.

10.4 Physiologically realistic models

We used random walk models in our analysis and verified our results with simulations

of a conductance based integrate–and–fire model. This approach is common in studies of

stochastic response properties of neurons [110, 129] and captures the fundamental mech-

anisms of a physiological cell. However, more detailed models of active conductances,

synaptic plasticity, channel dynamics, and an extended dendritic morphology might re-

veal additional mechanisms that modulate correlations. Such models are outside of the

scope of this study, but warrant further investigation. For instance, preliminary results

suggest that correlations are reduced significantly in a Hodgkin Huxley model (E. Shea-

Brown, private communication, 2010).
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[57] D.A. Gutnisky and K. Josić. Generation of spatiotemporally correlated spike trains
and local field potentials using a multivariate autoregressive process. Journal of
Neurophysiology, 103(5):2912–2930, may 2010.

[58] C. Hammond, H. Bergman, and P. Brown. Pathological synchronization in parkin-
son’s disease: networks, models and treatments. Trends in Neurosciences, 30(7):357–
364, 2007.

[59] A. Harsch and H.P.C. Robinson. Postsynaptic variability of firing in rat cortical neu-
rons: the roles of input synchronization and synaptic nmda receptor conductance.
Journal of Neuroscience, 20(16):6181, 2000.

[60] M. Helias, M. Deger, and S. Rotter. Finite post synaptic potentials cause a fast neu-
ronal response. Frontiers in Neuroscience, 2011.

[61] J. Hertz. Cross-correlations in high-conductance states of a model cortical network.
Neural Computation, 22(2):427–447, 2010.

[62] N.A. Hessler, A.M. Shirke, and R. Malinow. The probability of transmitter release
at a mammalian central synapse. Nature, 1993.

[63] X. Huang and S.G. Lisberger. Noise correlations in cortical area MT and their poten-
tial impact on trial-by-trial variation in the direction and speed of smooth-pursuit
eye movements. Journal of Neurophysiology, 101(6):3012, 2009.

[64] E.M. Izhikevich. Dynamical systems in neuroscience: the geometry of excitability and
bursting. The MIT Press, Cambridge, MA, 2007.

[65] D.H. Johnson. The correlation function of multiple dependent poisson pro-
cesses generated by the alternating renewal process method. Arxiv preprint
arXiv:0811.3713, 2008.

[66] F. Jones. Lebesgue integration on Euclidean space. Jones & Bartlett Learning, USA,
2001.
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[93] P. Maršálek, C. Koch, and J. Maunsell. On the relationship between synaptic input
and spike output jitter in individual neurons. Proceedings of the National Academy of
Sciences USA, 94(2):735, 1997.

[94] A. Mason, A. Nicoll, and K. Stratford. Synaptic transmission between individual
pyramidal neurons of the rat visual cortex in vitro. Journal of Neuroscience, 11(1):72–
84, 1991.

[95] N. Masuda. Simultaneous rate-synchrony codes in populations of spiking neurons.
Neural Computation, 18(1):45–59, 2006.

[96] J. Mitchell, K. Sundberg, and J. Reynolds. Spatial attention decorrelates intrinsic
activity fluctuations in macaque area v4. Neuron, 63(6):879–88, Sep 2009.

183



BIBLIOGRAPHY

[97] R. Moreno, J. de La Rocha, A. Renart, and N. Parga. Response of spiking neurons
to correlated inputs. Physical Review Letters, 89(28):288101, 2002.

[98] R. Moreno-Bote and N. Parga. Auto- and cross-correlograms for the spike response
of leaky integrate-and-fire neurons with slow synapses. Physical Review Letters,
96(2):28101, 2006.

[99] R. Moreno-Bote, A. Renart, and N. Parga. Theory of input spike auto- and cross-
correlations and their effect on the response of spiking neurons. Neural Computation,
20(7):1651–1705, 2008.

[100] T. Nowotny and R. Huerta. Explaining synchrony in feed-forward networks: are
mcculloch-pitts neurons good enough? Biological Cybernetics, 89(4):237–41, Oct 2003.

[101] M. Okun and I. Lampl. Instantaneous correlation of excitation and inhibition during
ongoing and sensory-evoked activities. Nature Neuroscience, 2008.

[102] S. Ostojic, N. Brunel, and V. Hakim. How connectivity, background activity, and
synaptic properties shape the cross-correlation between spike trains. Journal of Neu-
roscience, 29(33):10234–10253, aug 2009.

[103] A.M.M. Oswald, B. Doiron, J. Rinzel, and A.D. Reyes. Spatial profile and differential
recruitment of GABAB modulate oscillatory activity in auditory cortex. Journal of
Neuroscience, 29(33):10321, 2009.

[104] L. Paninski. The most likely voltage path and large deviations approximations for
integrate-and-fire neurons. Journal of Computational Neuroscience, 21(1):71–87, 2006.

[105] A. Pazienti and S. Grün. Robustness of the significance of spike synchrony with
respect to sorting errors. Journal of Computational Neuroscience, 21(3):329–342, 2006.

[106] D.H. Perkel, G.L. Gerstein, and G.P. Moore. Neuronal spike trains and stochastic
point processes I. The single spike train. Biophysical Journal, 7(4):391–418, 1967.

[107] B. Pesaran, J.S. Pezaris, M. Sahani, P.P. Mitra, and R.A. Andersen. Temporal struc-
ture in neuronal activity during working memory in macaque parietal cortex. Na-
ture Neuroscience, 5(8):805, 2002.

[108] J. Poort and P. Roelfsema. Noise correlations have little influence on the coding of
selective attention in area v1. Cerebral Cortex, 19(3):543, 2009.

[109] A. Rangan. Diagrammatic expansion of pulse-coupled network dynamics. Physical
Review Letters, 102(15):158101, Apr 2009.

[110] A. Rauch, G. La Camera, H.R. Luscher, W. Senn, and S. Fusi. Neocortical pyramidal
cells respond as integrate-and-fire neurons to in vivo-like input currents. Journal of
Neurophysiology, 90(3):1598, 2003.

184



BIBLIOGRAPHY

[111] A. Renart, J. de La Rocha, P. Bartho, L. Hollender, N. Parga, A. Reyes, and K.D.
Harris. The asynchronous state in cortical circuits. Science, 327(5965):587–590, jan
2010.

[112] A.D. Reyes. Synchrony-dependent propagation of firing rate in iteratively con-
structed networks in vitro. Nature Neuroscience, 6(6):593–599, 2003.

[113] L.M. Ricciardi and L. Sacerdote. The Ornstein-Uhlenbeck process as a model for
neuronal activity. Biological Cybernetics, 35(1):1–9, 1979.

[114] M. Richardson. Effects of synaptic conductance on the voltage distribution and
firing rate of spiking neurons. Physical Review E, 2004.

[115] M.J.E. Richardson. Firing-rate response of linear and nonlinear integrate-and-fire
neurons to modulated current-based and conductance-based synaptic drive. Physi-
cal Review E, 76(2):021919, aug 2007.

[116] M.J.E. Richardson. Spike-train spectra and network response functions for non-
linear integrate-and-fire neurons. Biological Cybernetics, 2008.

[117] M.J.E. Richardson and W. Gerstner. Synaptic shot noise and conductance fluctu-
ations affect the membrane voltage with equal significance. Neural Computation,
17(4):923–947, 2005.

[118] M.J.E Richardson and R. Swarbrick. Firing-rate response of a neuron receiving ex-
citatory and inhibitory synaptic shot noise. Physical Review Letters, 1:1.5, 2010.

[119] A. Riehle, S. Grün, M. Diesmann, and A. Aertsen. Spike synchronization
and rate modulation differentially involved in motor cortical function. Science,
278(5345):1950, 1997.

[120] D.L. Ringach and B.J. Malone. The operating point of the cortex: neurons as large
deviation detectors. Journal of Neuroscience, 27(29):7673, 2007.

[121] H. Risken. The Fokker-Planck equation: methods of solution and applications, volume 18.
Springer Verlag, Berlin, 1996.

[122] R. Romo, A. Hernández, A. Zainos, and E. Salinas. Correlated neuronal discharges
that increase coding efficiency during perceptual discrimination. Neuron, 38(4):649–
657, 2003.
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