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Abstract

This thesis focuses on deformation tracking and diffeomorphic matching in 2D or 3D

medical imaging. We have developed and implemented novel algorithmic approaches

to track both the myocardial motion in 2D IntraCardiac Echocardiography images

and the Mitral Valve deformation in 3D ultrasound images.

We studied the myocardial deformation through the registration of IntraCardiac

Echocardiography images, by utilizing the statistical properties of the speckle noise.

Within a framework of parametric elastic registration, the deformation was estimated

by optimizing the energy function computed by applying the maximum likelihood

approach to the speckle noise model. And, the optimization procedure is accelerated

by applying the multiresolution method and local masking, which also improve the

robustness of our algorithm. Numerical results are verified perfectly by the medical

data from Texas Medical Center.

We then consider optimal matching of submanifolds such as curves and surfaces

by a variational approach based on Hilbert spaces of diffeomorphic transformations.

In an abstract setting, the optimal matching is formulated as a minimization problem,

in which the objective functional consists of two parts measuring the elastic energy of

the dynamically deformed surfaces and the quality of the matching. The performance

of our diffeomorphic tracking in medical 3D-image movies is illustrated by numerical

results for the dynamic modeling of the human mitral valve annulus by computer

analysis of 3D-echocardiographic image sequences.
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Chapter 1

Introduction

The goal of image registration is to determine a spatial transformation that will bring

into correspondence (i.e. register ) pairs of homologous points in 2 given images. In

the simplest cases, the mathematical form of the desired spatial transformation can

be restricted by simple physical principles. For example, when registering images ac-

quired from the same subject, it is often possible to assume that the body part being

imaged can be treated as a rigid body, which leads to a highly constrained spatial

transformation model. Unfortunately, physical processes involved in the acquisition

and reconstruction of medical images can cause artifacts and lead to violations of

the rigid body model, even when the object being imaged adheres strictly to rigid

body constraints. Potential sources of such distortions are prevalent in magnetic

resonance (MR) and positron emission tomography (PET) images, also distortions

of soft tissues can also lead to nonlinear effects that violate rigid body assumptions.

Registration of images acquired from different subjects represents the extreme end of
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the spectrum, where developmental factors including genetics, environment, and ran-

dom influences all contribute to the complex differences between subjects. Chapter

3 gives a historic review of the image registration methods.

2D-ICE is a primary echocardiography modality to acquire visual information

on live cardiac anatomy [43][44][45][46][47][48]. However, ICE-images are always

perturbed by a strong “speckle” noise, due to diffuse scattering of ultrasound pulses

with randomly dispersed small scatterers, at sound wavelength scales. Speckle noise

is non-gaussian with a high noise-to-signal ratio. Speckle decorrelation from frame to

frame is a standard assumption in this context, as well as for different pixels within

a single frame.

Speckle tracking of heart motion focuses on estimation of the non-linear and often

large deformations ft of the heart muscle between a reference image frame Jr and

any other image frame Jt in the same heart cycle, in the presence of speckle noise.

Several “speckle tracking” algorithms [62][63][64][65][66] have been applied to heart

motion recovery in cardiac echocardiography, including optical flow, block matching,

and elastic registration.

Classical optical flow approaches [49] [50] [51] have fairly low performance. Indeed

they assume pixel intensities to remain constant between consecutive image frames,

and hence are highly sensitive to speckle noise. For the block matching techniques

[52] [53] [54] [55] [56], capture ability varies with block size, and it is quite difficult

to select an optimum block-size that captures both large and small deformations

simultaneously. Elastic registration algorithms [57] [58] have performed better for

myocardial motion detection, resulting in good spatial capture ability for non-linear
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deformations.

Most published cardiac motion detection methods still do not attempt to fully use

the statistical features of speckle noise. However a few recent studies [53] [54] [59],

have explored maximum likelihood techniques to extract cardiac motion, incorpo-

rating a well documented theoretical stochastic model for ultrasound speckle noise.

In [59] an elastic registration approach was applied to ICE image data, to compute

cardiac motion by minimization of a cost function derived from maximum likelihood

principles, and validated the technique by comparison with experimental cardiac

strain data acquired by recording displacements of microcrystals surgically inserted

in the hearts of animal subjects by Dr D. Khoury’s team at Methodist Hospital.

In chapter four, we have undertaken to generalize and deepen the method im-

plemented in [59], the main principles of our approach are: stochastic disparity cost

functional, estimation of the speckle noise, image specific speckle noise modeling and

multiresolution and masking.

Clinical diagnosis and therapy planning are increasingly often supported by 3D-

imaging modalities, such as MRS (Magnetic Resonance Spectroscopy), PET (Positron

Emission Tomography), SPECT (Single Photon Emission Computed Tomography)

for functional information, and CT (Computed Tomography), MRI (Magnetic Res-

onance Imaging), Ultrasound Echography , X-Ray, for anatomical visualization.

Thus clinicians and medical researchers become natural users for automated 3D-

image registration providing voxel to voxel matching of two 3D-images of the same

anatomical object obtained by different imaging modalities, at different times, or
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from different perspectives. The search for a good voxel to voxel correspondence be-

tween reference and target images Jref and Jtar, is guided by one or several matching

quality criteria. Image matching is generally achieved by an R3-diffeomorphism F

matching two given bounded subdomains of the 3D-voxel grid, and can thus be

assigned an elastic energy EE(F ) measuring the amount of spatial deformation im-

plemented by F . In 2D or 3D-image registration, typical matching quality criteria

involve the differences difint(z, z′) = |Jtar(z′)−Jref (z)| in image intensities at all pairs

(z, z′) of matched voxels. The Intensity Matching Cost IMC(F ) is often defined by

fixing some exponent a > 0 and summing difinta(z, z′) over all voxels z belonging to

the domain of interest in Jref . The search for an optimal registration then becomes

a variational problem where one seeks a deformation F minimizing a linear combi-

nation of EE(F ) and IMC(F ). Image registration methods were initially designed

for 2D-images, for instance to align tomographic slices of different recordings, but in

the last decade, 3D-image registration based on volumetric data sets has become the

main technical challenge, and involves much heavier computing resources. Surveys

of image registration algorithms can be found in [76, 89, 100].

The mitral valve is a dual-flap valve in the heart that lies between the left atrium

(LA) and the left ventricle (LV). The mitral valve and the tricuspid valve are known

collectively as the atrioventricular valves because they lie between the atria and

the ventricles of the heart and control the blood flow. A normally-functioning mitral

valve opens due to increased blood pressure from the left atrium as it fills with blood.

As the pressure increases above that of the left ventricle, the valve opens allowing

blood to flow into the left ventricle during diastole (early rapid filling and atrial

4



contraction), and closes at the end of atrial contraction to prevent blood flowing

back.

Disorders of the mitral valve are the second most frequent heart problems, cumu-

lating 14 percent of total number of deaths caused by Valvular Heart Disease each

year in the United States and require elaborate clinical management. Visual and

quantitative evaluation of the valve is an important step in the clinical workflow ac-

cording to experts as knowledge about mitral morphology and dynamics is crucial for

interventional planning [30][31]. In chapter 6, we apply variational techniques based

on Hilbert spaces of diffeomorphic transformations to numerically construct diffeo-

morphic flows modeling the dynamic deformations between multiple 3D-snapshots

of the human mitral valve apparatus. In an abstract setting, the optimal matching is

formulated as a minimization problem involving actions of diffeomorphisms on reg-

ular Borel measures considered as support measures of the reference and the target

submanifolds. The objective functional consists of two parts quantifying the elastic

energy of the dynamically deformed surfaces and the quality of the geometric sur-

face matching. To make the problem computationally accessible, we use reproducing

kernel Hilbert spaces with radial kernels and weighted sums of Dirac measures which

gives rise to diffeomorphic point matching and amounts to the solution of a finite

problem in very high dimensions.
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Chapter 2

Ultrasound imaging

2.1 Basic Principles of Ultrasound

Diagnostic ultrasound employs pulsed, high frequency sound waves to image tissue

structures and their motion [37]. An ultrasound wave is a form of mechanical energy

that propagates through a medium by compression and rarefaction. Ultrasound

wavelength determines the spatial resolution achievable along the direction of the

beam. A high-frequency ultrasound beam (small wave- length) provides superior

resolution and image detail compared with a low-frequency beam.

The emitted ultrasound pulse is the impulse function of the system. When it

represents the output of the ultrasound system during interrogation of an ideal point

target, the echo pulse is also known as the system’s point spread function (PSF).

The term PSF is often used to refer to two-dimensional representations of the system
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response in pressure amplitude versus space, with the implicit understanding that

the actual response has three-dimensional extent.

In ultrasound system, the axial, lateral, and elevational (slice thickness) dimen-

sions determine the spatial resolution and visibility of the system.

Axial resolution defines the ability of the ultrasound pulse to differentiate between

two closely spaced objects that lie along the axis of an ultrasound beam. Lateral

(azimuthal) resolution defines the ability to resolve adjacent objects perpendicular

to the beam direction and is determined by the beam width (diameter). Elevational

resolution is dependent on the transducer element height, and is perpendicular to

the image plane.

Ultrasound interactions with matter are determined by the acoustic properties

of matter. As ultrasonic waves propagate through a medium, some effects that are

observed, including reflection, refraction, scattering and attenuation [37].

Sound reflection occurs at tissue boundaries on a scale much larger than the

wavelength, and with differences in acoustic impedance. Scattering refers to the in-

teraction of the ultrasound wave with microstructures that are much smaller than

its wavelength. There are two types of scattering in human bodies, arising from the

spatial arrangement of the scatterers in the ultrasound resolution cell. If the scat-

terers have a periodic arrangement, a coherent scattering is introduced, producing

periodicity in the echo spectrum. If the arrangement of these scatterers is spatially

random, the resulting diffuse scattering gives rise to speckle [38]. The texture of

the observed speckle pattern does not correspond to underlying structure. However,
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the local brightness of the speckle pattern does reflect the local echogenicity of the

underlying scatterers. Attenuation is primarily due to the inner friction or viscosity

of the tissue that transforms sound energy into other energy forms such as heat.

Signal attenuation depends highly on the carrier frequency. Higher frequencies allow

a better spatial resolution, but are more attenuated than lower ones and thus have

less penetrating ability.

2.2 B-mode Ultrasound Imaging

The basic principle of ultrasound imaging is to to emit pulses, and to collect reflected

echoes. In the imaging system, the strength or amplitude of each reflected wave is

represented by a dot. These dots are combined to form a complete image. The

brightness of the dot represents the strength of the returning echo. The position of

the dot represents the depth from which the returning echo was received.

The detected echoes may be displayed in one-dimensional formats such as am-

plitude mode (A-mode), brightness mode (B-mode) or motion mode (M-mode) for-

mats. B-mode is the electronic conversion of the A-mode. In this mode, a line of

brightness-modulated dots is displayed, and the line represents the orientation of the

transducer.

An ultrasonic scanner generally operates in B-mode, and presents a gray-scale

image that represents a spatial map of echo amplitude. In the B-mode image, white

dots represent strong reflections, e.g., the reflection caused by diaphragm, gallstones

and bones; grey dots denote weaker reflections, e.g., solid organs and thick fluid; and
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black dots indicate no reflection, e.g., fluid within a cyst.

2.3 Ultrasound Image Artifacts

Ultrasound image artifacts arise from an incorrect display of anatomy or noise during

imaging. Incorrect anatomical imaging can cause shadowing, reverberation, and

speed displacement artifacts. However, in this study, we are mainly concerned with

the system noise artifact, called speckle. Speckle has a textured appearance that

results from the juxtaposition of small, closely-spaced structures that are too small

to be resolved by the PSF. Speckle therefore is the result of diffuse scattering, and

it can considered as an inherent property of the ultrasound image. Speckle generally

does not reflect the structure of the underlying tissue. The regional mean brightness

of texture pat- tern, however, reflects the regional echogenicity of tissue. Therefore,

speckle can be considered as noise, since it may obscure structures in the medium

under observation.

Speckle is present in both RF data and envelope-detected data, and the tex-

ture of the observed speckle pattern does not correspond to underlying structure.

While the mean speckle brightness at each region of the image reflects the original

echogenicity map, the speckle noise itself does not reflect the underlying tissue struc-

ture, and provides practically no information on the detailed echogenicity map or

the corresponding scattering function.
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2.3.1 The statistics of speckle

Given the stochastic nature of speckle noise, we must describe this noise pattern

statistically to draw general conclusions about imaging systems. The statistics used

here to describe ultrasound speckle are drawn from the literature of laser optics. Each

one of the diffuse scatterers in the isochronous volume contributes a small component

to the echo signal, which is then modeled as the position of a random walk in the

complex plane. The steps of this random walk are considered independent random

variables, and one can apply the Central Limit Theorem to their sum. Therefore, in

fully developed speckle, this complex radio-frequency echo signal from diffuse scat-

terers alone has a zero mean, two-dimensional Gaussian probability density function

(PDF) in the complex plane.

Envelope detection removes the phase component, creating a signal with a Rayleigh

amplitude PDF:

pA(s) =
s

σ2
exp

(
− s2

2σ2

)
, a ≥ 0 (2.1)

Speckle brightness is greater if there are fewer, longer steps in the random walk than

if there are many shorter steps. This could be accomplished by improving the spatial

resolution of the system. On the other hand, if the scatterer density is doubled, a
√

2 increase in brightness results.
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Chapter 3

Historic review

3.1 Image registration

The goal of image registration is to determine a spatial transformation that will

bring into correspondence (i.e. register ) pairs of homologous points in 2 given

images [18][19][20][21][22][23][24]. In the simplest cases, the mathematical form of

the desired spatial transformation can be restricted by simple physical principles.

For example, when registering images acquired from the same subject, it is often

possible to assume that the body part being imaged can be treated as a rigid body,

which leads to a highly constrained spatial transformation model. Unfortunately,

physical processes involved in the acquisition and reconstruction of medical images

can cause artifacts and lead to violations of the rigid body model, even when the

object being imaged adheres strictly to rigid body constraints. Potential sources of

such distortions are prevalent in magnetic resonance (MR) and positron emission
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tomography (PET) images, also natural deformations of soft organs can also lead

to nonlinear effects that violate rigid body assumptions. Registration of images

acquired from different subjects represents the extreme end of the shape deformation

spectrum, where developmental factors including genetics, environment, and random

influences all contribute to the complex shape differences between subjects.

3.2 Elements of registration

Existing registration algorithms can be classified by three elements: feature space,

search space and similarity metrics.

3.2.1 Feature space

In a preliminary step, some intermediate data are extracted from the two images

being registered. These data live in a feature space, which can be pixel-based,

transform-based, or feature-based. Pixel-based algorithms work directly with the

pixel values of the images being registered. Preprocessing if often used to suppress

the adverse effects of noise and differences in acquisition [10], or to increase or uni-

formize pixel resolution [11]. It is possible to work directly with the pixel values on

the discrete coordinate grid. However, to get a subpixel resolution, the registration

problem is often cast into the continuous framework. The images are considered as

functions of real arguments: the pixels (or voxels) coordinates. The correspondence
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between the discrete and continuous versions of the image is established using inter-

polation. The crudest interpolation method is the nearest-neighbor, and the most

often used one is linear (resp. bi- or trilinear) interpolation. Among the high-end

methods, spline interpolation [60][61][9] provides the best tradeoff between accu-

racy and computational cost [1][2]. Transform-based algorithms exploit properties of

the Fourier, wavelet, Hadamard, and other image transforms, making use of the fact

that certain deformations manifest themselves more clearly in the transform domain.

These methods are used mainly in connection with linear deformation fields. Never-

theless, there are examples of methods that estimate locally linear optical flow using

Gabor filters [3][4] and B-spline wavelets [5]. Typical characteristics of the image

transforms employed are linearity and independence of the actual image contents.

Feature-based algorithms work on a set of characteristic features extracted from the

images. The dimensionality of the features is usually drastically smaller than the di-

mensionality of the original image data. The extraction process is highly non-linear,

mostly using thresholding.

In chapter three, registration of 2D-ICE images was studied by working directly

with (all) the pixel intensity values on the discrete grid. To improve both the accu-

racy and computing efficiency, specific masks on the image were applied both in the

objective cost function and the optimization process, the importance of which was

also identified by the statistical analysis of the speckle noise distributions. In chapter

5, registration of 3D ultrasound images is based on the combination of selected land-

mark features and of voxel intensity values. The landmark points were interactively

tagged on 3D medical images by experienced cardiology experts, a meticulous task
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which cannot generally be replaced by automatic preprocessing algorithms.

3.2.2 Search space

One of the important factors to categorize registration algorithms is the search space

including all warping (or deformation) functions that are candidate solutions of the

registration problem. These classes of deformation (warping) functions thus model

the sought for correspondence between the two images to register. The deformation

models are strongly characterized by their number of parameters and the spatial

extent of the image area influenced by a single parameter.

Parametric, global methods describe the registration mapping using a global de-

formation model with a relatively small number of parameters. The model mostly

consists in expressing the warping function as a linear combination of basis functions

, which can be for instance a polynomial basis or a harmonic basis. For these meth-

ods, the deformation model corresponding to a specific warp space is as important

as the matching criterion being optimized.

Semi-local models use a moderate number of parameters with local influence. A

grid of control points is placed over the image. Their spacing corresponds loosely to

knot or landmark density.

Finally, there are non-parametric, local methods. The deformation function
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sought after is basically unconstrained, or belongs to a very large and unrestric-

tive functional space, e.g., the Sobolev space W 2
2 of twice differentiable functions.

We seek the values of this deformation on a very fine grid, usually coinciding with

pixel locations. These methods are often formulated as variational techniques, which

seek to minimize a scalar functional cost criterion, or (more generally) characterize

the deformation function as solutions of partial differential equations (PDE) driven

by the image data. The essence of these methods thus lies almost entirely in the

cost criterion to minimize or the PDE to solve . Such PDEs have been derived from

the optical flow approach (gradient methods) [6], from the viscous fluid model [7][8],

from elastic deformations with physical analogs, etc. In chapter 3 of this thesis,

registration employs semi-local models where the deformations are modeled by cubic

B-spline functions.

In chapter 5, variational methods were applied to solve the diffeomorphic deformation

problem in 3D ultrasound images.

Registration in chapter three employs semi-local models where the deformations

were described by cubic B spline functions. Variational methods was applied in

chapter five to solve the diffeomorphic deformation problem in 3D ultrasound images.

3.2.3 Similarity metrics

The quality of registration is often described by a cost function, involving a predom-

inant term quantifying the matching quality, which we shall call the data term. For

feature-based methods it is a mean distance between corresponding features in the
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source and target images after warping. Note that the case of interpolation with

landmarks can be considered as a limit case, when a maximum weight is given to

this distance, constraining it to be zero. If the pairing between source and target

features is not known, the iterative closest point algorithm can be used to determine

it. For pixel-based methods, the data term is a similarity measure between the two

images after warping. Correlation, especially local normalized correlation, is an im-

portant cost function because of its probabilistic interpretation. It is rather costly

to evaluate and sensitive to noise. Instead, the similarity between images is most

often expressed using their difference in l1 or l2 norms. For images acquired by differ-

ent imaging modalities, the local mutual information criterion seems to be superior

to correlation criteria, at the expense of more computational complexity. For local

criteria, such as local normalized correlation, local variance, or local mutual informa-

tion, the neighborhood size must be properly chosen. The above mentioned criteria

will use image interpolation to calculate the warped version of the test image. In

template-based methods, the template can be compared with a specific region in the

target image using any of the similarity measures suitable for pixel-based methods.

For transform-based methods, the least-squares measure in the transformed domain

is often used.

In chapter 3 of this thesis, statistical properties of speckle noises were exploited to

build the cost function. While in chapter 5, squared difference of voxel intensities was

combined with geometric shape similarity metric to generate the total cost function.

Because the correspondences between landmark points are not known, the Hausdorff

distance between two discretized surfaces was systematically used.
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3.3 Registration of 2D-ICE images

2D-ICE is a primary echocardiography modality to acquire visual information on

live cardiac anatomy [43][44][45][46][47][48]. However, ICE-images are always per-

turbed by a strong “speckle” noise, due to diffuse scattering of ultrasound pulses

with randomly dispersed small scatterers, at sound wavelength scales. Speckle noise

is non-gaussian with a high noise-to-signal ratio. Speckle decorrelation from frame to

frame is a standard assumption in this context, as well as for different pixels within

a single frame.

Speckle tracking of heart motion focuses on estimation of the non-linear and often

large deformations ft of the heart muscle between a reference image frame Jr and

any other image frame Jt in the same heart cycle, in the presence of speckle noise.

Several “speckle tracking” algorithms [62][63][64][65][66] have been applied to heart

motion recovery in cardiac echocardiography, including optical flow, block matching,

and elastic registration.

Classical optical flow approaches [49] [50] [51] have fairly low performance. Indeed

they assume pixel intensities to remain constant between consecutive image frames,

and hence are highly sensitive to speckle noise. For the block matching techniques

[52] [53] [54] [55] [56], capture ability varies with block size, and it is quite difficult

to select an optimum block-size that captures both large and small deformations

simultaneously. Elastic registration algorithms [57] [58] have performed better for

myocardial motion detection, resulting in good spatial capture ability for non-linear

deformations.

17



Most published cardiac motion detection methods still do not attempt to fully use

the statistical features of speckle noise. However a few recent studies [53] [54] [59],

have explored maximum likelihood techniques to extract cardiac motion, incorpo-

rating a well documented theoretical stochastic model for ultrasound speckle noise.

In [59] an elastic registration approach was applied to ICE image data, to compute

cardiac motion by minimization of a cost function derived from maximum likelihood

principles, and validated the technique by comparison with experimental cardiac

strain data acquired by recording displacements of microcrystals surgically inserted

in the hearts of animal subjects by Dr D. Khoury’s team at Methodist Hospital.

3.3.1 Medical Goal

Strains describe the active motion of the myocardial muscle. In the presence of

ischemic heart disease the affected segments have their contraction altered, however

they may move because of the tethering of the neighbor segments.

Strain and strain rate have been calculated using ultrasound data derived from

Doppler Velocity Imaging. However this measurement has a disadvantage: it only

measures the deformation along the ultrasound beam direction and is very depen-

dent on the signal to noise ratio of the Doppler data. In chapter 3, we explore the

possibility of obtaining multidimensional strain using speckle tracking and elastic

registration.

We compared regional myocardial strains using the Lagrangian strain S, defined

at time t1 as the relative elongation with respect to the initial distance Lt0 between
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two crystals fixed in mid myocardium of anterior LV wall, i.e.,

S(t1) =
Lt1 − Lt0
Lt0

(3.1)

Our approach achieved a good match between experimental cardiac strain data

and strain estimates computed from ICE images. In collaboration with Dr D. Khoury

we have undertaken to generalize and deepen the method implemented in [59].

3.3.2 B-Splines approximation

The space of spline functions defined on a Euclidean space is a vector space of smooth

linear combinations of a fixed family of polynomials (with fixed degree) restricted

to contiguous compact supports. These supports are defined as the basic tiles of a

”rectangular” net of nodes (called knots). For a spline of degree n, each one of these

basic polynomials has degree n, which would suggest that we need n+ 1 coefficients

to describe each piece. However, there is an additional smoothness constraint that

imposes the continuity of the spline and its derivatives up to order n−1 at the knots,

so that, effectively, there is only one degree of freedom per basic polynomial. Here,

we will only consider splines with uniform knots and unit spacing. The remarkable

result, due to Schoenberg [32][34], is that these splines are uniquely characterized in

terms of a B-spline expansion

s(x) =
∑
k∈Z

c(k)βn(x− k) (3.2)

which involves the integer shifts of the central B-splines of degree n denoted by

βn(x); the parameters of the model are the B-spline coefficients c(k). B-splines,
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defined below, are symmetrical, bell-shaped functions constructed from the (n+ 1)-

fold convolution of a rectangular pulse β0(x)

β0(x) =


1, −1

2
< x < 1

2

1
2
, |x| = 1

2

0, otherwise

(3.3)

βn(x) = β0(x) ∗ β0(x) ∗ · · · ∗ β0(x)︸ ︷︷ ︸
(n+1) times

(3.4)

The B-splines of degree 3 (cubic B-splines) is shown in Fig. 3.1. Since the B-

spline model (3.2) is linear, studying the properties of the basic atoms can tell us a lot

about splines in general. Thanks to this representation, each spline is unambiguously

characterized by its sequence of B-spline coefficients c(k), which has the convenient

structure of a discrete signal, even though the underlying model is continuous.

Figure 3.1: The centered spline of degree 3: cubic B-splines
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The B-splines are the basic building blocks for splines. Their usefulness stems

from the fact that they are compactly supported; in fact, they are the shortest

possible polynomial splines [33]. The simplest way to obtain an explicit formula is

to start by writing its Fourier transform

β̂n(ω) =

(
sin(ω/2)

ω/2

)n+1

=
(ejω/2 − e−jω/2)n+1

(jω)n+1
(3.5)

where we have expressed the (n+1)-fold convolution 3.2 as a product in the frequency

domain.

Then, we interpret the complex exponentials as pure phase factors (time shifts),

and obtain the corresponding time domain formula

βn(x) =
1

n!

n+1∑
k=0

 n+ 1

k

 (−1)k
(
x− k +

n+ 1

2

)n
+

(3.6)

This result clearly shows that βn(x) is a piecewise polynomial of degree n. It also

implies that the (n + 1)th derivative of βn(x) is differentiable up to order n. For n

odd, the knots are on the integers, while for n even, they are at the half integers.

B-splines are very easy to manipulate. For instance, we can obtain derivatives

through the following formula

dβn(x)

dx
= βn−1(x+

1

2
)− βn−1(x− 1

2
) (3.7)

which reduces the degree by one. Similarly, we compute the integral as∫
βn(x) =

∞∑
k=0

βn+1(x− 1

2
− k) (3.8)
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Once we know the effect of linear operators such as (3.7) or (3.8) on the basis func-

tions, it is a trivial matter to apply them to any spline via the B-spline representation

(3.2).

Within the family of polynomial splines, cubic splines tend to be the most popular

in applications-perhaps due to their minimum curvature property. Using (3.2), we

obtain the following closed-form representation of the cubic B-spline

β3(x) =


2/3− (1− |x|/2)x2, 0 < |x| ≤ 1

(2− |x|)3/6, 1 < |x| < 2

0, otherwise

(3.9)

which is often used for performing high-quality interpolation. In later chapters,

cubic B-splines are used both to interpolate the image intensities and in modelling

the deformation functions, and we use β(x) to denote β3(x) for simplicity.

In concrete applications, we use the uniformly-spaced cubic B-splines of the fol-

lowing form

g(x) =
∑
k∈K

c(k)β(x/h− k) (3.10)

Where K is the set of indices of the spline functions, whose supports intersect with

the region of interest in the interpolation; h is the knot spacing (the B-splines will

be centered at points kh for k ∈ K ⊆ Z).

Wavelets methods could be an interesting alternative to spline approximation of

deformations. However, exploring the change from splines to wavelets means working

in a fairly new numerical framework, which requires a quite substantial amount of

programming, and of computing time as well, in order to test and adjust properly
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the gradient descent parameters. We have not attempted to explore this alterna-

tive approach since the registration results obtained by B-splines approximations

were already of quite good quality as compared to medical ground truth, and the

total computing time was highly reduced wit respect to previous implementations of

analogous techniques.

B-splines approximation have the following useful properties:

1. Good approximation properties.

2. Computing speed-Cubic splines have a short compact support of length 4. They

are symmetric and piecewise cubic. To evaluate β(x) at one particular point,

only 5 arithmetic operations (additions or multiplications) and 3 comparisons

are needed. In multiple dimensions, where we will use tensor products of cubic

splines as basis functions, the computational complexity stays low thanks to

separability. The number of operations needed to evaluate g also does not de-

pend on the total number of basis functions (and thus the number of parameters

c(k)).

3. Plausibility-The spline model corresponds to a wide range of physical situations

where the restoring force can be approximated as being linearly dependent on

the displacement. In such situations, the generated deformation is physically

plausible. It is also a good approximation for cases when a better model is not

known, such as the deformation between successive ultrasound images, even

though the actual organ deformations are not of mechanical origins.

4. Simplicity-The spline model is linear in the parameters c(k) and polynomial
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with respect to the spatial position x. It is thus possible to truncate the Taylor

expansion such that it becomes exact in neighborhoods of x with a typical

diameter of h/2.

5. Scalability-Thanks to the q-scale relation β(x/q) =
∑

k a(k)β(x − k), where

q ∈ N , we have the embedding Vhq ⊆ Vh; i.e., the transition from a coarse

space Vhq to a finer space Vh is exact [35].

3.3.3 Heart Anatomy and Mechanism

The heart is surrounded by a double-layered membrane called the pericardium. The

heart has four chambers: the two upper chambers called the left and right atria,

and the lower chambers called the left and right ventricles. The atria act as reser-

voirs for venous blood, and also function as small pumps to assist ventricular filling.

The ventricles are the major pumping chambers that deliver blood to pulmonary

(right ventricle) and systemic circulations (left ventricle). The ventricular wall has

an external border (the epicardium) and an inner border (the endocardium). The

muscular wall itself is called the myocardium and the wall separating the left and

right ventricles is called the interventricular septum. The atria also have an intera-

trial septum.

Four pressure-operated valves ensure that the blood flows only in one direction

and prevent blood from leaking backwards from one chamber to the upstream cham-

ber (valvular regurgitation). The aortic and pulmonic valves are referred to as the
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semilunar valves and are located at the downstream sides of the left and right ven-

tricle, respectively. The two atrioventricular (AV) valves, the mitral and tricuspid

valve, are located between the atria and ventricles. The leaflets of the atrioventricu-

lar valves are connected to the papillary muscles which are, in turn, connected to the

walls of the ventricles. During the contraction, the papillary muscles also shorten

the valves and preventing an outward movement of AV valves toward the atria that

would lead to regurgitation.

3.3.3.1 Cardiac Cycle

The cardiac cycle is the sequence of events that occurs when the heart beats. There

are two phases of the cardiac cycle. In the diastole phase, the heart ventricles are

relaxed and the heart fills with blood. In the systole phase, the ventricles contract

and pump blood to the arteries. One cardiac cycle is completed when the heart fills

with blood and the blood is pumped out of the heart. The events of the cardiac

cycle described below trace the path of the blood as it enters the heart, is pumped

to the lungs, travels back to the heart and is pumped out to the rest of the body.

3.3.3.2 Electrocardiogram

Electrocardiogram (ECG) is a transthoracic interpretation of the electrical activity

of the heart over time captured and externally recorded by skin electrodes. It is a

noninvasive recording produced by an electrocardiographic device.

The ECG works mostly by detecting and amplifying the tiny electrical changes
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Figure 3.2: Cardiac cycle of left ventricle

on the skin caused by the depolarization of the heart muscle during each heart beat.

At rest, each heart muscle cell has an electric charge across its outer wall, or cell

membrane. Reducing this charge to zero is called depolarization, and activates the

cell mechanisms which trigger the cell contraction. During each heartbeat a healthy

heart will have an orderly progression of a depolarization wave triggered by the cells

of the sinoatrial node ; this wave then spreads out through the atrium, passes through

”intrinsic conduction pathways” and finally spreads all over the ventricles. This wave

is detected as tiny rises and falls in the voltage between two electrodes placed on the
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chest skin on both sides of the heart , and is displayed as a wavy line either on a

screen or on paper. This display indicates the overall rhythm of the heart, as well as

potential weaknesses in different parts of the heart muscle.

3.3.3.3 Intracardiac Echocardiography

Echocardiography is a procedure using ultrasonic compression waves applied to the

chest wall to obtain a graphic record of the heart’s position, or the motion of heart

sub-structures such as ventricular walls and valves. There are several modes of

data acquisition from different anatomic locations, such as: transthoracic (TTE),

transesophageal (TPE) and intracardiac echocardiography (ICE) [5]. Identified by

their spatial imaging capability, echocardiographic techniques can be also recognized

by terms, such as 2-D and 3-D echocardiography. Among them, 2-D transthoracic

echocardiography is a widely used ultrasound imaging modality in clinical diagnosis,

often referred as the echocardiography standard. During the scanning process of

TTE, the transducer (or probe) is placed on the chest wall (or thorax) of the patient,

and images are taken by manipulating the transducer position via real-time image

console. In this mode, there are relatively few acoustic windows through which the

heart can be interrogated transthoracically. The apical and parasternal windows

permit the heart to be scanned along its long or short axis, respectively. These

two windows are used mainly for the analysis of ventricular function, whereas the

suprasternal and subcostal windows are primarily applied for other investigations.

For instance, the suprasternal window is well suited for imaging the aorta while the

subcostal window allows the imaging of the interatrial septum and the inferior vena

27



cava. These problems of windows for data acquisition are not present for TPE and

ICE, since imaging is done within the body either at the esophagus or within the

left ventricle via catheter insertion.

Figure 3.3: Example of Intracardiac Echocardiography (ICE)

Intracardiac echocardiography (ICE) has been accepted as a high spatial resolu-

tion imaging modality for the diagnosis of cardiac structure and function [40]. It was

first developed on the technical basis of intravascular ultrasound (IVUS) [39], which

visualizes the structure of vessel walls using a catheter-based image system. The
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ICE catheter has a distal transducer that emits and receives ultrasound pulses. To

acquire images using ICE system, an ICE catheter has to be guided into the ventricle

through the great vessel. Tomographic views of the cavity are acquired by attach-

ing the ICE catheter to a motor drive unit that enables automatic and continuous

rotation of the transducer at a fixed speed. The motor unit is fitted with a custom

computer-controlled pullback device with an optical sensor that enabled external au-

tomatic and accurate withdrawal of the ICE catheter in desired increments. The ICE

catheter and motor unit are connected to an imaging console to acquire continuous

echocardiographic images. Fig. 3.3 shows an example of ICE image.

3.4 Diffeomorphic matching of deformable shapes

in 3D ultrasound imaging

In elastic registration, the deformation is generated by local linearization of the dis-

placement vector field. Achieving image registration by such displacement vector

fields has been an important development in computing non-rigid high dimensional

transformations of medical imagery allowing for comparison of anatomy in a stan-

dard coordinate system. One of the limitations of this approach is that there are

no explicit constraints ensuring that the transformations computed are one-to-one

or invertible. Indeed, in some cases folding of the grid over itself can occur thereby

destroying the neighborhood structure which is essential for the study of anatomy.

This registration method is known as the small deformations approach: anatomically
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valid registrations using locally linearized models via displacement vector fields corre-

spond o situations where the two images to be matched can be accurately registered

by small spatial deformations of the region of interest. It is of considerable inter-

est to compute transformations which are not only invertible but also preserve soft

shapes properties such as smoothness of curves, surfaces or other anatomic features.

Therefore, diffeomorphic transformations, which are smooth invertible spatial map-

pings with smooth inverses, are of considerable interest in this regard. Constraining

the spatial deformations of the voxels (or pixels) networks to be diffeomorphisms

is a natural choice in the study of anatomic deformations of soft organs since con-

nected sets remain connected, disjoint sets remain disjoint, smoothness of anatomical

features such as curves and surfaces is preserved, and coordinates are transformed

consistently. Developing a rigorous, quantitative methodology for comparing shapes

is a contemporary problem actively investigated in image analysis. A typical ap-

plication in medical imaging-in particular 3D brain imaging-is the comparison of

shapes for analogous anatomic structures between two individuals, and the devel-

opment of a statistical theory which allows soft organs shapes to be studied across

populations. This type of investigation is known as computational anatomy [25]. It

is motivated by evidence (for example [26][27][28][29]) of shape differences for soft

organs, between characteristically different populations-such as males and females-

or populations characterized by specific diseases. From a medical diagnosis point of

view, serious information can be gathered about brain diseases, for instance, from

the study of the shapes of specific brain substructures, and that ultimately this type

of investigation will enable early detection of some specific brain diseases.

30



Typically the anatomic structure of interest is modeled as a 1, 2 or 3 dimensional

submanifold of R3 , such as a curve (1D), image (2D), surface (2D), or volume (3D).

Methodologies for studying shape differences are then developed for these models.

A main component in the analysis, after obtaining individual model representations

for the subjects being studied, is the computation of diffeomorphic deformations be-

tween anatomically homologous substructures between the subjects.

Disorders of the mitral valve are the second most frequent heart problem, cumu-

lating 14 percent of the total number of deaths caused by Valvular Heart Disease

each year in the United States, and require elaborate clinical management. Visual

and quantitative evaluation of the valve is an important step in the clinical work-

flow according to experts as knowledge about mitral morphology and dynamics is

crucial for interventional planning [30][31]. We apply variational techniques based

on Hilbert spaces of diffeomorphic transformations to numerically construct diffeo-

morphic flows modeling the dynamic deformations between multiple 3D-snapshots

of the human mitral valve apparatus. In an abstract setting, the optimal matching is

formulated as a minimization problem involving actions of diffeomorphisms on reg-

ular Borel measures considered as support measures of the reference and the target

submanifolds. The objective functional consists of two parts: quantifying the elastic

energy of the dynamically deformed surfaces and the matching quality. To make the

problem computationally accessible, we use reproducing kernel Hilbert spaces with

radial kernels and weighted sums of Dirac measures which gives rise to diffeomorphic

point matching and amounts to the solution of a finite dimensional minimization
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problem in quite high-dimensions.
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Chapter 4

Multiscale Speckle Tracking in

Intracardiac Echocardiography

We studied the myocardial deformation through the registration of IntraCardiac

Echocardiography (ICE) images, by utilizing the statistical properties of the speckle

noise. Within a framework of parametric elastic registration, the deformation was

estimated by optimizing the energy function computed by applying the maximum

likelihood approach to the speckle noise model. Instead of using the standard rayleigh

model to describe the noise, we generalized it to the parametric model which is image

specific. The results of speckle noise estimation show that: for the large area outside

the heart, even the generalized rayleigh model cannot be verified at all; for other area

where the generalized rayleigh model can be fit, the parameter is quite different on

different regions of the images. This conclusion leads us to introduce masks to restrict

the cost functional to interested cardiac muscle areas, which represent only a small
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fraction of the whole images. On the other hand, the use of masks can also reduce

the computing time. Also,the optimization procedure is accelerated by applying

the multiresolution method, which also improves the robustness of our algorithm.

Furthermore, to get the best tradeoff between accuracy and computing time, we

proposed the method of mixture computation where we run the algorithm with no

mask applied firstly for several multiresolution levels and then apply masks in the

remaining levels. Numerical results showed that application of masks greatly reduced

the computation time, and the estimation of speckle noise proved the uselessness of

the theoretical rayleigh model outside the mask of myocardium, which confirms that

adequate masking by semi-local masks is also essential to improve the accuracy of

the algorithm.

4.1 Methodology

4.1.1 Stochastic disparity cost functional

Consider a sequence of 2D-images Jt indexed by time t. The cardiac motion ft be-

tween a reference initial time r and any instant t can be defined by an unknown

non-linear spatial deformation ft moving each pixel x to a new position ft(x). The

reference ICE image Jr is compared to the image Jt after spatial warping by ft, by

computing disparities Mt(x) = Jt(ft(x))− Jr(x) at all pixels x. Elastic registration

begins by defining a cost functional Kdisp(Mt) to globally penalize the field of dis-

parities Mt = Jt ◦ ft − Jr of disparities. In earlier paper [59] the functional Kdisp
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was derived from the standard Rayleigh distribution model of speckle noise. We have

generalized the maximum likelihood approach to compute, for each specific ICE im-

age sequence, a functional Kdisp parameterized by an image based estimation of the

speckle noise characteristics.

4.1.2 Regularization cost functional

Deformation extraction is known to be a so-called “ill-posed” problem having far too

many solutions. Mathematical solution of ill-posed problems relys on “regulariza-

tion” of the potential solutions, to transform the question into a well-posed problem.

Hence we define a “smoothness” cost functional Kreg(ft) penalizing large values of

the gradient ∇ft, and providing the needed regularization term. Finally any can-

didate deformation ft for the matching of Jr and Jt is evaluated by a penalization

cost functional K(ft) given by K(ft) = Kdisp(Mt) +Kreg(ft). Minimization of the

cost functional K(ft) by multiscale gradient descent provides then an estimate of the

deformation ft.

4.1.3 Estimation of the speckle noise

The theoretical multiplicative model for speckle noise, based on the Rayleigh distri-

bution, as used in [59], becomes parameter free as soon as one considers the ratio

of two independent speckle noise values, and hence cannot integrate accurately the

actual statistical properties of specific ultrasound image sequences. We use this

theoretical model as a preliminary rough approximation of speckle noise likelihood
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on several small image patches. We minimize locally the associated cost functional

Kdisp by fast gradient descent to obtain local first approximations of ft and then of

disparities Mt, in order to generate direct estimates of the actual speckle noise.

4.1.4 Image specific speckle noise modelling

Our local estimations of speckle noise enable us to compute key statistical charac-

teristics of the speckle, taking into account a parametric model for the unknown

software transformation implemented to generate the(logarithmic) B-mode presen-

tation of ICE images. We thus found out that within the myocardium,the Rayleigh

model of speckle noise remains valid, but with quite large variances, which are not

constant over the whole myocardium. Outside of the myocardium, the speckle noise

either does not follow the Rayleigh model at all, or when it seems to follow that

model, the local std(standard deviation)s are quite different from those estimated

within the heart muscle areas. Moreover we have shown that contrary to the stan-

dard non-correlated speckle noise models, the actual speckle noise on ICE image data

exhibits strong correlations between neighboring pixels situated at the same radial

distance from the ultrasound emitter.

4.1.5 Minimizing image specific cost functionals

Our detailed speckle modelling results shows that the use of local masks and image

specific statistical speckle noise modelling are necessary in order to improve accuracy

of the probabilistic cost functional Kdisp penalizing disparities. Our approach is
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hence, after finalizing the speckle noise modelling, to launch a second run for the

final minimization of K(ft) by gradient descent, but this time with a more accurate

version of the cost functional Kdisp.

4.1.6 Multiresolution and local Masking

Fast computing of myocardial deformations is of high interest for potential clinical

use. We have improved computing efficiency by introducing masks to restrict the cost

functional to cardiac muscle areas, which represent a small fraction of the whole ICE

images, instead of including all voxels as in [59]. Another key ingredient for faster

computing is to implement an optimized coarse to fine multiresolution approach for

gradient descent. At coarser resolutions, masks have small sizes, and computing

time is strongly reduced, since at coarser scales we also use faster stopping criteria

for gradient descent.

4.1.7 Validation against experimental heart strain data

To evaluate performances of these approaches on actual ICE images, we have com-

pared our estimated myocardial strains with experimental sonomicrometry strain

data recorded on animal subjects by Dr D. Khoury and his team.
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4.2 Mathematical definition of the cost function-

als

4.2.1 Cost Functionals

In the spirit of elastic registration methods, we introduce a cost functional Kdisp(ft)

to penalize the residual intensity disparities between reference image and target image

after spatial warping ft. The low signal to noise ratio suggests that probabilistic

evaluation of disparities should boost the efficiency of the Kdisp functional. Recent

work [59] indicates that maximum likelihood methods do improve motion estimation.

This leads to the definition of (−Kdisp) as the probabilistic log-likelihood of the

observed residual intensity disparities under a speckle noise stochastic model. Non-

linear deformations recovery is known to be an ill-posed inverse problem, and hence

requires “regularization” of the unknown deformation ft. Regularization is achieved

here in two ways : firstly by selecting a parametric smooth model (cubic B-splines) for

the deformation ft, and secondly by adding to the cost functionalKdisp a smoothness

term Kreg penalizing large values of the deformation gradient ∇ft).

4.2.2 B-mode ultrasound display and true Tissue Echogenic-

ity

In ultrasound imaging, for each pixel x, the acquisition system aims to recover the

“true” intensity T (x) representing “Tissue echogenicity” at x. But the true intensity
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T (x) is not directly observable, due to multiplicative corruption by a speckle noise

N(x). The echo-acquisition system thus only recovers, by “Envelope Detection”, a

noise corrupted version ED(x) of the true T (x). The envelope-detected image ED is

linked to speckle noise N and tissue echogenicities T by the multiplicative formula:

ED(x) = T (x)N(x) (4.1)

In medical ultrasound imaging, the envelope-detected image ED is submitted

to logarithmic compression, replacing ED(x) by LED(x) = ln(ED(x)). Then for

better display, the log-intensities LED(x) undergo a fixed recoding selected by the

internal software of the imaging system, to generate the echocardiographic image

frame J displayed in B-mode for visual inspection. We modelled this unknown

internal recoding by a linear transformation, involving 2 unknown parameters, a

positive re-scale coefficient 1
α

and an offset θ:

J(x) =
1

α
ln(ED(x)) + θ (4.2)

The uncorrupted B-mode image I one would ideally like to access or display is given

by

I(x) =
1

α
ln(T (x)) + θ (4.3)

and we hence have the obvious additive relation

J(x) = I(x) + S(x) (4.4)

where S(x) is the additive noise on observed B-mode ICE images, and is related to

the speckle noise by the formula

S(x) =
1

α
ln(N(x)) (4.5)
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For brevity we call S the log-speckle noise.

The speckle noise values N(x) at various pixels x are usually modelled as iden-

tically distributed independent random variables. Their common distribution is as-

sumed to be the celebrated Rayleigh density pN(s) with variance σ2, given by

pN(s) =
1

σ2
e−s

2/2σ2 ∀s ∈ R+ (4.6)

4.2.3 Maximum Likelihood approach

Fix two ICE-image frames Jr and Jt acquired at times r and t, where Jr is a reference

image. As seen in equation (4.4), we have for all pixels x

Jt(x) = It(x) + St(x); Jr(x) = Ir(x) + Sr(x) (4.7)

where It(x), Ir(x) are the “true” intensity values, and St(x), Sr(x) are the log-speckle

values.

All images are indexed by a fixed planar rectangular pixel grid G. Call f : G→ G

the spatial deformation of the pixel grid G capturing the exact apparent motion

(between times r and t) of the planar heart section displayed by image Ir.

Ideally we assume that the unknown spatial deformation f of cardiac tissue pre-

serves tissue echogenicity so that for all pixels x

It(f(x)) = Ir(x)

Hence after warping by the unknown true deformation f , the residual intensity
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disparities Dispt = Jt ◦ f − Jr for B-mode intensities verify

Dispt(x) = St(f(x))− Sr(x) =
1

α
ln(Nt(f(x))/Nr(x)) = η(x) (4.8)

The variables η(x) = 1
α

ln (Nt(x)/Nr(x)) are independent random variables with

the same probability density function (pdf), namely the pdf ρ of 1
α
W where W =

ln(Y/Z), and where Y , Z are independent random variables having Rayleigh distri-

butions with identical variances. An easy theoretical computation shows that the

pdf τ of W is given by

τ(w) =
2e2w

(e2w + 1)2
=

1

2 cosh2(w)
∀w ∈ R+ (4.9)

Hence all the random disparities η(x) generated by noise have the same pdf ρ of 1
α
W

and is given by:

ρ(s) = ατ(αs) ∀s ∈ R+ (4.10)

We denote the common log-density function ln(ρ) of the disparity noise variables

η(x) by

1

2
ln(ρ(s)) =

1

2
ln(2α)− g(αs) ∀s ∈ R+ (4.11)

where the function g is given by

g(w) = ln(1 + e2w)− w ∀w ∈ R+ (4.12)

For myocardial deformation estimation, the only region of interest (ROI) in our ICE

images mainly correspond to the myocardial muscle. Hence, we will restrict the

observation of disparities Dispt to the pixels of the ROI, by selecting and fixing at
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the reference time r a spatial mask MSK, i.e. a subset MSK of the pixel grid G.

Given the true spatial deformation f and the true image intensities Ir and It,the

restriction to MSK of the random field Dispt of disparities after warping has the

following conditional pdf:

p(Dispt) =
∏

x∈MSK

ρ(Dispt(x)) (4.13)

The maximum likelihood principle indicates that a good estimator f̂ of the true

deformation f on our ROI MSK, should maximize in f the conditional likelihood

p(Dispt) given the observed random field Dispt of disparities.

The average over all x in our ROI MSK of the opposite of the negative of the log

likelihood of the disparity field Dispt(x) hence becomes the natural disparity cost

functional Kdisp, which our estimator f̂ of f will attempt to minimize. We thus

define the disparity cost Kdisp by

Kdisp(f) =
1

card{MSK}
∑

x∈MSK

g(αDispt(x)) (4.14)

Note that even when f is the true deformation, Kdisp(f) is a random variable,

obtained as the average of a large number of independent identically distributed

random variables. For large values of card{MSK}, the Law of Large Numbers

proves that Kdisp(f) has a limit tightly linked to the entropy of ρ. Thus when f

is the true deformation, the limit of Kdisp(f) for even moderately large regions of

interest, is deterministic and equal to

H(ρ) =

∫ ∞
−∞

g(αw)ρ(w)dw = 1
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But for large ROI, we expect the true deformation f to minimize Kdisp(f),

so we should expect the minimal disparity cost minKdisp to verify minKdisp =

Kdisp(truef) = 1.

4.2.4 Regularization term Kreg and final cost functional K

For each x in the pixel grid G we define its displacement u(x) under the deformation

f by:

u(x) = f(x)− x (4.15)

Clearly the vector field u immediately determines f and conversely. From now on,

the unknown deformation we search to determine will be the displacement vector

field u, and the disparity cost Kdisp(f) will be considered as a functional Kdisp(u)

of u. Introduce notations for planar coordinates

x = (x1, x2); y = f(x) = (y1, y2);

u(x) = (u1, u2) = ((y1 − x1), (y2 − x2)) (4.16)

As explained precisely below we will model the displacement vector field u by a

the restriction to the pixel grid G of a smooth vector field u defined on R2. The

“regularization” term Kreg(u) is a complementary cost functional penalizing the

lack of smoothness of the displacement field u and we define Kreg(u) as a squared

discrete L2 norm of gradient(u) explicitly given by :

Kreg(u) =
1

card{MSK}
∑

x∈MSK

∑
i,j=1,2

(
∂ui

∂xj

)2

(4.17)
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The final cost functional K(u) to be minimized combines the disparity term

Kdisp(u) with the regularization term Kreg(u) as follows

K = Kdisp+ γKreg (4.18)

where γ is a fixed positive weight to be selected later.

The natural approach to minimize the cost functional K(u) in u is to implement

a gradient descent on u, and of course to restrict this gradient descent to an adequate

vector space V of smooth displacement fields u on R2. We first present the finite

dimensional vector spaces V of functions we shall use to approximate u.

4.3 Multi-resolution optimization of the cost func-

tionals

4.3.1 B-spline model for the displacement vector field u

Consider a lattice of knots L = {k = (k1, k2)|1 ≤ k1 ≤ L1, 1 ≤ k2 ≤ L2}, where the

knots k are placed on a regular subgrid of the pixel grid G. Denote by N1, N2 the

dimensions of the grid G and define the knot spacing h = (h1, h2) where h1 = N1/L1

and h2 = N2/L2) are required to be integers.

The unknown displacement field u is a 2D non-linear transformation which we

modelled by a linear combination of cubic B-splines associated to the knots of the

lattice L. The unknown vector c of coefficients ck = (c1
k, c

2
k) of this linear combination

completely defines the displacement field u (and hence the spatial deformation f) by
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the explicit formula :

u(x) =
∑
k∈L

ckB(x, h, k) (4.19)

where

B(x, h, k) = β(
x1

h1

− k1 +
1

2
)β(

x2

h2

− k2 +
1

2
) (4.20)

and β(s) is 1D cubic B-spline function.

During the warping process, we need a continuous version of the discrete image

Jt. Using also cubic B-splines, we interpolate the discrete image Jt to extend it from

the pixel grid G to a continuous function still denoted Jt:

Jt(x) =
∑
y∈G

byB(x− y) (4.21)

where B(x− y) = β(x1 − y1)β(x2 − y2), and by is a set of interpolation coefficients,

which can be computed prior to the search for u by solving a linear system. Due

to the short support (length 4) of cubic B-splines, almost all off-diagonal elements

of the matrix of this linear system are zeros. Also, the by can be obtained by an

effective filtering algorithm [61] which incurs negligible overhead.

4.3.2 Multi-resolution optimization of cost functionals

To compute the unknown spatial displacement field u matching images Jt and Jr,

we need to minimize the cost functional K(u). To minimize K(u) we implement a

multiresolution gradient descent in u at coarse to fine successive resolutions. Multi-

resolution is used for both the image model and the deformation model.
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First, we build an image pyramid composed of gradually coarser versions of the

original image by regularly spaced down-sampling. Starting from an initial ICE

image of size N × N (note that N = 512 for our real ICE images), we create, by

successive dichotomic decimations of pixels, a sequence of increasingly coarser images

with sizes {N i × N i}i=1,...p, where N1 = N , N i+1 = N i/2, and we fix the coarsest

level Np = 64.

Second, we use multi-resolution also for the B-spline deformation model of u. We

start with a coarse B-spline model of u defined by a lattice of knots L1 with a large

initial distance h1 between knots. We fix an increasing sequence of knots lattices Li

with corresponding knots spacing{hi × hi}i=1,...q, where hi+1 = 2hi and hq = 64 in

the finest level.

Both multi-resolutions do improve accuracy as well as speed of the gradient de-

scent algorithm. Instead of refining both the image and the deformation models

at the same rate, we dynamically define a succession of pairs of resolution scales

RS(m) = (N i(m), hj(m)) for the image and the deformation models, starting with

the coarsest versions of these 2 models. More precisely, once the current pair of

resolutions RS(m) has been selected, we interpolate at resolution RS(m) the last

computed approximation um−1 of u, just obtained at coarser resolution RS(m− 1),

and use this interpolated um−1 to initiate and then perform a gradient descent on

K(u) computed at the new resolution RS(m). This gradient descent at fixed reso-

lution is detailed below, and terminates automatically at a new approximation um

of u. We then refine RS(m) into a finer pair of resolutions RS(m + 1) by alternate

refining of either the image model or the B-spline model. Successive modifications

46



of resolutions stop when the predefined finest level is reached.

In our actual numerical implementations, we deal with images of size 512 ×

512, and after intensive simulations we have selected the most efficient sequence of

resolutions pairs RS(m) = (N i(m), hj(m)), m= 1,2,...7, for our ICE images as follows

RS = {(64,64), (128,128), (128,64), (256,128), (256,64), (512,128), (512,64)}.

4.3.3 Detailed gradient descent at fixed resolution

To minimize the cost functional K(u) we implement a multiresolution gradient de-

scent in u at coarse to fine successive pairs of resolutions RS(m), both for the image

model and for the B-spline model. For each fixed pair of resolutions RS(m), the

current lattice of B-spline knots L is fixed, and hence u is approximated by its corre-

sponding B-spline expansion, which is defined by an unknown vector of coefficients

cik, (i = 1, 2; k ∈ L). After adequate restriction to the current image model, the

cost functional to minimize becomes an explicit function K(c) given by the formu-

las (4.14, 4.18, 4.17) obtained above. To minimize K(c) we implement a gradient

descent in c, with the following update rule :

∆c = −µ∇K(c) (4.22)

where ∇K(c) is the gradient of K(c), µ is the step size. This dynamic step size

µ is multiplied by a fixed factor κ after a successful step, i.e a step which actually

decreases the cost functional, and is divided by κ after an unsuccessful step. In most

of our numerical implementations we selected κ = 10.
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The differential of the cost functional can be derived easily for (i, j, l = 1, 2; l 6= j):

∂Kdisp

∂cik
=

α

card{MSK}
∑

x∈MSK

exp(2αDisp(x))− 1

exp(2αDisp(x)) + 1

· ∂Jt(f)

∂fi

∣∣∣∣
f(x)=u(x)+x

∂ui

∂cik
(4.23)

where

∂Jt(f)

∂fj
=
∑
y∈G

byβ
′(uj + xj − yj)β(ul + xl − yl) (4.24)

∂ui

∂cik
= B(

x

h
− k) (4.25)

We also have

∂Kreg

∂cik
=

2

card{MSK}h
∑

x∈MSK

2∑
j=1

∂ui

∂xj
β′(

xj
hj
− kj +

1

2
)β(

xl
hl
− kl +

1

2
) (4.26)

Two simultaneous stopping criteria are implemented to terminate the gradient

descent : the descent process is stopped at iteration step i either if the number of

iterations i exceeds a preset large integer, or if ∆Ki < ε, where ∆Ki = |K(ci) −

K(ci−1)|/K(ci−1) is the relative increment of the cost function at the last iteration

step. The size ε of the terminating threshold is selected to minimize the computing

time, so that we select different values ε(m) for ε at each resolution level RS(m).

Indeed at coarser resolutions, ε may safely take higher values than at finer resolutions.

4.3.4 Image sequence analysis and Masking

To compute the displacement fields ut of an image sequence Jt, t = 1, ...n covering a

whole cardiac cycle, we apply successively the registration algorithm to compute an
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optimal registration REGt matching the consecutive pair of images Jt−1 and Jt for

t = 2, ...n. The global displacement field Jt is then obtained by successively applying

the registrations REG1, . . . , REGt. Each small deformation generated by REGi is

verified to be invertible, therefore the global large deformation is an invertible de-

formation. For each image Jt−1, temporarily considered as a reference image, we

determine an initial mask MSK corresponding to the zone of interest in the myocar-

dial area . A few key boundary pixels of MSK can be easily selected interactively

and used to generate a mask MSK with a piecewise linear boundary linking these

initial vertices.

For software tracking of crystals surgically inserted in animal subjects and ex-

perimentally tracked by quite accurate sonomicrometry, we can even select, at each

frame time t, a rather small mask which only contains the regions around the crys-

tals. The mask MSK then automatically generates a pyramid of masks MSK(m)

at the selected resolution levels RS(m).

The displacement field u(x) is computed only for pixels x in the mask MSK ,

and the cost functionals K are restricted to the pixels in the mask MSK . Hence for

given choices of the multi-resolution sequence RS(m) and of the stopping thresholds

such as ε(m), the computing time for the optimization process is approximately

proportional to the area of the mask MSK.
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4.3.5 Estimation of the log-speckle noise and of the re-scaling

parameter

The value of the re-scaling coefficient α must be determined before applying the

gradient descent method to minimize K(u). To estimate α we need to estimate the

variance of the log-speckle noise η. To solve this, we implement a first gradient

descent with the hypothesis α = 1 and thus compute a first approximation u of the

displacement field. We can then obtain a direct estimate η̂(x) of the noise variable

η(x) = Dispt(x) by computing the matching error Dispt(x).

η̂(x) = Jt(x+ u(x))− Jr(x), ∀x ∈MSK (4.27)

The explicit pdf of all the η(x) has been computed above and immediately yields the

equation

α =
π√

12V ar(η(x))
(4.28)

The empirical variance of the estimated noise η̂ can of course be computed by stan-

dard statistical formulas on arbitrary patches of pixels. But note that large values

of the variance for the ideal residual disparities η(x) correspond to small values of

α. To avoid strong overestimation of this variance and hence strong underestimation

of α we must use more sophisticated “robust estimates” of the empirical variance of

η̂. We implement this important guideline by eliminating a small percentage of the

highest outliers in the observed values of |η̂|, and we also impose an absolute upper

bound of 20% for the noise to signal ratio.
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4.4 Detailed analysis of the disparity term Kdisp

derived from log-likelihood

The disparity cost Kdisp defined above can be written with the preceding notations

Kdisp =
1

card{MSK}
∑

x∈MSK

g(αDispt(x)) (4.29)

The “influence function” of the penalty function g has derivatives g′, g′′ :

g′(w) =
exp(2w)− 1

exp(2w) + 1
= tanh(w) (4.30)

g′′(w) =
1

cosh2(w)
(4.31)

Clearly, the absolute value of g′ is bounded by 1, which confers robustness of the

deformation estimates to the presence of very large disparities (outliers) for the cost

functional Kdisp.

We can approximate g(αs) by:

g(αs) ≈

 αs, s > 2/α

1
2
α2s2 + ln(2), s < 2/α

(4.32)

We are matching observed images Jt and Jr corresponding to noisy versions of

true images It and Ir; we write J and I instead of Jt and It to simplify notations,

and we call I ′ and I ′′ the approximate gradient and hessian of the true image I. Let

f be the true deformation f(x) = x + u(x) which we estimate by f̂(x) = x + û(x).

Define the deformation error field δ by

δ(x) = f̂(x)− f(x) (4.33)
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After warping by f̂ the residual disparity Disp(x) observed at pixel x is

Disp(x) = J(f̂(x))− Jr(x) = I(f̂(x))− Ir(x) + η(x) (4.34)

where the random variable η(x) is as above the difference of 2 independent log-

speckle noise values at pixels x and f̂(x). Since f is the true deformation we have

I(f(x)) = Ir(x) for all x and hence

Disp(x) = I(f̂(x))− I(f(x)) + I(f(x))− Ir(x) + η(x) = I(f̂(x))− I(f(x)) + η(x)

(4.35)

Assume that the deformations errors δ(x) are small. We use the temporary no-

tations y = f(x), Dt = transpose of D, and apply a 2nd order Taylor approximation

of I to obtain

Disp(x) ≈ I ′(y)δ(x) +
1

2
δ(x)tI ′′(y)δ(x) + η(x) (4.36)

This implies, using Taylor formula for the function g,

g(αDisp(x)) ≈ R1(x) +R2(x)(I ′(y)δ(x) +
1

2
δ(x)tI ′′(y)δ(x)) +

1

2
R3(x)(I ′(y)δ(x))2

(4.37)

where R1, R2, R3 denote the 3 random fields defined by

R1x = g(αη(x))

R2x = α′(αη(x))

R3x = α2g′′(αη(x)) (4.38)

By definition of Kdisp we can write

Kdisp(f̂) =
1

card{MSK}
∑

x∈MSK

g(αDisp(x)) (4.39)
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and hence the 2nd order approximation of g(αDisp(x)) provide an approximation

of Kdisp(f̂) as the sum of 3 groups of terms

Kdisp(f̂) ≈ KA1 +KA2 +KA3 (4.40)

where we have

KA1 =
1

card{MSK}
∑

x∈MSK

R1x

KA2 =
1

card{MSK}
∑

x∈MSK

R2xI
′(y)δ(x)

KA3 =
1

2card{MSK}
∑

x∈MSK

(
R2xδ(x) ∗ I ′′(y)δ(x) +R3x(I

′(y)δ(x))2
)

(4.41)

Using the law of large numbers we have already shown above that

KA1 = Kdisp(f) = 1 (4.42)

Assume that we are approximating the true transformation f at a reasonably

lower resolution than the image data (a better assumption for 3D-images than for

2D-images). To compute Kdisp, we can then first average all the terms Kdispx =

g(αDisp(x)) of Kdisp corresponding to the high resolution pixels x of each small

image patch PatchX centered around a low resolution pixel X. This will associate

a disparity cost KdispX to each low resolution pixel X. And Kdisp will still be the

average of all the KdispX over all the low resolution pixels X in our ROI.

But in the local computation of KdispX the main term may then be estimated

by replacing, for all x in PatchX , the values of I ′, I ′′, δ at the pixel f(x) by their

values at the fixed pixel f(X) and can then be factored out in the averaging over all
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x in PatchX . In the averaging of Kdispx over all x in PatchX , the random terms

R1x, R2x, R3x then appear only through their resp. averages av1, av2, av3 over all x

in PatchX , which can be written, for j=1,2,3,

avj =
1

card{PatchX}
∑

x∈PatchX

Rjx (4.43)

In the averaging of the Kdispx over all x in PatchX , the 3 groups of terms

corresponding to KA1, KA2, KA3 now become

KA1X ≈ av1

KA2X ≈ av2I
′(f(X))δ(X)

KA3X ≈
1

2

[
av2δ(X)tI ′′(f(X))δ(X) + av3(I ′(X)δ(X))2

]
(4.44)

Since the local disparity cost KdispX verifies

KdispX ≈ KA1X +KA2X +KA3X (4.45)

we obtain the following approximation of KdispX at each low resolution pixel X

KdispX ≈ av1 + av2I
′(f(X))δ(X) +

1

2

[
av2δ(X)tI ′′(f(X))δ(X) + av3(I ′(X)δ(X))2

]
(4.46)

Call p the cardinal of the set of low resolution pixels lowMSK = X ∈ MSK. By

definition of the Kdisp(X), the global disparity cost Kdisp(f̂) is the average the

Kdisp(X) over lowMSK :

Kdisp(f̂) =
1

p

∑
X∈lowMSK

Kdisp(X)
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The estimate f̂ of f must minimize Kdisp(f̂ and hence for each low resolution

pixel X ∈ MSK, all the Kdisp(X) must be approximately minimized by δ(X).

Since Kdisp(X) is approximately a quadratic form in δ(X), given by equation (4.46)

above, this implies that for each low resolution pixels X ∈MSK, the differential of

Kdisp(X) with respect to δ(X) is approximately equal to 0, so that

I ′(f(X)) +

[
I ′′(f(X)) +

av3

av2

(I ′(f(X)) ∗ I ′(f(X))

]
δ(X) ≈ 0 ∀X ∈ lowMSK

(4.47)

We shall see below that the random variable av3

av2
is of the form

av3

av2

= αZ

where the random variable Z has a fixed pdf which does not depend on X nor on α.

For each low resolution pixel X ∈MSK, define then the 2x2 matrix Q(X) by

Q(X) = I ′′(f(X)) + αZ(I ′(f(X)) ∗ I ′(f(X)) (4.48)

For each X ∈MSK such that Q(X) is invertible we then have the following estimate

of the local deformation error δ(X)

f̂(x)− f(x) = δ(X) = −Q(X)−1I ′(f(X)) (4.49)

To complete this estimate, valid for small deformation errors, we need to evaluate

the random variables avj for j=1,2,3.

Note that by the central limit theorem and its known pragmatic rates of conver-

gence, as soon as the integer q = card{PatchX} is larger than 12 we may consider
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that the random variables avj,j = 1,2,3, are approximately Gaussian variables with

means ERj and variances V Rj given by the following probabilistic expected values

ERj = E(Rj(x))

V Rj =
1

q
var(Rj(x)) (4.50)

where x is an arbitrary pixel since for each j=1,2,3, all Rj(x) are identically dis-

tributed.

In section 2.4 above, we introduced the fixed random variable W = ln(Y/Z) which

has density τ(w) = 1
2 cosh2(w)

Since all the random variables η(x) have the same pdf

ρ as 1
α
W the constants ERj and V Rj are given by,

ER1 = E(R1x) = E(g(αη(x))) = E(g(W )) =

∫ ∞
−∞

g(w)τ(w)dw

ER2 = E(R2x) = E(αg′(αη(x))) = αE(g′(W )) = α

∫ ∞
−∞

g′(w)τ(w)dw

ER3 = E(R3x) = E(α2g′′(αη(x))) = α2E(g′′(W )) = α2

∫ ∞
−∞

g′′(w)τ(w)dw (4.51)

which yields

ER1 = 1

ER2 = 0

ER3 = α2m0 (4.52)

where we introduce the numerical constant

m0 =

∫ ∞
−∞

1

2 cosh4(w)
dw (4.53)
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Similarly we have

V R1 =
1

q
var(R1x) =

1

q
var(g(W )) = m2

1 (4.54)

V R2 =
1

q
var(R2x) = α2 1

q
var(g′(W )) = α2m2

2

V R3 =
1

q
var(R3x) = α4 1

q
var(g′′(W )) = α4m2

3

where the positive numerical constants m1,m2,m3 are given by

m2
1 =

1

q

∫ ∞
−∞

(g(w)− 1)2τ(w)dw

m2
2 =

1

q

∫ ∞
−∞

g′(w)2τ(w)dw

m2
3 =

1

q

∫ ∞
−∞

(g′′(w)−m0)2τ(w)dw (4.55)

We thus have the approximations

av1 ≈ 1 +m1Z1

av2 ≈ αm2Z2

av3 ≈ α2(m0 +m3Z3) (4.56)

where Z1, Z2, Z3 are standard gaussian variables

The matrices Q(X) introduced above only involve the ratio av3

av2
which is given by

av3

av2

≈ α
m0 +m3Z3

m2Z2

= αZ (4.57)

where the random variable Z is given by Z = m0+m3Z3

m2Z2
The main qualitative conclu-

sions supported by the preceding approximate formulas are the following.

1. for large values of α, i.e. for small speckle noise variance, the projection of the

deformation error δ(X) in the direction of the image gradient I ′(f(x)) tends
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to 0 as 1
α

, but the error component orthogonal to I ′(f(x)) does not necessarily

vanish, and is essentially controlled by the invertibility of the image Hessian

I ′′(f(x)).

2. for small values of α, i.e. for large speckle noise variance, the deformation error

δ(X) is very close to

Bias(X) = −(I ′′(f(X)))−1I ′(f(X))

Note that if the true image I(x) is locally an affine functional of the pixel x

in the neighborhood of pixel X, one has I ′′(x) = 0 and hence for small values

of α the bias of the deformation error δ(X) will tend to be high. Thus local

linearities in image intensities should recommend to avoid small values of α.

The preceding bias formula suggests a further improvement to the current method

presented here, by adding to the deformation estimate f̂(x) of f(x) a corrective term

I ′′(f̂(x)))−1I ′(f̂(x)) in order to reduce the bias of the deformation estimate.
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Chapter 5

Numerical performance of speckle

tracking

5.1 Numerical performances on simulated noise

corrupted and warped images

5.1.1 Three simulated pairs of images

We have first tested the performance of our speckle tracking algorithms on pairs of

artificially generated images Ir and It corrupted by simulated log-speckle noise at

several signal-to-noise ratios. Three true test images It were produced by smoothing

a fixed 512x512 real ICE image I0 with linear Gaussian filters of various window

size and variance (denoted by G(Window size, Variance)). The three reference cases
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tested here were:

1. The true reference image is It = I0 ∗G(7, 3).

2. The true reference image is It = I0 ∗G(13, 5).

3. The true reference image is It = I0 ∗G(25, 9).

From case 1 to case 3, the true reference image It becomes smoother, as shown

in figure 5.1.1. As a smoothness indicator, the mean absolute values of gradient(It)

(computed by a Sobel filter) in these three cases are 22, 14 and 7.5 respectively.

The true test image It was in each case warped by a known fixed non-linear spatial

deformation f(x) = x + u(x) of the pixel grid to generate another true image Ir

verifying the exact warping identity It(f(x)) = Ir(x). The displacement field u(x)

of this simulated warping f(x) was generated by an explicit expansion in 2D cubic

B-splines. With previous notations, we used the B-splines corresponding to a lattice

of 16x16 knots regularly distributed on our 512x512 pixel grid, and we then defined

the displacement field u by :

u(x) =
∑
k∈Z2

β(
x

h1

− k1 +
1

2
)β(

y

h2

− k2 +
1

2
) (5.1)

where (k1 = k2 = 16 and h1 = h2 = 512/16 = 32). The spatial deformation

f(x) = x+ u(x) is displayed in figure 5.1.1.

In each of our 3 simulated test cases, the true reference image Ir and the corre-

sponding true warped image It were separately corrupted by addition of a simulated

noise having a log-Rayleigh pdf with known variance, to generate the “observed”
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images Jr and Jt. More precisely the corrupted image J is deduced from the true

image I by the formula

J(x) = I(x) +
1

α
ln (N(x)) (5.2)

where the random variables N(x) are independent and have the same Rayleigh pdf

with variance 10. We performed the preceding simulations for different values of

the parameter α, which as seen above determines the theoretical common variance

varLSD of all the random log-speckle disparities η(x) = Jt(x+ u(x))− Jr(x) by the

formula

varLSD = var(η(x)) =
π2

12α2

5.1.2 Performances of deformation estimates on simulated

cases

For each one of the 3 cases above, we then started from the pair of simulated images

Jr, Jt considered “observed” images and we computed an estimation û of the true

displacement field u by the multiresolution gradient descent described above. We

define the angular errors θ(x) and the relative magnitude errors d(x) by

cos(θ(x)) =
û(x) · u(x)

||û(x)||||u(x)||
(5.3)

d(x) =
|||û(x)|| − ||u(x)|||

||u(x)||

Tables 1 and 2 respectively display the average of the angular errors and of the

relative magnitude errors, as functions of the α of the log-speckle disparities.
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Figure 5.1: Differently smoothed test images (Top: case 1, bottom: case 3)
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Figure 5.2: Warping field Example

Table 5.1: Angle error (in degrees)
α = 0.1 α = 0.5 α = 1 α = 2

case1 5.69 4.65 4.80 4.66
case2 6.57 4.71 5.01 4.86
case3 7.52 5.23 5.02 4.94

Table 5.2: Relative magnitude error (in percents)
α = 0.1 α = 0.5 α = 1 α = 2

case1 9.40 8.06 8.26 8.05
case2 10.75 8.32 8.52 8.33
case3 13.39 8.80 8.64 8.44
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Note that as the reference image becomes smoother (from case 1 to 3), the es-

timation error becomes larger. This can be explained by our theoretical analy-

sis above, since our estimate of the bias on deformation errors δ(X) is given by

Bias(X) = −(I ′′(f(X)))−1I ′(f(X)). Since Ir is the convolution of image I0 by a

gaussian kernel with large variance σ2 we have the (quite rough) approximations

I ′r ≈ 1
σ
I ′0 and I ′′r ≈ 1

σ2 I
′′
0 . This shows that Bias(X) is roughly multiplied by σ and

hence increases roughly linearly as the smoothing parameter σ increases.

5.1.3 The case of affine image intensities

We have established in the preceding section that the actual log-speckle disparities

in the myocardium have fairly large standard deviation π√
12α

, and take values larger

than 10 for α < 0.1, while the dynamic range of our ICE images is typically of the

order of 200. This led us to evaluate the impact of using various values of α in

our multi-resolution gradient descent, for a given fixed variance of the log-speckle

disparities.

As we pointed out above local linearities for the true intensity values tend to

generate larger bias for the errors on estimated deformations. We have thus tested

deformation estimates on a simulated pair of true images Ir, It where the reference

image intensities Ir(x) were given by a fixed affine function of the pixels x in our

(512x512) pixel grid. The true non-linear displacement field u was identical to the

field used in section 4.1 above. The images Ir(x) and It(x) = Ir(x + u(x)) were
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Table 5.3: Errors with different α
α = 0.1 α = 0.5 α = 1 α = 2

Angle error (in degrees) 15.69 27.06 7.23 13.96
Relative magnitude error (in percents) 79.80 77.21 69.51 86.46

then separately corrupted by independent additive simulated log-speckle noises cor-

responding to a real α equal to 0.1, to generate simulated “observed” images Jr and

Jt, just as above. We then tested several versions of the gradient descent correspond-

ing to various values of α.

Table 3 displays the average angle errors and relative magnitude errors on the true

displacement field u. Note that the performances observed for very small α = 0.1

in the gradient descent method are worse than for α = 1. The theoretical analysis

given above in section 3.6 shows that since the hessian I ′′r (x) is here identical to 0,

the components of the errors in the direction orthogonal to the fixed gradient vector

I ′r(x)) cannot be controlled deformation estimates.

5.2 Estimation of speckle noise characteristics on

real ICE image sequences

We have estimated the local statistical characteristics of the log-speckle disparities

η(x) and plotted in figure 5.3 the speckle noise std distribution on the real image,

using the algorithm described above in section 4.3.5. For each pixel, we compute

the speckle noise in the window of size 60 by 60 pixels centered at it, and then the

std can be computed from these 3600 samples. And, we didn’t show the speckle
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noise std distribution outside the myocardium because the noise distribution in this

large area cannot verify the generalized rayleigh model at all, as shown later. We

note that the local stds of the log-speckle disparities η(x) are approximately constant

within the myocardium, but, for the heart chamber areas , which are blood filled,

the log-speckle disparities have much smaller std than in the myocardium. The std

distribution of speckle noise is determined by the tissue structure of the myocardium

and deserves more anatomical comments.

We perform the Kolmogorov-Smirnov Goodness of Fit test for the speckle noise

on 11 different regions {Regi}, i = 1, 2, ..., 11 of real ICE images (refer to figure 5.5),

and compute the Kolmogorov-Smirnov statistic (‘KS’:defined as the maximum abso-

lute difference between the empirical cumulative distribution function(cdf) and the

theoretical cdf. Then, we compute the Signal to Noise Ratio (SNR=Mean inten-

sity/standard deviation of speckle noise) for all these 11 regions. In table 5.4, we

show the std, MI(mean intensity), SNR, and KS for all the regions in figure 5.5. We

find that the KS statistics for region one to ten is very small, which means the speckle

noise distribution can be fitted to generalized rayleigh model very well with associ-

ated α value, however, the speckle noise in region 11 has a very large KS statistic

when fitted to the generalized rayleigh model.

Since the algorithms of section 4.3.5 enable the direct estimation of all the η(x), we

have also estimated the common pdf ρ̂i of the η(x) for all the pixels x in region Regi

after insertion of the proper varLDSi estimate, and hence of the proper estimate

α̂i in the theoretical pdf ρ of the η(x) computed above in (4.28), we also obtain

separately the theoretical pdf ρi of the η(x) in region Regi. We have thus confirmed
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Table 5.4: Statistical properties of different regions
Regions STD MI SNR KS

1 10.63 83.13 7.82 0.06
2 10.15 95.51 9.41 0.02
3 13.45 85.52 6.35 0.03
4 14.70 54.35 3.70 0.03
5 12.25 50.35 4.11 0.06
6 11.53 47.43 4.11 0.04
7 11.46 64.80 5.66 0.02
8 10.49 80.97 7.72 0.03
9 11.18 64.76 5.79 0.03

10 7.35 17.29 2.35 0.04
11 2.10 2.24 1.07 0.28

that for all regions Regi within the myocardium, the empirical pdf ρ̂i of the log-

speckle disparities has a good fit with the theoretical pdf ρi. Figure 5.6 (left) shows

the quality of fit for region Reg8 for example. For the heart chamber areas, although

the empirical noise has a smaller std than that of the myocardium, their empirical

pdf ρ̂10 still have a good fit with the theoretical pdf ρ10.

For the large area (such as Reg11) located outside the heart, the empirical pdf of

log-speckle disparities no longer fits their theoretical pdf, as seen in figure 5.6 (right).

The main operational conclusions here are that the theoretical log-Rayleigh mod-

els, when adequately parameterized by image specific estimates, are quite correct to

separately model the log-speckle disparities within the myocardium and the heart

chamber, but are useless outside these regions. In particular this confirms that ad-

equate masking by semi-local masks is essential to improve the accuracy of the cost

functionals and of deformation estimates.

The usual assumption inferred from the physics of ultrasound speckle is that the
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Table 5.5: Correlation Coefficient
Pixel 1 2 3 4 5 6
Radial 0.28 0.04 0.08 0.07 0.02 0.10
Circumferential 0.85 0.53 0.27 0.11 0.02 0.11

speckle noises N(x) and N(y) at distinct pixels x and y are independent, and hence

uncorrelated random variables. This implies that the correlation cor(x, y) of log-

speckle disparities η(x) and η(y) at distinct pixels x, y must be equal to zero. To

evaluate this standard assumption we have used our speckle noise estimation algo-

rithms (see section 4.3.5 above) to estimate the log-speckle disparities on real ICE

images, and then to computed estimates of the correlations cor(x, y). In particular

since the ICE images are acquired by a rotating ultrasound beam centered on a tem-

porarily fixed transducer placed at a central point CP easily identifiable on all ICE

images, we have focused the empirical estimations of cor(x, y) on pairs of neighboring

pixels (x,y) located on the same circle centered at CP (circumferential correlations)

or on the same radial straight line through CP (radial correlations).

As seen in table 5.5, the main conclusions are that, within the myocardium, radial

correlations for log-speckle disparities are indeed negligible, but that circumferential

correlations are quite strong at short distances. Further research is necessary to

analyze the impact of this fact on our cost functionals, and on the performance of

the gradient descent algorithm.

After estimation of the speck noise characteristics, we verified the generalized

rayleigh model and found that the empirical noise is much stronger than the as-

sumption by standard rayleigh model ( factor α < 0.1 in our true images). This led
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us to try using the actual very small α in the optimization algorithm, however, the

result of strain estimation is much worse than using α = 1. While we have verified

the excellent performance of our algorithm when α = 1, we found using small values

of α (less than 1) always led to worse result after intensive numerical simulations

on our true ICE images. Thus, we conclude that α = 1 is a good choice for first

round optimization for the ICE images, but a better choice of α might be needed

to improve the performance for different kinds of images and the effect of α in the

algorithm deserves further discussion.

5.3 Time modulations of log-speckle and ICE im-

age intensities

The initial cost functional introduced above implicitly assumes that between the

reference and target images, the true heart muscle deformation mapping x on x+u(x)

preserves the true image intensities, so that I(x) = I(x + u(x)) . To evaluate this

commonly used hypothesis we computed the histograms of displayed ICE intensities

over small masks for all views available, and found that the empirical histograms

I(x) had a small but very concrete shift over time, with shift values of the median

intensities reaching 10% of the mean intensities at half heart cycle. We conclude

that temporal adaptation should be introduced in the cost functional, by performing

local histogram equalizations over time before implementing the gradient descent for

minimization of the cost functional.

69



For small image patches in our reference ICE view, we analyzed the time evolution

of the estimated scale parameters α through the heart cycle. Our estimate indicated a

clear time modulation of this log-speckle scale parameter which reached its maximum

roughly at mid-cycle.

5.4 Estimated strains versus sonomicrometric ground

truth

The sonomicrometric data recorded by Dr. Khoury’s team on three groups of ICE

image sequences IS1, IS2, IS3, provide effective tracking of two microcrystals surgi-

cally inserted in the myocardium, and hence an accurate evaluation of circumferential

strain at successive crystal positions.

Call d(t) the true distance between the two crystals at time t. The true strain at time

t (at the corresponding crystal position) is then defined by S(t) = |d(t)− d(0)|/d(0).

The mean values of these true (relative) strains over the whole image sequences for

the 3 data groups IS1, IS2, IS3, are respectively 5.4%, 4.1%, 6.5% , and these strains

remain in the respective ranges [0, 16.8%] , [0, 10.5%], [0, 17.7%]. After reconstruc-

tion of the dynamic deformation field as above, we can easily compute an estimate

d̂(t) of d(t), and hence an estimate Ŝ(t) of S(t). We have a very good agreement

between these true strains S(t) and their algorithmic registration estimates Ŝ(t) .

The estimation errors Err(t) = Ŝ(t)− S(t) for the 3 data groups IS1, IS2 ,IS3, had

respective mean values 0.4%, 0.4%, 0.5% and standard deviation of 0.76%, 0.71%,

0.92% . These are small errors as compared to the mean true strain values just listed
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above.

Our strain estimates clearly improve the accuracy previously reached in [59], where

for instance for the data group IS1 , the mean error of strain estimates was 0.7%

with a standard deviation of 1.63%.

This accuracy gain is mainly due to our masking technique and to the use of an

image specific cost functional, where the parameters of the speckle noise are esti-

mated at each image pixel. This validates the conclusion of section 7.2 stating that

only regions within the myocardium have a good fit with our parameterized stochas-

tic speckle model. The scale parameter γ we have introduced in both the speckle

model and cost functional exhibits a clear spatial modulations across the heart re-

gions, therefore adequate masking and image adaptive cost functionals are essential

to improve the accuracy of heart deformation estimates.

5.5 Computing time optimization

We have applied the preceding algorithms to three groups of data, each contains

a sequence of 180 ICE images acquired on one animal subject by Dr D. Khoury’s

team at Methodist Hospital, after surgical insertion of 2 microcrystals in the animal

heart muscle, and sonomicrometric recording of the displacements of these crystals.

For each sequence of 180 ICE images, the brutal computation with no mask applied

needs averagely 240 hours, which is a massive computing time, therefore, we try to

accelerate the optimization by applying small masks.
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Table 5.6 shows the comparison of average computing time (in minutes) per im-

age, where single computation means using no masks through all the seven resolution

levels, and mixed computation means using no mask for the first three levels and

then applying a small mask (as shown in figure 5.7, whose area is only 6 percent of

the whole image) for the rest four levels. To reduce the computing time, we proposed

to use the small mask instead of the whole image in the optimization algorithm, be-

cause the computing time is approximately proportional to the number of pixels used

under the same stopping criteria, furthermore, by using a small mask, we can even

use a cruder stopping criteria to arrive at the same accuracy. We here proposed a

mixed masks computation scheme, where we set ε = 10−4 for the first three levels

where no mask is applied and then set ε = 10−3 for the remaining four levels when

the small mask is applied. We use the small mask only for the final four levels instead

of all the seven levels, because using the whole image first in the computation can

give us a good initialization for the optimization process because the node lattice

is distributed on the whole image, and an inappropriate initialization will lead to

waste of computing time or even getting trapped at local minima. To find the best

tradeoff between accuracy and speed, we actually tried all the possible mixtures of

masks sizes by using no mask in the first one to six levels, and the best solution is

using no mask in the first three multiresolution levels and then using small mask in

the remaining four levels, and the final gain of computing speed is about 64 times!

The main operational conclusions is that our algorithm should be used for semi-

local computations on quite small masks and can then provide accurate estimates of

local circumferential and radial strains of the heart muscle. The systematic use of
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Table 5.6: Computing time per frame(in minutes)
Different groups Mixed computation Single computation
1 1.16 80.68
2 1.40 83.93
3 1.33 82.94

a family of very small masks with slight overlaps and regularly positioned to cover

the region of interest, reduces considerably the computing time of the local circum-

ferential and radial strains on the whole image. We are currently systematically

implementing and optimizing this semi-local computational scheme. For instance to

compute the local strain at all points of a medium ROI covering 25% of the 512x512

image we can cover this area with approximately 16x16 = 256 local masks of size

20x20 = 400. On such small masks one can safely use a higher threshold ε = 10−2.

The computing time on each small mask at accuracy ε = 10−2 will be of the order

of 2.25 seconds. And the total computing time for the medium size ROI considered

here will be roughly 256x2.25= 576 seconds instead of the 1570 seconds needed to

handle the ROI with a single mask at a necessarily sharper threshold ε = 10−3.
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Figure 5.3: Speckle noise std distribution(top) and mean intensity(bottom) within
the myocardium and heart chamber: at the beginning of systole
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Figure 5.4: Speckle noise std distribution(top) and mean intensity(bottom) within
the myocardium and heart chamber: at the end of systole
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Figure 5.5: Different regions to compute speckle noise variance
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Figure 5.7: Examples of a small mask on real ICE image
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Figure 5.8: Examples of deformation vector field
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Chapter 6

Speckle tracking in 3D ultrasound

images

Clinical diagnosis and therapy planning are increasingly often supported by 3D-

imaging modalities, such as MRS (Magnetic Resonance Spectroscopy), PET (Positron

Emission Tomography), SPECT (Single Photon Emission Computed Tomography)

for functional information, and CT (Computed Tomography), MRI (Magnetic Res-

onance Imaging), Ultrasound Echography , X-Ray, for anatomical visualization.

Thus clinicians and medical researchers become natural users for 3D-image regis-

tration providing voxel to voxel matching of two 3D-images of the same anatomical

object obtained by different imaging modalities, at different times, or from different

perspectives. The search for a good voxel to voxel correspondence between reference

and target images Jr and Jt, is guided by one or several matching quality criteria.

Image registration methods were initially designed for 2D-images, for instance to
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align tomographic slices of different recordings, but in the last decade, 3D-image

registration based on volumetric data sets has become the main technical challenge,

and involves much heavier computing resources.

We apply speckle tracking techniques to numerically construct the dynamic de-

formations between multiple 3D-snapshots of the human mitral valve annulus in the

mitral valve apparatus. This apparatus is a biological valve integrated within the

heart which has quasi-periodic dynamics tightly correlated to heartbeats enabling

an essential periodic obturation of the blood ow to and from the heart. Our start-

ing point is a patient’s specific set of static models of the mitral valve apparatus.

These models were generated by image analysis of live 3D-echocardiographic movies

at specific heart cycle instants in a recent study [67] involving the Methodist Hospi-

tal, Houston, Texas (S. Ben Zekry, S. Little, W. Zoghbi, MDs) as well as a research

group on mathematical image analysis led by R. Azencott. Each 3D-movie includes

roughly twenty 3D-frames per heartbeat cycle, acquired by ultrasound technology,

and represents a high volume of image data corrupted by ‘speckle’ noise. Figure 6.1

shows several 2D slices of one 3D-snapshot viewed from different directions.

6.1 Mitral Valve

The mitral valve is a dual-flap valve in the heart that lies between the left atrium

(LA) and the left ventricle (LV). The mitral valve and the tricuspid valve are known

collectively as the atrioventricular valves because they lie between the atria and the

ventricles of the heart and control the flow of blood. A normally-functioning mitral
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valve opens secondary to increased pressure from the left atrium as it fills with blood.

As the pressure increases above that of the left ventricle, the valve opens allowing

blood to flow into the left ventricle during diastole (early rapid filling and atrial

contraction), and closes at the end of atrial contraction to prevent blood flowing

back.

Mitral valve disease represents the second most common valvular disease in de-

veloped countries [41]. Minimally invasive mitral valve repair procedures are mostly

under development or in trial yielding the need for precise knowledge and reliable

display of the four-dimensional valve characteristics. Computed tomography and 4D

ultrasound are modalities well suited for non-invasive imaging of the heart enabling

dynamic four-dimensional evaluation of cardiac structures throughout the cardiac

cycle.

The mitral valve’s central components are the anterior and posterior leaflet, the

annulus and the subvalvular apparatus. The latter two connect the valve to the left

ventricular (LV) endocardium. The annulus is a ring-like fibrous entity with a 3D

shape resembling a saddle (Fig. 6.2), with the middle portions of the anterior annulus

being elevated out of the annular plane towards the left atrium (LA) and merging

into the aortic mitral curtain. The aortic mitral curtain ends in the left and right

fibrous trigone. The posterior leaflet is divided through slits into several scallops.

Multiple nomenclatures exist, most commonly the scallops are named P1 to P3 with

opposing segments A1 to A3 [42]. The mitral commissures are the points where

both leaflet’s free edges join. They do not coincide with the mitral annulus. The

subvalvular apparatus consists of the chordae tendinae and the papillary muscles.
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The function of the mitral valve is to allow blood to flow only one way, from the

LA to the LV, separating them hemodynamically. It is opened by the contracting

papillary muscles, which are pulling down the leaflets during diastole and remains

closed by the ventricular pressure during systole.

6.2 B-spline model for the displacement vector

field u

Consider a lattice of knots L = {k = (k1, k2, k3)|1 ≤ k1 ≤ L1, 1 ≤ k2 ≤ L2, 1 ≤ k3 ≤

L3}, where the knots k are placed on a regular subgrid of the pixel grid G. Denote

by N1 = 224, N2 = 208, N3 = 208 the dimensions of the grid G and define the knot

spacing h = (h1, h2, h3) where h1 = N1/L1,h2 = N2/L2 and h3 = N2/L3).

The unknown displacement field u is a 3D non-linear transformation which we

modelled by a linear combination of cubic B-splines associated to the knots of the

lattice L. The unknown vector c of coefficients ck = (c1
k, c

2
k, c

3
k) of this linear combina-

tion completely defines the displacement field u (and hence the spatial deformation

f) by the explicit formula :

u(x) =
∑
k∈L

ckB3(x, h, k) (6.1)

where

B3(x, h, k) = β(
x1

h1

− k1 +
1

2
)β(

x2

h2

− k2 +
1

2
)β(

x3

h3

− k3 +
1

2
) (6.2)

and β(s) is 1D cubic B-spline function.
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During the warping process, we need a continuous version of the discrete image

Jt. Using also cubic B-splines, we interpolate the discrete image Jt to extend it from

the pixel grid G to a continuous function still denoted Jt:

Jt(x) =
∑
y∈G

byB3(x− y) (6.3)

where B3(x − y) = β(x1 − y1)β(x2 − y2)β(x3 − y3), and by is a set of interpolation

coefficients, which can be computed prior to the search for u by solving a linear

system.

6.3 Multi-resolution optimization of cost function-

als

To compute the unknown spatial displacement field u matching images Jt and Jr,

we need to minimize the cost functional K(u). To minimize K(u) we implement a

multiresolution gradient descent in u at coarse to fine successive resolutions. Multi-

resolution is used for both the image model and the deformation model.

First, we build an image pyramid composed of gradually coarser versions of the

original image by regularly spaced down-sampling. Starting from an initial ICE

image of size 224 × 208 × 208, we create, by successive dichotomic decimations of

pixels, a sequence of increasingly coarser images.

Second, we use multi-resolution also for the B-spline deformation model of u. We

start with a coarse B-spline model of u defined by a lattice of knots L1 with a large
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initial distance h1 between knots. We fix an increasing sequence of knots lattices Li

with corresponding knots spacing {hi}i=1,...q, where hi+1 = 2hi.

Both multi-resolutions do improve accuracy as well as speed of the gradient de-

scent algorithm. Instead of refining both the image and the deformation models

at the same rate, we dynamically define a succession of pairs of resolution scales

RS(m) = (N i(m), hj(m)) for the image and the deformation models, starting with

the coarsest versions of these 2 models. More precisely, once the current pair of

resolutions RS(m) has been selected, we interpolate at resolution RS(m) the last

computed approximation um−1 of u, just obtained at coarser resolution RS(m− 1),

and use this interpolated um−1 to initiate and then perform a gradient descent on

K(u) computed at the new resolution RS(m). This gradient descent at fixed reso-

lution is detailed below, and terminates automatically at a new approximation um

of u. We then refine RS(m) into a finer pair of resolutions RS(m + 1) by alternate

refining of either the image model or the B-spline model. Successive modifications

of resolutions stop when the predefined finest level is reached.

6.4 Detailed gradient descent at fixed resolution

To minimize the cost functional K(u) we implement a multiresolution gradient de-

scent in u at coarse to fine successive pairs of resolutions RS(m), both for the image

model and for the B-spline model. For each fixed pair of resolutions RS(m), the

current lattice of B-spline knots L is fixed, and hence u is approximated by its corre-

sponding B-spline expansion, which is defined by an unknown vector of coefficients
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cik, (i = 1, 2, 3; k ∈ L). After adequate restriction to the current image model, the

cost functional to minimize becomes an explicit function K(c). To minimize K(c)

we implement a gradient descent in c, with the following update rule :

∆c = −µ∇K(c) (6.4)

where ∇K(c) is the gradient of K(c), µ is the step size. This dynamic step size

µ is multiplied by a fixed factor κ after a successful step, i.e a step which actually

decreases the cost functional, and is divided by κ after an unsuccessful step. In most

of our numerical implementations we selected κ = 10.

The differential of the cost functional can be derived easily for (i, j, l,m = 1, 2, 3; l 6=

j 6= m):

∂Kdisp

∂cik
=

α

card{MSK}
∑

x∈MSK

exp(2αDisp(x))− 1

exp(2αDisp(x)) + 1

· ∂Jt(f)

∂fi

∣∣∣∣
f(x)=u(x)+x

∂ui

∂cik
(6.5)

where

∂Jt(f)

∂fj
=
∑
y∈G

byβ
′(uj + xj − yj)β(ul + xl − yl)β(um + xm − ym) (6.6)

∂ui

∂cik
= B3(

x

h
− k) (6.7)

We also have

∂Kreg

∂cik
=

2

card{MSK}h
∑

x∈MSK

2∑
j,l 6=i

∂ui

∂xj
β′(

xi
hi
− ki +

1

2
)β(

xj
hj
− kj +

1

2
)β(

xl
hl
− kl +

1

2
)

(6.8)
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Two simultaneous stopping criteria are implemented to terminate the gradient

descent : the descent process is stopped at iteration step i either if the number of

iterations i exceeds a preset large integer, or if ∆Ki < ε, where ∆Ki = |K(ci) −

K(ci−1)|/K(ci−1) is the relative increment of the cost function at the last iteration

step. The size ε of the terminating threshold is selected to minimize the computing

time, so that we select different values ε(m) for ε at each resolution level RS(m).

Indeed at coarser resolutions, ε may safely take higher values than at finer resolutions.

6.4.1 Image sequence analysis and Masking

To compute the displacement fields ut of an image sequence Jt, t = 1, ...n covering a

whole cardiac cycle, we apply successively the registration algorithm to compute an

optimal registration REGt matching the consecutive pair of images Jt−1 and Jt for

t = 2, ...n. The global displacement field Jt is then obtained by successively applying

the registrations REG1, . . . , REGt. Each small deformation generated by REGi is

verified to be invertible, therefore the global large deformation is an invertible de-

formation. For each image Jt−1, temporarily considered as a reference image, we

determine an initial mask MSK corresponding to the zone of interest in the myocar-

dial area . A few key boundary pixels of MSK can be easily selected interactively

and used to generate a mask MSK with a piecewise linear boundary linking these

initial vertices.
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6.5 Numerical performance on 3D ultrasound im-

ages

Our experiment is based on a patient’s specific finite set of static models Sj of the

mitral valve apparatus. These models were generated by image analysis of live 3D-

echocardiographic movies at specific heart cycle instants tj in a recent study involving

the Methodist Hospital, Houston, Texas (S. Ben Zekry, S. Little, W. Zoghbi, MDs)

as well as a research group on mathematical image analysis led by R. Azencott. Each

3D-movie includes roughly twenty 3D-frames per heartbeat cycle, acquired by ultra-

sound technology, and represents a high volume of image data corrupted by ‘speckle’

noise. The mitral valve models Sj are based on NURBS (non uniform rational B-

splines), and were obtained by combining optical flow extraction algorithms with

sparse tagging by medical experts. The number of intermediary key heartbeat cycle

instants tj ranged from 3 to 8, and the time range I = [t0; t1] covers either a half or

a whole heartbeat cycle with total duration between 1/2 to 1 second.

The mitral valve apparatus involves the annulus (a closed thin deformable ring)

and two deformable surfaces with boundaries, namely the anterior and posterior

leaflets. These mitral leaflets are flexibly linked to the annulus by a subsegment of

their boundaries. When the valve is closed, the exterior parts of the leaflets have

a common boundary called the coaptation line. The mitral valve apparatus can be

viewed as a composite deformable object built from several smooth deformable shapes

(see Fig. 6.5), namely a closed curve MA (the mitral annulus), a curve segment COA

(the coaptation line), two surfaces AL and PL (the mitral leaflets) with boundaries
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∂AL = COA ∪antMA and ∂PL = COA ∪ postMA, where antMA and postMA are

complementary subsegments of the MA.

In the numerical implementation, we set the regularization coefficient γ to be

zero since regularization should be tailored as specific goal is desired and we evaluate

here the performance of our algorithm in general. We use tubes of different radius

around the annulus as the masks in the multiresolution optimization, an examples

of the mask we used are shown in figure 6.5.

We use the annulus model at first frame to generate the mask for optimization,

and validate our registration method at every time frame against the annulus models

generated from the doctors’ tagging at other frames in the 3D image sequences. Fig.

6.5 shows the evolution of cost function in the optimization process. At the end

of optimization, the value of cost function is very close to the theoretical value 1.

Fig. 6.5 shows the histogram of distances between the reference and the target

annulus generated from doctors’ tagging by NURBS models. The mean and std of

the distances are 11.08 and 3.53 respectively. After optimization, the results show

good agreement (Fig. 6.5) between deformed annulus and target annulus with mean

2.05 and std 1.16.
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Figure 6.1: Example: 2D slices of 3D images
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Figure 6.2: Mitral valve illustration
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Figure 6.3: Mitral valve: the middle line is the coaptation line separating the two
surfaces. The left surface in the figure is the anterior leaflet and the right surface is
the posterior leaflet. The black thick curve is the annulus
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Figure 6.4: Examples of mask in 3D image
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Figure 6.5: Evolution of cost function in optimization
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Figure 6.6: Histogram of distances between reference and target annulus
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Figure 6.7: Histogram of distances between deformed and target annulus
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Chapter 7

Diffeomorphic Matching and

Dynamic Deformable Surfaces in

3D Medical Imaging

We consider optimal matching of submanifolds such as curves and surfaces by a

variational approach based on Hilbert spaces of diffeomorphic transformations. In

an abstract setting, the optimal matching is formulated as a minimization prob-

lem involving actions of diffeomorphisms on regular Borel measures considered as

supporting measures of the reference and the target submanifolds. The objective

functional consists of two parts measuring the elastic energy of the dynamically

deformed surfaces and the quality of the matching. To make the problem compu-

tationally accessible, we use reproducing kernel Hilbert spaces with radial kernels
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and weighted sums of Dirac measures which gives rise to diffeomorphic point match-

ing and amounts to the solution of a finite dimensional minimization problem. We

present a matching algorithm based on the first order necessary optimality conditions

which include an initial-value problem for a dynamical system in the trajectories de-

scribing the deformation of the surfaces and a final-time problem associated with

the adjoint equations. The performance of the algorithm is illustrated by numerical

results for examples from medical image analysis.

7.1 Introduction

Clinical diagnosis and therapy planning are increasingly often supported by 3D-

imaging modalities, such as MRS (Magnetic Resonance Spectroscopy), PET (Positron

Emission Tomography), SPECT (Single Photon Emission Computed Tomography)

for functional information, and CT (Computed Tomography), MRI (Magnetic Res-

onance Imaging), Ultrasound Echography , X-Ray, for anatomical visualization.

Thus clinicians and medical researchers become natural users for automated 3D-

image registration providing voxel to voxel matching of two 3D-images of the same

anatomical object obtained by different imaging modalities, at different times, or

from different perspectives. The search for a good voxel to voxel correspondence be-

tween reference and target images Jref and Jtar, is guided by one or several matching

quality criteria. Image matching is generally achieved by an R3-diffeomorphism F

matching two given bounded subdomains of the 3D-voxel grid, and can thus be
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assigned an elastic energy EE(F ) measuring the amount of spatial deformation im-

plemented by F . In 2D or 3D-image registration, typical matching quality criteria

involve the differences difint(z, z′) = |Jtar(z′)−Jref (z)| in image intensities at all pairs

(z, z′) of matched voxels. The Intensity Matching Cost IMC(F ) is often defined by

fixing some exponent a > 0 and summing difinta(z, z′) over all voxels z belonging to

the domain of interest in Jref . The search for an optimal registration then becomes

a variational problem where one seeks a deformation F minimizing a linear combi-

nation of EE(F ) and IMC(F ). Image registration methods were initially designed

for 2D-images, for instance to align tomographic slices of different recordings, but in

the last decade, 3D-image registration based on volumetric data sets has become the

main technical challenge, and involves much heavier computing resources. Surveys

of image registration algorithms can be found in [76, 89, 100].

7.2 Diffeomorphic Shape Matching

7.2.1 Diffeomorphic Matching of Two Shapes in R3

In most medical imaging applications, different 3D-shapes B ⊂ R3 of the same

deformable organ, such as the brain or the heart, can be assumed to belong to the

following family SH3 of smooth 3D-shapes with boundaries : We define the family

SH3 of 3D-shapes as the set of all connected open subsets S of R3 with compact

closures S̄ such that

• the boundary Σ = ∂S = S̄ − S of S is a piecewise smooth surface of class
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Cr, r ≥ 3 ;

• S coincides with a whole connected component of R3 \ Σ;

• for each x ∈ Σ, there is an open neighborhood U of x in R3 and a local r-

smooth diffeomorphism ϕ of U onto an open ball Ũ ⊂ R3 mapping U ∩ Σ̄ onto

Ũ ∩H, where H is the intersection of either one, two or three closed half-spaces

of R3.

In medical 3D-imaging, one of the main goals of image registration is to accurately

compare two observed 3D-shapes Sref ∈ SH3 and Star ∈ SH3 of the same deformable

organ. These 3D-shapes are often extracted from two 3D-images Jref and Jtar by

various 3D-image analysis techniques such as 3D-segmentation combined with refer-

ence points interactive tagging. We refer to Σref and Σtar as the boundaries of Sref

and Star. Since these two 3D-shapes are in SH3, any R3-diffeomorphism F such that

F (Σref ) = Σtar must necessarily also verify F (Sref ) = Star. Hence, in the search

for a diffeomorphic matching of two deformable 3D-shapes, whenever theses shapes

have been already pre-extracted as R3-subsets, the matching of image intensities is

then often discarded, and the matching quality of candidate R3-diffeomorphisms F

is focused on suitable geometric distances between the boundary surfaces F (Σref )

and Σtar as well as between the 3D-shapes F (Sref ) and Star.

As just indicated, diffeomorphic matching of 3D-shapes S0, S1 in R3 quite naturally

involves looking at the matching of their boundaries Σ0,Σ1 which are 2D-shapes in

R3 as well as to the matching in R3 of the boundary 1D-shapes ∂Σ0, ∂Σ1 , where the

definitions of smooth 2D and 1D-shapes in R3 are similar to the definition of SH3.
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7.2.2 Variational Approach

Consider two smooth k-dimensional shapes S0, S1 included in R3 with k ∈ {1, 2, 3}.

The search for an R3-diffeomorphism F such that F (S0) = S1 is an ill-posed problem

which requires regularization to be numerically solved by variational methods. Such

an approach has been actively explored by G.Dupuis, J. Glaunès, U. Grenander,

M. Miller, D. Mumford, A. Trouvé, L. Younes [75, 80, 85, 86] with applications to a

quantified comparison of images of human brains. In these papers, the regularization

is achieved through the replacement of the rigid constraint F (S0) = S1 by a soft

constraint based on various geometric ’surface matching’ distances dis [F (S0), S1].

The unknown diffeomorphism F is restricted to be of the form F = F v, where F v is

generated by integration between times 0 and 1 of some time dependent flow v = (vt)

of smooth R3-vector fields vt, 0 ≤ t ≤ 1. The vector fields vt are required to belong

to a Hilbert subspace V of the Banach space C3
r of smooth functions from R3 to

R3 tending to zero at infinity. The Hilbert norm in V is assumed to be bounded

by a constant multiple of the Banach norm in C3
r . Then, for some fixed constant

λ > 0 one considers the variational problem of finding a vector field flow v = (vt)

minimizing the cost functional

J(v) =

∫ 1

0

‖vt‖2
V dt+ λ dis [F v(S0), S1] ,

which linearly combines a kinetic energy term and a surface matching term.

This variational point of view is directly linked (as λ → ∞) to the construction of

geodesics in infinite dimensional Lie groups of diffeomorphisms in the spirit of ideas
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pioneered by Arnold, Ebin, and Marsden who showed (see, e.g., [69]) that for an in-

compressible fluid, obeying Euler equations, the spatial displacements Ft(x) between

times 0 and t of fluid particles emanating from x ∈ R3 minimize the integral in time

and space of the fluid’s kinetic energy. The time dependent R3- diffeomorphisms

Ft define a continuous path in the group of R3- diffeomorphisms, and this path is

a geodesic t → Ft of an infinite dimensional Lie group G of R3-diffeomorphisms,

endowed with the local Hilbert metric defined by the fluid’s kinetic energy on the

Lie algebra of G. This Lie algebra is naturally identified with the Hilbert space of

smooth vector fields on R3 defined by fluid velocities at time 0. The classical Euler

fluid mechanical equations for the fluid velocities become precisely interpreted as the

variational equations characterizing geodesics in G. Natural right-invariant deforma-

tion distances on the group G can then be associated to this Riemannian structure

(see, e.g., [98]).

For the diffeomorphic matching of two smooth k-dimensional shapes (k ∈ {1, 2, 3})

by R3-diffeomorphisms, the geometric view just outlined above has been intensively

explored in [75, 80, 85, 98] and numerically implemented for comparisons of key

anatomic parts of human brains such as the hippocampus and the temporal lobes

[75, 85].
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7.2.3 Multiple Snapshots of Dynamic Deformable Shapes

In medical domains such as cardiology, urology, gynecology, clinicians routinely use

volumetric 3D-echographs to visualize live 3D-movies of deformable organs. How-

ever, computerized algorithms to model such soft organs dynamics by explicit time

dependent nonlinear 3D-deformations constitute a quite complex and active research

target. For deformable anatomic shapes S(t) ⊂ R3 indexed by time t, current

biomedical research often succeeds to extract from medical 3D-movie data at key

time frames tj, 0 ≤ j ≤ q, a sequence of static models Sj ⊂ R3 of the shapes S(tj).

Given these q + 1 shape snapshots Sj = S(tj) ⊂ R3, 0 ≤ j ≤ q, a natural goal is

to model the time deformations of the shape S(t) by a time dependent family Ft of

R3-diffeomorphisms such that

Ftj(S0) = Sj for j = 1, · · · , q, (7.1a)

Ft0 = Id (identity mapping of R3), (7.1b)

for each fixed t [Ft(x)− x]→ 0 as x→∞ in R3. (7.1c)

Most publications mentioned above deal with the basic case q = 1 where one wants

to match, by an R3-diffeomorphism, a single pair of static smooth k-dimensional

shapes called reference and target shapes .

In this paper, we will focus on the situation where we are given q + 1 ’snapshots’

Sj ⊂ R3 which is a natural context for 3D-movies analysis. In particular, we will

extend the variational approach described above to the search of time dependent

R3-diffeomorphisms Ft verifying at fixed intermediary times tj the q > 1 geometric

matching constraints listed in (7.1a)-(7.1c). The q + 1 given ’snapshots’ Sj ⊂ R3
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are typically smooth 3D-shapes belonging to SH3 (see subsection 7.2.1) or piecewise

smooth R3-submanifolds of lower dimension k ∈ {1, 2}.

We will also present a medical application to a dynamic sequence of Mitral Valve

snapshots where each snapshot Sj actually belongs to a more general class of com-

posite deformable objects Sj which are unions of several bounded piecewise smooth

surfaces and curves in R3 linked by flexible articulations.

7.3 Optimal Matching of Intermediary Snapshots

In this section, we will use standard notation from Lebesgue and Sobolev space theory

(cf., e.g., [97]). Moreover, C will denote a generic positive constant not necessarily

the same at each occurrence.

7.3.1 Time Dependent Vector Fields With Finite Kinetic

Energy

We choose a Hilbert space V of vector fields on R3 and we consider the associated

Hilbert space L2(I, V ) of vector field flows v : t → vt ∈ V , indexed by a time

parameter t in the interval I = [t0, t1], having finite kinetic energy E(v) defined by

E(v) :=
1

2
‖v‖2

L2(I,V ) =
1

2

t1∫
t0

‖vt‖2
V dt. (7.2)

We assume that the Hilbert space V of R3-vector fields is continuously embedded in

a Sobolev space W s,2(R3)3 for some s > 5/2. By the Sobolev embedding theorem,
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W s,2(R3)3, s > 5/2, is continuously embedded in the Banach space C0, s−3/2(R3)3 of

R3-vector fields. We note that in this situation, for each x ∈ R3, the evaluation map

w → w(x) from V to R3 is continuous with respect to both the strong and the weak

topology on V .

7.3.2 Dynamic System of Diffeomorphic Deformations

For t ∈ I and v = (vt) as above, we define the flow of R3-diffeomorphisms Ft as the

solution of the flow dynamics equations

∂tFt = vt(Ft) , t ∈ I, (7.3a)

F0 = Id, (7.3b)

where Id refers to the identity map of R3.

7.3.3 Self-Reproducing Hilbert Spaces

We recall that a symmetric real valued kernel K(x, x′) defined for (x, x′) ∈ R3 ×

R3 is called positive definite iff for arbitrary vectors xn ∈ R3, n = 1, · · · , N , the

(N × N) symmetric matrix K(xm, xn) is positive definite. We refer to [70, 96] for

classic definitions and results on positive definite kernels K and their associated

self-reproducing Hilbert spaces. In our framework, the relevant Hilbert space V of

R3-vector fields is often defined as the classical self-reproducing Hilbert space V = VK

of R3-vector fields defined by a smooth symmetric bounded positive definite kernel

K(x, x′) on R3×R3 being invariant under translations. For the definition of VK , we
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consider the family W of R3-vector fields wz,u, indexed by arbitrary pairs (z, u) in

R3 ×R3, and defined by wz,u(x) = K(z, x)u for all x ∈ R3. The vector space LW of

finite linear combinations of elements of W is endowed with the pre-Hilbertian scalar

product

〈wz, u , wz′, u′〉 = K(z, z′) 〈u, u′〉R3 .

The space VK is then the unique Hilbert space generated by LW.

For many shape matching applications, K can be a radial Gaussian kernel Kσ

Kσ(x, x′) =
1

(2π)3/2σ3
exp

(
−‖x− x

′‖2

σ2

)
(7.4)

with a suitable scale parameter σ > 0. In particular, the Sobolev embedding hy-

pothesis above is satisfied for any s > 5/2 when V = VKσ is the self-reproducing

Hilbert space associated to a radial Gaussian kernel K = Kσ. The choice V = VKσ

seems to be a good pragmatic choice for diffeomorphic shape matching applications

as seen in previous studies and in our numerical implementations below.

7.3.4 Matching Quality

The matching quality is a measured as a linear combination of geometric matching

error and intensity matching error, i.e.,

Disp = DispG + µDispI

where µ ≥ 0 is the weight of combination.
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7.3.4.1 Geometric Matching Error

We consider a given sequence of instantaneous ’shape snapshots’ Sj = Stj ⊂ R3

generated by a deformable shape St at instants tj, 0 ≤ j ≤ q. Typically, each Sj

is a k-dimensional submanifold (k ∈ {1, 2, 3}) with a boundary that is regularly

embedded in R3. Let (Ft) be a candidate family of R3-diffeomorphisms indexed by

time. To compare each given snapshot Sj with the deformed initial shape Ftj(S0), a

key choice is to define smooth non-negative geometric distances D(S, S ′) quantifying

the geometric disparity between pairs of shapes S, S ′ in R3.

The classical Hausdorff disparities h(S, S ′) and h(S ′, S) between subsets S, S ′ of

R3 are defined by

h(S, S ′) = max
x∈S

(
min
x′∈S′
|x− x′|

)
.

They determine the Hausdorff distance by

Dh(S, S
′) = max (h(S, S ′), h(S ′, S))) . (7.5)

The Hausdorff distance introduces theoretical complications in the variational frame-

work below, since h(S, S ′) is not always smooth with respect to small perturbations

of S or of S ′, but Hausdorff disparities are nevertheless useful in numerical schemes

as will be explained below.

In applications, for each snapshot Sj = Stj one can often identify a well defined

set of p reference points

Zj = {zj,1, . . . zj,p}
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such that the Zj are point-to-point matched by the unknown diffeomorphisms Ft.

To force the diffeomorphic matching of these reference point sets, we will use the

obvious pointwise disparity functions

pointdisp(V ) =
r∑
p=1

|Ftj(z0,p)− zj,p|2.

Other efficient disparity functions D(S, S ′) based on Hilbertian distances between

differentiable currents carried by S and S ′ have been introduced in [85].

7.3.4.2 Intensity Matching Error

We consider at instant t0 = T0 the shape S0 as a set of discrete points {x1, · · · , xn},

the intensity matching error at instance Tl (l ≥ 1) is defined by the mean of squared

difference

DispIl =
1

n

n∑
i=1

(
INTTl(FTl(xi))− INTTl−1

(FTl−1
(xi))

)2
(7.6)

where INTTl(·) is the image intensity function at time Tl. In the medical imaging

data, the set of instances tj, 0 ≤ j ≤ q at which we have the geometric information

based on the doctors’ tagging work is a subset of instances {T0, · · · , TQ}, Q ≥ q. And

the image intensities are provided only at discrete voxels, which means the intensity

function is discrete. However, the computation of intensity matching error requires

a continuous version of intensity function. Therefore, we interpolate the discrete

intensity at discrete voxels to generate a continuous intensity function. There are a

lot of popular image intensity interpolation methods with different precision, and for

our purpose of simplicity, we select the linear interpolation which practically leads
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to satisfactory results with much reduced computing time as compared to high order

interpolation methods.

We have now provided all prerequisites to elaborate on the variational formulation

of matching intermediary snapshots. As above, we consider a given sequence of

q + 1 instantaneous ’snapshots’ Sj = Stj ⊂ R3 generated at fixed intermediary

times tj, 0 ≤ j ≤ q, by a deformable shape St with unknown dynamics. Each

Sj is typically a bounded piecewise smooth submanifold with a boundary that is

regularly embedded in R3. We seek a vector field flow v = (vt) on R3 belonging

to the Hilbert space L2(I, V ), I := [T0, TQ] such that for j = 1, · · · , q, the R3-

diffeomorphism Ft (solution of (7.3a),(7.3b)) deforms the initial snapshot S0 into a

submanifold Ŝj = Ftj(S0) ’coinciding’ as good as possible with the given snapshot

Sj. We select a particular geometric disparity functional D(S, S ′) and quantify the

constraint matching adequacy of v by the q numerical disparities

Dispj(v) = 1j∈{t1,··· ,tq}D(Ŝj, Sj) + µDispIj (v) , j = 1, · · · , Q.

We fix Q positive numerical weights λj > 0, and we define the disparity cost func-

tional by

Disp(v) :=

Q∑
j=1

λjDispj(v). (7.7)

These disparity functionals actually belong to a much wider class of functionals D(V )

which we will introduce next:

For v ∈ L2(I, V ) we denote by F v
t ∈ Diff(R3) the solution of (7.3a),(7.3b) determined

by v. We define D(V ) as the space of all disparity functionals Disp : L2(I, V )→ R+
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which are of the form

Disp(v) = φ(F v
T1
, . . . , F v

TQ
) (7.8)

for some fixed, but arbitrary choice of the integer Q, of the instants T1, · · · , TQ in

R+, and of the continuous function φ : (Diff(R3))Q → R+.

7.4 Diffeomorphic point matching

Diffeomorphic point matching [77, 87, 90] is a particular case of diffeomorphic match-

ing of measures that can be derived from the general framework of section 3. In such

a framework, let Ŝj = F v
tj

(S0) be a sequence of Q submanifolds generated at instants

TQ, 1 ≤ j ≤ q, from the initial snapshot S0 by a R3-diffeomorphism F v
t satisfy-

ing (7.3a),(7.3b) with unknown flow dynamics v ∈ L2(I, V ). Let X̂j = F v
Tj

(X0) ={
F v
Tj

(x0
1), . . . , F v

Tj
(x0

N0
)
}

be the sequence of q point sets generated by F v
t at instants

Tj, 1 ≤ j ≤ Q from the initial point set X0. We denote by xn(t) = F v
t (x0

n), t ∈ I,

the corresponding N0 trajectories emanating from x0
n, 1 ≤ n ≤ N0, at t = 0. Thus

we have X̂j = {x1(Tj), . . . xN0(Tj)}, 1 ≤ j ≤ Q.

Recall that xn(t) = F v
t (x0

n), t ∈ I, 1 ≤ n ≤ N0, are the solutions of the ODEs

dxn(t)

dt
= vt(xn(t)), t ∈ (0, 1], (7.9a)

xn(0) = x0
n. (7.9b)

Thus the trajectories xn(t), 1 ≤ n ≤ N0, and the disparity cost functional Disp(v),

are uniquely determined by the values of vt taken at N0 points xn(t). Taking into
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account that V = VK is a RKHS associated to a radial Gaussian kernel K = Kσ0 ,

this allows us to restrict the search for vt ∈ V to the set of linear combination of

Kxn(t), 1 ≤ n ≤ N0, and thus places us in a finite dimensional situation. We look

for the flow vt under the form vt =
∑N0

n=1 αn(t)Kxn(t), αn(t) ∈ R3, which may also be

written

vt(x) =

N0∑
n=1

Kσ0(xn(t), x)αn(t) , ∀x ∈ R3. (7.10)

By the self reproducing property of K, we have

‖vt‖2
V =

N0∑
n=1

N0∑
n′=1

Kσ0(xn(t), xn′(t))α
T
n (t)αn′(t).

We introduce the matrix-vector notations:

x(0) = (x
(0)
1 , · · · , x(0)

N0
)T ∈ RN0d, x(t) = (x1(t), · · · , xN0(t))T ∈ RN0d, t ∈ I,

α(t) := (α1(t), · · · , αN0(t))T ∈ RN0d, t ∈ I,

A(x(t)) = (Ann′(x(t)))N0

n,n′=1 ∈ R
N0d×N0d , Ann′(x(t)) := Kσ0(xn(t), xn′(t))Id ∈ Rd×d.

It follows that the kinetic energy E(v) defined by (7.2) takes the form

E(v) =
1

2

∫ 1

0

α(t)TA(x(t)) α(t) dt. (7.11)

Hence, in terms of α ∈ L2(I, RN0d), the objective functional reads

J(α) =
1

2

∫ 1

0

α(t)TA(x(t)) α(t) dt+

Q∑
j=1

λjDispj(x(Tj)) (7.12)

The diffeomorphic point matching amounts to the solution of the optimal control

problem

inf
α∈L2(I,RN0d)

J(α), (7.13a)
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subject to

dx(t)

dt
= A(x(t)) α(t), t ∈ (0, 1], (7.13b)

x(0) = x(0). (7.13c)

The existence of a solution α∗ of (7.13a)-(7.13c) follows from Theorem 3.2 in [67].

Assume that α∗(·) is the solution of the optimal control problem (7.13), and that

x∗(·) is the corresponding trajectory. Then there exists a function p∗(·), called the

adjoint state, such that the triple (x∗, p∗, α∗) satisfies

dx∗(t)

dt
= A(x∗(t)) α∗(t), t ∈ (0, 1], (7.14a)

x∗(0) = x(0), (7.14b)

−dp
∗(t)

dt
= B(x∗(t), α∗(t))T

(
p∗(t) +

1

2
α∗(t)

)
, t ∈ (Tj−1, Tj), (7.15a)

p∗(T+
Q ) = 0 (7.15b)

p∗(T−Q ) = p∗(T+
Q ) + λQ∇x∗(TQ)DispQ (7.15c)

p∗(T−j ) = p∗(T+
j ) + λj∇x∗(Tj)Dispj + λj+1∇x∗(Tj)Dispj+1 , j = Q− 1, · · · , 1,

(7.15d)

A(x∗(t))(α∗(t) + p∗(t)) = 0, t ∈ (0, 1]. (7.16)

In the adjoint state equation (7.15a), the matrix

B(x∗(t), α∗(t)) = ∇x (A(x∗(t)) α∗(t)) ,
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is given by

B(x∗(t), α∗(t)) = Bnm(x∗(t), α∗(t)))N0
n,m=1 ∈ RN0d×N0d

Bnm(x∗(t), α∗(t)) := α∗m(t)(∇2Kσ0(x∗n(t), x∗m(t)))T + δnm

N∑
k=1

α∗k(t)(∇1Kσ0(x∗n(t), x∗k(t)))
T ,

where ∇x denotes the gradient with respect the argument x(t) and ∇iKσ0(·, ·), 1 ≤

i ≤ 2, stands for the gradient with respect to the i-th argument of Kσ0(·, ·).

Moreover, (7.15d) represents the jump discontinuities of p∗(·) at times tj, 1 ≤ j ≤ Q.

7.5 Numerical solution of diffeomorphic point match-

ing

In this section, we will consider the basic matching algorithm based on the gradient

method and time discretizations of the optimality conditions (7.14a),(7.14b) and

(7.15a),(7.15d) as well as a variant of it which uses iteration-dependent weighting

parameters for the matching term in the objective functional. Further, we will discuss

an appropriate initialization of the algorithm.
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7.5.1 The basic matching algorithm

For the time discretizations of the optimal control problem (7.13) we introduce a

partition ∆I of I according to

∆I := ∪qj=1∆Ij , ∆Ij := {Tj−1 =: TLj−1 < TLj−1+1 < · · · < TLj−1 < TLj := Tj}

(7.17)

where ∆Ij, 1 ≤ j ≤ Q, are subpartitions of intervals Ij = [Tj−1, Tj] whose endpoints

Tj are key time frames at which the intensity information is given. We set L0 := 0

and L := LQ and define step sizes ∆t` := T`+1 − T` > 0, 0 ≤ ` ≤ L− 1.

We introduce the discrete control space

U∆I = RL×(N0d), (7.18)

equipped with the inner product

(α,β)∆I
=

L−1∑
`=0

∆t`α` · β` =
L−1∑
`=0

N0∑
n=1

∆t` α`n · β`n,

and discretize the state equation (7.14a),(7.14b) and the adjoint state equation

(7.15a),(7.15d) by the explicit Euler method. Introducing the notations

x = {x`}L`=0, x` = {x`n}
N0
n=1, x`n ≈ xn(t`), (7.19a)

p = {p`}L`=0, p` = {p`n}
N0
n=1, p`n ≈ pn(t`), (7.19b)

α = {α`}L−1
`=0 , α` = {α`n}

N0
n=1, α`n ≈ αn(t`), (7.19c)

the discretized optimality system reads

x`+1 − x`

∆t`
= A(x`) α`, ` = 0, · · · , L− 1, (7.20a)

x0 = x(0), (7.20b)
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p`−1 − p`

∆t`
= B(x`,α`)T

(
p` +

1

2
α`

)
, ` = Lj, · · · , Lj−1 + 1, (7.21a)

pLQ+ = 0, (7.21b)

pLQ− = pLQ+ + λQ∇x
LQDispQ (7.21c)

pLj− = pLj+ + λj∇xLjDispj + λj+1∇x∗(Lj) (7.21d)

A(x`)
(
α` + p`

)
= 0 , 0 ≤ ` ≤ L− 1. (7.22)

It turns out that (7.20)-(7.22) represent the optimality conditions for a discrete min-

imization problem. In fact, introducing J∆I (α) as the discrete objective functional

J∆I (α) :=
L−1∑
l=0

∆t`

2
(α`)TA(x`) α` +

q∑
j=1

λjDispj(x
Lj), (7.23)

we have the following result.

The equations (7.20)-(7.22) are the first order necessary optimality conditions for

the finite dimensional minimization problem

min
α∈U∆I

J∆I (α) (7.24)

subject to the discrete state equations (7.20a),(7.20b).

The proof is the discrete analogue of the proof of Theorem 3.2 in [67] and will

thus be omitted.

Let (x∗,p∗,α∗) with x∗ = {x`∗}L`=0,p
∗ = {p`∗}L`=0,α

∗ = {α`
∗}L`=0 satisfy the dis-

crete optimality system (7.20)-(7.22). Then, it holds

0 = ∇J∆I (α∗) (7.25)
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where

∇J∆I (α∗) = {g`}L−1
`=0 , g` = A(x`)

(
α`
∗ + p`∗

)
. (7.26)

We observe that

δJ∆I (α) = (∇J∆I (α), δα)∆I . (7.27)

From (7.23) we deduce

δJ∆I (α) =
L−1∑
l=0

∆t`
(

(α`)TA(x`) δα` +
1

2
(α`)TB(x`,α`) δx`

)

+

q∑
j=1

λj∇Dispj(x
Lj) δxLj (7.28a)

where

δx`+1 − δx`

∆t`
= A(x`) δα` +B(x`,α`) δx`, ` = 0, · · · , L− 1, (7.28b)

δx0 = 0. (7.28c)

Multiplying both sides of (7.28b) by p`, partial summation yields

0 =
L−1∑
l=0

∆t` p` ·
(
δx`+1 − δx`

∆t`
− A(x`) δα` −B(x`,α`) δx`

)

=
L−1∑
l=1

∆t`
p`−1 − δp`

∆t`
· δx` + pL−1 · δxL − p0 · δx0 −

L−1∑
l=0

∆t` p` · A(x`) δα`

−
L−1∑
l=0

∆t` p` ·B(x`,α`) δx` (7.29)

If we take (7.21a),(7.21d) into account, it follows from (7.29), (7.28a) that

δJ∆I (α) =
L−1∑
l=0

∆t` A(x`)
(
α` + p`

)
· δα`. (7.30)
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Since δα = {δα`}L−1
`=0 is arbitrary, (7.27) results in

∇J∆I (α) = {g`}L−1
`=0 , g` = A(x`)

(
α` + p`

)
. (7.31)

In view of of (7.25),(7.26), the discrete minimization problem (7.24) can be solved

by a gradient based algorithm operating in U∆I .

7.5.2 Smoothing of the Hausdorff matching term

In general, the Hausdorff distance is not a smooth function. For the gradient method

with Armijo line search we use a smoothed version under the assumption that for

any point on the deformed manifolds Ŝ = F v
tj

(S0), 1 ≤ j ≤ q, there exists some

neighborhood of points which corresponds to a unique set of neighboring points on

the target Sq. We define

D̃h(Sj, Ŝj) := h1(Xj, X̂j) + h2(X̂j, Xj), (7.32)

h1(Xj, X̂j) := (N0Nj)
−1
∑
x∈Xj

N0∑
k=1

|x− Φ(k)(x)|2, (7.33)

h2(X̂j, Xj) := (N0Nj)
−1
∑
x̂∈X̂j

Nj∑
k=1

|x̂−Ψ(k)(x̂)|2. (7.34)

Here, setting Φ(0)(x) = x and Ψ(0)(x̂) = x̂, the mapping Φ(k)(x) : R3 → Xj, 1 ≤ k ≤

N0, and Φ(k)(x) : R3 → Xj, 1 ≤ k ≤ Nj, are given recursively according to

Φ(k)(x) := min{|x̂− Φ(0)(x)| |x̂ ∈ X̂j\{Φ(k−1)(x), · · · ,Φ(0)(x)}}, 1 ≤ k ≤ N0 (7.35)

Ψ(k)(x̂) := min{|x−Ψ(0)(x̂)| |x ∈ Xj\{Ψ(k−1)(x̂), · · · ,Ψ(0)(x̂)}}, 1 ≤ k ≤ Nj.

(7.36)

This type of Hausdorff matching will be referred to as total Hausdorff matching.
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7.5.3 Choice of scale parameters

The scale parameter σ0 > 0 of the radial Gaussian kernel defined the RKHS V = Vk

has an impact on the smoothness of the deformations in so far as larger values result

in smoother deformations, and vice versa. It can be chosen by means of local radii

ri, 1 ≤ i ≤ N0, associated with each point xi on the reference configuration S0. In

particular, we define

ri := max
1≤l≤m

ri,l, ri,l := |xi − x(l)
i |, 1 ≤ l ≤ m, (7.37)

where the points x
(l)
i ∈ S0 are given recursively according to

x
(l)
i := min{|x− x(0)

i | |x ∈ S0 {x(l−1)
i , · · · , x(0)

i }}, x
(0)
i := xi. (7.38)

Here, m ∈ N is chosen as m = 2 for points on a curve. Based on these local radii,

we set

σ0 := κ2−1/2R, R := max
1≤l≤N0

ri (7.39)

where κ is some constant satisfying κ > 2−1/2 (e.g., 2−1/2 = 1.1).

The scale parameter can be kept fixed during the whole computation or can be

updated by taking into account the positions x̂i at different times instances. This

is realized by defining local radii at any instance as above. In our applications,

numerical evidence suggests to keep σ0 fixed during the whole process, since there is

not much difference between the resolution of the points on the intermediaries and

the target.
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7.5.4 Continuation in the regularization parameter

The weights λj in the disparity cost functional are chosen according to λj = λ, 1 ≤

j ≤ Q, for some positive λ. This regularization parameter provides a weighting

between the kinetic energy and the disparity cost functional. If λ is small, the regu-

larizing effect of the kinetic energy dominates, whereas large values of λ enforce the

matching quality. Hence, for the sake of a good matching quality, one is interested in

performing the computation by choosing λ sufficiently large. However, for increasing

λ, the optimality system becomes more and more ill-conditioned which may result

in the divergence of the gradient method. A convenient remedy to overcome this

deficiency is to use an appropriate continuation in λ. The continuation method con-

sists of outer iterations in λ and inner iterations which are chosen as the gradient

method with Armijo line search. Progress during the outer iterations is measured in

terms of the performance of the intermediary curves and the target curve in terms of

geometric matching error (GMEj) and intensity matching error (IMEj) at instances

1 ≤ j ≤ Q, which are defined as:

GMEj := 90 percentile of{min
xl∈Sj

|x− xl|, x ∈ X̂j} (7.40)

IMEj := 100

∑n
i=1 |INTTj(FTj(xi))− INTTj−1

(FTj−1
(xi))|∑n

i=1 INTTj−1
(FTj−1

(xi))
(7.41)

and we defined the mean errors of them by

mean(GME) :=
1

q

q∑
j=1

GMEj (7.42)

mean(IME) :=
1

Q

Q∑
j=1

IMEj (7.43)
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7.6 Numerical Results for the Human Mitral Valve

Annulus

In the cardiology application, we apply variational techniques to numerically con-

struct diffeomorphic flows modeling the dynamic deformations between multiple 3D-

snapshots of the human mitral valve annulus. Our starting point is a patient’s

specific finite set of q + 1 static models Sj of the mitral valve annulus and Q + 1

instances with image intensities. These models were generated by image analysis

of live 3D-echocardiographic movies at specific heart cycle instants tj in a recent

study involving the Methodist Hospital, Houston, Texas (S. BenZekry, S. Little, W.

Zoghbi, MDs) as well as a research group on mathematical image analysis led by

R. Azencott. Each 3D-movie includes roughly twenty 3D-frames per heartbeat cy-

cle, acquired by ultrasound technology, and represents a high volume of image data

corrupted by ‘speckle’ noise.

The mitral valve models Sj are based on NURBS(non uniform rational B-splines),

and were obtained by combining optical flow extraction algorithms with sparse tag-

ging by medical experts. The number q + 1 of intermediary key heartbeat cycle

instants tj ranged from 3 to 8, and time range I = [T0, T1] covers either a half or a

whole heartbeat cycle with total duration between 1/2 to 1 second.
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7.6.1 Diffeomorphic Matching for 5 Annulus Snapshots

We consider the results of diffeomorphic point matching of the annulus in case of

the Hausdorff distances (Hausdorff matching) being used for the geometric disparity

functional (matching term) and without intensity matching term. We have chosen

five snapshots S1, S3, S5, S7, S10 corresponding to time instances t1, t3, t5, t7, t10 of the

heart beating cycle. The frame rate is 27Hz. The spline model for the modeling

of the annulus allows us to discretize the annulus such that the arc length distance

between any two neighboring points is the same. We take 62 points on the reference

curve S1 and final target curves S3, S5, S7, S10. We used trivial initialization α = 0,

time steps ∆tl = 1/18. The parameter κ has been chosen as κ = 1.1 resulting in a

value of σ0 = 3.53 for the Gaussian kernel Kσ0 of the RKHS. The performance of the

diffeomorphic matching is measured on one hand by the convergence history of the

continuation method in terms of the decrease of quantities of interest (mean(GME)

and mean(IME)) and on the other hand by the tradeoffs between these two perfor-

mance measures.

We have chosen λ(0) = 1 as a start iterate for the regularization parameter in

the continuation method and increased it by the factor ρ = 1.1. Firstly, we run an

experiments by setting µ = 0. The computational performance of the continuation

algorithm is evaluated first by the convergence history for the q indicators of the

geometric matching accuracy GMEj and for the corresponding values DispGj of the

q components of the disparity functional.
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We also record and display the tradeoffs between these matching quality indica-

tors and the kinetic energy of the corresponding deformation flows. At the end of

each inner iteration of gradient descent with fixed regularization parameter λ, we

generate a point on each one of the approximate Pareto frontiers displaying match-

ing quality indicators as functions of the kinetic energy, we expect and empirically

observe convexity of these approximate Pareto frontiers, viewed as usual as the lo-

cation of the weak Pareto optima for the pair of competing criteria (kinetic energy

versus matching disparity).

The convergence history is documented in Figure 7.2 which displays the decrease

of the geometric accuracy indicators GMEj and of the disparity components DispGj

for our 4 snapshots. It takes 200 iterations to reach the threshold geometric accuracy

required for this application, but we have extended iterations beyond this value to

obtain a more complete view of the Pareto frontiers.

The Pareto frontiers for the geometric accuracy indicators GMEj, the Hausdorff

disparities DispGj , and the global Hausdorff disparity
∑
DispGj are shown in Figure

7.3. Note that for the first annulus snapshot the geometric accuracy GME1 and the

Hausdorff disparity DispG1 do not exhibit a convex decrease pattern at the begin-

ning of the continuation procedure. Indeed, the currently implemented algorithmic

optimization strategy first “focuses” on matching the final snapshot and then succes-

sively shifts the focus on the matching of the intermediary snapshots in decreasing

order. This is due to the fact that in the backwards adjoint ODE, the snapshots

matching errors kick in successively in the same reverse order. Hence, as long as the

final snapshots errors are large, the corrections implemented for the first snapshots
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remain quite fuzzy, and only turn out to be efficient once the matching errors on the

final snapshots have become small enough.

When µ = 0, i.e., intensity information is not applied in the optimization, the

final mean(GME) and mean(IME) are 0.4 mm and 13.1 percents respectively, after

400 iterations. In figure 7.1, we plotted the five annulus curves and also trajectories

of certain points on the reference annulus. When µ = 0.01, after same number of

iterations, the final mean(GME) and mean(IME) are 1.0 mm and 3.5 percents.���� ���������	�
 �	���� ��	��������
Figure 7.1: The five closed curves are five instances of the annulus. The small
dotted curve is the reference curve. From bottom to top, the next three curves are
the intermediaries and the last one is the final target. The vertical ‘–’ lines are
deformations of selected points on the reference curve.
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Figure 7.2: Diffeomorphic matching for multiple mitral annulus snapshots, using
smoothed Hausdorff distances: Convergence history for the geometric accuracy indi-
cators and for the smoothed Hausdorff disparity components DispGj

7.6.2 Diffeomorphic Matching for All Annulus Snapshots in

One Cardiac Cycle

We consider here the 9 annulus snapshots acquired at times 1,3,5,7,10,14,18,22,26,

which cover one whole cardiac cycle, we generate 8 data sets D1, ..., D8 as following:

• D1 – Time1-3

• D2 – Time3-5

• D3 – Time5-7

• D4 – Time7-10

• D5 – Time10-14
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• D6 – Time14-18

• D7 – Time18-22

• D8 – Time22-26

For each data set Di, we choose 62 points on each annulus that are located with equal

arc length. We use the smoothed Hausdorff disparity, and initialize α by α = 0, the

parameters θ, σ, ρ are the same as above. We choose λ(0) = 0.2 as a start iterate

for the regularization parameter in the continuation method and increased it by the

factor ρ = 1.1. We select different µ values for each data set so that the best tradeoff

between GME and mean(IME) can be achieved.

For each optimization, we stopped the optimization when GME becomes less

than 1 for the first time, and we record the final mean(IME) for each µ and each

data set Di. Numbers of iterations for all experiments are less than 200. The

numerical result was shown in table 7.1. It clearly shows that the intensity matching

error decreases as the intensity weight µ increases.

For each data set, we compare the intensity curves of the reference annulus and

deformed annulus, for µ = 0 and best µ in table 7.1. We plot these curves in figures

7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 7.10, 7.11.

7.6.3 Diffeomorphic Matching of the Anterior Leaflet

We present the performances of diffeomorphic matching for 4 snapshots S0, S1, S2,

S3 of the anterior leaflet, acquired at times 0, 1, 5, 10, using smoothed Hausdorff
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D1 D2 D3 D4 D5 D6 D7 D8

µ = 0 9.8 7.3 8.7 7.3 15.5 10.8 4.9 2.2
µ = 0.001 8.2 5.1 6.4 5.2 7.9 8.1 4.3 2.1
µ = 0.002 7.2 4.3 5.3 4.3 6.2 6.5 3.8 2.0
µ = 0.003 - 3.8 4.6 3.8 5.1 5.7 3.5 1.9
µ = 0.004 - 4.1 3.5 - - 3.3 -
µ = 0.005 3.8 3.1 3.1

Table 7.1: mean(IME) when GME ≈ 1.

snapshot disparities without intensity matching term. Initialization for the time de-

pendent vector field is implemented by piecewise constant vector fields for boundary

deformations and adequately fitted polynomials in time and space variables for the

interior of S0. The continuation algorithm starts with λ(0) = 0.1, and is multiplied

by 1.5 at each outer iteration. The scale and termination parameters σ and θ are as

above. The following figures 7.12 and 7.13 display satisfactory performance results.

7.6.4 Diffeomorphic Matching for Multiple Snapshots of the

Posterior Leaflet

We have similarly implemented the diffeomorphic matching for 4 snapshots S0, S1,

S2, S3 of the posterior leaflet acquired at times 0, 1, 5, 10, using smoothed Hausdorff

snapshot disparities without intensity matching term. Time is discretized into 30

equal intervals. The 4 snapshots are discretized by point meshes of approximate car-

dinals 250 for the initial leaflet S0, and 1100 for the other snapshots. The initializa-

tion and the choice of the algorithmic parameters are similar to the implementation

just described for the anterior leaflet. As already noted above, when one uses the
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same value λ for all 3 regularization weights λj , the matching quality between Sj and

Ŝj improves more slowly for j = 1 than for j = 3 (see figure 7.14). We have compared

this approach to a more adaptive one, where one dynamically adjusts the weights

λj at each outer iteration by appropriately balancing current values of the 3 Haus-

dorff disparities. (figure 7.15). The geometric matching accuracies reach a desirable

pragmatic threshold slightly faster for the dynamically independent weights, at the

cost of some loss of convexity for the Pareto frontiers, which suggests that dynamic

adjustment of weights may provide less robustness in the continuation procedure.
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Figure 7.3: Diffeomorphic matching for multiple annulus snapshots, using smoothed
Hausdorff distances: Pareto frontiers for the geometric accuracy indicators, for the
Hausdorff disparities, and for the global Hausdorff disparity

128



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

100

150

200

250

Figure 7.4: Reference(solid) and deformed (dash) annulus intensity curve by arc
length: top(µ = 0), bottom(best µ), data set D1.
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Figure 7.5: Reference(solid) and deformed (dash) annulus intensity curve by arc
length: top(µ = 0), bottom(best µ), data set D2.
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Figure 7.6: Reference(solid) and deformed (dash) annulus intensity curve by arc
length: top(µ = 0), bottom(best µ), data set D3.
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Figure 7.7: Reference(solid) and deformed (dash) annulus intensity curve by arc
length: top(µ = 0), bottom(best µ), data set D4.
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Figure 7.8: Reference(solid) and deformed (dash) annulus intensity curve by arc
length: top(µ = 0), bottom(best µ), data set D5.
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Figure 7.9: Reference(solid) and deformed (dash) annulus intensity curve by arc
length: top(µ = 0), bottom(best µ), data set D6.
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Figure 7.10: Reference(solid) and deformed (dash) annulus intensity curve by arc
length: top(µ = 0), bottom(best µ), data set D7.
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Figure 7.11: Reference(solid) and deformed (dash) annulus intensity curve by arc
length: top(µ = 0), bottom(best µ), data set D8.
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Figure 7.12: Diffeomorphic matching for four anterior leaflet snapshots: Pareto fron-
tiers for the separate Hausdorff disparities to snapshots (left) and for the global
Hausdorff disparity (right)

Figure 7.13: Pareto frontiers for the maximum distances to snapshots (left) and for
their 90th percentiles (right)
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Figure 7.14: Diffeomorphic matching for four posterior leaflet snapshots: Geometric
accuracy indicators and Pareto frontiers for strictly equal regularization weights λj

Figure 7.15: Diffeomorphic matching for four posterior leaflet snapshots: Geomet-
ric accuracy indicators and Pareto frontiers for dynamically adjusted regularization
weights λj
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Chapter 8

Conclusion

2D-IntraCardiac Echography (ICE) is a primary echocardiography modality to ac-

quire visual information on live cardiac anatomy, by catheter insertion of a transducer

within the heart chamber. However, ICE-images sequences are always perturbed by

a strong “speckle” noise, due to the diffuse scattering of ultrasound pulses by small

scatterers randomly dispersed at sound wavelength scales. Most published cardiac

motion detection methods still do not attempt to fully use the statistical features

of speckle noise. We have developed an “elastic registration” approach to compute

cardiac motion by analysis of ICE-image sequences. The main principles applied here

were the modeling of the unknown spatial deformations between two successive views

by bicubic B-splines, and the minimization of a cost function derived by a maximum

likelihood technique applied to the log-speckle noise. Instead of uniformly modeling

the speckle noise by a standard Rayleigh distribution, we build, for each specific ICE

image sequence, a cost functional parameterized by an image based local estimation
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of the observed speckle noise local statistics.

Since fast computing of myocardiac deformations is of high interest for potential

clinical use, we have improved computing efficiency by introducing local image masks

to restrict the cost functional to cardiac muscle areas, which represents a small frac-

tion of the whole ICE images. Another key ingredient for fast computing has been to

implement an optimized coarse to fine multiresolution approach for gradient descent.

At coarser resolutions, masks have small sizes therefore computing time is strongly

reduced since at coarser scales we also use faster stopping criteria for gradient de-

scent. Our numerical results matched quite well the experimental sonomicrometry

strain data recorded on live animal subjects by physicians.

We have also extended our 2D elastic registration method to the 3D case. Specif-

ically, we apply speckle tracking techniques to numerically track the dynamic defor-

mations between multiple 3D-snapshots of the human mitral valve annulus in the

mitral valve apparatus. Our computing results matched quite well the patient spe-

cific geometric models of the mitral valve annulus generated by NURBS based on

3D-image tagging by cardiologists.
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Although we have introduced multiresolution numerical implementations and lo-

cal masking techniques to greatly accelerate computing speed, our accelerated reg-

istration algorithms are still not rapid enough for fast clinical applications to 3D-

echocardiography. One basic obstacle is of course the fairly restricted power avail-

able on our current computing server at University of Houston. Another obvious

constraint on computing speed is that our algorithms were implemented in Matlab

language, which is an interpreted programming language , which is much slower than

compiled languages such as C, C++, Fortran, etc.

One mathematical limitation of the elastic registration method is that there

are no explicit constraints ensuring that the computed spatial deformations are in-

vertible. Therefore, in the spirit of recent papers on diffeomorphic 3D-image reg-

istration ([26][27][28][29]), we have studied registration of 3D-images and of soft

shapes in R3 by R3-diffeomorphisms. Our algorithmic method to construct such

3D-diffeomorphisms is developed at length in the joint paper [67], and is based on a

variational approach where the unknown diffeomorphisms are generated by integra-

tion of smooth vector fields belonging to specific self-reproducing Hilbert spaces. In

an abstract setting, the optimal diffeomorphic matching of two submanifolds (sur-

faces or curves) of R3 is formulated as a minimization problem involving the actions

of diffeomorphisms on the two Borel measures M1 and M2 induced by R3 on the

reference and target submanifolds. The objective functional to be minimized is the

sum of two terms: the kinetic energy of the deformation and the matching qual-

ity of the corresponding shape registration. To make the problem computationally
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accessible, we use self-reproducing kernel Hilbert spaces generated by Gaussian ra-

dial kernels, and we discretize the measures M1 and M2 by finite weighted sums of

Dirac measures. The minimization algorithm is reduced to the solution of a finite

dimensional minimization problem in very high dimension. The performance of our

diffeomorphic tracking in medical 3D-image movies is illustrated by numerical results

for the dynamic modeling of the human mitral valve annulus by computer analysis

of 3D-echocardiographic image sequences.
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[93] J.L. Lions, “Controlabilité exacte, perturbation et stabilisation des syst‘emes
distribués”, Masson, Paris, 1988.
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