
c©Copyright by

Ali Samil Kavruk

August, 2011



TENSOR PRODUCTS OF OPERATOR SYSTEMS AND

APPLICATIONS

A Dissertation

Presented to

the Faculty of the Department of Mathematics

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Ali Samil Kavruk

August, 2011



TENSOR PRODUCTS OF OPERATOR SYSTEMS AND

APPLICATIONS

Ali Samil Kavruk

Approved:

Dr. Vern I. Paulsen (Committee Chair)
Department of Mathematics, University of Houston

Committee Members:

Dr. David P. Blecher
Department of Mathematics, University of Houston

Dr. Bernhard Bodmann
Department of Mathematics, University of Houston

Dr. David Kerr
Department of Mathematics, Texas A&M University

Dr. Mark Smith
Dean, College of Natural Sciences and Mathematics

University of Houston

ii



Acknowledgments

I would like express my deepest gratitude to my Ph.D. advisor Dr. Vern I. Paulsen for his

encouragement and guidance throughout this work. I feel very fortunate to have his support and

to experience his work ethic which I always admire. I am indebted to him for being available

at every stage of my research, and for the valuable discussions where he shared the joy of math.

Without his enthusiasm, inspiration, and guidance this dissertation would not have been possible.

I am also very thankful to my committee members Dr. David P. Blecher, Dr. Bernhard G.

Bodmann, and Dr. David Kerr for their time to read my dissertation, and for their valuable

comments and suggestions.

I would like thank all the academic and administrative members of the Department of Math-

ematics at University of Houston for making this institution an excellent place for research. Very

special thanks to Dr. Shanyu Ji for his advice in every problem I have encountered throughout

my education. My sincere thanks to the Chairman of the Mathematics Department, Dr. Jeff

Morgan, whom I consider as an excellent educator, for his support and guidance towards building

my academic career. I would like to express my gratitude to the members of the Department

of Mathematics at Bilkent University where I did my B.S. and M.S. I am indebted to my M.S.

advisor Dr. Aurelian Gheondea for his constant support during my M.S. studies and encouraging

me to pursue mathematical education at a higher level.

I would like to thank all my friends for being there during the ups and downs of my life as

a graduate student. Very special thanks to my brother Salih for sharing my stress and for his

care. I am also indebted to my friends Ajit, Arjun, and Fatih for their belief in me through a

large period of this work.

Last but not the least, I am very thankful to my family Fevzi and Funda, for being patient

and understanding throughout my very long educational journey. I also deeply appreciate their

undying belief in me. I am indebted to my brother Fatih for always being there for me. Thanks

to my nephew Onur, who is far from eyes but not the heart, for bringing immense joy to my life.

iii



TENSOR PRODUCTS OF OPERATOR SYSTEMS AND

APPLICATIONS

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Mathematics

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Ali Samil Kavruk

August, 2011

iv



ABSTRACT

Some recent research on the tensor products of operator systems and ensuing nuclearity prop-

erties in this setting raised many stability problems. In this paper we examine the preservation

of these nuclearity properties including exactness, local liftability, and the double commutant

expectation property under basic algebraic operations such as quotient, duality, coproducts, and

tensor products. We show that, in the finite dimensional case, exactness and lifting property

are dual pairs, that is, an operator system S is exact if and only if the dual operator system

Sd has the lifting property. Moreover, the lifting property is preserved under quotients by null

subspaces.

Again in the finite dimensional case we prove that every operator system has the k-lifting

property in the sense that whenever ϕ : S → A/I is a unital and completely positive map, where

A is a C*-algebra and I is an ideal, then ϕ possess a unital k-positive lift on A, for every k. This

property provides a novel proof of a classical result of Smith and Ward on the preservation of

matricial numerical ranges of an operator.

The Kirchberg conjecture naturally falls into this context. We show that the Kirchberg

conjecture is equivalent to the statement that the five dimensional universal operator system

generated by two contraction (S2) has the double commutant expectation property. In addition

to this we give several equivalent statements to this conjecture regarding the preservation of

various nuclearity properties under basic algebraic operations.

We show that the Smith Ward problem is equivalent to the statement that every three di-

mensional operator system has the lifting property (or exactness). If we suppose that both the

Kirchberg conjecture and the Smith Ward problem have an affirmative answer then this implies

that every three dimensional operator system is C*-nuclear. We see that this property, even

under most favorable conditions, seems to be hard to verify.
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Chapter 1

Background and Motivation

1.1 Introduction

The study of tensor products and therefore the behavior of objects under the tensorial operations

is fundamental in operator theory. Exactness, local liftability, approximation property and weak

expectation are some structural properties of C*-algebras which are known to be deeply connected

with the tensor product. The operator space versions and non-selfadjoint analogues of these

properties have been worked out in the last decade (see [40, Sec. 15,16,17] and [3]). After being

abstractly characterized by Choi and Effros, operator systems played an important role in the

understanding of tensor products of C*-algebras, nuclearity, injectivity, etc. (see [28], [7], [6],

e.g.). Some special tensor products of two operator systems are also used in quantum mechanics

([37], e.g.). However a systematic study of tensor products on this category along with the

characterization of nuclearity properties waited till [22] and [21] (see also [17]). This series of

papers raised several questions; namely, the stability of these properties under certain operations

which is the main subject of this thesis. More precisely we try to illuminate the behavior of the

nuclearity properties under basic algebraic constructions such as quotients, coproducts, duality,
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1.1 INTRODUCTION

tensors, etc.

We start with a brief introduction to operator systems together with their abstract charac-

terization. We also include the special C*-covers generated by operator systems and continue

with the basic duality results in this category. In Chapter 2 we recall some facts on the quotient

theory of operator systems. This especially allows us to utilize exactness in this category.

Chapter 3 includes a brief overview on the tensor products of operator systems. After giving

the axiomatic definition we recall basic facts on the minimal (min), the maximal (max), the

(maximal) commuting (c), enveloping left (el), and enveloping right (er) tensor products. The

set of tensor products admits a natural partial order and the primary tensor products we have

considered exhibit the following relations:

min ≤ el , er ≤ c ≤ max.

Nuclearity forms the integral part of Chapter 4. Given two operator system tensor products

α ≤ β, an operator system S is said to be (α, β)-nuclear if S ⊗α T = S ⊗β T for every operator

system T . One of the main goals of [21] (see also [17]) is to characterize the nuclearity properties

among the primary tensor products above which forms the following equivalence:

(min,max)-nuclearity = completely positive factorization property (CPFP),

(min,el)-nuclearity = exactness,

(min,er)-nuclearity = (operator system) local lifting property (osLLP),

(el,c)-nuclearity = double commutant expectation property (DCEP),

(el,max)-nuclearity = weak expectation property (WEP).

These properties follow the track of the classical approach for C*-algebras due to Lance [28] and

Kirchberg [25] as well as Ozawa and Pisier in the operator space setting [40]. We remark that

WEP and DCEP coincides for C*-algebras. Also, again for C*-algebras, Kirchberg’s local lifting

property (LLP) and osLLP coincides. For finite dimensional operator systems we simply use the

term “lifting property”.

We consider Chapters 1,2,3 and 4 as the basic part of the thesis. Since many of the construc-

tions in later chapters are applicable to the Kirchberg conjecture we put the related discussion

2



1.1 INTRODUCTION

in Section 5. Recall that the Kirchberg conjecture is equivalent to an outstanding problem in

von Neumann algebra theory, namely the Connes’ embedding problem, and it states that every

C*-algebra that has LLP has WEP. Since these properties extend to general operator systems it

is natural to approach this conjecture from an operator system perspective. In [21] it was shown

that the Kirchberg conjecture has an affirmative answer if and only if every finite dimensional

operator system with the lifting property has DCEP. One of our main goals in Section 5 is to

obtain an even simpler form of this. Let C∗(Fn) represent the full C*-algebra of the free group

Fn on n generators (equipped with the discrete topology). We define

Sn = span{g1, ..., gn, e, g∗1 , ..., g∗n} ⊂ C∗(Fn)

where the gi’s are the unitary generators of C∗(Fn). One can consider Sn as the universal

operator system generated by n contractions as it is the unique operator system with the following

property: Whenever y1, ..., yn are contractive elements of an operator system T then there is a

unique unital and completely positive (ucp) map ϕ : Sn → T satisfying ϕ(gi) = yi for i = 1, ..., n.

As pointed out in [21], Sn has the lifting property for every n. One of our main results in Chapter

5 is the operator system analogue of Kirchberg’s WEP characterization ([25], see also [40, Thm.

15.5]): A unital C*-algebra A has WEP is and only if A⊗min S2 = A⊗max S2. Turning back to

the Kirchberg conjecture we obtain the following five dimensional operator system variant.

Theorem 1.1. The following are equivalent:

1. The Kirchberg conjecture has an affirmative answer.

2. S2 has DCEP.

3. S2 ⊗min S2 = S2 ⊗c S2.

When E and F are Banach spaces then the natural algebraic inclusion of the minimal Ba-

nach space tensor product E⊗̂F into B(E∗, F ) is an isometry. Moreover, when E is finite

dimensional this inclusion is bijective. A similar embedding and bijectivity are also true in the

non-commutative setting, that is, the same inclusion is a complete isometry if one uses the min-

imal operator space tensor product and considers completely bounded maps. Since the dual of a

3



1.1 INTRODUCTION

finite dimensional operator system is again an operator system we have a similar representation

of the minimal operator system tensor product. In Chapter 6 we give several applications of this

result. In particular we show that exactness and the lifting property are dual pairs. We also

show that the lifting property of a finite dimensional operator system is preserved under quotient

by a null subspace, in contrast to C*-algebra ideal quotients.

In Section 7 we adapt some of the results of Ozawa and Pisier in the operator space setting to

operator systems. We primarily show that B = B(H) and K = K(H), the ideal of compact op-

erators, where H = l2, are universal objects for the verification of exactness and lifting property.

More precisely we prove that an operator system S is exact if and only if the induced map

(S⊗̂minB)/(S⊗̄K) = S⊗̂min(B/K)

is a complete order isomorphism. (Here ⊗̂min represents the completed minimal tensor product

and ⊗̄ is the closure of the algebraic tensor product.) Likewise a finite dimensional operator

system S has the lifting property if and only if every ucp map ϕ : S → B/K has a ucp lift on B.

The amalgamated sum of two operator systems over the unit introduced in [23] (or coproduct

of two operator systems in the language of [13]) seems to be another natural structure to seek

the stability of several nuclearity properties. In Chapter 8 we first describe the coproduct of

two operator systems in terms of operator system quotients and then we show that the lifting

property is preserved under this operation. The stability of the double commutant expectation

property, with some additional assumptions, seems to be a hard problem. We show that an

affirmative answer to such a question is equivalent to the Kirchberg Conjecture. More precisely

if S = span{1, z, z∗} ⊂ C(T), where z is the coordinate function on the unit circle T, then the

Kirchberg conjecture is equivalent to the statement that the five dimensional operator system

S ⊕1 S, the coproduct of S with itself, has the double commutant expectation property. (Note:

Here S coincides with S1 and S ⊕1 S coincides with S2.)

In [43], Xhabli introduces the k-minimal and k-maximal structure on an operator system S.

After recalling the universal properties of these constructions we studied the nuclearity within

this context. In particular, we show that if an operator system is equipped with the k-minimal
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1.1 INTRODUCTION

structure it has exactness and, in the finite dimensional case, the k-maximal structure automat-

ically implies the lifting property. This allow us to show that every finite dimensional operator

system has the k-lifting property, that is, if ϕ : S → A/I is a ucp map, where A is a C*-algebra

and I is an ideal in A, then ϕ has a unital k-positive lifting on A (for every k).

A
q

��

S ucp ϕ
//

ϕ̃0

77

A/I

From the nuclearity point of view matrix algebras are the best understood objects: In addition

to being nuclear, for an arbitrary C*-algebra, completely positive factorization property through

matrix algebras is equivalent to nuclearity (see [7] e.g.). However, the quotients of the matrix

algebras by some special kernels, or some certain operator subsystems of the these algebras under

duality raise several difficult problems. In Chapter 10 we first recall these quotient and duality

results given in [10]. We simplify some of the proofs and discuss the Kirchberg conjecture in this

setting. In fact we see that this conjecture is a quotient and duality problem in the category

of operator systems. We also look at the triple Kirchberg conjecture (Conjecture 10.18). The

property S2, which coincides with Lance’s weak expectation for C*-algebras, appear to be at the

center of understanding of these conjectures.

The Smith Ward problem (SWP), which is a question regarding the preservation of matricial

numerical range of an operator under compact perturbation, goes back to 1980. In Chapter 11

we abstractly characterize this problem. More precisely, we see that SWP is a general three

dimensional operator system problem rather than a proper compact perturbation of an operator

in the Calkin algebra. The following is our main result in Chapter 11:

Theorem 1.2. The following are equivalent:

1. SWP has an affirmative answer.

2. Every three dimensional operator system has lifting property.

3. Every three dimensional operator system is exact.

5



1.2 PRELIMINARIES

This version allows us to combine this problem with the Kirchberg conjecture (KC). In fact, if we

assume both SWP and KC then this would imply that every three dimensional operator system

is C*-nuclear. On the other hand the latter condition implies SWP. This lower dimensional

operator system problem seems to be very hard. Even for an operator system of the form

S = span{1, z, z∗} ⊂ C(X), where X is a compact subset of the unit disk {z : |z| ≤ 1} and z is

the coordinate function, we don’t know whether S is C*-nuclear.

1.2 Preliminaries

In this section we establish the terminology and state the definitions and basic results that

shall be used throughout the paper. By a ∗-vector space we mean a complex vector space

V together with a map ∗ : V → V that is involutive (i.e. (v∗)∗ = v for all v in V ) and

conjugate linear (i.e. (αv + w)∗ = ᾱv∗ + w∗ for all scalar α and v, w ∈ V ). An element

v ∈ V is called hermitian (or selfadjoint) if v = v∗. We let Vh denote the set of all hermitian

elements of V . By Mn,k(V ) we mean n × k matrices whose entries are elements of V , that is,

Mn,k(V ) = {(vij)i,j : vij ∈ V for i = 1, ..., n and j = 1, ...,m} and we use the notation Mn(V ) for

Mn,n(V ). Note that Mn(V ) is again a ∗-vector space with (vij)∗ = (v∗ji). We let Mn,k denote the

n× k matrices with complex entries and set Mn = Mn,n. If A = (aij) is in Mm,n and X = (vij)

is in Mn,k(V ) then the multiplication AX is an element of Mm,k(V ) whose ijth entry is equal

Σrairvrj for i = 1, ...,m and j = 1, ..., k. We define a right multiplication with appropriate size

of matrices in a similar way.

If V is a ∗-vector space then by a matrix ordering (or a matricial order) on V we mean a

collection {Cn}∞n=1 where each Cn is a cone in Mn(V )h and the following axioms are satisfied:

1. Cn is strict, that is, Cn ∩ (−Cn) = {0} for every n.

2. {Cn} is compatible, that is, A∗CnA ⊆ Cm for every A in Mn,m and for every n,m.

The ∗-vector space V together with the matricial order structure {Cn} is called a matrix ordered

∗-vector space. An element in Cn is called a positive element of Mn(V ). There is a natural

(partial) order structure on Mn(V )h given by A ≤ B if B − A is in Cn. We finally remark

6



1.2 PRELIMINARIES

that we often use the notation Mn(V )+ for Cn. Perhaps the most important examples of these

spaces are ∗-closed subspaces of a B(H), bounded linear operators on a Hilbert space H, together

with the induced matricial positive cone structure. More precisely, if V is such a subspace then

Mn(V ) is again a ∗-closed subspace of Mn(B(H)) which can be identified with B(H ⊕ · · · ⊕H),

bounded operators on direct sum of n copies of H. By using this identification we will set

Cn = Mn(V )∩Mn(B(H))+, where Mn(B(H))+ denotes the positive elements of Mn(B(H)). It

is elementary to verify that the collection {Cn} forms a matrix ordering on the ∗-vector space V .

An element e of a matrix ordered ∗-vector space V is called an order unit if for every selfadjoint

element v of V there is a positive real number α such that αe + v ≥ 0. Note that e must be a

positive element. We say that e is matrix order unit if the corresponding n× n matrix given by

en =


e 0

. . .

0 e


is an order unit in Mn(V ) for every n. We say that e is Archimedean matrix order unit if it

is a matrix order unit and satisfies the following: For any v in V if εe + v is positive for every

ε > 0 then v is positive. A matrix ordered ∗-vector space V (with cone structure {Cn}) and

Archimedean matrix order unit e is called an (abstract) operator system. We often drop the

term “Archimedean matrix order” and simply use “unit” for e. We sometimes use the notation

(V, {Cn}, e) for an operator system however to avoid excessive syntax we simply prefer to use S

(or T , R). The set of positive elements of S, i.e. C1, is denoted by S+ and for the upper levels

we use Mn(S)+ rather than Cn. Sometimes we use eS for the unit. A subspace V of B(H) (or

in general a unital C*-algebra A) that contains the unit I and is closed under ∗ (i.e. a unital

selfadjoint subspace) is called a concrete operator system. Note that V together with the induced

matrix order structure, i.e. Cn = Mn(V ) ∩Mn(B(H))+ for every n, and I forms an (abstract)

operator system. In the next paragraph we work on the morphisms of operator systems and see

that abstract and concrete operator systems are “essentially” same.

Let S and T be two operator systems and ϕ : S → T be a linear map. We say that ϕ is

unital if ϕ(eS) = eT . ϕ is called positive if it maps positive elements of S to positive elements of

7



1.2 PRELIMINARIES

T , that is, ϕ(S+) ⊂ T +, and completely positive if its nth-amplification ϕn : Mn(S) → Mn(T )

given by (sij) 7→ (ϕ(sij)) is positive for every n, in other words, ϕn(Mn(S)+) ⊂Mn(T )+ for all

n. The term unital and completely positive will abbreviated as ucp. ϕ will be called a complete

order embedding if it is injective ucp map such that whenever (ϕ(sij)) is positive in Mn(T ) then

(sij) is positive in Mn(S). Two operator system S and T are called unitally completely order

isomorphic if there is a bijective map ϕ : S → T that is unital and a complete order isomorphism.

A subspace S0 of operator system S which is unital and selfadjoint is again an operator system

together with the induced matrix order structure. In this case we say that S0 is an operator

subsystem of S. Note that the inclusion S0 ↪→ S is a unital complete order embedding. O stands

for the category whose objects are the operator systems and morphisms are the ucp maps. We

are now ready to state the celebrated theorem of Choi and Effros ([6]).

Theorem 1.3. Up to a unital complete order isomorphism all the abstract and concrete operator

systems coincide. That is, if S is an operator system then there is a Hilbert space H and a unital

∗-linear map ϕ : S → B(H) which is a complete order embedding.

Of course, in the above theorem B(H) can be replaced with a unital C*-algebra. A subspace

X of a C*-algebra A together with the induced matrix norm structure is called a concrete operator

space. We refer the reader to [32] for an introductory exposition of these objects along with their

abstract characterization due to Ruan. If S is an operator system then a concrete representation

of S into a B(H) endows S with an operator space structure. It follows that this structure is

independent of the particular representation and, moreover, it can be intrinsically given as

‖(sij)‖n = inf{α > 0 :

 αen (sij)

(s∗ji) αen

 is in M2n(S)+}.

This is known as the canonical operator space structure of S. We also assume some familiarity

with the injectivity in the category of operator systems. We refer [32, Chp. 15] for an excellent

survey, however for an immediate use in the sequel we remark that every injective operator system

is completely order isomorphic to a C*-algebra [32, Thm 15.2]. We also refer to [32, Thm 15.7]

for the well known “rigidity” property of the injective envelope I(S) of an operator system S.

8



1.2 PRELIMINARIES

1.2.1 Some Special C*-covers

A C*-cover (A, i) of an operator system S is a C*-algebra A with a unital complete order

embedding i : S ↪→ A such that i(S) generates A as a C*-algebra, that is, A is the smallest

C*-algebra containing i(S). We occasionally identify S with i(S) and consider S as an operator

subsystem of A. Every operator system S attains two special C*-covers namely the universal and

the enveloping C*-algebras denoted by C∗u(S) and C∗e (S), respectively. The universal C*-algebra

satisfies the following universal “maximality” property: Every ucp map ϕ : S → A, where A is

a C*-algebra extends uniquely to a unital ∗-homomorphism π : C∗u(S) → A. If ϕ : S → T is

a ucp map then the unital ∗-homomorphism π : C∗u(S) → C∗u(T ) associated with ϕ, of course,

constructed by enlarging the range space by C∗u(T ) first. We also remark that if S ⊂ T then

C∗u(S) ⊂ C∗u(T ), in other words, the C*-algebra generated by S in C∗u(T ) coincides with the

universal C*-algebra of S. This special C*-cover is used extensively in [22], [21] and [27]. As it

connects operator systems to C*-algebras it has fundamental role in the tensor theory of operator

systems and, in particular, in the present paper.

The enveloping C*-algebra C∗e (S) of S is defined as the C*-algebra generated by S in its

injective envelope I(S). It has the following universal “minimality” property: For any C*-cover

i : S ↪→ A there is a unique unital ∗-homomorphism π : A → C∗e (S) such that π(i(s)) = s for

every s in S (we assume S ⊂ C∗e (S)). The enveloping C*-algebra of an operator system is rigid

in the sense that if ϕ : C∗e (S) → T is a ucp map such that ϕ|S is a complete order embedding

then ϕ is a complete order embedding. We refer to [15] for the proof of these results and further

properties of enveloping C*-algebras.

1.2.2 Duality

Duality, especially on the finite dimensional operator systems, is a strong tool in the study of

the stability of various nuclearity properties and in this subsection we review basic properties

on this topic. If S is an operator system then the Banach dual Sd has a natural matrix ordered

∗-vector space structure. For f in Sd, the involution is given by f∗(s) = f(s∗). The matricial

order structure is described as follows:

9



1.2 PRELIMINARIES

(fij) ∈Mn(Sd) is positive if the map S 3 s 7→ (fij(s)) ∈Mn is completely positive.

Throughout the paper Sd will always represent this matrix ordered vector space. The bidual

Banach space Sdd has also a natural matricial order structure arising from the fact that it is the

dual of Sd. The following is perhaps well known, see [22], e.g.:

Theorem 1.4. Sdd is an operator system with unit ê, the canonical image of e in Sdd. Moreover,

the canonical embedding of S into Sdd is a complete order embedding.

A state f on S is said to be faithful if s ≥ 0 and f(s) = 0 implies that s = 0, in other words,

f maps non-zero positive elements to positive scalars. When S is a finite dimensional operator

system then it possesses a faithful state which is an Archimedean matrix order unit for the dual

structure [6, Sec. 4]:

Theorem 1.5 (Choi, Effros). Let S be a finite dimensional operator system. Then there are

faithful states on S and each faithful state is an Archimedean order unit for the matrix ordered

space Sd.

Consequently, the dual of a finite dimensional operator system is again an operator system when

we fix a faithful state. It is also important to observe that ê ∈ Sdd is a faithful state on Sd. The

following will be useful in later sections:

Lemma 1.6. Let S and T be two operator systems and ϕ : S → T be a linear map. Then ϕ is

k-positive if and only if ϕd : T d → Sd is k-positive.

Proof. First suppose that ϕ is k-positive. Let (gij) be in Mk(T d)+. We need to show that

(ϕd(gij)) is in Mk(Sd)+, that is, the map S 3 s 7→ (ϕd(gij(s))) = (gij(ϕ(s))) ∈Mk is completely

positive. By using a result of Choi, see [32, Thm. 6.1] e.g., it is enough to show that this map

is k-positive. So let (slm) be positive in Mk(S). Since ϕ is k-positive we have that (ϕ(slm)) is

positive in Mn(T ). Now using the definition of positivity of (gij) we have that
(
gij(ϕ(slm))

)
is

positive in Mk(Mk). Conversely, suppose that ϕd is k-positive. By using the above argument,

we have that ϕdd : Sdd → T dd is k-positive. Since S ⊂ Sdd and T ⊂ T dd completely order

isomorphically we have that ϕ = ϕdd|S is k-positive.

10



Chapter 2

Operator System Quotients

In this chapter we recall some basic results about operator system quotients introduced in [21,

Sec. 3, 4]. This quotient theory is also studied and used extensively in [10] and some of them are

included in the sequel. We exhibit some relations between the quotient theory and duality for

finite dimensional operator systems. We establish some universal objects, namely the coproducts

of operator systems, by using the quotient theory in a later chapter.

A subspace J of an operator system S is called a kernel if it is the kernel of some ucp map

defined from S into an operator system T . Note that a kernel J has to be a ∗-closed, non-unital

subspace of S, however, these properties, in general, do not characterize a kernel. The following

is Proposition 3.2. of [21].

Proposition 2.1. Let J be a subspace of S. Then the following are equivalent:

1. J is a kernel,

2. J is the kernel of a cp map defined from S into an operator system T ,

3. J is the kernel of a positive map defined from S into an operator system T ,

4. there is a collection of states fα such that J = ∩αker(fα).

The algebraic quotient S/J has a natural involution given by (s + J)∗ = s∗ + J . To define

11



CHAPTER 2. OPERATOR SYSTEM QUOTIENTS

the matricial order structure we first consider the following cones:

Dn = {(sij + J)ni,j=1 : (sij) ∈Mn(S)+}.

It is elementary to show that {Dn}∞n=1 forms a strict, compatible order structure. Moreover, e+J

is a matrix order unit. However, it fails to be Archimedean, that is, if (s+J)+ε(e+J) is in D1 for

every ε > 0, then s+ J may not be in D1. To solve this problem we use the Archimedeanization

process introduced in [36]. More precisely, we enlarge the cones in such a way that they still form

a strict compatible matricial order structure and e + J is an Archimedean matrix order unit.

Consider

Cn = {(sij + J)ni,j=1 : (sij) + ε(e+ J)n ∈ Dn for every ε > 0}.

The ∗-vector space S/J together with the matricial order structure {Cn}∞n=1 and unit e+J form

an operator system. We refer to [21, Sec. 3] for the proof of this result. The operator system S/J

is called the quotient operator system. A kernel J is called proximinal if D1 = C1 and completely

proximinal if Dn = Cn for every n. We remark that the proximinality in this context is different

than the norm-proximinality in the Banach or operator space quotients.

One of the fundamental properties of an operator system quotient S/J is its relation with

morphisms. If ϕ : S → T is a ucp map with J ⊆ ker(ϕ) then the associated map ϕ̄ : S/J → T

is again a ucp map. Conversely, if ψ : S/J → T is a ucp map then there exists a unique ucp

map φ : S → T with, necessarily, J ⊆ ker(φ) such that φ = q ◦ ψ where q is the quotient map

from S onto S/J . We also remark that if one considers completely positive maps and drop the

condition on the unitality then both of these universal properties still hold.

Remark: If one starts with a ∗-closed, non-unital subspace J of an operator system S then, on

the algebraic quotient S/J the involution is still well-defined. We can still define Dn in similar

fashion and it is elementary to show that {Dn} is a compatible matricial cone structure. It is

possible that {Dn} is strict as well. However, in order to obtain the Archimedeanization property

of e+J we again need to enlarge the cones and define {Cn} in a similar way. Now it can be shown

that C1 is strict, that is, C1 ∩ (−C1) = {0}, if and only if J is a kernel. Consequently starting

with a kernel is essential in the operator system quotient. (See [21, Sec. 3] for an extended

12



CHAPTER 2. OPERATOR SYSTEM QUOTIENTS

discussion on this topic).

Remark 2.2. Let A be a unital C*-algebra and I be an ideal in A. (It is easy to see that I is a

kernel, in fact it is the kernel of the quotient map A → A/I). Then the C*-algebraic quotient of

A by I is unitally completely order isomorphic to the operator system quotient A/I. Moreover,

I is proximinal.

Proximinality is a useful tool and we want to consider some special cases in which the kernels

are automatically proximinal. The first part of the following is essentially [21, Lemma 4.3.].

Lemma 2.3. Let y be a selfadjoint element of an operator system S which is neither positive

nor negative. Then span{y} is a kernel in S. Moreover, span{y} is proximinal.

Proof. The first part of the proof can be found in [21, Lemma 4.3]. To prove the second part we

first consider the case where y is such an element in a unital C*-algebra A. Let J = span{y}

and let x + J ≥ 0 in A/J . Clearly we may assume that x = x∗. We have that for each ε > 0

there is an element in J , say αεy such that x + αεy + εe is positive in A. Note that αε must

be a real number. Let Xε = {α : x + αy + εe ∈ A+} then Xε is a non-empty subset of R such

that for any 0 < ε1 ≤ ε2 we have Xε1 ⊆ Xε2 . Moreover since A+ is closed in A, each of Xε is

closed. We will show that X1 is bounded. Let y = y1 − y2 be the Jordan decomposition of y,

that is, y1 and y2 are positives such that y1y2 = 0. Let α be in X1. Now multiplying both side of

x+αy1−αy2 +e ≥ 0 by y2 from right and left we get y2xy2 +y2
2 ≥ αy3

2 . Since y2 is non-zero this

inequality puts an upper bound on α. Similarly multiplying both side by y1 we obtain a lower

bound for α. Consequently {Xε}0<ε≤1 is a decreasing net of compact sets in R and hence have a

non-empty intersection. Let α0 be an element belongs to the intersection. Since x+ α0y+ ε ≥ 0

for every ε > 0 we have that x + α0y ≥ 0. This proves the particular case we assumed. Now

suppose y is such an element in S. Let A be a C*-algebra containing S as an operator subsystem.

We have that J = span{y} is a proximinal kernel in A. Let q be the quotient map from A onto

A/J and let q0 be the restriction of q on S. Clearly q0 is ucp with kernel J . So q̄0 : S/J → A/J

is ucp. Now let s+ J be positive in S/J . So it is positive in A/J . By the upper part there is an

element a in A+ such that a + J = s + J . Since J is contained S clearly a must be an element

of S. So the proof is done.

13



CHAPTER 2. OPERATOR SYSTEM QUOTIENTS

A finite dimensional ∗-closed subspace J of an operator system S which contains no positive

other than 0 is called a null subspace. Supposing y is a self-adjoint element of S which is neither

positive nor negative then span{y} is a one dimensional null subspace, e.g. Another important

example of null subspaces are kernels of faithful states on finite dimensional operator systems.

Proposition 2.4. Suppose J is a null subspace of S. Then J is a completely proximinal kernel.

If S is finite dimensional, say dim(S) = n, then J is contained in an n − 1 dimensional null

subspace.

Proof. We first show that J is a proximinal kernel. We will argue by induction on the dimension

of J . When J is one dimensional Lemma 2.3 does the job. Suppose every k dimensional null

subspace of the operator system S is a proximinal kernel and let J be an k + 1 dimensional null

subspace. It is elementary to see that J = span{y1, ..., yk, yk+1} where each of yi is selfadjoint.

Let J0 = span{y1, ..., yk} which is a null subspace and consequently a proximinal kernel by the

induction assumption. We claim that yk+1 + J0 is a selfadjoint element in S/J0 which is neither

positive nor negative. Clearly it is selfadjoint. Suppose it is positive, so there is a positive element

x in S such that x + J0 = yk+1 + J0. This clearly forces x to be in J so it is necessarily 0 and

thus yk+1 is in J0 which is a contradiction. Similarly yk+1 cannot be negative. Again by using

Lemma 2.3 span{yk+1 + J0} is a proximinal kernel in S/J0. Now consider the sequence of the

quotients maps

S q0−−−−−−→ S/J0
q1−−−−−−→ (S/J0)/span{yk+1 + J0}.

Clearly the kernel of q1 ◦ q0 is J and since the first and the second quotients are proximinal it

is easy to show that that J is proximinal. To see that J is a completely proximinality we can

simply consider the identification

Mn(S/J) = Mn(S)/Mn(J).

Note that Mn(J) is still a null subspace on Mn(S).

Now we will show that if dim(S) = n then J is contained in an n−1 dimensional null subspace.

Let w be a faithful state on S/J . Clearly kernel of w is a null subspace and so proximinal by the

14
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upper part. Now;

S q−−−−→ S/J w−−−−→ C

is a sequence of ucp maps with n − 1 dimensional kernel in S which contains J . It is null

subspace since a non-zero positive will map a non-zero positive by q first and a non-zero positive

real number by w.

As we pointed out earlier, the kernel of a faithful state on a finite dimensional operator system

is a null subspace. This led us to construct a very special basis for the operator system as well

as its dual.

Lemma 2.5. Suppose S is an n dimensional operator system and δ a faithful state on S. Then

the kernel of δ, which is an n−1 dimensional null subspace, can be written as a linear combination

of self-adjoint elements {s2, ..., sn}. Consequently we have

S = span{e=s1, s2, ..., sn}.

Moreover if Sd = span{δ = δ1, δ2, ...., δn} written in the dual basis form (i.e. δi(sj) = δij)

then δ2, ..., δn are self-adjoint elements of the dual operator system such that their span is a null

subspace.

Proof. It is elementary to see that the kernel of δ can be written as linear combination of selfad-

joints. In fact we can start with a selfadjoint element s2. If s is an element in the kernel which

is not in the span of s2 then one of s + s∗ or (s − s∗)i does not belong to span of s2. So this

way we obtain s3. We can apply this procedure successively and form such a basis. Clearly if we

set s1 = e then we obtain a basis for S. To see that δi is self-adjoint consider an element Σαjsj .

Then

δ∗i (Σαjsj) = δi(Σ(αjsj)∗) = δi(Σαjsj) = αi

coincides with δi(Σαjsj). Finally since ê, the canonical image of e in the bidual operator system,

is a faithful state on the dual operator system Sd its kernel, namely the linear span of {δ2, ..., δn},

is a null subspace. This finishes the proof.
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Let Jn be the subspace of Mn containing all diagonal matrices with 0 trace. Then Jn is an

n−1 dimensional null subspace of Mn and consequently a kernel. Note that it is contained in the

subspace which includes all the matrices with 0 trace, an n2−1 dimensional null subspace of Mn.

In [10] it has been explicitly shown that Jn is a kernel. We will turn back to this in later chapters.

Another interesting example is the following: Consider J = span{g1, ..., gn, g∗1 , ..., g∗n} ⊂ C∗(Fn).

Then J is a null subspace and hence a kernel in C∗(Fn).

A surjective completely positive map ϕ : S → T is called a quotient map if the induced map

ϕ̄ : S/ker(ϕ)→ T , which is bijective and completely positive, is a complete order isomorphism.

Note that if ϕ is unital the induced map is also unital. We also remark that compositions of

quotient maps are again quotient maps. We frequently use the following property of a quotient

map: If (tij) is positive in Mk(T ) then for every ε > 0 there is a positive element (sεij) in Mk(S)

such that (ϕ(sεij)) = (tij) + εen.

Proposition 2.6. Let ϕ : S → T be a quotient map. Then the dual map ϕd : T d → Sd is a

complete order embedding.

Proof. We already have that the dual map is completely positive. Suppose (gij) in Mn(T d)

such that (ϕd(gij)) is positive in Mn(Sd). We will show that (gij) is positive, that is, if (tlm) is

positive in Mk(T ) then (gij(tlm)) is positive (in Mk⊗Mn). Fix ε > 0 and let (tεlm) = (tlm)+ εek.

We know that there is positive element (sεlm) in Mk(S) such that (ϕ(sεlm)) = (tεlm). Note

that (gij(tεlm))i,j,l,m = (ϕd(gij)(sεlm)). Now using the fact that (ϕd(gij)) is positive we get

(gij(tεlm))i,j,l,m is positive. Since ε is arbitrary and (tεlm)→ (tlm) as ε→ 0 we have that (gij(tlm))

is positive. So the proof is done.

Proposition 2.7. Let J be a null subspace of a finite dimensional operator system S. Then

(S/J)d is an operator subsystem of Sd with a proper selection of faithful states. (More precisely

if δ is a faithful state on S with J ⊂ ker(δ) then the induced state δ on S/J satisfies qd(δ̄) = δ

where q is the quotient map from S onto S/J).

Proof. Proposition 2.6 ensures that qd : (S/J)d → Sd is a complete order embedding. So we deal

with the proper selection of the faithful states. In fact let δ0 be a faithful state on S/J . Then

we claim that δ0 ◦ q is a faithful state on S. Clearly it is a state and if s is non-zero positive then
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ϕ(s) is non-zero positive in S/J and δ0(q(s)) is a positive number. Finally declaring δ0 ◦ q as the

unit of Sd, we obtain that qd is unital as qd(δ0) = δ0 ◦ q.

We remark that in order to obtain “unitality” in the above proposition starting with a null

subspace is important. In fact if J is a kernel and δ1 and δ2 are faithful states on S/J and S,

respectively, then qd(δ1) = δ2 requires that J is in the kernel of δ2 and consequently it has to be

a null subspace.

The converse of the above result is also true which is referred as the First Isomorphism

Theorem in [10]. For completeness of the thesis we include the proof.

Theorem 2.8 (Farenick, Paulsen). Let S be a finite dimensional operator system and S0 be an

operator subsystem of S. Then the adjoint id : Sd → Sd0 of the inclusion S0 ↪→ S is a quotient

map. By proper selection of faithful states we may also assume that it is unital.

Proof. Since the inclusion is a cp map its adjoint is again a cp map. It is also elementary to see

that id is surjective. Thus, we will only prove that if (id(fij)) is positive in Mn(Sd0 ) then there

is positive (gij) in Mn(S) such that id(fij) = id(gij) for every i, j. Now, (id(fij)) is positive in

Mn(Sd0 ) means that the linear map

S0 3 s 7→ (id(fij)(s)) = (fij(s)) ∈Mn

is a cp map. By Arveson’s extension theorem (see Sec. 7 of [32], e.g.), this map has a cp

extension from S into Mn, which we identify with (gij). Now, clearly (gij) is positive in Mn(Sd)

and id(fij) = id(gij) for every i, j. We will continue with the unitality problem. In fact it is

elementary to show that if f is a faithful state on S then f still has the same property when it

is restricted to S0. Thus id(f) is again a faithful state.

Remark 2.9. In the above theorem we see that adjoint of the inclusion map is a unital quotient

map. The kernel of this map is a null subspace. In fact if f is positive in Sd and id(f) = 0

together imply that f is a positive linear functional on S such that f |S0 is 0. Since, we have that

‖f‖ = ‖f(e)‖, necessarily f = 0.

17



Chapter 3

Tensor Products of Operator

Systems

In this chapter we recall the axiomatic definition of tensor products in the category of operator

systems and review properties of several tensor products established in [22]. Suppose S and T are

two operator systems. A matricial cone structure τ = {Cn} on S ⊗ T where Cn ⊂Mn(S ⊗ T )h,

is said to be an operator system structure if

1. (S ⊗ T , {Cn}, eS ⊗ eT ) is an operator system,

2. for any (sij) ∈Mn(S)+ and (trs) ∈Mk(T )+, (sij ⊗ trs) is in Cnk for all n, k,

3. if φ : S →Mn and ψ : T →Mk are ucp maps then φ⊗ ψ : S ⊗ T →Mnk is a ucp map for

every n and k.

The resulting operator system is denoted by S ⊗τ T . A mapping τ : O×O → O is said to be an

operator system tensor product (or simply a tensor product) provided τ maps each pair (S, T )

to an operator system structure on S ⊗ T , denoted by S ⊗τ T . A tensor product τ is said to be

functorial if for every operator systems S1,S2, T1 and T2 and every ucp maps φ : S1 → S2 and

ψ : T1 → T2 the associated map φ⊗ψ : S1⊗τ T1 → S2⊗τ T2 is ucp. A tensor product τ is called

symmetric if S ⊗τ T = T ⊗τ S and associative if (S ⊗τ T )⊗τ R = S ⊗τ (T ⊗τ R) for every S, T
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and R.

There is a natural partial order on the operator systems tensor products: If τ1 and τ2 are

two tensor products then we say that τ1 ≤ τ2 if for every operator systems S and T the identity

id : S ⊗τ2 T → S ⊗τ1 T is completely positive. In other words τ1 is smaller with respect to τ2 if

the cones it generates are larger. (Recall that larger matricial cones generate smaller canonical

operator space structure.) The partial order on operator system tensor products forms a lattice

as pointed out in [22, Sec. 7] and raises fundamental nuclearity properties as we shall discuss in

the next chapter.

In the remaining of this chapter we discuss several important tensor products, namely the

minimal (min), maximal (max), maximal commuting (c), enveloping left (el), and enveloping

right (er) tensor products. With respect to the partial order relation given in the previous

paragraph we have the following schema [22] :

min ≤ el , er ≤ c ≤ max.

3.1 Minimal Tensor Product

Let S and T be two operator systems. We define the matricial cone structure on the tensor

product S ⊗ T as follows:

Cminn (S, T ) = {(uij) ∈Mn(S ⊗ T ) : ((φ⊗ ψ)(uij))ij ∈M+
nkm

for all ucp maps φ : S →Mk and ψ : T →Mm for all k,m.}.

The resulting cone structure {Cminn } satisfies the axioms (1), (2) and (3) and the resulting

operator system is denoted by S ⊗min T . If τ is another operator system structure on S ⊗ T

then we have that min ≤ τ . In other words {Cminn } forms the largest cone structure. The

minimal tensor product, of course when considered as a map min : O × O → O, is symmetric

and associative. It is functorial and injective in the sense that if S1 ⊂ S2 and T1 ⊂ T2 then

S1⊗min T1 ⊂ S2⊗min T2 completely order isomorphically. It coincides with the the C*-algebraic
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minimal tensor products when restricted to C*-algebras (except for completion). It is also spatial

in the sense that if S ⊂ B(H) and T ⊂ B(K) then the concrete operator system structure on

S ⊗ T arising from the inclusion B(H ⊗K) coincides with their minimal tensor product. All of

these result can be directly found in [22, Sec. 4].

3.2 Maximal Tensor Product

The construction of the maximal tensor product of two operator systems S and T involves

two steps. We first define

Dmax
n (S, T ) = {A∗(P ⊗Q)A : P ∈Mk(S)+, Q ∈Mm(T )+, A ∈Mkm,n, k,m ∈ N}.

The matricial order structure {Dmax
n } is strict and compatible (for the definitions see [32, Chp.

13] e.g.), moreover, eS ⊗ eT is a matrix order unit. However it fails to be an Archimedean order

unit. So the construction requires another step, namely the completion of the cones which is

known as the Archimedeanization process (see [36] e.g) as follows:

Cmaxn (S, T ) = {P ∈Mn(S ⊗ T ) : r(e1 ⊗ e2)n + P ∈ Dmax
n (S, T ) ∀ r > 0}.

Now the matrix order structure {Cmaxn } satisfies all the axioms and the resulting operator system

is denoted by S ⊗max T . If τ is another operator system structure on S ⊗ T then we have that

τ ≤ max, that is, {Cmaxn } is the smallest cone structure. max, as min, has all properties

symmetry, associativity and functoriality. It coincides with the C*-algebraic maximal tensor

product when restricted to unital C*-algebras (again, except for completion). As it is well known

from C*-algebras, it does not have the injectivity property that min possesses. However it is

projective as discussed in [16]. Another important aspect of the maximal tensor product is the

following duality property given by Lance in [29]: A linear map f : S ⊗max T → C is positive

if and only if the corresponding map ϕf : S → T d is completely positive. Here ϕf (s) is the

linear functional on T given by ϕf (s)(t) = f(s ⊗ t). (See also [22, Lem. 5.7 and Thm. 5.8].)
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Consequently we obtain the following representation of the maximal tensor product:

(S ⊗max T )d,+ = CP (S, T d).

The following property of the maximal tensor product will be useful:

Proposition 3.1. Let Si and Ti be operator systems and ϕi : Si → Ti be completely positive

maps for i = 1, 2. Then the associated map ϕ1 ⊗ ϕ2 : S1 ⊗max S2 → T1 ⊗max T2 is cp.

Proof. It is elementary to show that (ϕ1 ⊗ ϕ2)n(Dmax
n (S1,S2)) ⊂ Dmax

n (T1, T2). So suppose u

is in Cmaxn (S1,S2). For any r > 0, r(e1 ⊗ e2)n + u ∈ Dmax
n (S1,S2). This means that, for every

r > 0, r(ϕ1(e1)⊗ϕ2(e2))n+(ϕ1⊗ϕ2)n(u) is in Dmax
n (T1, T2). Now, we can complete the positive

elements ϕ1(e1) and ϕ2(e2) to a multiple of the units, that is, we can find positive elements

x ∈ S2 and y ∈ T2 such that ϕ1(e1) + x and ϕ2(e2) + y are multiple of the units. Since r(x⊗ y)n

belongs to Dmax
n (T1, T2) we have that sum of these terms

r(x⊗ y)n + r(ϕ1(e1)⊗ ϕ2(e2))n + (ϕ1 ⊗ ϕ2)n(u) = rk(e1 ⊗ e2)n + (ϕ1 ⊗ ϕ2)n(u)

is in Dmax
n (T1, T2) for every r > 0. Thus, (ϕ1 ⊗ ϕ2)n(u) ∈ Cmaxn (T1, T2).

3.3 Maximal Commuting Tensor Product

Another important tensor product we want to discuss is the maximal commuting (or com-

muting) tensor product which is denoted by c. It agrees with the C*-algebraic maximal tensor

products on the category of unital C*-algebras however it is different then max for general opera-

tor systems. The matrix order structure is defined by using the ucp maps with commuting ranges.

More precisely, if S and T are two operator systems then Ccomn consist of all (uij) ∈Mn(S ⊗ T )

with the property that for any Hilbert space H, any ucp φ : S → B(H) and ψ : T → B(H) with

commuting ranges

(φ · ψ)(n)(uij) ≥ 0
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where φ · ψ : S ⊗ T → B(H) is the map defined by φ · ψ(s ⊗ t) = φ(s)ψ(t). The matricial

cone structure {Ccomn } satisfies the axioms (1), (2) and (3), and the resulting operator system is

denoted by S ⊗c T . The commuting tensor product c is functorial and symmetric however we

don’t know whether is it associative or not. Before listing the main results concerning the tensor

product c we underline the following fact: If τ is an operator system structure on S⊗T such that

S⊗τ T attains a representation in a B(H) with “S” and “T ” portions are commuting then τ ≤ c.

This directly follows from the definition of c and justifies the name “maximal commuting”. The

following are Theorems 6.4 and 6.7 from [22].

Theorem 3.2. If A is a unital C∗-algebra and S is an operator system, then

A⊗c S = A⊗max S.

Theorem 3.3. Let S and T are operator systems. Then S ⊗c T ⊂ C∗u(S)⊗max C∗u(T ).

In fact the following improvement of this theorem will be more useful in later chapters.

Proposition 3.4. Let S and T be operator systems. Then S ⊗c T ⊂ C∗u(S)⊗max T .

Proof. By using the functoriality of c we have that the following maps

S ⊗c T
i⊗id−−−→ C∗u(S)⊗max T

id⊗i−−−→ C∗u(S)⊗max C∗u(T ),

where id is the identity and i is the inclusion, are ucp. Theorem 3.3 ensures that the composition

is a complete order embedding so the first map, which is unital, has the same property. (Here

we use the fact that if the composition of two ucp maps is a complete order embedding then the

first map has the same property.)

Following result is direct consequence of ([21, Cor. 6.5]) which characterizes the ucp map

defined by the commuting tensor product of two operator systems:

Proposition 3.5. Let S and T be two operator systems and let ϕ : S⊗cT → B(H) be a ucp map.

Then there is Hilbert space K containing H as a Hilbert subspace and ucp maps φ : S → B(K)
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and ψ : T → B(K) with commuting ranges such that ϕ = PHφ · ψ|H . Conversely, every such

map is ucp.

3.4 Some Asymmetric Tensor Products

In this section we discuss the enveloping left (el) and enveloping right (er) tensor products. Given

operator systems S and T we define

S ⊗el T :⊆ I(S)⊗max T and S ⊗er T :⊆ S ⊗max I(T )

where I(·) is the injective envelope of an operator system. Both el and er are functorial tensor

products. We don’t know whether these tensor products are associative. They are not symmetric

but asymmetric in the sense that S ⊗el T = T ⊗er S via the map s⊗ t 7→ t⊗ s.

el and er have the following one sided injectivity property [22, Thm. 7.5]

Theorem 3.6. The tensor product el is the maximal left injective functorial tensor product, that

is, for any S ⊂ S1 and T we have

S ⊗el T ⊆ S1 ⊗el T

and it is the maximal functorial tensor product with this property.

Likewise, er is the maximal right injective tensor product. It directly follows from the defini-

tion that if S is an injective operator system then S ⊗el T = S ⊗max T for every operator system

T . Now for an arbitrary operator system S this allows us to conclude that the tensor product

el is independent of the the injective object that we represent S, that is, if S ↪→ S1 where S1 is

injective then for any operator system T , the tensor product on S ⊗T arising from the inclusion

S1 ⊗max T coincides with el. To see this we only need to use the left injectivity of el:

S ⊗el T ↪→ S1 ⊗el T = S1 ⊗max T .

A similar property for the tensor product er holds. el and er, in general, are not comparable

however they both lie between min and c.
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Chapter 4

Characterization of Various

Nuclearities

In the previous chapter we have reviewed the tensor products in the category of operator systems.

In this chapter we will overview the behavior of the operator systems under tensor products. More

precisely, we will see several characterizations of the operator systems that fix a pair of tensor

products.

Given two tensor products τ1 ≤ τ2, an operator systems S is said to be (τ1, τ2)-nuclear

provided S ⊗τ1 T = S ⊗τ2 T for every operator system T . We remark that the place of the

operator system S is important as not all the tensor products are symmetric.

4.1 Completely Positive Factorization Property (CPFP)

We want to start with a discussion on the characterization of (min,max)-nuclearity given in

[17]. An operator system S is said to have CPFP if there is net of ucp maps

φα : S →Mnα and ψα : Mnα → S
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4.2 OPERATOR SYSTEM LOCAL LIFTING PROPERTY

such that the identity id : S → S approximated by ψα ◦ φα in point-norm topology, that is, for

any s ∈ S, ψα ◦ φα(s)→ s. The following is Corollary 3.2 of [17].

Theorem 4.1. The following are equivalent for an operator system S:

1. S is (min,max)-nuclear, that is, S ⊗min T = S ⊗max T for all T .

2. S has CPFP.

The characterization in this theorem extends the characterization of nuclear unital C*-

algebras. Recall that a unital C*-algebra A is said to be nuclear if A ⊗min B = A ⊗max B

for every C*-algebra B. By using Proposition 3.4, it is elementary to show that A is nuclear if

and only if it is (min,max)-nuclear operator system. Consequently the above result extends a

well known result of Choi and Effros [7]. We also remark that in [24] and [27] an operator system

is defined as nuclear if it satisfies CPFP. Consequently the classical term “nuclearity” coincides

with the (min,max)-nuclearity.

4.2 Operator System Local Lifting Property

Another aspect we want to discuss is the operator system local lifting property (osLLP) and

we will see that it is equivalent to (min,er)-nuclearity. An operator system S is said to have

osLLP if for every unital C*-algebra A and ideal I in A and for every ucp map ϕ : S → A/I the

following holds: For every finite dimensional operator subsystem S0 of S, the restriction of ϕ on

S0, say ϕ0, lifts to a completely positive map on A so that the following diagram commutes.

A
q

��

S0 ⊂ S ucp ϕ
//

ϕ̃0

44

A/I

Of course, S may possess osLLP without a global lifting. We also remark that the completely

positive local liftings can also be chosen to be ucp in the definition of osLLP (see the discussion

in [21, Sec. 8]). The LLP definition for a C*-algebra given in [25] is the same. So it follows that
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4.2 OPERATOR SYSTEM LOCAL LIFTING PROPERTY

a unital C*-algebra has LLP (in the sense of Kirchberg) if and only if it has osLLP. The following

result is from [25].

Theorem 4.2 (Kirchberg). The following are equivalent for a C*-algebra A:

1. A has LLP

2. A⊗min B(H) = A⊗max B(H) for every Hilbert space H.

Here is the operator system variant given in [21]:

Theorem 4.3. The following are equivalent for an operator system S:

1. S has osLLP.

2. S ⊗min B(H) = S ⊗max B(H) for every Hilbert space H.

3. S is (min,er)-nuclear, that is, S ⊗min T = S ⊗er T for every T .

It is not hard to show that in the above theorem “every Hilbert space” can be replaced by l2(N).

If we denote B = B(l2(N)), the above equivalent conditions, in some similar context, is also

called B-nuclearity. (See [3], e.g.) Consequently for operator systems osLLP, B-nuclearity and

(min,er)-nuclearity are all equivalent.

Remark 4.4. The definition of LLP of a C*-algebra in [40, Chp. 16 ] is different, it requires

completely contractive liftings from finite dimensional operator subspaces. However, as it can be

seen in [40, Thm. 16.2], all the approaches coincide for C*-algebras.

Note: When we work with the finite dimensional operator systems we remove the extra word

“local”, we even remove “os” and simply say “lifting property”.

It seems to be important to remark that in the definition of osLLP one can can replace ucp

maps by cp maps.

Remark 4.5. The following are equivalent for an operator system S:

1. S has osLLP.

2. For every unital C*-algebra A and ideal I and for every cp map ϕ : S → A/I, the restriction

of ϕ on any finite dimensional operator subsystem S has a cp lift on A.
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Proof. (2) implies (1) is clear. Conversely suppose (1) holds. This implies that S ⊗min B(H) =

S ⊗max B(H). Let ϕ : S → A/I be a cp map and S0 is finite dimensional operator subsystem of

S. Now if we represent Sd0 in to a B(H) (and set B = B(H)) we have that

Sd0 ⊗min S ⊂ B⊗min S = B⊗max S
id⊗ϕ−−−→ B⊗max A/I,

is cp map where we use the injectivity of minimal tensor product and Proposition 3.1. By using

first remark in Chp. 17 [40] and [21, Cor. 5.16], we have that

B⊗max A/I =
B⊗max A
B⊗max I

→ B⊗min A
B⊗min I

⊃ S
d
0 ⊗min A
Sd0 ⊗ I

.

Since the inclusion i : S0 → S is cp, this corresponds to a positive element ui in Sd0 ⊗min S.

(See [21, Lem. 8.4].) Thus, under the composition of the above maps, the image v of ui is still

positive in (Sd0 ⊗minA)/(Sd0 ⊗ I). Since this quotient is proximinal (see [21, Cor. 5.15]), there is

a positive element w in Sd0 ⊗min A giving v under the quotient map. Now, again by using [21,

Lem. 8.4.], w corresponds to a cp map ϕ̃ : S0 → A. It is easy to verify that ϕ̃ is a lift of ϕ when

restricted to S0.

4.3 Weak Expectation Property (WEP)

If A is a unital C*-algebra then the bidual C*-algebra A∗∗ is unitally completely order isomorphic

to the bidual operator system Add. This allows one to extend the notion of WEP, which is

introduced and shown to be a fundamental nuclearity property by Lance in [28], to the category

of operator systems. We say that an operator system S has WEP if the canonical inclusion

i : S ↪→ Sdd extends to a ucp map on the injective envelope I(S).

S � � i //
_�

��

Sdd

I(S)

77
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4.4 DOUBLE COMMUTANT EXPECTATION PROPERTY

In [21] it was shown that WEP implies (el,max)-nuclearity and the difficult converse is shown in

[16]. Consequently we have that

Theorem 4.6. An operator system has WEP if and only if it is (el,max)-nuclear.

4.4 Double Commutant Expectation Property

Another nuclearity property we want to discuss is the double commutant expectation property

(DCEP) which coincides with WEP for unital C*-algebras however is different than WEP for

general operator systems. An operator system S is said to have DCEP if every representation

i : S ↪→ B(H) extends to a ucp map from I(S) into S ′′, the double commutant of S in B(H).

S � � //
_�

��

B(H) ⊇ S′′

I(S)

44

In fact, by using Arveson’s commutant lifting theorem [1] (or [32, Thm. 12.7]), it can be

directly shown that a unital C*-algebra has WEP if and only if it has DCEP. Many fundamental

results and conjectures concerning WEP in C*-algebras reduces to DCEP in operator systems.

The following is a direct consequence of Theorem 7.1 and 7.6 in [21]:

Theorem 4.7. The following are equivalent for an operator system S:

1. S is (el,c)-nuclear, that is, S ⊗el T = S ⊗c T for every T .

2. S has DCEP.

3. S ⊗min C∗(F∞) = S ⊗max C∗(F∞).

4. For any S ⊂ A and B, where A and B are unital C*-algebras, the inclusion S ⊗max B ⊂

A⊗max B is a unital complete order embedding.

28



4.5 EXACTNESS

Here C∗(F∞) is the full C*-algebra of the free group on countably infinite generators F∞. Note

that (3) is Kirchberg’s WEP characterization in [25] and (4) is Lance’s seminuclearity in [28] for

unital C*-algebras.

4.5 Exactness

The importance of exactness and its connection to the tensor theory of C*-algebras ensued

by Kirchberg [24], [25]. Exactness is really a categorical term and requires a correct notion of

quotient theory. The operator system quotients established in [21], which we reviewed in Chapter

2, is used to extend the exactness to operator systems. Before starting the definition we recall

a couple of results from [21]: Let S be an operator system, A be a unital C*-algebra and I be

an ideal in A. Then S⊗̄I is a kernel in S⊗̂minA where ⊗̂min represents the completed minimal

tensor product and ⊗̄ denotes the closure of the algebraic tensor product in the larger space. By

using the functoriality of the minimal tensor product it is easy to see that the map

S⊗̂minA
id⊗q−−−→ S⊗̂min(A/I),

where id is the identity on S and q is the quotient map from A onto A/I, is ucp and its kernel

contains S⊗̄I. Consequently the induced map

(S⊗̂minA)/(S⊗̄I) −→ S⊗̂min(A/I)

is still unital and completely positive. An operator system is said to be exact if this induced

map is a bijective and a complete order isomorphism for every C*-algebra A and ideal I in A.

In other words we have the equality

(S⊗̂minA)/(S⊗̄I) = S⊗̂min(A/I).

We remark that the induced map may fail to be surjective or injective, moreover even if it has
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4.5 EXACTNESS

these properties it may fail to be a complete order isomorphism.

Remark 4.8. If S is finite dimensional then we have that S⊗minA = S⊗̂minA and S⊗̄I = S⊗ I.

Moreover the induced map

(S ⊗min A)/(S ⊗ I) −→ S ⊗min (A/I)

is always bijective. Thus, for this case, exactness is equivalent to the statement that the induced

map is a complete order isomorphism.

Proof. Let S = span{s1, ..., sk}. Suppose that {un} is a Cauchy sequence in the algebraic tensor

product S⊗minA with limit u in S⊗̂minA. We will show that u belongs to S⊗minA. Clearly we

can write un = s1⊗an1 +· · · sk⊗ank . We will prove that {ani }n is Cauchy in A for every i = 1, ..., k.

Let δi : S → C be the linear map defined by δi(sj) = δij . Since each of δi is completely bounded

we have that δ ⊗ id : S ⊗min A → A given by s ⊗ a 7→ δ(s)a is a completely bounded map, in

particular it is continuous. (Here we use the fact that minimal tensor product of two operator

system is same as the operator space minimal tensor product. This is easy to see as both of

them are spatial. We also use the fact that every linear map defined from a finite dimensional

operator space is completely bounded.) Clearly {ani }n is the image of {un} under this map and

consequently it is Cauchy. Let ai be the limit of these sequences in A for i = 1, ..., k. Now it

is elementary to show that u = s1 ⊗ a1 + · · · sk ⊗ ak. (This directly follows from the triangle

inequality and the cross norm property of the minimal tensor product, i.e., ‖s⊗ a‖ = ‖s‖‖a‖.)

The proof of the fact that S⊗̄I = S ⊗ I is similar to this so we skip it. It is elementary to

see that the image of the induced map

(S ⊗min A)/(S ⊗ I) −→ S ⊗min (A/I)

covers the algebraic quotient which is same as its completion for this case. Thus, it is onto.

Finally we need to show that it is injective. More precisely, we need to show that the map

S ⊗min A → S ⊗A/I has kernel S ⊗ I. Suppose the image of Σsi ⊗ ai is 0, that is, Σsi ⊗ ȧi is

0 in S ⊗ A/I. Since {s1, ..., sn} is a linearly independent set we have that each of ȧ1, ..., ȧk is 0.
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4.5 EXACTNESS

Thus a1, ..., ak belongs to I. This finishes the proof.

Note: The term exactness in this thesis coincides with 1-exactness in [21].

A unital C*-algebra is exact (in the sense of Kirchberg) if and only if it is an exact operator

system which follows from the fact that the unital C*-algebra ideal quotient coincides with the

operator system kernel quotient. The following is Theorem 5.7 of [21]:

Theorem 4.9. An operator system is exact if and only if it is (min,el)-nuclear.

In Theorem 6.7 we will see that lifting property and exactness are dual pairs. We want to

finish this section with the following stability property:

Proposition 4.10. Exactness passes to operator subsystems. That is, if S is exact then every

operator subsystem of S is exact. Conversely, if every finite dimensional operator subsystem of

S is exact then S is exact.

Proof. We will use the nuclearity characterization of exactness, i.e., (min,el)-nuclearity. First

suppose S is exact and S0 is an operator subsystem of S. By using the injectivity of min and

left injectivity of el we have that

S0 ⊗min T ⊆ S ⊗min T and S0 ⊗el T ⊆ S ⊗el T

for every operator system T . Since the tensors on the right hand side coincide it follows that S0

is (min,el)-nuclear, equivalently it is exact.

To prove the second part suppose that S is not exact. This means that there is an operator

system T such that the identity

S ⊗min T → S ⊗el T

is not a cp map, that is, there is an positive element U in Mn(S ⊗min T ) which is not positive

in Mn(S ⊗el T ). Clearly S has a finite dimensional operator subsystem S0 such that U belongs

to Mn(S0 ⊗ T ). Now again using the fact that

S0 ⊗min T ⊆ S ⊗min T and S0 ⊗el T ⊆ S ⊗el T
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we see that U is positive in Mn(S0 ⊗min T ) but not positive in Mn(S0 ⊗el T ). This means that

S0 is not exact. This finishes the proof.

4.6 Final Remarks on Nuclearity

Unlike C*-algebras a finite dimensional operator system may not posses a certain type of nu-

clearity. For example M2 ⊕M2 has a five dimensional operator subsystem which does not have

the lifting property (See Corollary 10.14, e.g.). The exactness and local lifting property of three

dimensional operator systems is directly related to the Smith-Ward problem which is currently

still open. Similarly we will see that the Kirchberg Conjecture is a problem about nuclearity

properties of five dimensional operator systems.

The following schema summarizes the nuclearity characterizations that we have discussed in this

chapter:

min

exactness

CPFP

osLLP

C∗−nuclearity

≤ el

WEP

DCEP

, er ≤ c ≤ max

Proposition 4.11. The following are equivalent for an operator system S:

1. S is (min,c)-nuclear, that is, S ⊗min T = S ⊗c T for all operator system T .

2. S is C*-nuclear, that is, S ⊗min A = S ⊗max A for all unital C*-algebra A.

Proof. Suppose (1). By using Theorem 3.2 we have that S ⊗minA = S ⊗cA = S ⊗maxA. Hence

we obtain (2). Conversely suppose (2). By the injectivity of the minimal tensor product and by
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Proposition 3.4 we have the inclusions

S ⊗min T ⊆ S ⊗min C∗u(T ) and S ⊗c T ⊆ S ⊗max C∗u(T ).

Since the tensor products on the right hand side coincides (1) follows.

Remarks:

1. We use the term C*-nuclearity rather than (min,c)-nuclearity.

2. The upper table for unital C*-algebras summarizes the classical discussion for C*-algebras.

Recall that in this case c and max coincides and consequently WEP and DCEP are the

same properties. Also osLLP and LLP are the same. It is also important to remark that if

we start with a unital C*-algebra A then (min,el)-nuclearity, for example, can be verified

with unital C*-algebras. That is, A⊗min T = A⊗el T for every operator system T if and

only if A⊗min B = A⊗el B for every unital C*-algebra B. We left the verification of this

to the reader. In addition to this, as we pointed out before, A is exact (in the sense of

Kirchberg) if and only if it is an exact operator system. Similar properties hold for other

nuclearity properties WEP, CPFP and LLP. Thus, we obtain the following schema:

min ≤

exactness

nuclearity=CPFP

LLP

el

WEP

er

q

≤ max

For this case (er,max)-nuclearity of a C*-algebra coincides with the nuclearity by Lance

[28], (see also [22, Prop. 7.7]). By this simple schema it is rather easy to see that nuclearity

is equivalent to exactness and WEP, e.g. Also suppose that A and B are unital C*-algebras

such that A has WEP and B has LLP. Now by using the fact that LLP is equivalent to

(min,er)-nuclearity we have that A⊗min B = A⊗el B. (Note: B is on the right hand side.)

Again by using the fact that WEP is same as (el,c=max)-nuclearity we have A ⊗el B =

A⊗max B. Thus we obtain a well known result of Kirchberg: A⊗min B = A⊗max B.
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We close this section with the following observation about finite dimensional operator systems.

Roughly speaking it states that the finite dimensional operator systems, except a small portion,

namely the C*-algebras, are never (c,max)-nuclear. So in this case, (min,c)-nuclearity (i.e. C*-

nuclearity) is the highest nuclearity that that one should expect. (Of course, among the tensor

products min ≤ el, er ≤ c ≤ max.)

Proposition 4.12. The following are equivalent for a finite dimensional operator system S:

1. S is (c,max)-nuclear.

2. S is unitally completely order isomorphic to a C*-algebra.

3. S ⊗c Sd = S ⊗max Sd.

Proof. Since c and max coincides when one of the tensorants is a C*-algebra, (2) implies (1).

Clearly (1) implies (3). We will show that (3) implies (2). Consider id : S → S. This corresponds

to a positive linear functional fid : S ⊗max Sd → C. Since max and c coincide by the assumption

and S⊗cSd ⊂ C∗u(S)⊗maxSd, fid extends to a positive linear functional f̃id : C∗u(S)⊗maxSd → C

by Arveson’s extension theorem. Let ϕ : C∗u(S) → (Sd)d = S be the corresponding cp map.

Clearly ϕ extends the identity on S. Now by using a slight modification of [32, Theorem 15.2]

we have that S has a structure of a C*-algebra.
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Chapter 5

WEP and Kirchberg’s Conjecture

In this chapter we improve Kirchberg’s WEP characterization for unital C*-algebras and we

express Kirchberg’s Conjecture in terms of a five dimensional operator system system problem.

The last schema in the previous chapter still includes many question marks. There is no known

example of a non-nuclear C*-algebra which has WEP and LLP. One another major open question

is whether LLP implies WEP, which is known as the Kirchberg Conjecture. More precisely, in

his astonishing paper [25] he proves that:

Theorem 5.1 (Kirchberg). The following are equivalent:

1. Every separable II1-factor is a von Neumann subfactor of the ultrapower Rω of the hyper-

finite II1-factor R for some ultrafilter ω ∈ βN \ N.

2. For a unital C*-algebra LLP implies WEP.

3. Every unital C*-algebra is a quotient of a C*-algebra that has WEP (i.e. QWEP).

4. C∗(F∞)⊗min C∗(F∞) = C∗(F∞)⊗max C∗(F∞).

5. C∗(F∞) has WEP.

The equivalent conditions in this theorem are still unknown. The first one is the Connes’ Embed-

ding Problem. We refer to [9] for related definitions on this subject. The remaining equivalent

arguments are known as the Kirchberg Conjecture (or Kirchberg’s QWEP Conjecture). As we
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pointed out before C∗(F∞) (resp., C∗(Fn)) stands for the full C*-algebra of the free group with

a countably infinite number of (resp., with n) generators. As shown in [25], in the above theorem

C∗(F∞) can be replaced by C∗(F2). In fact, since there is an injective group homomorphism

ρ : F∞ → F2, by using Proposition 8.8. in [40], we have that C∗(F∞) can be represented as

a C*-subalgebra of C∗(F2) and, again by using the same theorem, there is ucp inverse of this

representation. Consequently the identity on C∗(F∞) factors via ucp maps through C∗(F2).

Conversely, the identity on C∗(F2) factors via ucp maps through C∗(F∞) in a trivial way.

Lemma 5.2. Let S and T be two operator systems. If the identity on S factors via ucp maps

through T then any nuclearity property of T passes to S. That is if T is (τ1, τ2)-nuclear, where

τ1 and τ2 are functorial tensor products with τ1 ≤ τ2, then S has the same property.

Proof. Let φ : S → T and ψ : T → S be the ucp maps such that ψ ◦ φ(s) = s for every s in S.

Let R be any operator system. Then, by using the functoriality we have that

S ⊗τ1 R
φ⊗id−−−→ T ⊗τ1 R = T ⊗τ2 R

ψ⊗id−−−→ S ⊗τ2 R

is a sequence of ucp maps such that the composition is the identity. Since τ1 ≤ τ2 we have that

S ⊗τ1 R = S ⊗τ2 R. Thus, S is (τ1, τ2)-nuclear.

Since WEP, equivalently DCEP for C*-algebras, coincides with (el,max)-nuclearity, it follows

that C∗(F∞) has WEP if and only if C∗(F2) has WEP. By a similar argument the above conditions

are equivalent to the statement C∗(F2) ⊗min C∗(F2) = C∗(F2) ⊗max C∗(F2). We also remark

that Kirchberg’s WEP characterization can be given as follows, which will be useful when we

express WEP in terms of a tensor product with a lower dimensional operator system:

Theorem 5.3. The following are equivalent for a unital C*-algebra A:

1. A has WEP.

2. A⊗min C∗(F∞) = A⊗max C∗(F∞).

3. A⊗min C∗(F2) = A⊗max C∗(F2).
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Proof. Equivalence of (1) and (2) is the Kirchberg’s WEP characterization. To see that (3)

implies (2) we again use the fact that the identity on C∗(F∞) factors through ucp maps on

C∗(F∞). So let φ : C∗(F∞) → C∗(F2) and ψ : C∗(F2) → C∗(F∞) be the ucp maps whose

composition is the identity on C∗(F∞). Now, suppose (3) holds. By using the functoriality of

min and max we have that

A⊗min C∗(F∞)
id⊗φ−−−→ A⊗min C∗(F2) = A⊗max C∗(F2)

id⊗ψ−−−→ A⊗max C∗(F∞).

is a sequence of ucp maps such that the composition is the identity. Thus (2) holds. (2) implies

(3) is similar.

Since WEP and LLP has natural extensions to general operator systems it is natural to

approach Kirchberg’s Conjecture from this perspective. We define Sn as the operator system in

C∗(Fn) generated by the unitary generators, that is,

Sn = span{g1, ..., gn, e, g∗1 , ..., g∗n} ⊂ C∗(Fn).

Sn can also be considered as the universal operator system generated by n-contractions as it

satisfies the following universal property: Every function f : {gi}ni=1 → T with ‖f(gi)‖ ≤ 1

extends uniquely to a ucp map ϕf : Sn → T (in an obvious way).

{gi}ni=1

f
//

_�

��

T

Sn

ϕf

55

The proof this property relies on the unitary dilation of a contraction and the reader may refer

to the discussion in [21, Sec. 9]. From this one can easily deduce that Sn has the lifting property.

Indeed, let ϕ : Sn → A/I is a ucp map where I ⊂ A is an ideal, unital C*-algebra couple. Let

ϕ(gi) = ai + I for i = 1, ..., n. Since C*-algebra ideal quotients are proximinal (see [40, Lem.

2.4.6.] e.g.) there exists bi in A such that bi + I = ai + I with ‖bi‖ = ‖ai + I‖. Since a ucp map

is contractive we have that ‖ai + I‖ ≤ 1 and so ‖bi‖ ≤ 1. Therefore the function gi 7→ bi extends
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uniquely to a ucp map. It is elementary to show that this map is a lift of ϕ.

An operator subsystem S of a C*-algebra A is said to contain enough unitaries if there

is a collection of unitaries in S which generates A as a C*-algebra, that is, A is the smallest

C*-algebra that contains these unitaries. In this case several nuclearity properties of A can be

deduced from S (see [21, Cor. 9.6]).

Lemma 5.4. Let A and B be unital C*-algebras and {uα} be a collection of unitaries in A which

generates A as a C*-algebra. If ϕ : A → B is a ucp map such that ϕ(uα) is a unitary in B for

every α then ϕ is a ∗-homomorphism.

Proof. This is an application of Choi’s work on multiplicative domains in [5]. Since e = ϕ(uαu∗α) =

ϕ(uα)ϕ(uα)∗ = ϕ(u∗αuα) = ϕ(uα)∗ϕ(uα), each uα belongs to multiplicative domain of ϕ. These

elements generates A, thus, ϕ is a ∗-homomorphism.

Lemma 5.5. Let S ⊂ A contain enough unitaries and let B be a unital C*-algebra. Let {uα}

be the collection of unitaries in S which generates A. Suppose ϕ : S → B is a ucp map such

that ϕ(uα) is a unitary in B for every α. Then ϕ extends uniquely to a ucp map on A which is

necessarily a ∗-homomorphism.

Proof. Lemma 4.16 in [21] ensures that ϕ extends to a ∗-homomorphism. So there exists a

ucp extension of ϕ on A. Also the upper lemma implies that any ucp extension has to be a

∗-homomorphism. Since {uα} generates A and every extension coincides on {uα} it follows that

extension is unique.

Proposition 5.6. Suppose S ⊂ A contains enough unitaries. Then A coincides with the en-

veloping C*-algebra of S, that is, the unique unital ∗-homomorphism π : A → C∗e (S) which

extends the inclusion of S in C∗e (S) is bijective.

Proof. Let {uα} be the collection of unitaries in S which generates A as a C*-algebra. Let i

be the inclusion of S in C∗e (S). Note that the image {π(uα) = i(uα)} of the unitary collection

{uα} form a set of unitaries and it generates the image of π which coincides with C∗e (S). We can

represent A into a B(H) as a C*-subalgebra. Now, by Arveson’s extension theorem, the inclusion

of S in A ⊂ B(H) extends to ucp map ϕ on C∗e (S). Note that ϕ(i(uα)) = uα, that is, ϕ maps a
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collection of unitaries, which generates C∗e (S), to a collection of unitaries in B(H). Now by using

the upper lemma ϕ must be a unital ∗-homomorphism. Moreover, since the image of {i(uα)}

stays in A and generates A, the image of ϕ is precisely A. The rigidity of the enveloping C*-

algebra ensures that ϕ is one to one too. Note that ϕ−1 is again a unital ∗-homomorphism such

that ϕ−1(s) = i(s) for every s in S. Now the universal property of the enveloping C*-algebras

ensure that π = ϕ−1, thus π is bijective.

Despite this result we still prefer to use the term “contains enough unitaries”. Our very first

example is, of course, Sn ⊂ C∗(Fn). This also means that C∗e (Sn) = C∗(Fn). It is also important

to remark that not every operator system contains enough unitaries in its enveloping C*-algebra.

The following is an improvement of Proposition 9.5 of [21]:

Proposition 5.7. Suppose S ⊂ A and T ⊂ B contains enough unitaries. Then

S ⊗min T ⊂ A⊗max B =⇒ A⊗min B = A⊗max B.

Proof. Let {uα} and {vβ} be unitaries in S and T that generates A and B, respectively. By using

the injectivity of the minimal tensor product we have the inclusion S ⊗min T ⊂ A⊗min B. It is

not hard to see that the unitaries {uα⊗ vβ}, which belongs to S ⊗min T , generates A⊗min B. It

is also clear that the inclusion S ⊗min T ↪→ A⊗max B maps these unitaries to unitaries again.

Thus, by Lemma 5.5, this inclusion extends uniquely to a ∗-homomorphism which is necessarily

the identity. So we conclude that A⊗min B = A⊗max B.

Corollary 5.8. Suppose S ⊂ A and T ⊂ B contains enough unitaries. Then

S ⊗min T = S ⊗c T =⇒ A⊗min B = A⊗max B.

Proof. Let S ⊗τ T be the operator system tensor product arising from the inclusion A⊗max B.

Clearly min ≤ τ ≤ c. (Note: c is the maximal commuting tensor product.) Since min and c

coincides on S ⊗ T we have that S ⊗min T ⊂ A ⊗max B. Thus, by Proposition 5.7, the result

follows.
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Theorem 5.9. The following are equivalent for a unital C*-algebra A:

1. A has WEP.

2. A⊗min S2 = A⊗max S2.

Proof. First suppose (1). Since WEP coincides with (el,max)-nuclearity and S2 has the lifting

property (equivalently (min,er)-nuclearity) (also keeping in mind that it is written on the right

hand side) we have that A⊗minS2 = A⊗elS2 = A⊗maxS2. Conversely suppose (2) holds. Since

S2 contains enough unitaries in C∗(F2) (and A contains enough unitaries in itself), by the upper

corollary, we obtain that A⊗min C∗(F2) = A⊗max C∗(F2). Thus A has WEP.

In the following theorem the equivalence of (1)-(4) is Theorem 9.1. and 9.4 of [21]. So we

only add (5) and (6), which express KC in terms of a five dimensional operator system problem.

Theorem 5.10. The following are equivalent:

1. The Kirchberg conjecture has an affirmative answer.

2. Sn has DCEP for every n.

3. Sn ⊗min Sn = Sn ⊗c Sn for every n.

4. Every finite dimensional operator system with the lifting property has DCEP.

5. S2 has DCEP.

6. S2 ⊗min S2 = S2 ⊗c S2.

Proof. The equivalence of (1),(2),(3), and (4) follows from Theorem 9.1 and 9.4 of [21]. These

conditions clearly imply (5) and (6). Moreover (5) implies (6). In fact, we know that S2 has the

lifting property (equivalently (min,er)-nuclearity). If we assume that it has DCEP (equivalently

(el,c)-nuclearity) then (also keeping in mind that one of the S2 is written on the right hand side)

it follows that

S2 ⊗min S2 = S2 ⊗er S2 = S2 ⊗c S2.
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Conversely suppose that (6) holds. Since S2 contains enough unitaries in C∗(F2), by Corollary

5.8, it follows that C∗(F2)⊗minC∗(F2) = C∗(F2)⊗maxC∗(F2), that is, the Kirchberg Conjecture

has an affirmative answer.
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Chapter 6

The Representation of the

Minimal Tensor Product

Suppose V and W are vector spaces with dim(V ) < ∞, then it is well known that there is a

bijective correspondence between V ⊗ W ∼= L(V ∗,W ) where L(V ∗,W ) is the vector space of

linear maps from V ∗ into W . The bijective linear map is given by

Σvi ⊗ wi 7→ ̂Σvi ⊗ wi where ̂Σvi ⊗ wi(f) = Σf(vi)wi.

This identification plays an important role in the characterization of minimal tensor products

both in Banach space and operator space theory (see [4] e.g.) . (Note that every linear map

defined from a finite dimensional operator space is completely bounded which can be seen in

[33].) The following is the operator system variant of this well known correspondence. In this

chapter we will study various application of this equivalence. The first part is [22, Lem. 8.4].

Proposition 6.1. Let S and T be operator systems where dim(S) is finite. Then there is a

bijective correspondence between

(S ⊗min T )+ ←→ CP (Sd, T ).
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That is, a finite sum Σsi ⊗ ti is positive if and only if the corresponding map Σ̂si ⊗ ti is completely

positive from Sd into T . In particular every linear map from Sd into T can be written as a linear

combination of completely positive maps.

Proof. The bijective correspondence is already shown in [22]. Now let S = span{e=s1, s2, ..., sn}

written in the special basis form as in Lemma 2.5 and let Sd = span{δ1, δ2, ..., δn} written as the

corresponding dual basis form. Consider a linear map ϕ : Sd → T where ϕ(δi) = ti. Now Σ(si⊗ti)

can be written as linear combination of positives in S⊗min T , say Σ(si⊗ ti) = x1−x2 + ix3− ix4

where each xi is positive. By the first part, the corresponding maps x̂i are completely positive

from Sd into T and clearly ϕ = x̂1 − x̂2 + ix̂3 − ix̂4. This finishes the proof.

Corollary 6.2. If S and T are operator systems with dim(S) <∞ then every linear map from

S to T can be written as a linear combination of completely positive maps.

Aside: Supposing S and T are operator systems with dim(S) < ∞ then CB(S, T ) has a

structure of an operator system: The involution is given by ϕ∗(s) = ϕ(s∗)∗ and the positive

cones structures can be describe as

(ϕij) ∈Mn(CB(S, T )) is positive if the map S 3 s 7→ (ϕij(s)) ∈Mn(T ) is cp.

The non-canonical Archimedean order unit can be chosen to be δ̃ = δ(·)eT where δ is a faithful

state on S. Moreover we obtain the following identity

Sd ⊗min T = CB(S, T )

unitally and completely order isomorphicaly. Of course, this also means that S ⊗min T =

CB(Sd, T ) where the identity of CB(Sd, T ) is chosen to be ê(·)eT .

Proposition 6.1 has several important consequences. We want to start with the following

duality property between the minimal and the maximal tensor products given in [10]. We also

include the proof as it relies on the representation of the tensor products.

Theorem 6.3 (Farenick, Paulsen). For finite dimensional operator systems S and T we have
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the following unital complete order isomorphisms:

(S ⊗max T )d = Sd ⊗min T d and (S ⊗min T )d = Sd ⊗max T d.

More precisely, if δS and δT are faithful states on S and T , resp., which we set as Archimedean

order units, then δS ⊗ δT is again a faithful state on S ⊗min T and S ⊗max T when considered

as a linear functional.

Proof. We first show that S ⊗min T and (Sd ⊗max T d)d are completely order isomorphic. Note

that

(S ⊗min T )+ = CP (Sd, T ) = (Sd ⊗max T d)d,+.

Here the second equation follows from the representation of the maximal tensor product that we

discussed in Section 3.2. Therefore, we obtain that a positive linear functional on Sd ⊗max T d

corresponds to a positive element in S ⊗min T . This shows that the bijective linear map

S ⊗min T → (Sd ⊗max T d)d s⊗ t 7→ s⊗̇t where s⊗̇t(Σfi ⊗ gi) = Σfi(s)gi(t)

is an order isomorphism. To see that it is an complete order isomorphism we can reduce the

matricial levels to a ground level as follows. First note that

Mn(S)⊗min T and
(
Mn(S)d ⊗max T d

)d
are order isomorphic. The left-hand side can be identified with Mn(S ⊗min T ). On the other

hand, for any operator system R we have the identification Mn(Rd) = (Mn(R))d given by

(fij) 7→ F where F (rij) = Σfij(rij). In fact, we first identify Mn(Rd) with linear operators from

R into Mn (where we use the definition of positivity) and these linear operators are identified

with linear functionals on Mn(R) (see [32, Thm. 6.1.], e.g.). By the associativity of the maximal

tensor product we have that the right-hand side can be identified with

(
Mn(Sd)⊗max T d

)d
=
(
Mn(Sd ⊗max T d)

)d
= Mn

(
(Sd ⊗max T d)d

)
.
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Thus the above map is completely order isomorphic. We may suppose that these operator systems

have the same unit by simply declaring eS⊗̇eT as the Archimedean order unit on (Sd⊗max T d)d.

(Since both matricially ordered spaces are completely order isomorphic, clearly, eS⊗̇eT plays the

same role on (Sd ⊗max T d)d.) Finally by taking appropriate duals, we obtain both first and

second desired identifications.

This duality correspondence allows us to recover the following special case about the projec-

tivity of the maximal tensor product given in [16].

Theorem 6.4. Let S and T be finite dimensional operator systems and J ⊂ S be a null subspace.

Then J ⊗ T ⊂ S ⊗max T is a null subspace and we have that

(S ⊗max T )/(J ⊗ T ) = (S/J)⊗max T .

In other words, the induced map S ⊗max T −→ (S/J)⊗max T is a unital quotient map.

Proof. Proposition 2.7 ensures that (S/J)d is an operator subsystem of Sd. Thus, by using the

injectivity of the minimal tensor product, we have that

(S/J)d ⊗min T d ⊂ Sd ⊗min T d.

Now, Theorem 2.8 (and the remark thereafter) ensure that the adjoint of this map is a quotient

map whose kernel is a null subspace. Thus, by using above result, the adjoint of this inclusion,

i.e., the natural map below

S ⊗max T −→ (S/J)⊗max T

is a quotient map. By a dimension count argument its kernel is J⊗T which is a null subspace.

For some other applications the following result will be useful.

Proposition 6.5. Suppose S and T are two finite dimensional operator systems with the same

dimensions. Then there is a surjective ucp map ϕ : S → T .

Proof. Let S = span{e=s1, s2, ..., sn} and T = span{e= t1, t2, ..., tn} written in the special basis

form as in Lemma 2.5. Let Sd = span{δ1, δ2, ..., δn} given in the corresponding dual basis form.
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Recall that δ1 is an Archimedean order unit for Sd. Note that

δ2 ⊗ t2 + · · · δn ⊗ tn

is a self-adjoint element of Sd ⊗min T and consequently there is a large M such that

δ1 ⊗ e+ (δ2 ⊗ t2 + · · · δn ⊗ tn)/M

is positive. Now by using Proposition 6.1 it is elementary to see that the corresponding completely

positive map from S to T is unital and surjective.

Corollary 6.6. Suppose S and T are operator systems with dim(T ) finite and dim(T ) ≤ dim(S).

Then there is a surjective ucp map from S to T .

Proof. Suppose dim(T ) = n and let S0 be an n-dimensional operator subsystem of S. By using

the above proposition there is a surjective ucp map from S0 onto Cn. Since Cn is injective this

map extends to a ucp map from S on Cn. Now again by using the proposition above we have a

surjective ucp map from Cn onto T . Composition of these two maps is surjective and ucp.

Theorem 6.7. Let S be a finite dimensional operator system. Then S is exact if and only if Sd

has the lifting property. In other words, S is (min,el)-nuclear if and only if Sd is (min,er)-nuclear.

Proof. The proof is based on Proposition 6.1. Let A be a unital C*-algebra and let I be an ideal

in A. We have that

(S ⊗min A/I)+ = CP (Sd,A/I).

First suppose S is exact. Let ϕ : Sd → A/I be a completely positive map. Let uϕ be the positive

element in S ⊗min A/I corresponding ϕ. Since

S ⊗min A/I = (S ⊗min A)/(S ⊗ I)

and the last quotient is proximinal ([21, Cor. 5.15], e.g.) we have that there is positive element

v in S ⊗min A such that v + S ⊗ I = uϕ. Let γ be the completely positive map from Sd into A
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corresponding v. It is elementary to see that γ is a lift of ϕ.

Conversely suppose Sd has lifting property. We wish to show that S is exact, that is,

ϕ : (S ⊗min A)/(S ⊗ I)→ S ⊗min A/I,

which is ucp, is a complete order isomorphism. (Recall from Remark 4.8 that the completion

of the tensor products is not required and the induced map is bijective.) So let u be positive

in S ⊗min A/I and let ψu be the corresponding cp map from Sd into A/I. Now, by using

Remark 4.5, let γ : Sd → A be the cp lift of ψu and finally let v be the positive element

S ⊗min A corresponding γ. Now it is easy to see that v + S ⊗ I = u. This shows that ϕ is

an order isomorphism. To see that ϕ is a complete order isomorphism, it is enough to identify

Mn(S ⊗min A/I) with S ⊗minMn(A/I) and use the fact that Mn(I) is an ideal in Mn(A) with

Mn(A/I) = Mn(A)/Mn(I).

Theorem 6.8. If the Kirchberg conjecture has an affirmative answer then, in the finite dimen-

sional case, C*-nuclearity is preserved under duality, that is, if S is C*-nuclear then Sd is again

C*-nuclear.

Proof. Let S be a finite dimensional C*-nuclear operator system. In particular S is exact and

has the lifting property. By the above result the dual operator system Sd has these properties.

Now if the Kirchberg conjecture is true then Theorem 5.10 implies that Sd has DCEP. It is easy

to see that exactness and DCEP together imply C*-nuclearity. Thus, Sd is C*-nuclear.

The local lifting property of a C*-algebra, in general, does not pass to its quotients by ideals.

In fact it is well known that every C*-algebra is the quotient of a full C*-algebra of a free group

which has the local lifting property however there are C*-algebras without this property. On the

finite dimensional operator systems this situation is different:

Theorem 6.9. Let S be a finite dimensional operator system and let J be a null subspace of S.

If S has the lifting property then S/J has the same property.

Proof. Recall from Proposition 2.7 that (S/J)d is an operator subsystem of Sd. Since S has

lifting property then Sd is exact by Theorem 6.7. Proposition 4.10 states that exactness passes
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to operator subsystems so (S/J)d is exact and consequently using Theorem 6.7 again it follows

that S/J has the lifting property.

Example 6.10. We define Jn ⊂ Mn as the subspace which includes all the diagonal operators

with 0 trace. Clearly Jn is a null subspace and consequently, by Proposition 2.4, it is a kernel.

Since Mn is a nuclear C*-algebra, it is a (min,max)-nuclear operator system. In particular, it is

(min,er)-nuclear equivalently has the lifting property. Thus, by the above theorem Mn/Jn has

the lifting property. We will come back to this example in later chapters.

The lifting property is also stable when passing to universal C*-algebras. The following

result is an unpublished work of Ivan Todorov which he informed me of during this research.

The operator space analogue can be seen in [30].

Theorem 6.11. Let S be a finite dimensional operator system. Then S has the lifting property

if and only if C∗u(S) has LLP.

Proof. First suppose that S has the lifting property. Let π : C∗u(S) → A/I be a unital ∗-

homomorphism. (Note: As pointed out in [40, Rem. 16.3 (ii)] it is enough to consider the the

unital representations to verify the LLP of a C*-algebra.) Let π0 be the restriction of π on

S. By using the local lifting property of S we have a ucp map ϕ from S to A which lifts π0.

Let ρ : C∗u(S) → A be the unital ∗-homomorphism extending ϕ. It is elementary to show that

ρ is a lift of π. Conversely suppose that C∗u(S) has LLP. Let ϕ : S → A/I be a ucp map.

Let π : C∗u(S) → A/I be the associated ∗-homomorphism. Now since S is a finite dimensional

operator subsystem of C∗u(S), the restriction of π on S, namely ϕ, lifts to a ucp map on A. This

completes the proof.

In [27] Kirchberg and Wasserman exemplify the behavior of universal C*-algebras of some

low dimensional operator systems. More precisely they show that:

1. C∗u(C2) is unitally ∗-isomorphic to C[0, 1], in particular, it is nuclear.

2. C∗u(C3) is not exact.

By using Corollary 6.6 we obtain the following:
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Proposition 6.12.

1. If S is a two dimensional operator system then C∗u(S) is nuclear. In particular S is (min,c)-

nuclear (equivalently C*-nuclear).

2. If S is an operator system with dim(S) ≥ 3 then C∗u(S) is not exact.

Proof. Both parts of the proof are based on Corollary 6.6. Suppose S is a two dimensional

operator system. Let ϕ : C2 → S be a surjective ucp map and let π : C∗u(C2) → C∗u(S) be the

corresponding unital ∗-homomorphism. Note that π is surjective so C∗u(C2)/ker(π) and C∗u(S)

are ∗-isomorphic C*-algebras. This means that C∗u(S) is quotient of a nuclear C*-algebra and

consequently it is nuclear (see [8] e.g.). To see that S is (min,c)-nuclear first fix an operator

system T . We have the inclusions

S ⊗min T ⊂ C∗u(S)⊗min T and S ⊗c T ⊂ C∗u(S)⊗max T .

Since the tensor products on the right coincide it follows that S is (min,c)-nuclear.

Now let S be an operator system with dim(S) ≥ 3. Assume for a contradiction that C∗u(S) is

exact. Let ϕ : S → C3 be a surjective ucp map and let π : C∗u(S)→ C∗u(C3) be the corresponding

unital ∗-homomorphism which is surjective. This means that C∗u(C3) is a quotient of an exact

C*-algebra. So another result of Kirchberg [24], which states that exactness passes to quotients

by ideals, requires C∗u(C3) to be exact which is a contradiction.

For another application of Corollary 6.6 we need some preliminary results. If X is an oper-

ator space then there is an, essentially unique, operator system TX together with a completely

isometric inclusion i : X ↪→ TX such that it satisfies the following universal property: For every

completely contractive map φ : X → S, where S is an operator system, there exists a unique ucp

map ϕ : TX → S such that ϕ(i(x)) = φ(x) for every x in X.

X_�

i

��

cc φ
// S

TX
ucp ϕ

88
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To see the existence of TX one can first consider the universal unital C*-algebra C∗u〈X〉 of

the operator space X. Recall that it has the following universal property: Every completely

contractive map defined from X into a unital C*-algebra A extends uniquely to a unital ∗-

homomorphism. (See [40, Thm. 8.14] e.g.) Now let the span of X, X∗ and the unit e be TX .

(Also note that the image can be taken to an operator system.) If X0 is an operator subspace of

X then we have a unital complete order embedding TX0 ⊂ TX . We leave the proof of this as an

exercise. Also, the following identification is immediate:

C∗u〈X〉 = C∗u(TX).

Recall that an operator space X is said to have the λ-operator space local lifting property

(λ-OLLP) if the following holds for every unital C*-algebra A and ideal I in A. If φ : X → A/I

is a completely contractive (cc) map and X0 is a finite dimensional operator subspace of X then

φ|X0 has a lift φ̃0 on A with ‖φ̃0‖cb ≤ λ. We claim that:

Proposition 6.13. Let X be an operator space. Then X has 1-OLLP if and only if TX has

osLLP.

Proof. Let A be a unital C*-algebra and I be an ideal in A. First suppose that X has 1-OLLP.

Let ϕ : TX → A/I be a ucp map and let T0 be a finite dimensional operator subsystem of

TX . Clearly we can find a finite dimensional subspace X0 of X such that the operator system

generated by X0, which is actually TX0 , contains T0. Note that ϕ|X is cc and so its restriction

on X0 has a cc lift on A. Now by using the universal property of TX0 we obtain a ucp map from

TX0 on A. Now the restriction of this map on T0 is a ucp lift on A.

Conversely suppose TX has osLLP and let φ : X → A/I be a cc map. This map has a ucp

extension ϕ on TX . Let X0 be a finite dimensional operator subspace of X. Clearly TX0 is a

finite dimensional operator subsystem of TX and consequently ϕ, when restricted to TX0 has a

ucp lift on A. Finally restriction of this lift on X0 is cc. This finishes the proof.

When X = C, TX is a three dimensional operator system. The following is from [25].

Proposition 6.14. The following are equivalent:
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1. Kirchberg Conjecture has an affirmative answer.

2. C∗u〈C〉 has WEP.

Depending heavily on this characterization we can obtain further equivalences. (The equiva-

lence of (1) and (4) was pointed out by Vern Paulsen.)

Proposition 6.15. The following are equivalent:

1. KC has an affirmative answer.

2. There exists a three dimensional operator system S such that C∗u(S) has WEP.

3. There exists an operator system S with dim(S) ≥ 3 such that C∗u(S) has WEP.

4. C∗u(M2) has WEP.

Proof. Clearly (4) implies (3). To see that (3) implies (2), let S be an operator system with

dim(S) ≥ 3 such that C∗u(S) has WEP. Let T be a three dimensional operator system with lifting

property. (For example C3). By using Corollary 6.6, we know that there is surjective ucp map ϕ

from S to T . Note that this ucp map extends to surjective *-homomorphism π : C∗u(S)→ C∗u(T ).

Since C∗u(S)/ker(π) and C∗u(T ) are *-isomorphic C*-algebras we obtain that C∗u(T ) is QWEP.

Also by Theorem 6.11, C∗u(T ) has LLP. A well known result of Kirchberg states that LLP and

QWEP together imply WEP (See [25], e.g.). Thus, (3) implies (2). Now we will show (2) implies

(1). By using the above result of Kirchberg it is enough to prove that C∗u〈C〉 has WEP. Recall

that C∗u〈C〉 = C∗u(TC). Since C has 1-OLLP it follows that TC has the lifting property. By

Theorem 6.11 C∗u(TC) has LLP. By using an argument that we used in the implication (3) ⇒ (2)

it is easy to see that existence of a three dimensional operator system with WEP implies C∗u(TC)

is QWEP. Consequently C∗u(TC) = C∗u〈C〉 has WEP. Finally to see that (1) implies (4), note that

C∗u(M2) has LLP (since M2 has lifting property). So assuming KC it follows that C∗u(M2) has

WEP.
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Further Exactness and Lifting

Properties

We first want to review some instances where the operator space and the operator system quo-

tients are completely isometric. Then by using a result of Ozawa on the exactness of operator

spaces we obtain similar properties for operator systems. Let S be operator system A be a unital

C*-algebra and I be an ideal in A. As we pointed out in Section 4.5, S⊗̄I ⊂ S⊗m̂inA is a kernel.

(⊗m̂in denotes the completed minimal tensor product and ⊗̄ is the closure of the algebraic tensor

product in the larger space.) Moreover, the canonical operator spaces structure on the operator

system quotient

(S⊗̂minA) / (S⊗̄I)

coincides with the operator space quotient of S⊗̂minA by its closed subspace S⊗̄I. (See [21,

Thm. 5.1]). We also remark that when S is finite dimensional then the minimal tensor of S with

any other operator system is already a complete object so we will use ⊗min instead of ⊗̂min.

Similarly if I is an ideal in a C*-algebra A then S⊗̄I coincides with the algebraic tensor product

S ⊗ I. So we omit the bar over the tensor product.

Notation: For simplicity in the following results we let B denote B(l2) and K stands for the

ideal of compact operators in B(l2).
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Suppose A is a unital C*-algebra and I is an ideal in A. Let

C = {φ : A → B : φ is ucp and φ(I) ⊆ K}.

For φ in C we use the notation φ̇ for the induced map A/I → B/K. If X is a finite dimensional

operator space then φ̄ denotes the corresponding map

(X⊗̂A)/(X⊗I)→ (X⊗̂B)/(X ⊗K).

where ⊗̂ is the minimal operator space tensor product. We are ready to state:

Proposition 7.1 (Ozawa). Let X be a finite dimensional operator space. If A is a unital

separable C*-algebra and I is an ideal in A then for any u in X ⊗A/I we have

‖u‖X⊗̂A/I = sup
φ∈C
‖(id⊗ φ̇)(u)‖X⊗̂B/K

and for any v in (X⊗̂A)/(X⊗I)

‖v‖(X⊗̂A)/(X⊗I) = sup
φ∈C
‖(id⊗ φ̄)(v)‖(X⊗̂B)/(X⊗K).

Before stating the following result we want to emphasize that the the minimal operator system

and the minimal operator space tensor products coincide. (In fact they are both spatial.) The

exactness criteria in the next theorem is true for every operator system which we included as a

corollary.

Theorem 7.2. Suppose S is a finite dimensional operator system. Then S is exact if and only

if

(S ⊗min B)/(S ⊗K) ∼= S ⊗min B/K.

Proof. One direction is clear. So suppose that (S⊗minB)/(S⊗minK) ∼= S⊗min B/K. In particular

this implies that the associated map is completely isometric. (Recall: The operator space quotient

and operator system quotient has same operator space structure.) So using Ozawa’s above result
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we have that for every separable unital C*-algebra A and ideal I in A the associated map

(S ⊗min A)/(S⊗I) −→ S ⊗min A/I

is isometric. (Note: the minimal tensor product of operator systems coincides with the minimal

operator space tensor product.) To see that it is a complete isometry it is enough to consider

the identification Mn(A/I) = Mn(A)/Mn(I). Since a unital complete isometry is a complete

order isomorphism we have that the exactness is satisfied for the separable case. Now suppose

A is an arbitrary unital C*-algebra and I is an ideal in A. Assume for a contradiction that the

associated map

(S ⊗min A)/(S⊗I) −→ S ⊗min A/I

is not a complete isometry. Again considering the identification Mn(A/I) = Mn(A)/Mn(I) we

may suppose that the map is not an isometry. This means that there is an element u of S⊗minA

such that the norm of u + S⊗I under this associated map is strictly smaller. Clearly A has a

separable unital C*-subalgebra A0 such that u belongs to S ⊗ A0. Let I0 = A0 ∩ I, which is

an ideal in A0. Moreover we have A0/I0 ⊂ A/I so the injectivity of minimal tensor products

ensures that

S ⊗min A0/I0 ⊂ S ⊗min A/I.

We also have the following sequence of ucp maps:

S ⊗min A0 ↪→ S ⊗min A → (S ⊗min A)/(S⊗I)

which has the kernel S ⊗ I0. So the associated map (S ⊗min A0)/(S⊗I0)→ (S ⊗min A)/(S⊗I)

is ucp. Finally when we look at the following sequence of ucp maps

(S ⊗min A0)/(S⊗I0)→ (S ⊗min A)/(S⊗I) −→ S ⊗min A/I ⊃ S ⊗min A0/I0

the norm of the element u+ S⊗I0 is smaller. This is a contradiction as the exactness of S fails

for a separable C*-algebra and ideal in it.
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Corollary 7.3. Let S be an operator system. Then S is exact if and only if

(S ⊗m̂in B)/(S⊗̄K) ∼= S ⊗m̂in B/K.

Proof. One direction is trivial. So suppose exactness in K ⊂ B satisfied. Let S0 be a finite

dimensional operator subsystem. By using Corollary 5.6 of [21] we have that

S0 ⊗min B
S0 ⊗K

⊂
S ⊗m̂in B
S⊗̄K

.

Similarly, by the injectivity of the minimal tensor product, we have S0⊗minB/K ⊂ S ⊗m̂inB/K.

So for the operator system S0 the exactness condition for K ⊂ B in Proposition 7.2 is satisfied

and consequently it is exact. Since S0 is an arbitrary finite dimensional operator subsystem of

S, by Proposition 4.10, it follows that S is exact.

Theorem 6.7 states that a finite dimensional operator system S is exact if and only if Sd has

the lifting property. When we look at the proof of this result we fix a unital C*-algebra A and

ideal I in A and show that we have a complete order isomorphism

(S ⊗min A)/(S⊗I) −→ S ⊗min A/I

if and only if every completely positive map defined from Sd into A/I possesses a cp lift on A.

Of course, by fixing a faithful state as an Archimedean order unit, we can replace cp by ucp in

the latter sentence. By this observation we can now state:

Proposition 7.4. A finite dimensional operator system S has the lifting property if and only if

every ucp map defined from S into B/K has a ucp lift on B.

Proof. One direction is clear. So suppose that every ucp map defined from S into B/K has a ucp

lift on B. By the above discussion we have a complete order isomorphism

(Sd ⊗min B)/(Sd ⊗K) ∼= Sd ⊗min B/K.

So, by Theorem 7.2, Sd is exact. Finally, by Theorem 6.7, Sdd = S has the lifting property.
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Coproducts of Operator Systems

In this chapter we recall basic facts on the amalgamated direct sum of two operator systems over

the unit introduced in [23] (or with the language of [13] coproduct of two operator systems) and

we will show that it can be formed directly by using the operator system quotient theory. We

show that the lifting property is preserved under coproducts. However the stability of the double

commutant expectation property turns out to be related to the Kirchberg Conjecture. Recall

that if S and T are two operator systems then the coproduct S ⊕1 T of S and T is an operator

system together with unital complete order embeddings i : S ↪→ S ⊕1 T and j : T ↪→ S ⊕1 T

which satisfies the following universal property: For every ucp map φ : S → R and ucp map

ψ : T → R, where R is an operator system, there exists a unique ucp map ϕ : S ⊕1 T → R such

that ϕ(i(s)) = φ(s) and ϕ(j(t)) = ψ(t) for every s in S and t in T .
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One way to construct this object can be described as follows: Consider the C*-algebra free

product amalgamated over the identity C∗u(S) ∗1 C∗u(T ). Define S ⊕1 T as the operator system
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generated by S and T in C∗u(S) ∗1 C∗u(T ). We leave the verification that this span has the above

universal property as an exercise. We also refer to [13, Sec. 3] for a different construction of the

coproducts. Below we will obtain coproducts in terms of operator system quotients.

Consider S ⊕ T . Since (e,−e) is a selfadjoint element which is neither positive nor negative,

by Theorem 2.3, J = span{(e,−e)} is a kernel in S ⊕ T (in fact it is a null subspace and hence,

a completely proximinal kernel by Proposition 2.4). So we have a quotient operator system

(S ⊕ T )/J . Note that in the quotient we have

(e, e) + J = (2e, 0) + J = (0, 2e) + J.

Consider i : S → S ⊕ T /J by s 7→ (2s, 0) + J . We claim that i is a unital complete order

isomorphism. Clearly it is unital and completely positivity follows from the fact that it can

be written as a composition of cp maps, namely S → S ⊕ T , s 7→ (2s, 0) and the quotient

map. Now suppose that the image of (sij) ∈ Mn(S) is positive. That is, ((2(sij , 0) + J)) is

positive in Mn(S ⊕ T /J). Since J is completely proximinal there are scalars αij such that

((2sij + αije,−αije)) is positive in Mn(S ⊕ T ). Note that this forces (−αije) to be positive in

Mn(T ). So we have that (2sij +αije) + (−αije) = 2(sij) must be positive in Mn(S). Hence (sij)

is positive and it follows that i is a complete order isomorphism.

Similarly j : T → S ⊕ T /J , t 7→ (0, 2t) + J is also a unital complete order isomorphism.

Finally let φ : S → R and ψ : T → R be ucp maps. Consider ϕ : S ⊕ T /J → R given by

ϕ((s, t) + J) = (φ(s) + ψ(t))/2. It is elementary to check ϕ is ucp, ϕ(i(·)) = φ and ϕ(j(·)) = ψ.

Consequently with the above mentioned inclusions we have

S ⊕1 T = S ⊕ T / span{(e,−e)}.

We also remark that C∗u(S ⊕1 T ) = C∗u(S) ∗1 C∗u(T ), which in fact follows from the universal

property of the coproduct of operator systems and unital free products of C*-algebras. It is also

clear that when S and T are finite dimensional then dim(S ⊕1 T ) = dim(S) + dim(T )− 1.

The lifting property is preserved under coproducts:
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Proposition 8.1. The following are equivalent for finite dimensional operator systems S and

T :

1. S and T have the lifting property.

2. S ⊕1 T has the lifting property.

Proof. Suppose S ⊕1 T has lifting property. Let φ : S → A/I be a ucp map where I ⊂ A is a

C*-algebra, ideal couple. Suppose f is a state on T and set ψ : T → A/I by ψ = f(·)(e+ I). By

using the universal property of S ⊕1 T we obtain a ucp map ϕ : S ⊕1 T → A/I. For simplicity

we will identify the S and T with their canonical images in S ⊕1 T . Clearly a ucp lift of ϕ on A

is a ucp lift of φ when restricted to S. Thus S has osLLP. A similar argument shows that T has

the same property.

Conversely suppose S and T have lifting property. Let ϕ : S ⊕1 T → A/I be a ucp map.

Again we will identify the S and T with their canonical images in S ⊕1 T . Let φ : S → A be a

ucp lift of ϕ|S , the restriction of ϕ on S. Similarly let ψ be the ucp lift of ϕ|T . Finally by using

the universal property of S ⊕1 T let ϕ̃ be the ucp map from S ⊕1 T into A associated with φ

and ψ. It is elementary to see that ϕ̃ is a lift of ϕ. This finishes the proof.

Recall that we define Sn as the operator system generated by the unitary generator of C∗(Fn),

that is,

Sn = span{g1, ..., gn, e, g∗1 , ..., g∗n} ⊂ C∗(Fn).

We recall that Sn can also be considered as the universal operator system generated by n con-

tractions as it satisfies the following universal property: Every function f : {gi}ni=1 → T with

‖f(gi)‖ ≤ 1 extends uniquely to a ucp map ϕf : Sn → T (in an obvious way).

{gi}ni=1

f
//

_�

��

T

Sn

ϕf
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It is easy to see that Sn is naturally included in Sn+k where the inclusion is given by the

map gi 7→ gi for i = 1, ..., n. In a similar way, Sk can also be represented in Sn+k via the map
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gi 7→ gn+i for i = 1, ..., k. Thus, there is a map from Sn ⊕1 Sk to Sn+k. The following result

states that this natural map is a complete order isomorphism. We skip its elementary proof. In

fact, it is easy to show that Sn+k satisfies the universal property that Sn ⊕1 Sk has.

Lemma 8.2. Sn ⊕1 Sk = Sn+k.

Example 8.3. We wish to show that S1 = span{g, e, g∗} ⊂ C∗(F1) is C*-nuclear. This is based

on Sz.-Nagy’s dilation theorem (see [32, Thm. 1.1], e.g.): If T ∈ B(H) is a contraction then

there is a Hilbert space K containing H as a subspace and a unitary operator U in B(K) such

that Tn = PHU
n|H for every positive n. Of course, by taking the adjoint, we also have that

(T ∗)n = PH(U∗)n|H for every positive n. This means that there is a ucp map defined from C∗(F1)

into C∗{I, T, T ∗}, the C*-algebra generated by T in B(H), which is given by the compression of

the unital ∗-homomorphism extending the representation g 7→ U . That is, the map γT defined

from C∗(F1) into B(H) given by gn 7→ Tn, e 7→ I and g−n 7→ (T ∗)n is ucp. Now we wish to

show that S1 ⊗max A ⊂ C∗(F1)⊗max A for every A. Let ϕ : S1 ⊗max A → B(K) be a ucp map.

Then by Proposition 3.5, There is a Hilbert space K1 containing K as a subspace and ucp maps

φ : S1 → B(K1) and ψ : A → B(K1) with commuting ranges such that ϕ = PKφ · ψ|K . Note

that φ(g) must be a contraction. The map γφ(g) is a ucp extension of φ on C∗(F1). Clearly γφ(g)

and ψ have commuting ranges. Thus PKγφ(g) · ψ|K is a ucp extension of ϕ on C∗(F1) ⊗max A.

In conclusion we have that every ucp map defined from S1⊗maxA into a B(K) extends to a ucp

map on C∗(F1)⊗maxA. This is enough to conclude that S1⊗maxA ⊂ C∗(F1)⊗maxA. It is well

known that C∗(F1) = C∗(Z) = C(T) (see [39], e.g.) and the C*-algebra of continuous functions

on a compact set is nuclear (see [32], e.g.). Since S1 ⊗min A ⊂ C∗(F1) ⊗min A and C∗(F1) is

nuclear we conclude that S1 is C*-nuclear.

Question 8.4. In the previous example we have shown that the three dimensional operator

system span{1, z, z∗} ⊂ C(T), where z is the coordinate function, is C*-nuclear. In general, if

X is a compact set then is every three dimensional operator subsystem span{1, f, f∗} ⊂ C(X)

C*-nuclear? In fact by using spectral theorem it is enough to consider the case when X is subset

of {z : |z| ≤ 1}. So, when this subset is the unit circle then the answer is affirmative.

Since the Kirchberg Conjecture (KC) is equivalent to the statement that S2 has DCEP it is
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natural to raise the following questions:

Question 8.5. Suppose S and T are two finite dimensional operator systems with DCEP. Does

S ⊕1 T have DCEP?

Question 8.6. Suppose S and T are two finite dimensional C*-nuclear operator systems. Does

S ⊕1 T have DCEP?

Results: An affirmative answer to the Question 8.5 implies an affirmative answer to the KC.

This follows from the fact that S2 = S1 ⊕1 S1 and S1 is C*-nuclear, in particular it has DCEP.

On the other hand Question 8.6 is equivalent to the KC. First suppose that KC is true. If S and

T are C*-nuclear operator systems then, in particular, they have lifting property and so S ⊕1 T

has lifting property. Since we assumed KC, by using Theorem 5.10, S ⊕1 T must have DCEP.

Conversely if we suppose that Question 8.6 is true then in particular S2 = S1 ⊕1 S1 has DCEP.
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Chapter 9

k-minimality and k-maximality

In this chapter we review k-minimality and k-maximality in the category of operator systems

introduced by Xhabli in [43]. This theory and a similar construction in the category of operator

spaces are used extensively in the understanding of entanglement breaking maps and separability

problems in quantum information theory ([43], [44] or [19], e.g.). Our interest in k-minimality

and k-maximality arises from their compatiblity with exactness and the lifting property which

will be apparent in this chapter. We start with the following observation:

Proposition 9.1. Let ϕ : S → B(H) be a linear map. Then ϕ is k-positive if and only if there

is a unital k-positive map ψ : S → B(H) and R ≥ 0 in B(H) such that ϕ = Rψ(·)R.

Proof. We will show only the non-trivial direction. Let ϕ : S → B(H) be a k-positive map. We

assume that ϕ(e) = A satisfies 0 ≤ A ≤ I, where I is the identity in B(H). For any ε > 0 let

ϕε : S → B(H) be the map defined by ϕε = (A + εI)−1/2ϕ(·)(A + εI)−1/2. Since B(S, B(H))

is a dual object, which arises from the fact that B(H) is dual of a Banach space, the net {ϕε}

has a w∗-limit, say ψ. First note that ψ is unital. Indeed, ϕε(e) = A(A + εI)−1 converges to

the identity I in the w∗-topology of B(H). Consequently ψ is unital. We also claim that ψ

is k-positive. To see this let (sij) be positive in Mk(S). Since ϕε is k-positive we have that

(ϕε(sij)) is positive in Mk(B(H)). The weak convergence ϕε → ψ ensures that, for fixed i, j,

ϕε(sij) has a limit in the w∗-topology of B(H) which is necessarily ψ(sij). Now the result follows

from the fact that positives cones are closed in the w∗-topology of B(H). Finally we claim that
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ϕ = A1/2ψ(·)A1/2. Indeed this follows from the uniqueness of the w∗-limit in B(S, B(H)). In

fact we have that A1/2ϕε(·)A1/2 converges to A1/2ψ(·)A1/2. On the other hand for fixed s in S,

A1/2ϕε(s)A1/2 converges to ϕ(s) (in the w∗-topology of B(H)). So the proof is done.

Corollary 9.2. The following properties of an operator system S are equivalent:

1. Every k-positive map defined from S into an operator system is cp.

2. Every unital k-positive map defined from S into an operator system is cp.

Before getting started with the k-minimality and k-maximality we also recall the following

fact (see Thm. 6.1 of [32] e.g.).

Lemma 9.3 (Choi). Suppose φ : S →Mk is a linear map. Then φ is k-positive if and only if it

is completely positive.

Following Xhabli [43], for an operator system S we define the k-minimal cone structure as

follows:

Ck-minn = {(sij) ∈Mn(S) : (φ(sij)) ≥ 0 for every ucp φ : S →Mk}.

By considering Proposition 9.1 one can replace ucp by cp in this definition. Now, the ∗-vector

space S together with the matricial cone structure {Ck-minn }∞n=1 and the unit e form an operator

system which is called the k-minimal operator system structure generated by S and denoted

by OMINk(S). We refer [43, Section 2.3] for the proof of these results and we remark that

OMINk(S) is named as super k-minimal structure so we drop the term “super” in this thesis.

Roughly speaking OMINk(S) is (possibly) a new operator system whose positive cones coincide

with the positive cones of S up to the kth level and after the kth level they are the largest cones

so that the total matricial cone structure is still an operator system. Note that larger cones

generate smaller canonical operator space structure so this construction is named the k-minimal

structure. We list a couple of remarkable results from [43]:

Theorem 9.4 (Xhabli). Suppose S is an operator system and k is a fixed number. Then:

1. OMINk(S) can be represented in Mk(C(X)) for some compact space X.

2. If ϕ : T → OMINk(S) is a k-positive map then ϕ is completely positive.
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3. The identity id : OMINk(S)→ S is k-positive.

4. For any m ≤ k the identities S → OMINk(S)→ OMINm(S) are completely positive.

Lemma 9.5. Let S be an operator system. Then S = OMINk(S) if and only if every k-positive

map defined from an operator system into S is completely positive.

Proof. One direction follows from the above result of Xhabli. Conversely, suppose that every k-

positive map defined into S is cp. This, in particular, implies that the identity id : OMINk(S)→

S, which is k-positive, is cp. Since the inverse of this map is also cp it follows that S =

OMINk(S).

Let S be an operator system and k be a fixed natural number. To define the k-maximal

structure we first consider the following cones:

Dk-max
n = {A∗DA : A ∈Mmk,n and D = diagonal(D1, ..., Dm)

where Di ∈Mk(S)+ for i = 1, ...,m}.

{Dk-max
n } forms a strict compatible matricial order structure on S and e is an matricial order unit.

However, e fails to be Archimedean and to resolve this problem we use the Archimedeanization

process (see [36]):

Ck-maxn = {(sij) ∈Mn(S) : (sij) + εen ∈ Dk-max
n for every ε > 0}.

Note that Dk-max
n ⊂ Ck-maxn . The ∗-vector space S together with the matricial cone structure

{Ck-maxn }∞n=1 and the unit e form an operator system which is called k-maximal operator system

structure generated by S and denoted by OMAXk(S). For related proof we refer [43, Sec. 2.3.].

(We again drop the term “super”.) The OMAXk(S) is (possibly) a new operator system structure

on the ∗-vector space S such that the matricial cones coincide with the matricial cones of the

operator system S up to kth-level and after k, the cones are the smallest possible cones such a

way that the total structure makes S an operator system with unit e.

Theorem 9.6 (Xhabli). Let S be an operator system and k be a fixed number. Then:
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1. Every k-positive map defined from OMAXk(S) into an operator system is completely posi-

tive.

2. The identity id : S → OMAXk(S) is k-positive.

3. For any m ≤ k the identities OMAXm(S)→ OMAXk(S)→ S are completely positive.

The proof of the following lemma is similar to Lemma 9.5 so we skip it.

Lemma 9.7. Let S be an operator system. Then S = OMAXk(S) if and only if every k-positive

map defined from S into another operator system is completely positive.

After these preliminary results we are ready to examine the role of k-minimality and the

k-maximality in the nuclearity theory. We start with the following easy observation:

Lemma 9.8. OMINk(S) is exact for any operator system S and k.

Proof. Recall that OMINk(S) can be represented in Mk(C(X)) for some compact space X.

Note that Mk(C(X)) is a nuclear C*-algebra and consequently it is (min,max)-nuclear operator

system. Clearly (min,max)-nuclearity implies (min,el)-nuclearity (equivalently exactness) and,

by Proposition 4.10, exactness passes to operator subsystems so we have that OMINk(S) is

exact.

Note that if S is a finite dimensional operator system then a faithful state on S still has the

same property when S is equipped with OMINk or OMAXk structure. Keeping this observation

in mind we are ready to state:

Theorem 9.9. Let S be a finite dimensional operator system. Then we have OMINk(S)d =

OMAXk(Sd) and OMAXk(S)d = OMINk(Sd) unitally and completely order isomorphically.

Proof. We only prove the fist equality. The second equality follows from the first one if we

replace S by Sd and take the dual of both side. To show the first one we set R = OMINk(S)

and we will first prove the following: Whenever ϕ : Rd → T is a k-positive map then ϕ is cp.

So by using Lemma 9.7 we conclude that Rd = OMAXk(Rd). Assume for a contradiction that

there is a k-positive map ϕ : Rd → T which is not cp. Clearly we may assume that T is finite

dimensional. (If not we can consider an operator subsystem of T containing the image of ϕ.)
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Now by using Lemma 1.6 we have that ϕd : T d → R is a k-positive map but it is not cp. This

is a contradiction as Lemma 9.5 requires that ϕ is a cp map. Thus Rd = OMAXk(Rd). Next

we show that OMAXk(Rd) = OMAXk(Sd) which finishes the proof. To see this note that the

identity id : S → R is cp and its inverse is k-positive. This implies that id∗ : Rd → S is cp

and its inverse is k-positive. (We skip the elementary proof of the fact that (ϕd)−1 = (ϕ−1)d.)

Thus up to kth level Rd and Sd are order isomorphic. Hence OMAXk(Rd) = OMAXk(Sd).

Finally by using the observation that we mentioned before the theorem we may assume that this

identification is also unital.

Lemma 9.10. Suppose S is a finite dimensional operator system. Then OMAXk(S) has the

lifting property for any natural number k.

Proof. Lemma 9.8 states that OMINk(Sd) is exact. By the upper theorem we see that OMINk(Sd)d =

OMAXk(S) and finally by using Theorem 6.7 we conclude that it has the lifting property.

We are now ready to establish a weaker lifting property:

Theorem 9.11. Every finite dimensional operator system S has the k-lifting property in the

sense that whenever I is an ideal in a unital C*-algebra A and ϕ : S → A/I is a ucp map then

there exists a k-positive map ϕ̃ : S → A such that q ◦ ϕ̃ = ϕ where q : A → A/I is the quotient

map. Moreover, ϕ̃ can be chosen to be unital.

Proof. We first deal with the unitality problem. So let ϕ : S → A/I be a ucp map and let

ϕ̃ : S → A be a k-positive lifting of ϕ. Note that ϕ(e) = eA+y for some self-adjoint y necessarily

in I. Let y = y1 − y2 be the Jordan decomposition of y, that is, y1 and y2 are positive such

that y1y2 = 0. Note that y1 and y2 must be in I. Let f be a state on S. Define f̃ : S → A by

f̃ = f(·)y2. Clearly φ =: ϕ̃+ f̃ is again a k-positive lifting of ϕ such that it maps e to eA + y1.

Now set ψ = (eA+ y1)−1/2φ(·)(eA+ y1)−1/2. Since the term (eA+ y1)−1/2 can be approximated

by polynomials in {y1, y2
1 , ...} it follows that ψ is a lift of ϕ. Clearly it is unital and k-positivity

is elementary to check.

Now let ϕ : S → A/I be a ucp map where A is a unital C*-algebra and I is an ideal. When

S is equipped with OMAXk structure ϕ is still a cp map. By Lemma 9.10 ϕ has a cp lift ϕ̃ on A.

Now when we consider ϕ̃ as a map defined from S it is k-positive. This completes the proof.
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We want to remark that if S is a finite dimensional operator system then the k-lifting property,

which S has for every k, does not imply the lifting property. In [34, Theorem 3.3.] it was shown

that there is a five dimensional operator subsystem of the Calkin algebra B/K such that the

inclusion does not have a ucp lift (or cp lift) on B. In the next chapter we will see that even

M2 ⊕M2 has a five dimensional operator system that does not have lifting property. For three

dimensional operator systems a similar problem turns out to be equivalent to the Smith Ward

problem which we will study in Chapter 11.

Corollary 9.12. Let S be a finite dimensional operator system, A be a C*-algebra and I be an

ideal. Then every k-positive map S → A/I has a k-positive lifting to A. If ϕ is unital one can

take the lift unital too.

Proof. If we equip S with OMAXk structure then ϕ is completely positive. Since OMAXk(S)

has the lifting property, by using Remark 4.5, ϕ can be lifted as a completely positive map on

A. If ϕ is unital one can pick the lift unital as well. Now when S is considered with its initial

structure, this lift is k-positive.
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Chapter 10

Quotients of the Matrix Algebras

In this chapter we obtain new proofs of some of the results of [10] and discuss some new formu-

lations of the Kirchberg Conjecture (KC) in terms of operator system quotients of the matrix

algebras. The duality and the quotient theory when applied to some special operator subsystems

of Mn raise difficult stability problems which will be apparent in this chapter. We will also con-

sider the problem about the minimal and the maximal tensor product of three copies of C∗(F∞)

from an operator system perspective.

Recall from Example 6.10 that we define Jn ⊂ Mn as the diagonal matrices with 0 trace.

As we pointed out, Jn is a null subspace of Mn and consequently, by Proposition 2.4, it is a

completely proximinal kernel. (Also recall that Mn/Jn has lifting property.) However, with the

following result of Farenick and Paulsen we directly see that Jn is a kernel and, moreover, we

obtain an identification of Mn/Jn as well as its enveloping C*-algebra.

As usual C∗(Fn) stands for the full C*-algebra of the free group Fn on n generators, say

g1, ..., gn. Let Wn be the operator subsystem of C∗(Fn) given by

Wn = {gig∗j : 1 ≤ i, j ≤ n}.

We are now ready to establish the connection between these operator systems given in [10].

As usual {Eij} denotes the standard matrix units for Mn. Consider ϕ : Mn → Wn given by
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ϕ(Eij) = gig
∗
j /n. Then

Theorem 10.1 (Farenick, Paulsen). The above map ϕ : Mn →Wn is a quotient map with kernel

Jn. That is, the induced map ϕ̄ : Mn/Jn →Wn is a bijective unital complete order isomorphism.

Moreover, C∗e (Mn/Jn) = C∗(Fn−1).

Now we are ready to state:

Theorem 10.2. The following are equivalent:

1. KC has an affirmative answer.

2. M3/J3 has DCEP.

3. M3/J3 ⊗minM3/J3 = M3/J3 ⊗cM3/J3.

Proof. Example 6.10 states that M3/J3 has lifting property. So if we assume (1) then, by

Theorem 5.10, M3/J3 has DCEP. This proves that (1) implies (2). To see that (2) implies

(3) we recall that lifting property is characterized by (min,er)-nuclearity. Thus we readily have

that M3/J3 ⊗min M3/J3 = M3/J3 ⊗er M3/J3. Now, by our assumption, M3/J3 has DCEP,

equivalently, (el,c)-nuclearity. Now, applying this to M3/J3 on the right-hand side, we have

that M3/J3 ⊗er M3/J3 = M3/J3 ⊗c M3/J3. Thus, (2) implies (3). We finally show that (3)

implies (1). In fact, M3/J3 contains enough unitaries in its enveloping C*-algebra, namely,

C∗(F2) (see Chapter 5 for related the definition). This simply follows from the fact that W3

is linear span of unitaries, thus, it contains enough unitaries in the C*-algebra generated by

itself (in C∗(F3)). So, by Proposition 5.6, this C*-algebra must be coincides with its enveloping

C*-algebra. Now, by identifying Mn/Jn with Wn, we conclude that M3/J3 contains enough

unitaries in its enveloping C*-algebra, namely, C∗(F2). Thus assuming (3), by Corollary 5.8, we

have that C∗(F2)⊗min C∗(F2) = C∗(F2)⊗max C∗(F2). Thus (3) implies (1).

We remark that Theorem 5.2. of [10] states that if Mn/Jn⊗minMn/Jn = Mn/Jn⊗maxMn/Jn

for every n then it follows that KC has an affirmative answer.

Question 10.3. Is Mn/Jn ⊗cMn/Jn = Mn/Jn ⊗maxMn/Jn for every n? What about n = 3?
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Recall that we define Sn as the operator subsystem of C∗(Fn) which contains the unitary

generators. More precisely, Sn = {g1, ..., gn, e, g∗1 , ..., g∗n}. Another important operator subsystem

of Mn, which is related to Sn, is the tridiagonal matrices Tn. We define

Tn = span{Eij : |i− j| ≤ 1} ⊂Mn.

The study on the nuclearity properties of these operator systems goes back to [22]. In Theorem

5.16 it was shown that T3 is C*-nuclear (i.e. (min,c)-nuclear). In general, Proposition 6.11 states

that if S is an operator subsystem of Mn associated with a chordal graph G then S is C*-nuclear.

We refer to Section 5 of [22] for related definitions and discussions. Since Tn is associated with

the chordal graph (over vertices {1, 2, ..., n})

{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3), (3, 4), ..., (n, n)}

we have that

Proposition 10.4. Tn is C*-nuclear for every n.

As we mentioned at the end of Chapter 3, a finite dimensional operator system is (c,max)-

nuclear if and only if it completely order isomorphic to a C*-algebra. Consequently, for an

operator system which is not a C*-algebra, such as Tn, C*-nuclearity is the highest nuclearity

that one should expect.

Since Jn, the diagonal n×n matrices with 0 trace, is a null subspace of Tn, by Proposition 2.4,

it is a completely proximinal kernel. Also note that C*-nuclearity clearly implies lifting property

and so, by Theorem 6.9, we have that Tn/Jn has the lifting property. The following is from [10]:

Theorem 10.5. Tn/Jn is unitally completely order isomorphic to Sn−1. More precisely, the ucp

map γ : Tn → Sn−1 given by

Ei,i 7→ e/n for i = 1, ..., n

Ei,i+1 7→ gi/n for i = 1, ..., n− 1

Ei+1,i 7→ g∗i /n for i = 1, ..., n− 1
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is a quotient map with kernel Jn.

This again brings difficult stability problems we have considered in the last chapter:

Corollary 10.6. The following are equivalent:

1. KC has an affirmative answer.

2. For any finite dimensional C*-nuclear operator system S and null subspace J of S one has

S/J has DCEP.

3. Tn/Jn has DCEP for every n.

4. T3/J3 has DCEP.

Proof. Since T3/J3 = S2, (1) and (4) are equivalent by Theorem 5.10. Also, as we mentioned,

Tn/Jn has lifting property. So if we assume (1) we must have that Tn/Jn has DCEP. (3) implies

(4) is clear. Now we need to show that (2) is equivalent to remaining. Clearly (2) implies (4)

(or (3)). On the other hand if S is C*-nuclear then, in particular, it has lifting property and so,

by Theorem 6.9, S/J has lifting property. So assuming (1) we must have that this quotient has

DCEP.

This corollary indicates that KC is indeed an operator system quotient problem. DCEP is one of

the extensions of WEP from unital C*-algebras to general operator systems. In addition to being

equivalent to (el,c)-nuclearity we have seen that it is an important property in the understanding

of KC. However, the following definition will allow us to relax DCEP to another property:

Definition 10.7. We say that an operator system S has property S2 if S ⊗min S2 = S ⊗c S2.

We remark that, for unital C*-algebras, property S2 coincides with WEP. That is, a unital

C*-algebra has WEP if and only if it has property S2. This directly follows from Theorem 5.9. It

is also worth mentioning that, again for unital C*-algebras, property S2 coincides with property

W and property S in [10]. We refer the reader to Section 3 and 6 in [10] for related definitions.

For the operator systems we have that

WEP =⇒ DCEP =⇒ property S2.
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We know that DCEP, in general, does not imply WEP. For example if S is a finite dimensional

operator system then WEP is equivalent to S having the structure of a C*-algebra (which follows

from the fact that (el,max)-nuclearity implies (c,max)-nuclearity). On the other hand Tn is a

C*-nuclear operator system for every n and in particular it has DCEP. So this family forms an

example that DCEP is weaker than WEP. To see that DCEP implies property S2, let S be an

operator system with DCEP (equivalently (el,c)-nuclearity). Since S2 has the lifting property

(i.e. (min,er)-nuclearity) (and keeping in mind that it is written on the right-hand side) we have

S ⊗min S2 = S ⊗el S2 = S ⊗c S2.

Thus, S has property S2. However we don’t know whether property S2 implies DCEP.

Question 10.8. Does property S2 imply DCEP?

Proposition 10.9. Suppose S⊗τ T has property S2 (resp. has DCEP) where τ is any functorial

tensor product. Then both S and T have property S2 (resp. have DCEP).

Proof. This follows from a very basic principle: The identity on S factors via ucp maps through

S ⊗τ T . More precisely, the inclusion i : S → S ⊗τ T given by s 7→ s ⊗ eT is a ucp map.

Conversely, if g is a state on T then id ⊗ g : S ⊗τ T → S ⊗ C ∼= S is again a ucp map such

that (id⊗ g) ◦ i is the identity on S. This shows that if S ⊗τ T has DCEP (equivalently (el,c)-

nuclearity) then by Lemma 5.2 S has DCEP. Clearly a similar argument shows that T has the

same property. Now suppose that S ⊗τ T has property S2. By using the functoriality of min and

c tensor products we have that

S ⊗min S2
i⊗id−−−→ (S ⊗τ T )⊗min S2 = (S ⊗τ T )⊗c S2

(id⊗g)⊗id−−−−−−→ S ⊗c S2

is a sequence of ucp maps such that their composition is the identity on S ⊗ S2. Since min ≤ c

we obtain that S has property S2. The proof for T is similar.

The fact that T3/J3 = S2 together with Theorem 5.9 allow us characterize WEP as follows:

(See also [11] for further applications of this characterization.)
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Theorem 10.10. A unital C*-algebra A has WEP if and only if the associated map T3⊗minA →

(T3/J3)⊗min A is a quotient map. In other words we have the complete order isomorphism

(T3 ⊗min A)/(J3 ⊗A) = (T3/J3)⊗min A.

Proof. Since Tn is C*-nuclear we have that

S2 ⊗max A = T3/J3 ⊗max A = (T3 ⊗max A)/(J3 ⊗A) = (T3 ⊗min A)/(J3 ⊗A).

Now if A has WEP then it has property S2 and the equality in the theorem satisfies. Conversely

if the equality is satisfied then A must have property S2, equivalently, WEP.

We now discuss some duality results from [10]. Recall that we write Sn in the following basis

form: Sn = span{g1, ..., gn, e, g∗1 , ..., g∗n}. When we pass to dual basis we have that

Sdn = span{δ1, ..., δn, δ, δ∗1 , ..., δ∗n}.

We leave the elementary proof of the fact that δg∗i = δ∗i to the reader. We also remind that δ is

a faithful state and we consider it as the Archimedean matrix order unit for the dual operator

system. We now see that Sdn can be identified with an operator subsystem of M2⊕M2⊕· · ·⊕M2

(the direct sum of n copies of M2). To avoid the excessive notation we use the following:

e = (I2, ...., I2), e1 = (E12, 0, ..., 0), e2 = (0, E12, 0, ..., 0), ... en = (0, ..., 0, E12).

Consider the following map:

γ : Sdn → ⊕ni=1M2 given by δ 7→ e, δi 7→ ei and δ∗i 7→ e∗i for i = 1, ..., n

Now we are ready to state:

Theorem 10.11 (Farenick, Paulsen). The upper map γ : Sdn → ⊕ni=1M2 is a unital complete

order embedding.
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By using the diagonal identification of M2 ⊕M2 in M4, in particular, we have that

Sd2 = {



a b 0 0

c a 0 0

0 0 a d

0 0 e a


: a, b, c, d, e ∈ C}.

In [42] it was shown by Wasserman that C∗(Fn) is not exact for any n ≥ 2. Clearly Sn

contains enough unitaries in C∗(Fn). The following is Corollary 9.6 in [21]:

Proposition 10.12. Let S ⊂ A contain enough unitaries. If S is exact then A is exact.

Corollary 10.13. Sn is not exact for any n ≥ 2.

Exactness is stable under C*-algebra ideal quotients, that is, if a C*-algebra is exact then any

of its quotient by an ideal has the same property (see [24] and [41]). This stability property is not

valid for general operator system quotients even under the favorable conditions: The dimension

of the operator system is finite and the kernel is a null subspace. In fact since Tn is C*-nuclear

(i.e. (min,c)-nuclear) then in particular it is exact (equivalently (min,el)-nuclear). However, its

quotient by the null subspace Jn, namely Sn = Tn/Jn, is not exact.

Corollary 10.14. M2 ⊕M2 (or M4) has a five dimensional operator subsystem (namely Sd2 )

which does not possess the lifting property.

Proof. Since S2 is not exact then, by Theorem 6.7, its dual can not have the lifting property.

The following is perhaps well known but we are unable to provide a reference.

Corollary 10.15. The Calkin algebra B/K does not have WEP.

Proof. Assume for a contradiction that B/K has WEP. This means that S2⊗minB/K = S2⊗c=max

B/K. Since S2 has lifting property we also have that S2 ⊗min B = S2 ⊗max B. Thus,

S2 ⊗max B/K = (S2 ⊗max B)/(S2 ⊗K) = (S2 ⊗min B)/(S2 ⊗K) = S2 ⊗min B/K.

This means that, by Theorem 7.2, S2 is exact which is a contradiction.
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Corollary 10.16. S2 ⊗max S2 has the lifting property.

Proof. Note that (S2⊗maxS2)d = Sd2 ⊗minSd2 ⊂M4⊗minM4. Since exactness passes to operator

subsystems, (S2⊗maxS2)d is exact. Thus, by Theorem 6.7, S2⊗maxS2 has the lifting property.

Remark: We don’t know whether the lifting property is preserved under the maximal tensor

product. For finite dimensional operator systems, by using Theorem 6.7 and 6.3, the same

question can be reformulated as follows: Is exactness preserved under the minimal tensor product?

If S and T contain enough unitaries in their enveloping C*-algebras (also under the assumption

that both S and T are separable) the answer is affirmative. In fact, by Proposition 10.12, both

C∗e (S) and C∗e (T ) must be exact. Also note that both of these C*-algebras are separable. We

know that every separable exact C*-algebra can be represented in a nuclear C*-algebra [26].

So S and T can be represented in nuclear C*-algebras, say A and B, respectively. Note that

S ⊗min T ⊂ A ⊗min B and it is elementary to show that A ⊗min B is again nuclear. Thus,

S⊗minT embeds in a nuclear C*-algebra. Since nuclearity implies exactness and exactness passes

to operator subsystems it follows that S ⊗min T is exact. However, in general, the exactness of

S may not pass to C∗e (S). In [27], Kirchberg and Wassermann construct a separable, (min,max)-

nuclear operator system S with the property that C∗u(S) = C∗e (S). Clearly S is exact. However,

since dim(S) ≥ 3, C∗u(S) equivalently C∗e (S), is not exact.

After these results we also relate the property S2 and the KC.

Theorem 10.17. The following are equivalent:

1. KC has an affirmative answer.

2. S2 has property S2.

3. Every finite dimensional operator system with lifting property has property S2.

4. If S is a finite dimensional exact operator system then Sd has property S2.

5. If S is a finite dimensional C*-nuclear operator system and J is a null subspace of S then

S/J has property S2.

6. S2 ⊗max S2 has property S2.
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Proof. The equivalence of (1) and (2) is simply a restatement of Theorem 5.10. If we assume (1)

then it follows that every finite dimensional operator system with lifting property has DCEP, in

particular, property S2. This proves that (1) implies (3). Clearly (3) implies (6). If we assume

(6) then Proposition 10.9 implies that S2 has property S2. Thus, (2) is true. So we need to show

that these are all equivalent to (4) and (5).

(1) ⇒ (4): Let S be an exact operator system. By Theorem 6.7, Sd has the lifting property and

consequently, it has DCEP. DCEP implies property S2 thus (1) implies (4).

(4) ⇒ (2): In fact Sd2 is exact so its dual, namely S2, has property S2.

(1) ⇒ (5): If S is C*-nuclear, in particular, it has the lifting property. Thus, by Theorem 6.9,

S/J has the lifting property. By using Theorem 5.10, S/J must have DCEP and, thus, it must

have property S2.

(5)⇒ (2): In particular, this implies that T3/J3 = S2 has property S2. This finishes the proof.

In quantum mechanics, one of the basic problems in modeling an experiment is determining

whether by using the classical probabilistic approach we can approximate all outcomes arising

from the non-commutative setting. More precisely, Tsirelson’s problem asks whether the non-

relativistic behaviors in a quantum experiment can be described by relativistic approach. The

proper definitions and basic result in this question are beyond the scope of this paper and we

refer the reader to [37], [20], [14]. In [20] it was shown that when the actors are Alice and Bob

(that is, in the bipartite scenario) the question is reduced to whether

C∗(F∞)⊗min C∗(F∞) = C∗(F∞)⊗max C∗(F∞),

in other words, the Kirchberg Conjecture. When Charlie is also included, i.e. with three actors,

Tsirelson’s problem is known to be related to whether the minimal and the maximal tensor

products of three copies of C∗(F∞) coincide. So we want to close this chapter with a discussion

on this topic from an operator system perspective.

Conjecture 10.18.
3⊗
i=1

minC
∗(F∞) =

3⊗
i=1

maxC
∗(F∞).
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This should be considered as an extended version of the Kirchberg Conjecture. An affirmative

answer of Conjecture 10.18 implies that the Kirchberg conjecture is true. In fact this follows from

the fact that for any functorial tensor product τ and operator systems S and T we have that

S ∼= S ⊗ C ⊂ S ⊗τ T . So if we put C = C∗(F∞) then

C ⊗min C ⊂ (C ⊗min C)⊗min C and C ⊗max C ⊂ (C ⊗max C)⊗max C.

Thus, if Conjecture 10.18 is true then KC is also true. On the other hand even if we assume

that KC has an affirmative answer it is still unknown whether Conjecture 10.18 is true or not.

We want to start with the following observations which are perhaps well known and will be more

convenient when we express this problem in terms of lower dimensional operator systems.

Theorem 10.19. The following are equivalent:

1. Conjecture 10.18 has an affirmative answer.

2. C∗(F∞)⊗max C∗(F∞) has WEP.

3. We have that
3⊗
i=1

minC
∗(F2) =

3⊗
i=1

maxC
∗(F2).

4. C∗(F2)⊗max C∗(F2) has WEP.

Proof. Since the identity on C∗(F∞) factors via ucp maps through C∗(F2), by using the functo-

riality of the max tensor product, it follows that the identity on C∗(F∞) ⊗max C∗(F∞) factors

via ucp maps through C∗(F2)⊗max C∗(F2). So by using Lemma 5.2 we obtain that (4) implies

(2). Since the identity on C∗(F2) factors via ucp maps through C∗(F∞), we similarly obtain that

(2) implies (4). The proof of the equivalence of (1) and (3) is based on the same fact. In general,

if the identity on S decomposes into ucp maps through T (say id = ψ ◦ φ), also assuming that

T ⊗min T ⊗min T = T ⊗max T ⊗max T , we have that the maps

3⊗
i=1

minS
φ⊗φ⊗φ−−−−−→

3⊗
i=1

minT =
3⊗
i=1

maxT
ψ⊗ψ⊗ψ−−−−−→

3⊗
i=1

maxS
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are ucp and their composition is the identity from triple minimal tensor product of S to maximal

tensor product of S. Thus these two tensor products coincide. This proves that (1) and (3) are

equivalent. Now let C stand for C∗(F∞). We will show that (2) implies (1). Since C⊗maxC has

WEP then in particular, by Lemma 5.2, this implies that C has WEP, equivalently C ⊗min C =

C⊗maxC. (Recall: These are all equivalent arguments in Kirchberg’s theorem that we mentioned

at the beginning of Chapter 5.) By using Kirchberg’s WEP characterization we readily have that

(C ⊗min C)⊗min C = (C ⊗min C)⊗max C. If we replace the min by max on the right-hand side

of this equation we obtain (1). Conversely suppose (1) is true. As we pointed out earlier, this, in

particular, implies KC. Thus C ⊗min C = C ⊗max C. Since we assumed that the triple minimal

and the maximal tensor product of C coincide, by replacing a max by min (as seen below)

(C ⊗max C)⊗max C = (C ⊗min=max C)⊗min C

we have that , C ⊗max C satisfies Kirchberg’s WEP characterization. So we obtain (2).

Theorem 10.20. The following implications hold:

S2 ⊗min S2 has DCEP ⇒ S2 ⊗min S2 has property S2 ⇒ Conjecture 10.18 is true.

Proof. Clearly DCEP implies property S2. Now, suppose that S2 ⊗min S2 has property S2.

It is not hard to see that S2 ⊗min S2 contains enough unitaries in C∗(F2) ⊗min C∗(F2). We

also remark that our assumption implies KC, that is, if S2 ⊗min S2 has property S2 then, in

particular, S2 has property S2 and by the above result KC has an affirmative answer. So we

also have that C∗(F2) ⊗min C∗(F2) = C∗(F2) ⊗max C∗(F2). Now by using Proposition 5.7,

(S2 ⊗min S2) ⊗min S2 = (S2 ⊗min S2) ⊗c S2 implies that (C∗(F2) ⊗min C∗(F2)) ⊗min C∗(F2) =

(C∗(F2) ⊗min C∗(F2)) ⊗max C∗(F2). Since the min on the right-hand side can be replaced by

max it follows that Conjecture 10.18 has an affirmative answer.

We don’t know whether any of the converse implications in the above theorem hold or not.

Question 10.21. Is S2 ⊗c S2 = S2 ⊗max S2?

Question 10.22. Are DCEP or property S2 preserved under commuting tensor product? That

is, if S and T are operator systems with DCEP (or having property S2) then does S ⊗c T have

77



CHAPTER 10. QUOTIENTS OF THE MATRIX ALGEBRAS

the same property?

An affirmative answer to any of these questions implies that KC is equivalent to Conjecture

10.18. We first remark that in the above theorem the min can be replaced by c, this follows

from the fact that any of the arguments implies KC is true and, thus, S2 ⊗min S2 = S2 ⊗c S2.

Now if we suppose that the first question has an affirmative answer then Theorem 10.17 (6)

and the second argument in the above theorem gives this equivalence. Now suppose that the

second question is true. If we suppose KC has an affirmative answer (so that S2 has DCEP) then

S2 ⊗min S2 = S2 ⊗c S2 and this tensor product has DCEP (or property S2), thus, Conjecture

10.18 is also true.

In [31], Ozawa proved that B(H)⊗minB(H) does not have WEP where H = l2. Since WEP

and DCEP coincide for C*-algebras and B(l2) has WEP we see that DCEP, in general, does not

preserved under the minimal tensor product.

Let T = span{I, E12, E34, E21, E43} ⊂ M4. Recall that Sd2 and T are unitally completely

order isomorphic. Thus we have that

S2 ⊗min S2 = S2 ⊗max S2 ⇐⇒ T ⊗min T = T ⊗max T

which follows from the duality result in Theorem 6.3.

Question 10.23. Is T ⊗min T = T ⊗max T ? Equivalently, is S2 ⊗min S2 = S2 ⊗max S2?

Since KC is equivalent to the statement that S2 ⊗min S2 = S2 ⊗c S2 a positive answer to this

question provides an affirmative answer to KC. In addition to this it also proves that Conjecture

10.18 is true since the condition in the Question 10.21 is satisfied and thus, by the previous

paragraph, KC and Conjecture 10.18 are equivalent.

78



Chapter 11

Matricial Numerical Range of an

Operator

Let S be an operator system. For x ∈ S we define the nth matricial range of x by wn(x) =

{ϕ(x) : ϕ : S →Mn is ucp}. Note that if we consider the operator subsystem Sx = span{e, x, x∗}

of S then, by using Arveson’s extension theorem, the matricial ranges of x remain same when

it is considered as an element of Sx. We finally remark that if T is in B(H) then its numerical

range W (T ) = {〈Tx, x〉 : ‖x‖ ≤ 1} has the property that W (T ) = w1(T ) (see [2], e.g.). For

several properties and results regarding matricial ranges we refer the reader to [2], [34], and [38].

We include some of these results in the sequel. We start with the following well known fact (see

[22, Lem. 4.1] e.g.).

Lemma 11.1. Let S be an operator system and A ∈ Mn(S). Then A is positive if and only if

for every k and for every ucp map ϕ : S →Mk one has ϕ(n)(A) is positive in Mn(Mk).

This lemma indicates that the matricial ranges of an element x in an operator system carry all

the information of the operator subsystem Sx = span{e, x, x∗} as A ∈ Mn belongs to wn(x) if

and only if there is a ucp map ϕ : Sx → Mn such that ϕ(x) = A. Since ϕ is ucp the image of

any element in Sx can be determined by the value ϕ(x). We can also state this as follows:
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Proposition 11.2. Let S = span{e, x, x∗} and T = span{e, y, y∗} be two operator systems.

Then the linear map ϕ : S → T given by ϕ(e) = e, ϕ(x) = y and ϕ(x∗) = y∗, provided it is

well-defined, is ucp if and only if wn(y) ⊆ wn(x) for every n. Consequently, ϕ is a complete

order isomorphism if and only if wn(x) = wn(y) for every n.

Proof. First suppose that ϕ is ucp and let A ∈ wn(y). So there is ucp map ψ : T → Mn such

that ψ(y) = A. Clearly ψ ◦ϕ is a ucp map from S into Mn which maps x to A. Thus, A belongs

to wn(x). Since n was arbitrary this completes the proof of one direction. Now suppose that

wn(y) ⊆ wn(x) for every n. We will show that ϕ is a cp map. The above lemma states that if

u is in Mn(R), where R is any operator system, then u is positive if and only if for every k and

for every ucp map φ : R →Mk one has φ(n)(u) is positive. From this we deduce that an element

of the form u = e ⊗ A + x ⊗ B + x∗ ⊗ C in Mn(S) is positive if and only if for every ucp map

map φ : R →Mk one has φ(n)(u) = Ik ⊗ A+ ϕ(x)⊗B + ϕ(x)∗ ⊗ C is positive in Mk ⊗Mn for

every k, equivalently, Ik ⊗A+X ⊗B+X∗⊗C is positive in Mk ⊗Mn for every k and for every

X in wk(x). Of course, same property holds Mn(T ) in when x is replaced by y. Now, by using

the assumption wk(y) ⊆ wk(x) for every k, it is easy to see that ϕ is a cp map. The final part

follows from the fact that ϕ−1 is ucp if and only if wn(x) ⊆ wn(y) for every n.

In this chapter we again use the notations B for B(l2) and K for the ideal of compact operators.

A dot over an element represents its image under the quotient map. We start with the following

result given in [38].

Theorem 11.3 (Smith, Ward). Let Ṫ ∈ B/K and n be an integer. Then there is a compact

operator K such that wn(T +K) = wn(Ṫ ).

Remark: In fact this theorem follows by using the k-lifting property of a finite dimensional

operator system (Theorem 9.11). Moreover, we can deduce a more general form of this result:

If A is a unital C*-algebra and I ⊂ A is an ideal then for any ȧ in A/I, and for any k there is

an element x in I such that wk(a+ x) = wk(ȧ). This directly follows from the k-lifting property

of the operator system Sȧ = {ė, ȧ, ȧ∗} and the fact that every k-positive map defined from an

operator system into Mk is completely positive.
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Turning back to the above result, we see that for a fixed n, an operator T ∈ B can be compactly

perturbed such that the resulting operator and its its residue under the quotient map have the

same nth matricial range. Then the authors stated the following conjecture which is currently

still open.

Smith Ward Problem (SWP): For every T in B(H) there is a compact operator K such that

wn(T +K) = wn(Ṫ ) for every n.

This question is also considered in [34] and several equivalent formulations have been given.

In particular it was shown that it is enough to consider block diagonal operators, and for this

case, the problem reduces to a certain distance question [34, Thm. 3.16]. However, the following

remark which depends on an observation in [2] will be more relevant to us. We include the proof

of this for the completeness of the paper.

Proposition 11.4 (Paulsen). The following are equivalent:

1. SWP has an affirmative answer.

2. For every operator subsystem of the form SṪ = {İ , Ṫ , Ṫ ∗} in the Calkin algebra B/K, the

inclusion SṪ ↪→ B/K has a ucp lift on B.

Proof. First suppose that SṪ has a ucp lift ϕ on B. Since q(ϕ(Ṫ )) = T , where q is the quotient

map from B into B/K, ϕ(Ṫ ) = T +K for some compact operator K. It is not hard to show that

wn(T + K) = wn(Ṫ ) for every n. In fact, if A ∈ wn(Ṫ ), say A is the image φ(Ṫ ) of some ucp

map φ : B/K→Mn, then the composition φ ◦ q is a ucp map from B into Mn which maps T to

A. Conversely if B is in wn(T ), say ψ(T ) = B where ψ : B→Mn is ucp, then ψ ◦ ϕ : SṪ →Mn

is ucp that maps Ṫ to B. Since T was arbitrary it follows that (1) is true. Conversely suppose

that (1) holds. So for Ṫ in B/K we can find K in K such that wn(Ṫ ) = wn(T +K) for every n.

Now, by using Proposition 11.2, SṪ and ST+K ⊂ B are unitally completely order isomorphic via

Ṫ 7→ T +K. This map is ucp and a lift of the inclusion SṪ ↪→ B/K. So proof is done.

Depending on Proposition 7.4 and Theorem 6.7 we obtain the following formulations of the

Smith Ward Problem:
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Theorem 11.5. The following are equivalent:

1. SWP has an affirmative answer.

2. Every three dimensional operator system has the lifting property.

3. Every three dimensional operator system is exact.

Proof. Equivalence of (2) and (3) follows from Theorem 6.7. If every three dimensional operator

system is exact then their duals, which covers all three dimensional operator systems, must have

lifting property and vice versa. Now suppose (2). This in particular implies that every operator

subsystem of the form SṪ = {İ , Ṫ , Ṫ ∗} in the Calkin algebra B/K, the inclusion SṪ ↪→ B/K

has a ucp lift on B. Hence by using the above result of Paulsen, we conclude that SWP has an

affirmative answer. Now suppose (1) holds. Let S be a three dimensional operator system. We

will show that S has lifting property. Let ϕ : S → B/K be a ucp map. Clearly the image ϕ(S)

is of the form SṪ = {İ , Ṫ , Ṫ ∗} for some T in B. Since we assumed SWP, the above result of

Paulsen ensures that SṪ has a ucp lift on B, say ψ. Now ψ ◦ϕ is a ucp lift of ϕ on B. Finally by

using Proposition 7.4 we conclude that S has lifting property.

Recall from Proposition 6.12 that every two dimensional operator system is C*-nuclear and

consequently they are all exact and have lifting property. On the other hand there is a five

dimensional operator system, namely S2, which is not exact and, by Theorem 6.7, its dual Sd2 ,

which embeds in M2 ⊕M2, does not posses lifting property.

Remark 11.6. There is a four dimensional operator system which is not exact and consequently,

by Theorem 6.7, its dual does not have the lifting property.

Proof. It is well known that F2 embeds in Z3 ∗Z2 (see [18, pg. 24] ,e.g.). So by using Proposition

8.8 of [40], C∗(F2) embeds in C∗(Z3 ∗ Z2) with a ucp inverse. Thus, the identity on C∗(F2)

decomposes via ucp maps through C∗(Z3 ∗Z2). This means that, by Lemma 5.2, any nuclearity

property of C∗(Z3 ∗Z2) passes to C∗(F2). Since C∗(F2) is not exact we obtain that C∗(Z3 ∗Z2)

cannot be exact. Note that Z3 ∗ Z2 can be described by 〈a, b : a3 = b2 = e〉 so, necessarily, b

must be a self adjoint unitary in C∗(Z3 ∗ Z2). Let S = span{e, a, a∗, b}. S is a four dimensional
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operator subsystem of C∗(Z3 ∗ Z2) that contains enough unitaries. By Proposition 10.12, S

cannot be exact. By Theorem 6.7, its dual cannot have the lifting property.

Now we turn back to the Kirchberg Conjecture (KC). Before we establish a connection between

SWP and KC we recall that an operator system is (min,c)-nuclear if and only if it is C*-nuclear.

We refer back to Chapter 4 for related discussion. We also recall that KC is equivalent to

the statement that every finite dimensional operator system that has the lifting property has the

double commutant expectation property (DCEP). Now if we assume that both SWP and KC have

affirmative answers then it follows that every operator system with dimension three is exact and

has the lifting property, equivalently, they are all (min,el)-nuclear and (min,er)-nuclear. Since we

assumed KC it follows that all three dimensional operator systems must have DCEP, equivalently

(el,c)-nuclearity. Finally, (min,el)-nuclearity and (el,c)-nuclearity implies (min,c)-nuclearity, that

is, C*-nuclearity. Conversely if every operator system of dimension three is C*-nuclear this in

particular implies they are all exact, (or have lifting property). Hence we obtain that

KC + SWP =⇒
every three dimensional

operator system is C*-nuclear
=⇒ SWP

Consequently forming an example of a three dimensional operator system which is not C*-nuclear

shows that both KC and SWP cannot be true. Showing indeed that they are all C*-nuclear

provides an affirmative answer to SWP.

Question 11.7. We repeat a question we considered before: If X is a compact subset of {z :

|z| ≤ 1} then is S = {1, z, z∗}, where z is the coordinate function, C*-nuclear? When X is the

unit circle T then S coincides with S1 and for this case we know that S is C*-nuclear.
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