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ABSTRACT

Coupled ocean-atmosphere models are complex due to the large number of modes.

To understand the predictability and dynamics of such large systems, lower dimen-

sional projection on a subset of variables can be used to gain insight about the full

model. Using certain simplifications, explicit analysis can be performed to explain

the behavior of the reduced dynamics, where the neglected degrees of freedom are

represented stochastically. Several techniques can be utilized to reduce the complex-

ity of the models; in particular, the stochastic mode-reduction approach has been

considered. Furthermore, due to the oscillatory behavior of the systems, mechanisms

for the oscillations in predictability has been investigated and the approach of the

non-equilibrium behavior to the equilibrium state is studied.

In the first half of this thesis, we examine loss of predictability in two-dimensional

stochastic systems that have oscillatory behavior. We show that the information

provided by an initial distribution about the state of the system decays to zero non-

uniformly in time. In particular, the oscillatory behavior of the systems is responsible

for the non-uniformities in predictability. Furthermore, the system as a whole will

loose information, but on a subset of variables information can be gained. This return

of information will lead to the notion of “return of skill”. Marginal distributions will

be used to study this increase in information.

In the second half of this thesis, we apply the stochastic mode-reduction strat-

egy to a particular class of prototype coupled ocean-atmosphere models, where self-

interactions of the slow variables are given by a rotationally invariant gradient system.

The problem addresses the interaction of coherent structures with noise, where the

diffusion/drift term in the reduced system contains information about the full dy-
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namics of the system. The stochastic mode-reduction strategy is utilized to derive

stochastic reduced models, which gives a simple description of the phenomena that

occurs from breaking the original rotational symmetry. The direction of the symme-

try breaking can be predicted apriori without any information about the statistical

behavior of the fast modes. Furthermore, we show a connection of the full and the

mode-reduced system using the notion of predictability from the first part of thesis.
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Chapter 1

Introduction and Background

1.1 Motivation

Most atmosphere-ocean system are coupled system where changes in the dynamics of

one part of the system can lead to large changes in other parts of the system. Fur-

thermore, due to lack of knowledge about the original state of the system and limited

spatial and temporal resolution in observational data, there is some uncertainty in-

volved in the current state of the system. Hence, prediction of the future state of the

atmosphere can be awfully difficult and mostly impossible for times past two weeks

[20].

Significant amount of research has been done in understanding the dynamics of

the state of the atmosphere. There are two popular methods used in forecasting the

dynamics of the atmosphere: deterministic and probabilistic. Deterministic technique

relies on integrating differential equations that yield solutions which are dependent on

initial conditions. Assumptions about the initial conditions are then used to predict

1



the future evolution of the atmosphere. In probabilistic forecasting, observational

data about the current and past state of the system is used. Then minimizing the

error in prediction, one determines the coefficient of the equation which is modeled by

a stochastic process. Using ensemble forecasting, several cluster of initial conditions

are generated with a certain distribution. According to how the system evolves for

each initial conditions, one can compute the actual conditional probability of a specific

event. Hence, with certain confidence, one can predict the future state of the system.

Weather forecasting can also be thought from an information theoretic point of

view. By efficiently capturing all the information about the current state of the

system, one can make a successful weather prediction. Entropy is a measure of uncer-

tainty in the transfer of this information. Hence, entropy measures the uncertainty

over the true state of the system. One can argue that the true state of the system

might be unknown. Extensive numerical and experimental data suggest that the true

state of the atmosphere is close to the equilibrium distribution (i.e. stationary in

time). Hence, the notion of weather predictability is the degree to which a correct

prediction has been made. The Fokker-Planck Equation (FPE) explains how dis-

tributions evolve in time. Once the system is observed, the future evolution of the

weather system can be evaluated using the FPE.

Climate prediction requires coupled ocean-atmosphere models. Coupled ocean-

atmosphere models have wide range of timescales; ocean evolves on a slow time scale

(i.e. years or decades) while atmosphere evolves on a fast time scale (i.e. few weeks).

Fluctuation in the ocean dynamics drive variations in the climate through the in-

teraction coefficients [8]. The difficulty in predicting the state of the ocean using

the coupled model requires replacing the atmosphere dynamics by a systematic tech-
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nique so that the reduced dynamics are efficiently captured. Hence a rigorous method

is needed to mimic the interaction of the fast dynamics whereby still retaining the

prominent features of the system [42]. The reduced models are numerically efficiently

while still preserving the important components of the climate.

Several techniques can be used to reduce the number of degrees of freedom and

still be able to preserve the dynamics of the system. One such technique is called

Proper Orthogonal Decomposition (POD) [36]. POD is also sometimes referred to as

principal component analysis. The method uses empirical data to find the “optimal”

subspace to approximate the given data. Low-dimensional projections onto this sub-

space yields the reduced model. In particular, the reduced system is highly efficient

numerically while still retaining the original properties of the original system. An-

other efficient and similar method used frequently in weather forecasting is Empirical

Orthogonal Function (EOF). In particular, EOF captures the temporal and spatial

patterns unlike POD. EOF decomposes the data in terms of orthogonal basis func-

tions where the basis functions are calculated using the eigenvectors of the covariance

matrix of the data. Each orthogonal basis function is responsible for the variance

in the model and using the leading orthogonal basis function, one can maximize the

variability in the model. Hence the essential orthogonal basis functions represent the

subsystem.
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1.2 Coherent Structures and Stochastic Mode Re-

duction

Coherent structures have been used to explain many physical phenomena. Coherent

structures include stable periodic orbits, circle of equilibria, homoclinic orbits, het-

eroclinic connections, etc. These structures are evident is various low-dimensional

systems, in particular linear oscillator and the Duffing equation which will studied in

detail in Chapter 2. Coherent structures are dynamical structures visible in more-

or-less the same region of the phase space, are present for long periods of time and

maintain the same shape and size. Numerous examples of coherent structures in tur-

bulent flows have been studied. Interaction of coherent structures with noise have

also been studied extensively and are important in our applications. In Chapter 3 we

study models that have an underlying coherent structure. These coherent structures

when coupled with other degrees of freedom have a strong signature present in the

full system. Using a particular model reduction technique, we achieve the reduced

dynamics where the coherent structure remains and the neglected variables are re-

placed by noise. The interaction of coherent structures with noise becomes important

since this structure in the reduced dynamics is preserved under various conditions.

Many ideas from stochastic modeling have been used successfully to resolve the

unresolved degrees of freedom. Ideas from dynamical systems and bifurcation theory

have also been considered to truncate the non-essential modes. Identifying coherent

structures in the phase space of reduced climate variables becomes essential in un-

derstanding the large dynamical behavior. The retained modes can contain multiple

equilibria due to the non-linear interactions of the other variables [34]. Other coherent
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structures due to non-linear instability include Hopf bifurcations and periodic flows

[28]. Furthermore, limit cycles [26] can also be present due to the oscillatory behavior

of the system.

The presence of coherent structures in large deterministic system when projected

onto the slow dynamics have been discussed before. Due to the coupling effect o the

slow and fast modes, certain isolated regions occur that are not present in the original

coupled model. In [42], two large isolated peaks in the joint distribution occur that

have a weak signature of the original stable periodic orbit. Hence observations in

the reduced atmosphere-ocean model can be used to search for the signature of these

“ghost” present in the full coupled climate model [43, 44, 27].

We will employ the stochastic mode-reduction strategy to replace the non-essential

variables using stochastic terms. Stochastic mode reduction relies on the splitting the

degrees of freedom into the essential modes (slow modes), whose dynamics are of in-

terest and the non-essential modes (fast modes), whose interactions will be effectively

replaced by the noise term. The stochastic mode reduction technique is rigorous

in the limit that the fast modes evolves much faster than the slow modes. The non-

linear interactions between the fast modes are then replaced by stochastic terms. This

simplification of the original dynamics of the unresolved modes is extremely useful.

Various techniques used in model reduction involve replacing the non-essential de-

grees of freedom by some stochastic terms which may or may not mimic the features

of the full system. Furthermore, stochastic mode reduction can also be used to predict

apriori the emergence of previously discussed “ghost” behaviors. We will see this in

more detail in Chapter 3.
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1.3 Measures of Predictability

Work by Lorenz in [35] suggested that weather predictions are sensitive to initial

conditions, where small changes in initial conditions can lead to significantly differ-

ent states of the system. Hence accurate weather prediction are not possible beyond

2 weeks. Due to this uncertainty in the atmosphere, statistical methods that use

Monte-Carlo simulations of an ensemble of initial conditions are used often in weather

predictions. The spread of the ensemble is used as a measure to quantify the reli-

ability in prediction. Hence, the variability in the system can be used to measure

predictability. Several measures of predictability have been studied. In this section,

we will introduce several measures of predictability and their pitfalls to suggest the

need for the natural notion of distance in information theory, relative entropy as a

measure of predictability.

“Potential predictability” (PP) can be quantified as a ratio

PP =
σ2

E − σ2
En

σ2
E

, (1.1)

where σ2
En and σ2

E are ensemble and equilibrium variances, respectively. Since PP

compares variances of equilibrium and ensemble distributions, it measure the relative

spread of the ensemble to the equilibrium spread. Initially, the ensemble of the

distribution has small variance compared to the equilibrium distribution, hence PP

is close to 1. As the ensemble distribution spreads towards equilibrium distribution,

PP decays to 0. Notice that PP apriori only takes into account the dispersion of the

equilibrium distribution. To see the pitfalls, assume that the equilibrium distribution

has zero mean and non-zero variance. Consider an initial ensemble distribution with
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a unit mean and a non-zero equilibrium variance. Under this particular situation, PP

will be zero and hence no significant information can be recovered from this measure

even though the ensemble distribution has large departures from equilibrium mean.

Hence, the ensemble still contains significant information.

Another measure of particular usefulness is the Root Mean Squared Error (RMSE)

[10]. RMSE can be defined as

RMSE =

√√√√ 1

N

N∑

i=1

(Fi −Oi), (1.2)

where Fi is forecast and Oi is observation for the ith data. Notice that RMSE

calculates the average magnitude of the forecast errors. If the prediction forecast

is the same as the observational data, then RMSE will be a perfect score of 0.

RMSE puts more influence on large errors as compared to small errors and hence

can encourage conservative forecasting. Other variants of RMSE include Mean Error

(ME), Mean Absolute Error (MAE) and Mean Square Error (MSE).

Another common measure used is forecast prediction is the Anomaly Correlation

Coefficient (ACC) [6]. ACC is defined as [51]

ACC =
cov(O − E)(M −E)

[var(O −E)var(M − E)]1/2
(1.3)

where var is variance, cov is covariance, O is observed values, M is modeled values, and

E is equilibrium values at a discretized point in time. ACC calculates correlation in

errors of observed values and modeled values with respect to the equilibrium values.

Intuitively, ACC measures deviation of the modeled and observed anomalies from
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the equilibrium. The measure in particular only detects patterns rather calculate

absolute values.

Notice that in order to use an efficient measure of predictability, we need to

consider the total distribution which can include mean, variance, and higher moments.

Autoregressive approach has been used as a measure of potential predictability of a

system [4]. Several measures of predictability have been introduced in dynamical

systems theory including Lyapunov exponents [5, 60] and various notions of entropy

[47, 25].

1.4 Relative Entropy for SDEs

In this section1, we give an introduction to a different measure of predictability using

information theoretic concepts. This measure is particularly well suited to quantify

the predictability of a stochastic dynamical system. The measure is referred to as the

Relative Entropy (also called Kullback-Leibler divergence) and was first introduced

by Kleeman [31] in the atmospheric context.

Before a formal definition of relative entropy can be given, we would like to in-

troduce the notion of entropy. Consider an event X, which occurs with a probability

p(x). Then the measure of information h of the event X is

h(X = x) = ln
1

p(x)
. (1.4)

Hence if an event occurs with a very high probability, h will be very small. Therefore,

1Recently published work: Barlas, N., Josić, K., Lapin, S. and Timofeyev, I. (2007). Non-
Uniform Decay of Predictability and Return of Skill in Stochastic Oscillatory Models. Physica D

232(2) 116-127.
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knowledge that the event occurred gives us little to no new information. So the

average information content weighted by the probability of occurrence of the event is

called entropy and is given in [16] by

H(X) =
∑

x

p(x) h(p(x)) = −
∑

x

p(x) ln p(x), (1.5)

a natural measure of uncertainty.

Relative entropy calculates the difference between two distributions, p and q.

In our applications, these distribution are denoted as transient (non-equilibrium)

distribution p(x, t) and equilibrium distribution q(x). Furthermore, we assume that

q(x) exists, is unique and does not evolve in time. As transient distribution converges

asymptotically to equilibrium distribution, and the long term behavior of the system

reaches equilibrium state, relative entropy R on a discrete set of states is denoted as

R(p(x, t), q(x)) =
∑

x

p(x, t) ln

(
p(x, t)

q(x)

)
, (1.6)

where the multi-dimensional continuous analogue of (1.6) can be given by

R(p(~x, t), q(~x)) = R(t) =

∫
p(~x, t) log

(
p(~x, t)

q(~x)

)
d~x. (1.7)

Relative entropy measures “how far” p(~x, t) is away from q(~x). Hence the relative

entropy can be thought of as a measure of “distance” between the distributions p(~x, t)

and q(~x). Notice that R is not exactly a distance since in general R(p, q) is not

symmetric, that is R(p, q) 6= R(q, p), nor does (1.7) satisfy the triangle inequality.

Relative entropy is the extra amount of information available from p(~x, t) over
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Figure 1.1: Illustration of the relative entropy for two normal Gaussian distributions
where p(x) is prediction distribution and q(x) is climatological distribution. Compar-
ison of high relative entropy (Left) versus low relative entropy (Right).

the equilibrium q(~x). More precisely, R(t) corresponds to the amount of information

that the distribution p(~x, t) provides about the state of the system in excess of that

given by the equilibrium distribution q(~x) [2]. It is therefore natural to interpret R(t)

as a measure of the utility of the prediction provided by an ensemble of particular

realizations. An illustration of relative entropy is given in Figure 1.1.

As discussed before, shortfalls in measures of predictability is due to measures not

taking advantage of all the statistical behavior of the equilibrium and non-equolibrium

behavior. Hence the inclusion of mean, variance and higher moments become signif-

icant in capturing the total distribution Unlike some other measures of utility, in

particular (1.1), relative entropy reflects differences in all moments, including the

mean and variance, of the transient and equilibrium distributions. An increase in the

utility of a prediction may be due to the narrow spread of the ensemble (reflected in a
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difference between the variances of p and q), or the fact that this ensemble indicates

a large departure from normal conditions (reflected in a difference between the means

of p and q). In addition, relative entropy satisfies several important mathematical

properties which make it a relatively unique measure of predictability.

Typically, the predictability properties of a given system are characterized by the

behavior of the relative entropy averaged over the equilibrium distribution of the

system obtained by Monte-Carlo simulations with an ensemble of ensembles. Each

individual ensemble of ensembles in the simulation describes the decay of predictabil-

ity for an initial state. The mean of each initial state is chosen at random from the

equilibrium distribution, and their variances reflect uncertainties due to imperfect

measurements.

Stochastic systems with Markov property, is one in which knowing the present

state, the future of the system is independent of the past. Formally, a stochastic

process X(t) is called a Markov process if

Pr(X(t+ h) = y|X(s) = x(s), ∀s ≤ t] = Pr[X(t+ h) = y|X(t) = x(t)], ∀h > 0.

For Markov processes, relative entropy R simplifies significantly. If the dynamical

system being modeled is Markov and q(~x) is the stationary distribution, then R always

decreases monotonically with time. One of the basic laws of physics, the second law

of thermodynamics, states that the entropy of an isolated system is non-decreasing.

Hence the second law of thermodynamics is a generalization of the notion of entropy.

In our case, due to ergodicity, for sufficiently long lag times the relative entropy

always decreases monotonically to zero as the transient distribution approaches the
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equilibrium behavior. Hence, relative entropy satisfies three important mathematical

properties:

1. It is invariant under well behaved non-linear transformations of state variables

[38],

2. It is non–negative [13] and,

3. It declines monotonically in time for Markov processes [13].

Decrease in relative entropy over time can be interpreted as a decline in the utility of

a prediction or decrease in the predictive nature of the system. Notice that the word

utility of prediction will be used interchangeably with skill.

In order to calculate the “total” or “overall” predictability of a model, relative

entropy is calculated by averaging over all initial states that are generated by ensemble

of ensembles.

1.4.1 Relative Entropy for Gaussian Distributions

Suppose that q(~x) and p(~x, t) are n-dimensional multivariate Gaussian distributions

where the mean and variance are known. Continuous form of relative entropy in this

case becomes

R =

∫ ∞

−∞

dx1

∫ ∞

−∞

dx2 . . .

∫ ∞

−∞

dxn p(~x, t) log

(
p(~x, t)

q(~x)

)
. (1.8)

For multidimensional case of relative entropy, µq and µp are vector-valued means

and σq, σp are variance-covariance matrices. Using the multivariate normal density

function of q(~x) and p(~x, t) in (1.8), we get the simplified analytical expression of

12



relative entropy [31]

R =
1

2

(
log

(
det(σ2

q )

det(σ2
p)

)
+ Tr(σ2

p(σ
2
q )

−1) − n

)
Dispersion

(1.9)

+
1

2
(µp − µq)

T (σ2
q )

−1 (µp − µq) Signal.

Notice that the two expressions were intentionally separated into the “Dispersion”

and the “Signal”. The dispersion component reflects the difference in the variances

of q(~x) and p(~x, t) with a normalizing coefficient n. Hence dispersion is only affected

by the “spread” of the distributions. The “Signal” term is usually relatively small in

applications and in most cases µq = 0. Nevertheless, the signal term can be thought

of as the sum of the squares of the differences in means normalized by the variance

of q(~x).

In (1.9), both the mean and variance of the equilibrium and transient distributions

are utilized. Hence, in essence the effects of PP are incorporated in the relative

entropy for Gaussian distributions.

In many applications, the overall dynamics of a stochastic differential equation is

extremely complex. We know that Gaussian distributions are completely determined

by their mean and variance. Hence, (1.9) captures all the predictive power of Gaussian

distribution since it takes into account both, the mean and variance.

For both p(x, t) and q(x) Gaussian distribution, one advantage of R is that it can

be written in Signal-Dispersion decomposition. In [31], Kleeman showed the practical

utility of the signal component in prediction of stochastic and deterministic models

for the El-Nino. Also, in [32], Kleeman, Majda and Timofeyev showed the importance
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of the signal component in determining predictive utility for the truncated Burgers-

Hopf (TBH) models, where the assumption on Gaussianity of initial conditions is

needed. Finally, in [38] the Signal-Dispersion decomposition is generalized to suitable

non-Gaussian climate distribution.

1.4.2 Relative Entropy as a Lyapunov Functional for the

Fokker-Planck Equation

The theory of continuous time Markov processes is developed from the point of view

of the corresponding Fokker–Planck equation (FPE), which gives the time evolution

of probability density function for the system. Multivariate FPE can be defined as

∂p(~x, t)

∂t
= −

∑

i

∂

∂xi
[Ai(~x)p(~x, t)] +

1

2

∑

i,j

∂2

∂xi∂xj

[
(BBT )ij(~x)p(~x, t)

]
, (1.10)

where A(~x, t) is the drift vector, B(~x, t) is the diffusion matrix, and the distribution

p(~x, 0) provides the initial data for the Fokker–Planck equation. We assume that the

system under consideration has a unique equilibrium solution q(~x). The stochastic

differential equation (SDE) described by a conditional probability satisfying the FPE

is equivalent to the Itô stochastic differential equation

d~x(t) = A(~x) dt+B(~x) d ~W (t), (1.11)

where ~x(t) is the state and ~W (t) is a standard multi-dimensional Weiner process. All

the stochastic differential equations in our case will be in the Itô’s sense, but can be

readily converted to an equivalent Stratonovich SDE and back again. Hence, all the
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ideas are still valid for an equivalent Stratonovich SDE.

If the system is ergodic and as t→ ∞, the transient distribution p(x, t) approach

the stationary distribution q. Under what conditions does this happen and how is the

relative entropy involved? One way to answer this question is to show that relative

entropy defined in (1.7) is a Lyapunov functional of the Fokker-Planck equation [24].

The relative entropy R(p(~x, t), q(~x)) = R(t) is dependent on the initial data p(~x, 0),

corresponding to the distribution of initial conditions of an ensemble in a Monte-Carlo

simulation. We will show in Chapter 2 that the decay of relative entropy can vary

markedly for different choices of initial ensembles.

We know from Section 1.4 that R ≥ 0. A proof of non–negativity of R is presented

in [24], as well as [13]. A direct calculation can show that the relative entropy decays

monotonically in time. To show this, consider the definition of relative entropy given

in (1.7). Differentiating (1.7) we obtain

dR

dt
=

∫
d~x

[
∂p(~x, t)

∂t

(
log

(
p(~x, t)

q(~x)

)
+ 1

)
− ∂q(~x)

∂t

(
p(~x, t)

q(~x)

)]
, (1.12)

which can be further written in an abbreviated form

dR

dt
=

∫
d~x

[
∂p(~x, t)

∂t
(log p(~x, t) + 1 − log q(~x)) − ∂q(~x)

∂t

(
p(~x, t)

q(~x)

)]
. (1.13)

Let us also assume that q(~x) is zero at infinity, where it and its first derivatives vanish.

The contributions to dR/dt from the drift (

(
dR

dt

)

drift

) and diffusion (

(
dR

dt

)

diff

) terms

in the Fokker-Planck equation can also be obtained by the same calculation:

(
dR

dt

)

drift
=

∑

i

∫
d~x

∂

∂xi

[
−Aip(~x, t) log

(
p(~x, t)

q(~x)

)]
, (1.14)

15



(
dR

dt

)

diff
= −1

2

∑

i,j

∫
d~xp(~x, t)Bij

[
∂

∂xi
log

p(~x, t)

q(~x)

] [
∂

∂xj
log

p(~x, t)

q(~x)

]
. (1.15)

Under the given assumptions on q(~x), it can be shown [24] that

(
dR

dt

)

drift
= 0 and

(
dR

dt

)

diff
≤ 0. (1.16)

Hence, it follows that the decreases in relative entropy are due only to the diffusion

term, since the drift term in that case is zero. Even though the results sound surpris-

ing, they are not. From an information theoretic point of view, it is the diffusion term

that correspond to the stochastic component of the equation that lead to information

loss. The diffusion term lead to the spread of the system and hence are responsible

for the decay in the relative entropy. The faster the spread of initial conditions, the

faster the loss in utility of prediction. The most immediate effect of diffusion term

is to increase the spread in the ensemble forecast, but the diffusion terms interact in

some nontrivial fashion with the drift term which determines the rate of this increase.

A detailed study of this idea is presented in Chapter 2.

1.5 Return of Skill

The term, “return of skill”, has no specific definition present in atmospheric science

books. The notion is part of many discussion and is well understood in the scientific

community. A heuristic definition of “return of skill” warrants the need for a formal

definition of “skill”. A weather forecast is said to have “skill” (i.e. skillful) if it

validates an observation. The comparative observation contains the dynamics of the

real atmosphere. Hence, skillful weather forecast captures some information that an
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observation may contain. If a forecast has no “skill”, it is said to unskillful.

From an information theoretic point of view, skillful weather forecast captures the

correct information content of an observation. Hence, skill can be used as a criteria

of evaluation for a prediction process [54].

The notion of predictability discussed before is intuitively tied to the term forecast

skill. The idea that good forecast skill leads to better weather prediction clarifies this

connection. Our measure of predictability, the relative entropy, has good prediction

power for high values. Hence, for large values of relative entropy the forecast is said

to be skillful. Several statistical methods can be used to verify that the skill in a

forecast is not due to happenstance [1].

The measure of predictability used in our application decays in time. Once the

connection between forecast skill and predictability has been established, our notion

of predictability suggest that forecast skill would decrease as time evolves. Hence,

“return of skill” is said to be the return of information in a system. Since relative

entropy of joint variables decays in time, the return of skill is not possible for full

relative entropy. As we will see in Chapter 2, the return of skill will not be present

in the full relative entropy, but will be visible for the marginal relative entropies.

Collectively, the system will loose information, but on a subset the system may gain

information. Hence confidence in our prediction can gain over time on a subset of the

system. We will see in the next chapter that the oscillatory behavior of our system

leads to the “return of skill”. As the main mass of the transient distribution moves

away from the equilibrium mass, the return of skill is observed. Transient return to

equilibrium behavior leads to oscillations in marginal entropy and hence the return

of skill.
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Chapter 2

Non-Uniform Decay of

Predictability in Stochastic

Systems

2.1 Introduction

Stochastic differential equations are frequently used to represent time evolution of

the atmosphere. The driving noise term in stochastic differential equation represents

the uncertainty present in the atmosphere. Due to this atmospheric uncertainty,

weather and climate forecasting requires using Monte-Carlo simulations (MC) for an

ensemble of trajectories. Most forecasting models have no explicit solutions, hence

numerical schemes like Milsten 2.0 or Euler scheme are used to calculate various

averaged statistical quantities.

Consider the system yt = f(y), where t represents time. In this case, Monte-Carlo
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algorithm can be explained as follows:

Step 1: Generate random ensemble of initial conditions y0 = X = (x0, x1, . . . , xm)

using a distribution.

Step 2: Plug in xi(0) in the above equation yt to find xi(h), where h is the step-size

in time.

Step 3: Do step 2 for i = 0 to m,

Step 4: Use the results to generate mean, variance, confidence intervals, etc. for

t = h.

Now repeat steps 2, 3 and 4 for t = 2h, 3h, . . ..

As discussed in Section 1.4 and proved in [31], utility of ensemble predictions for

Markov processes declines monotonically to zero in time. In this chapter1, we show

that for oscillatory systems, and in particular Markov Processes, the mechanisms that

leads to the loss of predictability have surprising and counterintuitive results. While

the utility of prediction decays exponentially [31, 58] for ensembles, it can behave

significantly differently for each individual trajectory. In fact, Palmer [48] showed

that for a Lorenz system the predictability depends strongly on initial conditions.

This implies that the predictability of a model can be considered as a functional

dependent on the initial state used in the prediction. Averaging over all such initial

conditions may lead to loss of information. Pioneering work by Lorenz [35] suggest

that even slight change in initial conditions can lead to large changes in the state of

1Recently published work: Barlas, N., Josić, K., Lapin, S. and Timofeyev, I. (2007). Non-
Uniform Decay of Predictability and Return of Skill in Stochastic Oscillatory Models. Physica D

232(2) 116-127.
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the system. Hence weather predictability are sensitive to inaccurate choice of initial

conditions. Furthermore, the “memory” of the initial conditions are significantly

important in weather predictability [52].

For a certain class of models, averaged predictability might not decrease at an

exponential rate. In particular, in this chapter we show that for certain models as

well as for certain initial states, there are large intervals of time during which the

utility of the prediction remains nearly constant. Therefore, the predictability of a

particular ensemble is very different from from the exponentially decaying averaged

predictability of the system. The main reason for this behavior is due to the oscilla-

tory transport of the initial ensemble towards and away from the main mass of the

equilibrium distribution. During the times of plateaus in predictability, the ensemble

mean is in areas where the mass of the equilibrium distribution is small. As the main

mass of the non-equilibrium distribution returns to the ensemble mean, predictability

is lost significantly. Hence ensemble spread of the transient distribution leads to loss

in averaged predictability.

Markov processes depend on the present state of the system rather than the past

states. Hence, Markov processes are not functionally dependent on their initial con-

ditions. Using information theoretic lingual, in Markov processes, information that is

lost cannot be regained. Therefore, the utility of prediction cannot increase in time

for Markov models. This leads to the so called no return of skill. As we will see in

this chapter, this result might be valid for the predictability of the full phase space of

the system being modeled, it certainly does not apply on a subset of the phase space.

Indeed, we show that the marginal relative entropies and in some cases conditional

relative entropies of all variables in the model may increase in time, while the relative
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entropy of their joint distribution will always decay. Therefore, while information

about the state of the system will be lost over time, information about each indi-

vidual attributes may be regained. Furthermore, we illustrate that the mechanism

leading to the return of skill on a subset of phase space and the plateaus in relative

entropy on certain time intervals are closely related.

It may be difficult to make sense of the flow of information between the variables

defining a Markov model since marginal entropies can change together or indepen-

dently. Hence, it is more natural to consider the flow of information between the

conditional and marginal distributions. We also show that the phenomena described

above can be understood in terms of such a flow of information.

We consider three noisy oscilaltory models to explain the mechanism behind the

non-uniform decay of relative entropy and return of skill. These low-dimensional

stochastic models exhibit three main types of oscillatory behavior: damped, self-

sustained, and heteroclinic. The first model we consider is the stochastically per-

turbed linear oscillator. The choice of the model is due its simplicity and its analytical

solution. We also consider the stochastic perturbation of a nonlinear oscillator (ob-

tained from the normal form of a Hopf bifurcation) as well as the Duffing equation

(homoclinic cycle). The three models considered cover a wide range of dynamical

behaviors.

2.2 Stochastic Linear Oscillator

Several low-dimensional equations of various complexity have been used to describe

El Niño/Southern Oscillation (ENSO). ENSO is a coupled ocean-atmosphere phe-

21



nomenon that occurs globally. ENSO has far reaching effects with signatures in the

Pacific, Atlantic and Indian Oceans. Furthermore, it causes variable weather patterns

and is the main source of inter-annual variability in weather and climate around the

world.

Numerous models have been used to describe the observed variability in ENSO.

One particular model that has been successfully used is the 2-dimensional stochastic

linear oscillator [30]. Kestin et al used a stochastic linear oscillator to show that

the ENSO is a well-behaved stochastic system. They showed that the ENSO can

be approximated well by an AR(3) model (or the ARMA(3,1) model of [59]) which

is simply a linear oscillator driven by stochastic forcing. Furthermore, Penland and

Sardeshmukh [49] found that the ENSO can be approximated well by a linear system

forced by white noise. Hence the above results indicate that ENSO system can be

approximated well by a stochastic linear oscillator.

The idea that ENSO variability is due to stochastic forcing has been gaining sig-

nificant popularity. Models of different level of difficulties, specifically, simple ENSO

stochastic models, intermediate, stochastic physical models [46], and a stochastically

forced hybrid coupled model [18] have been used. Despite the varying complexity of

these models, one common feature among them is the oscillatory behavior of solu-

tions and the use of stochastic forcing. Therefore, as a prototype behavior we consider

the simple two-dimensional stochastic linear oscillator similar to the one described in

[30]. Even in this simple model, relative entropy decays non-monotonically, and the

marginal relative entropies can oscillate. The results of this section were obtained us-

ing analytical expressions for the relative entropy. The model is given by the following
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Figure 2.1: Left: The equilibrium distribution q(~x) for the linear oscillator (2.1).
Right: Average relative entropy in the case of the stochastic linear oscillator. Param-
eters: α = 0.45661, β = 0.2439, γ = −1.08679, δ = −0.512161 and ε = 0.1.

two-dimensional stochastic differential equation:

dx1 = αx1 dt+ βx2 dt,

(2.1)

dx2 = γx1 dt+ δx2 dt+ ε dW2,

where W1 and W2 are independent Wiener processes for x1 and x2 with noise level

0 and ε respectively, and the remaining parameters are chosen so that with ε = 0

the system exhibits damped oscillations. Figure 2.1 (Left) shows the contour plot

of the equilibrium distribution in one specific case. Although we use a specific set
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of parameters for these simulations, we show below that our results hold under very

general conditions.

Notice that equation (2.1) can be written in an abbreviated form

dx = Ax dt+B dW, (2.2)

where

A =




α β

γ δ



 , (2.3)

and

B =




0 0

0 ǫ



 , (2.4)

The Fokker-Planck equation describing the evolution of an initial density is given

by equation (1.10), where A and B are given in (2.3) and (2.4) respectively. This

equation can be solved explicitly assuming deterministic initial condition p(~x, 0) =

δ~x0(~x) where ~x0 = (x0
1, x

0
2). The solution of (2.1) at time t [24] is




x1(t)

x2(t)



 = eAt




x1(0)

x2(0)



 +

∫ t

0




dW1(t

′)

dW2(t
′)



 eA(t−t′)




0 0

0 ǫ



 . (2.5)

where W1 and W2 are independent Weiner processes. The solution of (2.5) at time t

is Gaussian with mean 


x̄1

x̄2



 = eAt




x1(0)

x2(0)



 , (2.6)
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and covariance matrix




〈x1, x1〉 〈x1, x2〉

〈x2, x1〉 〈x2, x2〉



 =

∫ t

0

dt′eA(t−t′)




0 0

0 ε2



 eAT (t−t′). (2.7)

Hence we know the solution, mean and variance of the system given in (2.1) explicitly.

Since the equilibrium distribution q(~x) can also be computed explicitly [24], (1.9) can

be used to obtain the relative entropy analytically in this case. Hence we have a

closed form for the relative entropy as well.

2.2.1 The Decay of Relative Entropy

The full relative entropy of a model is determined by the average rate of decay of the

relative entropy, where the average is taken over all initial conditions weighted by the

stationary distribution. This requires taking Monte-Carlo simulations of ensemble of

ensembles [31]. Each ensemble is Gaussian distributed where the mean is randomly

sampled the equilibrium distribution. Hence, averaging over all such ensembles pro-

vides a measure of the average predictability of a given model. The average relative

entropy for the linear oscillator (2.1) averaged over initial ensembles corresponding

to densities δ~x0(~x) is shown in Figure 2.1 (Right).

Due to the monotonic decay of the relative entropy in time, information is lost.

Stochastic forcing is responsible for this loss of information as each ensemble of initial

conditions moves forward in time. Numerical simulations indicate that diffusion is

initially responsible for this decay in relative entropy. Around t = 0, relative entropy

decays like − log(t), after which there is a long interval during which relative entropy

decays exponentially. This exponential decay is shown in Figure 2.1 (Right). Hence
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diff
(solid line), and I3 term of (2.12) (dashed line) in time for an initial

condition (x0
1, x

0
2) = (1, 1). Parameters as in Figure 2.1.

the system loses information on average and there is no increase in the information

content of the system as a whole. Notice that this might not be the case with any

particular initial ensemble whose mean is far from the mean of the equilibrium distri-

bution. Instead of decaying exponentially, relative entropy has intervals during which

it remains nearly constant. This is illustrated in Figure 2.2 (Left), using the relative

entropy for an ensemble of trajectories with the initial condition (x0
1, x

0
2) = (1, 1) so

that p(~x, 0) = δ(1,1)(~x). The ensemble is generated using independent realizations of

the Wiener process.

In particular, around time intervals [5, . . . , 10] and [22, . . . , 27] (see Figure 2.2

(Left)), the decay rate of relative entropy is nearly zero. During these intervals,
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relative entropy remains nearly constant, and our confidence in our prediction does

not decrease. Furthermore, Figure 2.2 (Right) shows that during the time intervals

where rate of decay of relative entropy is nearly constant, the derivative of R(t) w.r.t

t is almost close to zero. Compared to averaged relative entropy given in Figure 2.1

(Right), relative entropy of individual ensemble can be lower or higher depending on

the initial conditions. Due to this dependence on ensemble choice, prediction utility

of individual ensemble decays slowly compared to averaged prediction.

Relative entropy decays in a similar manner for any initial distribution whose

mean differs sufficiently from the equilibrium distribution. However, the plateaus in

relative entropy do not occur at the same time and hence are not due to the differences

in mean of the equilibrium and non-equilibrium distribution. We next show that the

plateaus in relative entropy depend on the change of the mean of the initial ensemble.

Therefore, the average over different initial ensembles provides a somewhat misleading

picture: compared to the rate of decay of relative entropy for a particular ensemble,

the rate corresponding to the average relative entropy is much larger at plateaus and

much smaller between them. Furthermore, we show that this effect is due to the fact

that after a short change, the value of relative entropy is mainly determined by the

location of the mean of an ensemble, and the means for each initial condition can

oscillate in- or out of phase.

2.2.2 Analysis of the Rate of Decay of R(t)

We can explain the non–uniform decay of the relative entropy by considering (1.9).

As mentioned before the dispersion term is responsible for the spread of the initial

conditions and hence is the main factor in the change in initial variance of the system.
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After a sudden initial spread of the initial conditions, the variance of the system

increases significantly. This quick increase in the variance of the transient distribution

p(~x, t) results in a logarithmic singularity of R(t) and

(
dR

dt

)

diff

∼ −1/t. Further

changes in the variance occur on a slow timescale compared to that of the oscillations

(see the left column of Figure 2.4 or Figure 2.5). Hence after the initial effect, the

variance plays no significant role in the behavior of the system and the dispersion

terms is negligible thereafter. The effect of the signal term given in expression (1.9)

can be expected to dominate once the dispersion is effectively zero. This is indeed

the case as illustrated in Figure 2.2 (Left). The dispersion term after t = 10 has no

affect on the relative entropy of the system. Furthermore, the behavior of the full

relative entropy and the signal term is exactly the same after t = 10. Notice that

even at times past t = 10, where the relative entropy has plateaus, there is no change

in the behavior of the dispersion and signal terms.

We illustrate the analysis in a particular case where matrix A has the form

A =




− 1

k
1
b

−b − 1
k



 , (2.8)

and B is the same as in (2.4). Notice that this is a particular case of matrix A but

the results are still valid in the general case, but the analysis is more tedious. The

mean of the solution of (1.10) with the initial data x0
1 and x0

2 using (2.6) is,




x̄1

x̄2



 =




x0

1e
−t/k cos t− x0

2e
−t/k sin t

b

e−t/kx0
2 cos t+ bx0

1e
−t/k sin t



 . (2.9)
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For presentation, we use the simplification x0
2 = 0. Hence (2.9) becomes,

x̄1(t) = x0
1e

−t/k cos t, x̄2(t) = bx0
1e

−t/k sin t, (2.10)

so that k is a damping coefficient, and b determines how the solutions are stretched in

the y direction. Notice that as t→ ∞, for fixed values of x0
1, k and b, the mean of the

solution decays to zero. Furthermore, for fixed values of k and b of the same order,

k ≫ 1, and b ≫ 1, small noise and x1(0) sufficiently large, the signal term initially

dominates all other terms in (1.9) (for example, a particular case with k = 10, b = 10,

ε = 0.1, and x0
1 = 3 is shown in Figure 2.3). In Figure 2.3 (Bottom Right), the

difference in the relative entropy and the signal term is zero after the initial spread

of the ensemble. Using (2.10), and evaluating matrix A given in (2.8) and matrix B

given in (2.4) into (2.7), signal term in (1.9) has the form

Rsignal(t) = e−
2 t

k

2 b2 (x0
1)

2 (1 + k2 + cos(2 t) + k sin(2 t))

ε k3
.

In the parameter regime of interest, the term proportional to e−
2 t

k sin(2 t) determines

the non-uniformities in the decay of relative entropy.

The plateaus in relative entropy therefore occur at the times in which sin(2 t) is

increasing. Those intervals correspond to the time during which |x2(t)| increases from

0 to b, and the mean of the non-equilibrium distribution in x2 moves away from the

mean of the stationary distribution (see the Figure 2.3). Similarly, information is lost

rapidly during the times at which |x2(t)| decreases from b to 0.

Intuitively, this is a consequence of the fact that information is gained in x2 as

the means of the transient and equilibrium distribution move apart and away from
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each other. This gain in mean is balanced by the the loss of information due to the

increase in the variance of the transient distribution through the diffusion term. The

mean of the two distribution move together during times when sin(2 t) is decreasing,

hence information is lost due to changes in both mean and variance. These intervals

correspond to the sharp drop in relative entropy and hence a rapid loss of information

following the plateaus. The interval between the first two panels in the left column

of Figure 2.4 (or Figure 2.5) corresponds to a plateau in relative entropy, while the

interval between the last two panels corresponds to the sharp drop in relative entropy

following a plateau. Therefore, as the transient distribution moves around the loop in

the equilibrium distribution, during times of plateaus the mean and variance of the

distribution balance the gain and loss of information and hence we see the plateaus.

This corresponds to the increase in sin(2 t). At times when sin(2 t) decays, the mean

and variance of the distributions both lead to the loss in information content of the

system.

According to the discussion in Section 1.4, the decay of relative entropy is entirely

due to diffusion and the spread of the ensemble. Therefore the fact that the decay

of relative entropy is dominated by the behavior of the mean which is completely

determined by the drift term appears somewhat surprising. Additionally, the mean

of the ensemble depends on the initial conditions chosen and therefore the choice of

initial conditions also in turn affect the relative entropy of the ensemble. To explain

the contradictory behavior of the mean, we need to look at the analysis a little

differently.

For the stochastic linear oscillator in (2.1) the diffusion part of the corresponding
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Fokker-Planck equation (1.15) reduces to

(
dR

dt

)

diff
= −ε

2

∫
d~x p(~x, t)

[
∂

∂x2
(log(p(~x, t)/q(~x)))

]2

. (2.11)

This can be evaluated using a straightforward, but lengthy calculation. The expres-

sion (2.11) can be rewritten as

(
dR

dt

)

diff
= −ε

2





∫
d~x p(~x, t)

(
∂ log p(~x, t)

∂x2

)2

︸ ︷︷ ︸
I1

− 2

∫
d~x p(~x, t)

∂ log p(~x, t)

∂x2

∂ log q(~x)

∂x2︸ ︷︷ ︸
I2

(2.12)

+

∫
d~x p(~x, t)

(
∂ log q(~x)

∂x2

)2

︸ ︷︷ ︸
I3




≡ I1 + I2 + I3.

A direct computation shows that only the third integral (I3) depends on the mean of

the transient distribution µp, while the first two integrals I1 and I2 depend only on

the variances σ2
p and σ2

q . Moreover, this integral is exactly the time-derivative of the

signal part of the relative entropy, i.e. (I3) = d
dt

[(µp)
T (σ2

q )
−1(µp)]. Thus, since the

relative entropy is dominated by the signal term, the behavior of

(
dR

dt

)

diff

almost

equal to I3, as depicted in Figure 2.2 (Right). Therefore, although the decay of the

relative entropy is entirely due to diffusive terms in the equation, the magnitude of(
dR

dt

)

diff

is almost completely determined by the mean of the ensemble. We showed

that the relative entropy of the full distribution decreases monotonically to zero in

time, but at a non-uniform rate. As we will see next, the situation is quite different

for the relative entropies of the marginal distributions p(x1, t) and p(x2, t), which may

increase in time.
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distribution moves at the time of the snapshot.
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2.2.3 Return of Skill for Marginal Entropies

We next consider the marginal entropies of the equilibrium and non-equilibrium dis-

tributions. The relative entropy Rx1
(t) and Rx2

(t) for the two marginal distributions

are defined using (1.7), and can be interpreted as the amount of information that the

marginal distribution p(x1, t) provides about the state of the variable x1 at time t,

in excess of the information provided by the marginal stationary distribution q(x1).

Notice that a change in coordinates has no effect on the full relative entropy of the

system. Hence, we emphasize the fact that marginal entropies are not invariant un-

der coordinate changes, so the results of this section are highly coordinate dependent.

Note that as compared to the full relative entropy, the marginal relative entropies

do not necessarily decay in time. Relative entropy and marginal relative entropy are

related through conditional relative entropies using the following equation

Rx2|x1
(t) = R(p(x2|x1, t), q(x2|x1)) (2.13)

=

∫
p(x1, t)

∫
p(x2|x1, t) log

p(x2|x1, t)

q(x2|x1)
dx1dx2.

Here p(x2|x1, t) denotes the conditional distribution of x2 at time t given x1, and

Rx2|x1
(t) is the excess information provided by the marginal distribution p(x2|x1, t)

over q(x2|x1). Another way to think about Rx2|x1
(t) is, how much information does

x2 contain about the system given that there is no change in the information content

of x1. Hence one can think of Rx2|x1
(t) as the effect in information content of x2 given

that x1 has no effects.

The chain rule for relative entropy [24] relates the full, marginal, and conditional
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relative entropy

R(t) = Rx2|x1
(t) +Rx1

(t). (2.14)

Relative entropy of the system can be thought of as the sum of information available

from x1 alone and the information attained from x2 given that x1 remains constant

(i.e. information content of x1 has no bearing on the information of x2).

We start by calculating the relative entropy of the marginal distributions which

can be obtained analytically using (1.9). The evolution of the marginal relative

entropies is shown in Figure 2.6 (Right). For the initial condition (x0
1, x

0
2) = (1, 1),

the oscillations are significant. The graphs of Rx1
(t) and Rx2

(t) in Figure 2.6 (Right)

have very similar behavior. Rx1
(t) and Rx2

(t) are exactly the same after the initial

spread of the ensemble, except for the horizontal shift. The x1 and x2 variables in (2.1)

have a very similar structure except for the diffusion term present in x2 variable. The

drift term holds together the ensemble while the diffusion term spreads the ensemble.

This constant interaction between the two terms lead one term to dominate at time

intervals when the other term have a weak effect. Also, this observation implies that

the information about the variables x1 and x2 taken separately can increase in time,

while information about their joint distribution must always decrease.

The left and right columns of Figure 2.4 as well as Figure 2.5 compare the evolution

of the full and marginal distributions. The increases in marginal relative entropy

correspond to the times at which the mean of the marginal distribution moves away

from the mean of the stationary distribution, i.e. the plateaus in the full relative

entropy. Therefore, when the mean of the marginal distributions move towards the

mean of the stationary distribution, the system as a whole loses information since the

marginal relative entropy decays. Furthermore, the conditional relative entropy of the
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system also decays during the time intervals of decrease in R(t) which when combined

with the marginal relative entropy leads to a sharp fall and sudden loss of information.

Another way to think about this is using Equation (2.14). Notice that R(t) ≥ Rx1
(t)

and R(t) ≥ Rx2|x1
(t) and the oscillatory behavior of Rx1

(t) and Rx2|x1
(t) is apparent

from Figure 2.6 (Right). If the magnitude of the oscillations in Rx2|x1
(t) dominate

Rx1
(t), R(t) mimics the behavior of Rx2|x1

(t) and vice versa. Opposing oscillations in

Rx2|x1
(t) and Rx1

(t) of the same order, causes R(t) to plateau. The same ideas are

valid in Equation (2.14), if x1 and x2 are exchanged. We can further explain the main

factors contributing to this behavior as identified in the previous section, and here

we provide another equivalent intuitive explanation using the mean and variance.

The right column of Figure 2.4 shows that the variance of the distribution p(x1)

37



remains nearly constant during one oscillation. However, during the time between the

first two panels the mean of the distribution moves away from 0, which leads to an

increase in Rx1
(t). Similarly, the movement of the transient to the stationary marginal

distribution during the period between the last two panels, leads to a decrease in

Rx1
(t). The fact that both marginal relative entropies Rx1

(t) and Rx2
(t) increase

at the same time, is because of the fact that for the solution of the corresponding

deterministic system both x̄1(t) and x̄2(t) can increase at the same time. Note that

this would not be true in a different coordinate system since marginal entropies are

dependent on the choice of coordinates. In particular, for the matrix A in (2.8), x̄1(t)

and x̄2(t) and the marginal relative entropies oscillate out of phase.

One question that is quite natural to ask is how the information contained in the

marginal distributions of x1 and x2 is generated and is there a flow of information

between the two variables. Again Equation (2.14) provides the answer: With an in-

crease in information about the marginal Rx1, comes a decrease in information about

the conditional distribution Rx2|x1
, that is, a decrease in the excess of information that

a knowledge of x1 provides about x2 over that provided by the stationary distribution

q(x2|x1) (see Figure 2.6 (Right)). Similar argument applies for Rx2
and Rx1|x2

.

We also note that there is no direct “flow of information” between the variables

x1 and x2. However, one can intuitively think of a flow of information between the

marginal and conditional distributions when the full relative entropy is approximately

constant, since during that time the sum of the two is approximately constant as well.

This is exactly the situation when the oscillations in the conditional and marginal are

opposing and have the same magnitude.
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2.3 Stochastic Non-Linear Oscillator

We saw in previous section that relative entropy of a stochastic linear oscillator de-

pends on its initial conditions. Contrary to the idea that relative entropy for the full

system decays monotonically, we showed that only averaged relative entropy decays

monotonically, while marginal and conditional entropy can oscillate in time. These

results extend to much more general stochastic systems as well. The non-uniform

decay of relative entropy occurs whenever the main mass of the distribution p(~x, t)

approaches, and then diverges from the main mass of the stationary distribution

q(~x). This is irrespective of the type of distribution chosen for the initial conditions.

Oscillations in the marginal relative entropies occur when such divergence occurs in

the marginal distributions. The following example shows that such behavior can be

also expected for a non-linear stochastic oscillator, when the mass of the stationary

distribution is distributed non-uniformly around the limit cycle.

2.3.1 Decay of Relative Information for Nonlinear Oscillators

We would like to show that the behavior of relative entropy described in the previous

section can be observed in the case of the stochastic non-linear oscillator as well. In

particular, we consider a planar, stochastic system with a limit cycle arising from

a supercritical Hopf bifurcation. Supercritical Hopf bifurcation have been success-

fully used to describe various climate phenomena. Jin and Ghil [28] showed that

Hopf bifurcation can be used to explain the dynamics of intraseasonal oscillations in

the Northern Hemisphere extratropics. Furthermore, Korobeinikov and Mcnabb [33]

showed that glacial oscillations can be associated with supercritical Hopf bifurcation
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in the global climate system.

Due to the realistic applications of systems with Hopf bifurcation, we consider:

dx1 = µx1dt− cωx2dt+ Θx1(x
2
1 + c2x2

2)dt+ εdW1,

(2.15)

dx2 =
1

c

(
ωx1 + cµx2 + cΘx2(x

2
1 + c2x2

2)
)
dt+ εdW2,

where W1,2 are independent Wiener processes. Notice that for this particular system

Fokker-Planck solution cannot be solved explicitly and hence we examine the system

numerically with the following parameters values

µ = 0.5, ω = 1.0,

c = 0.6 and Θ = −1.0.
(2.16)

Without the diffusion term, the system in (2.15) has a stable periodic orbit which

has the form

x1(t) =

√
− µ

Θ
cos(ωt+ φ0), x2(t) =

1

c

√
− µ

Θ
sin(ωt+ φ0), (2.17)

with period Tper = 2π/ω. For very small noise, the invariant measure is concentrated

sharply around the vertical extrema of the unperturbed orbit. As in the case of

a linear oscillator, the invariant measure is stretched in the x2 direction to better

explain the non-uniform decay of relative entropy. Note that the speed at which a

trajectory moves around the attracting periodic orbit of the deterministic system is

at a minimum at the top and bottom where the extrema of the orbit lies. These are
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therefore the places at which the equilibrium distribution will have local maxima, and

high probability regions will occur. Similar behavior can be observed for other values

of c for which the equilibrium measure is distributed non-uniformly along the limit

cycle.

As mentioned before, since the Fokker-Planck eqution of the system is not explic-

itly solvable, the relative entropy is evaluated numerically by discretizing the phase

space into a uniform mesh. Stochastic Euler method was used to integrate the equa-

tion. The equilibrium distribution q(~x) is estimated utilizing bin-counting from a

single long realization and then calculating the distribution. Equilibrium distribution

of the system given in (2.17) is shown in Figure 2.7. To calculate the initial non-
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Figure 2.7: Equilibrium distribution of system given in (2.17) with parameters from
(2.16)
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equilibrium distribution, 250, 000 points are generated from the uniform distribution

with width 0.3 × 0.3 centered at (x1, x2) = (0.5, 0), away from the mean of the equi-

librium distribution. Numerical estimates for relative entropy R(t) and marginals

relative entropies Rx1
(t), Rx2

(t) are shown in Figure 2.8. The non-uniform decay of

relative entropy and oscillations in marginal relative entropies are clearly visible after
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Figure 2.8: Top: Probability density function for t = 3 (left) and t = 5 (right).
Bottom: Full relative entropy R(t) (solid line) and marginal relative entropies Rx1

(t)
(dashed line) and Rx2

(t) (dot-dash line) in simulations of (2.15) with ǫ = 0.1 and
initial ensemble centered at (x0

1, x
0
2) = (0.5, 0).
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a short transient period. These results are similar to the one considered in Section

2.2. Since the periodic orbit given in (2.17) is stable, the transient period is due to

the fast initial transition of the initial ensemble towards the orbit. Hence initially,

the ensemble spreads and the relative entropy drops significantly.

After this initial phase, the relative entropy decays more slowly. As in the case

of the damped stochastic linear oscillator, the variance of the transient distribution

increases slowly compared to the time of the oscillations. Figure 2.8 shows that the

plateaus in relative entropy correspond to the times during which the mass of the

transient distribution moves away from a peak in the mass of the stationary distri-

bution. Therefore the plateaus occur and the nonuniform decay of relative entropy is

exactly due to the mechanism discussed in the previous section.

2.3.2 Return of Skill for Marginal Entropies

Marginal entropies depicted in Figure 2.8 exhibit strong out of phase oscillatory be-

havior with frequency 2ω, the same frequency we see in the plateaus of the full relative

entropy. The marginal stationary distribution q(x1) is approximately unimodal. As

in the case of the linear oscillator, the minima of the marginal entropy Rx1
(t) occur

at the times at which the mean value of the transient marginal distribution coincides

with the mean value of the equilibrium distribution.

Since the marginal distribution q(x2) is strongly bimodal, the situation is little

different. The minima of Rx2
(t) occur at the times when the mean of the transient

distribution p(x2) is between the two peaks in the stationary distribution q(x2). Since

this occurs exactly when the distribution p(x2) is at its farthest away from q(x2), the

marginal relative entropies Rx1
(t) and Rx2

(t) oscillate out of phase. This out of phase
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oscillations are seen in the conditional relative entropies as well. Clearly, the behavior

of R(t) is very similar to the case of a linear oscillator and given the explanation for

marginal entropies, it is not surprising that the conditional entropies Rx1|x2
(t) and

Rx2|x1
(t) also oscillate out of phase using (2.14). This is visible in Figure 2.9 (Right)

for time past the initial phase of the system. Notice in Figure 2.9 (Left), the system
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Figure 2.9: Left: Means of the variables |x1| (solid line) and |x2| (dashed line) for
the system given in (2.17). Right: Conditional relative entropies Rx1|x2

(t) (solid
line) and Rx2|x1

(t) (dashed line) for the system given in (2.17) with initial condition
(x0

1, x
0
2) = (0.5, 0).

oscillates with a much higher frequency for x2 than x1, which is not the case in Figure

2.6 (Left). Also notice that the mean of the non-linear oscillator for x1 and x2 are

completely out of phase as compared to the one for the linear oscillator. Even though

the damping in 2.9 (Right) for x1 is not quite visible, one can see a slight decay in

mean of x2. The x1 variable also decays but with much slower rate compared to x2.

This damping behavior is very similar to the linear oscillator.
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2.4 Stochastically Perturbed Duffing Equation

Coherence resonance is a dynamical systems phenomenon where addition of certain

amount of noise leads to coherent oscillations. We next consider a system of nonlinear

stochastic differential equations exhibiting coherence resonance [50, 17]. Although the

deterministic dynamical behavior of the new system is very different from both pre-

vious examples, stochastic perturbations lead to intervals of extended predictability

and the return of skill for marginal distributions [14].

We consider the Duffing equation driven by white noise [57]

dx1 = x2 dt+ ε dW1,

(2.18)

dx2 = (x1 − x3
1 − γx2 + βx2

1x2) dt+ ε dW2,

where W1,2 are independent Wiener processes, γ and β are parameters and ε is the

noise strength. For ε = 0 and parameters γ = 0.4 and β = 0.497, Equation (2.19)

yields a non-linear system possessing an attracting double homoclinic cycle (Figure

2.10 (Left)) with a saddle point at the origin (0, 0). The signature of the homoclinic

loop is clearly visible in the joint distribution of the stochastic system in (2.19) shown

in Figure 2.10 (Right).

To demonstrate the non-uniform decay of predictability and the return of skill

for marginal distributions, we chose a particular 250, 000-member initial ensemble

centered at x1 = 0.25, x2 = 0.25, and calculated the relative entropy numerically as

in the previous example. The choice of the initial conditions are again relevant to

the behavior of the relative entropy. The distributions p(~x, t) are computed utilizing
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Figure 2.10: Left: Homoclinic loop for the Duffing equation in (2.19) with ε = 0.
Right: Contour plot of probability density function for ε = 0.01.

the Monte-Carlo simulations with the initial ensemble generated from the uniform

distribution on a square [0.3] × [0.3] (see Figure 2.12 (Left)). The choice of initial

ensemble may not necessarily be uniform. The computed relative entropy for ε = 0.01

is presented in the bottom panel of Figure 2.11. As in the linear oscillator case, the

relative entropy is almost constant over several time intervals. There are four plateaus

in the graph of relative entropy, although the reason for the first plateau (at times

[4, . . . , 8]) is somewhat different from the subsequent ones. Furthermore, the first

plateau seems to occur for a much longer time period than others.

Recall that the decay in relative entropy is only due to the diffusion in equation
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(middle) and t = 15 (right). Bottom: Full relative entropy R(t) (solid), Marginal
relative entropies Rx1

(t) (solid) and Rx2
(t) (dashed) in simulations of (2.19) with

initial ensemble centered at (x0
1, x

0
2) = (0.25, 0.25) and ε = 0.01.

(1.15). For the model (2.19) the diffusion term becomes

(
dR

dt

)

diff
= −ε

2

∫
dx1dx2 p(x1, x2)

∑

i=1,2

[
∂

∂xi

(
log

p(x1, x2)

q(x1, x2)

)]2

. (2.19)

For the stochastic Duffing equation the behavior of the

(
dR

dt

)

diff

is more complicated
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than in the case of the linear oscillator and the non-linear oscillator. Namely, the

value of

(
dR

dt

)

diff

depends not only on the means, but also on all terms involving

variances of the equilibrium and non-equilibirum distributions.

Since the initial ensemble is chosen on one side of the heteroclinic loop, different

trajectories do not separate during the first passage along the heteroclinic loop (see

the first two top panels in Figure 2.11). As the cluster of initial conditions moves away

from the origin we observe the long plateau in the graph of relative entropy, since

the non-equilibrium distribution moves away from the origin where the main mass

of the equilibrium distribution is concentrated. The transient distribution spreads

away from the main mass located at the origin resulting in the sharp decline in

relative entropy initially. Indeed, Figure 2.12 illustrates that the mean of transient

distribution is largest at times [4, . . . , 8], coinciding with the first plateau in relative

entropy R(t). After the first transition, individual realizations return close to the

origin, but separate following the two different sides of the homoclinic loop. Therefore,

the mean of the ensemble is approximately zero (see Figure 2.12 (Left)). Due to

coherence resonance [17, 50, 57], there exist a mean exit time as most of the mass of

the transient distribution is ejected from the vicinity of the origin around the same

time. The second plateau in the graph of relative entropy occurs when the two main

portions of the transient distribution are at their farthest distance from the main

mass of the equilibrium distribution at times [15, . . . , 17]. The bimodal behavior of

the transient distribution during this time implies that the oscillatory behavior is

manifested strongly through the variance of the ensemble (see Figure 2.12 (Right)).

Hence the oscillatory behavior of the mean is responsible for the plateau initially

while the variance becomes important for the plateaus that occur later. During the
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oscillatory behavior in mean/variance, the other term variance/mean is approximately

zero.

Although the details are somewhat different from the previous examples, the non-

uniform decay in relative entropy is again due to the fact that the stationary distribu-

tion is concentrated in one area of the phase space, and oscillations in the system that

take the transient distribution recurrently close to the main mass of the stationary

distribution.

2.4.1 Return of Skill for Marginal and Conditional Entropies

Marginal relative entropies for x1 and x2 are shown in the bottom panel of Figure

2.11. The explanation for the oscillations in both marginal entropies is similar to
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Figure 2.12: Left: Mean in x1 (solid line), mean in x2 (dashed line). Right: Variance of
x1 (solid line) and variance of x2 (dashed line) in simulations of the stochastic Duffing
equation in (2.19) with ε = 0.01. (Horizontal lines show equilibrium variances).
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the one described in the preceding examples. Figure 2.11 shows that the marginal

entropies are at a maximum at the times during which the main mass of the marginal

transient distribution diverges maximally away from the marginal of the stationary

distribution.

The first increase in x1 marginal and x2 marginal (around t = 5 for x1 and t = 4, 6

for x2) corresponds to the situation when most of the mass is at the furthest distance

from the fixed point in x1 direction or x2 direction, respectively (Figure 2.11 (Top

Left)). Furthermore, in Figure 2.12 the increases in marginals of relative entropy

occurs when the mean of the distribution deviates away from the fixed point (equi-

librium mean) of zero. Therefore, the first oscillation in marginal relative entropies

can be explained by observing changes in the mean of x1 and x2. Note that after an

initial increase, the mean decays approximately to zero and reaches the equilibrium

mean. Hence mean does not explain the subsequent oscillations.

Oscillations in marginal relative entropies are also observed for later times t =

14, 17, 24, 28. These oscillations can be attributed to the change in the variance of

the corresponding dynamical variable. Note that in Figure 2.11 (Bottom) there are a

total of four peaks in the marginal relative entropies after t = 10. On the other hand

there are only two peaks in the variance. The reason for this is that the variances of

the marginals are larger than the variances of the stationary marginal distribution at

times around t = 15 and t = 24, but are smaller than the variances of the stationary

marginal distribution around t = 17 and t = 27. The overshoots and undershoots

from the equilibrium variances are a consequence of coherence resonance. The fact

that the system oscillates and resonates at the same time is the reason for these

oscillations.
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Figure 2.13: Conditional relative entropies Rx1|x2
(t) (solid line) and Rx2|x1

(t) (dashed
line) with marginal relative entropies Rx1

(dash-dot line) and Rx2
(dotted line) in

simulations of (2.19) with initial ensemble centered at (x0
1, x

0
2) = (0.25, 0.25) and

ε = 0.01.

Oscillations in conditional entropies can also be explained similarly. This fact is

much easier to explain once marginal entropies have been considered. In Figure 2.13,

the first oscillation in the conditional entropies Rx1|x2
and Rx2|x1

occur at around

t = 1.5. This oscillation can be attributed to the dramatic change in the decay rate

of the marginal relative entropy which occur around the same time. In particular,

we discuss explicitly the case of Rx2
and Rx1|x2

. During time interval [4, . . . , 8], when
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relative entropy remains constant, troughs occur in Rx1|x2
at around t = 4, 6 exactly at

times where marginal of x2 peaks. Furthermore, trough in marginal of x2 at time t = 5

coincides with peak in Rx1|x2
. The sharp decay in relative entropy in the time interval

[9, . . . , 13] contributes to the peak in conditional entropy Rx1|x2
at around t = 9. The

rate of decay in relative entropy is slower compared to the marginal entropy at time

interval [8, . . . , 9], hence this significant difference in the decay rates lead to the peak

in the conditional entropy. After t = 13 relative entropy is approximately constant;

the peaks in conditional entropy Rx1|x2
occur at times where the marginal entropy of

x2 have troughs. The similar explanation can be applied to Rx2|x1
using marginal of

x1.

The return of skill (maxima in the graph of marginal relative entropies) occurs

when the transient variance deviates from the equilibrium variance. On the other

hand, minima in oscillations of the marginal relative entropies correspond to times

when the variance of the ensemble is nearly identical to the equilibrium value. Again,

the idea that the mean is responsible for the initial oscillations and the variance is

the main factor in the subsequent oscillations, seems to be the theme. Hence the

mean and variance can explain the plateaus in the full relative entropy as well as the

oscillations in the marginal entropies.

2.5 Conclusions

We considered the predictability of three models that encapsulate a wide range of

systems with oscillatory behavior. The particular emphasis was on the non-uniform

decay of the utility of predictions and return of skill (oscillations in marginals and con-
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ditional entropies) for dynamic variables. These models were constructed as stochas-

tic perturbations of linear oscillator, non-linear oscillator (Hopf normal form) and

homoclinic cycle (Duffing equation), and are good representatives of a wide class of

stochastic oscillators.

Relative entropy is utilized to characterize the predictability properties of these

prototype systems. Relative entropy was used as a measure of predictability due to

its particular mathematical properties. For Markov process, relative entropy simpli-

fies significantly and was particularly well-suited for the models that were considered.

The average (with respect to many initial ensembles) predictability of all three sys-

tems decays exponentially in time. Nevertheless, relative entropy of particular initial

conditions can have time intervals where there might be plateaus. In particular, the

two related phenomena that emerge in the behavior of the relative entropy func-

tional and marginal entropies for each particular ensemble simulation were (i) the full

relative entropy decays at a non-uniform rate, and (ii) there is return of skill (oscilla-

tory behavior) for the marginal entropies for all three systems. Notice that both the

phenomena can be explained by the oscillatory behavior of the systems considered.

Interestingly, we can also think of the return of skill as a flow of information from

the conditional to the marginal non-equilibrium distribution. Both of these phenom-

ena are driven by oscillations of the mean of the non-equilibrium ensemble, and an

increase in the variance of the non-equilibrium ensemble. Furthermore, variance of

the transient distribution is responsible for the sharp initial decay in relative entropy.

The main idea in this chapter is the transport of the non-equilibrium distribution

in phase space by the underlying oscillatory dynamics. This results in a slower rate

of decay for the relative entropy when the mean of the non-equilibrium ensemble is
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moving away from an area in which the equilibrium distribution is concentrated. The

same mechanism causes oscillations in marginal distributions and return of skill in

each dynamic variable. Hence, the plateaus seen in the relative entropy were due to

the non-equilibrium mean moving away from the equilibrium mean.

While the exact details differ between the oscillatory systems considered, the non-

uniform decay rate of the relative entropy functional is similar in all three cases.

The oscillatory behavior is due to the initial ensemble concentrated in the tails of the

equilibrium distribution, but can also be detected for other initial data. This suggests

that similar behavior can be detected in more complex systems, especially when the

initial ensembles are concentrated around rare events.
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Chapter 3

Apriori Prediction of Symmetry

Breaking in Stochastic Systems

3.1 Introduction

Recently, stochastic modeling has been given increased attention as a tool to un-

derstand and simplify multi-scale systems. One such example is atmosphere/ocean

modeling. Most models in the atmosphere-ocean have multiple time scales, hence

straightforward numerical calculations are very lengthy or even infeasible. Stochastic-

Mode Reduction (see Appendix B) is one particular approach that was be considered;

in this approach the non-essential degrees of freedom are eliminated and substituted

by stochastic terms.

Another important area of research in atmosphere-ocean modeling is the under-

standing of low-dimensional coherent structures. In the atmosphere-ocean applica-

tions, stable low-dimensional structures such as multiple equilibria, periodic orbits,
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and homoclinic/heteroclinic connections in the low-dimensional projected phase space

have been utilized to explain many physical phenomena. Large coupled models are

hard to study, so to get an insight into the full behavior of the system, low-dimensional

projections were used. In [9], Charney and DeVore used low-dimensional projections

with external forcing to find multiple equilibrium states in a barotropic channel model.

The choice of external forcing was important since different results were obtained for

different type of forcing. Charney and DeVore suggested significant application of

the results in atmosphere phenomena since equilibrium states correspond to a system

that will remain there for a long period of time. Furthermore, constant transitioning

between different states can explain the variability and hence, lack of predictability.

While Charney and DeVore focused on equilibrium states, Crommelin in [14] suggest

the importance of homoclinic dynamics in atmospheric ultralow-frequency variability

(i.e. timescale in years to decades). The subsystem derived from the large system has

strong signature of the homoclinic dynamics. Crommelin suggested that homoclinic

orbits are responsible for the long-timescale variability in large systems. Hence, the

importance of coherent structure has been suggested in many physical applications.

Numerous techniques are utilized to replace neglected variables with appropriate

terms. Effect of random noise is one method employed to model interactions with the

neglected variables. Berner and Branstator in [7], study an atmospheric circulation

model and investigate low dimensional projections of the system on the phase space.

They observe clear linear and non-linear signatures in the mean dynamics of a subset

of the variables. The linear signature was effectively replaced by least squares operator

driven by Gaussian white noise while the non-linear signature was replaced by two

linear functions. Berner and Branstator argue the importance of reduced dynamics
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in capturing the full behavior, where random fluctuations were used to replace the

non-essential variables.

In this chapter, coupled systems are analyzed which are designed to address the

interaction between coherent structures and noise. In particular, systems considered

here address the effect of coupling and/or perturbations of systems with a stable

periodic orbits. In addition, systems presented here help explain the significance of

the recently developed mode-reduction strategy [40, 41] for the high-dimensional dy-

namical systems with separation of time scales. The mode-reduction strategy was

designed to reduce the dimension of the problem by effectively replacing the fast vari-

ables by appropriate stochastic terms. In [41], it was shown that the stochastic-mode

reduction works extremely well and gives rise to stochastic terms with multiplica-

tive and additive noise. This was shown using two examples, in particular the triad

model and the coupled Truncated Burgers–Hopf (TBH) system. Mode-Reduction

was effectively applied to other low-dimensional systems [39, 42] and more realistic

atmospheric models [21, 22].

In this work, we consider low-dimensional models coupled with additional degrees

of freedom where the coupling is “additive”, i.e. coupling terms are replaced by

damping and additive white noise using the stochastic mode-reduction strategy. It

is shown that the coupling with additional degrees of freedom destroys the original

rotational symmetry of the truncated low-dimensional system. Additionally, the di-

rection of the symmetry breaking can be predicted apriori without any knowledge of

the statistical dynamics of the fast modes. The nature of the symmetry breaking is

evident in the statistical behavior of the slow variables. These ideas are first applied

to a simple gradient system coupled with fast modes. In this particular case, a sim-
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ple analysis yields an explanation for the maxima in the joint probability density of

the slow modes. Essentially, the eigenvectors of the effective damping matrix play a

crucial role in explaining the statistical distribution of the dynamic variables. The

role of the diffusion matrix is also crucial in the analysis. Furthermore, analysis sim-

plifies, since the diffusion matrix can be written as a constant multiple of the drift

matrix. Hence, the eigenvectors of both the drift and the diffusion matrices are the

same, leading to the explanation of statistical properties of the slow variables. We

will further elaborate if the drift and diffusion matrix do not have similar eigenvalue

decomposition.

Next, we consider a two-dimensional system with a stable circle of equilibria cou-

pled with two additional variables. Although this system cannot be recast as a gra-

dient system and no potential function exists, the signature of the periodic orbit is

strong in the coupled model and two peaks occur in the joint density of the slow

variables. We demonstrate that the same mechanism as the one for gradient systems

is responsible for occurrence of these peaks. In particular, only two points on the sta-

ble periodic orbit “survive” the perturbation and these two points can be predicted

apriori from the structure of the effective damping.

Effect of coupling strength between the slow and fast variables is also addressed.

We show that due to an increase in strength of coupling, mode-reduction strategy fails.

The slow-fast variables have no clear separation of time-scales which is evident by

looking at correlation functions. Nevertheless, the reduced system effectively predicts

the orientation of the joint pdf in the slow variables.
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3.2 Gradient Systems

To explain symmetry breaking, we consider a particular case of rotationally invariant

gradient system. In particular, interactions of the slow variables can be represented

by a gradient system. General gradient systems have the form

d

dt
x = −∇V, (3.1)

where

x =




x1

x2



 , V = V(|x|2). (3.2)

For ease and simplicity of presentation, a two-dimensional case is studied here. It is

important to point out that this approach can be generalized to higher dimensions.

We consider the potential

V (x1, x2) = −1

2
µ

(
1 − α0

2
|x|2

)
|x|2, (3.3)

and the system of equations in (3.1) becomes

ẋ1 = µ(1 − α0|x|2)x1,

(3.4)

ẋ2 = µ(1 − α0|x|2)x2,

where |x|2 = x2
1 + x2

2 = α−1
0 is the stable circle of equilibria. The circle of equilibria

is stable when µ > 0. Graphical representation of V is given in Figure 3.1. Fast
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Figure 3.1: 3D Plot of function V (x1, x2) given in (3.3) with α0 = 0.8 and µ = 0.1

variables, u1 and u2, are utilized to break the original symmetry. We couple the fast

variables, u1 and u2 with the slow variables, x1 and x2

ẋ1 = (−∇V )1 + λA1u1u2,

ẋ2 = (−∇V )2 + λB1u1u2, (3.5)

u̇1 = λA2x1u2 + λB2x2u2 − γ1u1 + σ1Ẇ1,

u̇2 = λA3x1u1 + λB3x2u1 − γ2u2 + σ2Ẇ2,

where (∇V )i is the ith component of the vector-valued function ∇V , W1 and W2

are independent Wiener processes, Aj and Bj for j = 1, 2, 3 are known interaction

coefficients and λ controls the strength of coupling between the slow and fast modes.
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In this system, the energy-conserving interactions between the slow, x, and the fast,

u, variables can be recasted using the interaction coefficients as follows

A1 + A2 + A3 = 0, B1 +B2 +B3 = 0. (3.6)

Under the assumption that the slow variables decorrelate more slowly than the fast

variables, the stochastic-mode reduction strategy (see Appendix B) can be applied

to the system given in (3.5). The reduced model for x = (x1, x2)
T is given by the

stochastic differential equation

dx = −∇V dt− Axdt+ ΣdW, (3.7)

where W = (W1,W2)
T is a vector of independent Wiener processes and A and Σ are

2 × 2 damping and diffusion matrices, respectively. In particular, the matrices are

A =
λ2

γ1 + γ2





A1A2
σ2

2

2γ2

+ A1A3
σ2

1

2γ1

A1B2
σ2

2

2γ2

+ A1B3
σ2

1

2γ1

A2B1
σ2

2

2γ2
+ A3B1

σ2
1

2γ1
B1B2

σ2
2

2γ2
+B1B3

σ2
1

2γ1




, (3.8)

Σ =
λσ1σ2√
2γ1γ2

1√
γ1 + γ2





A2
1√

A2
1 +B2

1

A1B1√
A2

1 +B2
1

B1A1√
A2

1 +B2
1

B2
1√

A2
1 +B2

1




(3.9)
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Using (3.6), σ1 = σ2 ≡ σ and γ1 = γ2 ≡ γ, (3.8) and (3.9) become

A =
λ2σ2

4γ2




A2

1 A1B1

A1B1 B2
1



 , (3.10)

Σ =
λσ2

2γ3/2

1√
A2

1 +B2
1




A2

1 A1B1

B1A1 B2
1



 . (3.11)

3.2.1 Symmetry Breaking in Gradient Systems

Matrix A and Σ are symmetric due to the energy conserving interactions. Hence

AT = A, ΣT = Σ, (3.12)

with the property

Σ = const A. (3.13)

Moreover, the damping and diffusion matrices have several other additional proper-

ties. Firstly, each matrix has only one non-zero eigenvalue while the other eigenvalue

is zero. This is a direct consequence of the energy–conserving coupling between the

slow and fast variables. It is easy to evaluate the eigenvalues and in particular the

non-zero eigenvalue of A is positive. In a simple case like (3.10), we can see that the

eigenvalues are 0 and A2
1 +B2

1 , where the latter is clearly positive. Secondly, damping

and diffusion matrices are similar matrices up to a constant, hence we have the same

eigenvectors, and thus, the same eigenvalue decomposition which follows from the
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property (3.13). Therefore, matrices A and Σ can be diagonalized as follows

A = R−1ÃR, Σ = R−1Σ̃R, Σ̃ = cÃ, (3.14)

where Ã and Σ̃ are diagonal matrices of eigenvalues and R is the matrix of eigen-

vectors. Moreover, R is unitary due to the property (3.12), which implies that the

eigenvectors are perpendicular and R can be recasted as rotation matrix, i.e.

R =




cosψ sinψ

− sinψ cosψ



 . (3.15)

A particular value of ψ depends only on the choice of interaction coefficients Aj

and Bj, j = 1, 2, 3, and can be computed apriori without any knowledge about

the behavior of the fast variables. For (3.10), the eigenvectors are

(
−B1

A1

, 1

)T

and

(
A1

B1
, 1

)T

. It is easy to see that the eigenvectors are orthogonal, more precisely,

taking advantage of the symmetric matrix A, the eigenvectors form an orthonormal

basis.

As shown in (3.8), leading order statistics of the fast variables (i.e. γi and σi,

i = 1, 2) enters as a constant in front of matrices composed of interaction coefficients

in the expressions for A and Σ. Therefore, statistical behavior of the fast variables

affects only the magnitude of eigenvalues and has no affect on the eigenvectors. We

would like to emphasize that properties in (3.13), (3.14), and (3.15) are general;

they follow from the properties of the mode-reduction strategy and energy-conserving

choice of coupling.
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To explain the symmetry breaking we consider a change of variables

y = Rx,

where R is the rotation given in (3.14). This allows the system in (3.7) to be rewritten

in a simple form with diagonal damping and forcing

dy = µ
(
1 − α0|y|2

)
ydt− λ2Ãydt+ λΣ̃dW̃, (3.16)

where Ã and Σ̃ are diagonal matrices from (3.14), and W̃ = RW is a two-dimensional

vector of independent Wiener processes. Using the rotation invariance property of

Wiener processes and the fact that |R| = 1, we see that W̃ is also a Wiener process.

For further justification and proof, see [24]. Simultaneous diagonalization of both

the damping term and the diffusion term is possible due to the properties of A and

Σ in (3.14). Furthermore, taking into account the above mentioned fact that one

eigenvalue of both, Ã and Σ̃ is zero, the system in (3.16) can be rewritten to emphasize

the one-dimensional structure of the stochastic perturbation

dy1 = µ (1 − α0|y|2) y1dt,

dy2 = µ (1 − α0|y|2) y2dt− λ2ãy2dt+ λσ̃dW̃2,

(3.17)

where ã and σ̃ are the non-zero eigenvalues of A and Σ, respectively. Since A and

Σ have the same eigenvalue decomposition, in particular ã = σ̃ = A2
1 + B2

1 . The

system in (3.17) can be recast as a stochastic perturbation of a gradient system with

a potential which is no longer rotation invariant. The system in (3.7) can also be
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recast as a stochastic perturbation of a gradient system

dx = −∇Udt+ λΣdW, (3.18)

with the potential

U = −1

2
µ

(
1 − α0

2
|x|2

)
|x|2 +

A11

2
x2

1 +
A22

2
x2

2 + A12x1x2, (3.19)

where Aij are the ijth entry of the damping matrix A. The minima of the potential
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Figure 3.2: 3D Plot of function U given in (3.19) with parameters from (3.20)

in (3.19) coincide with the intersection of the circle |x|2 = α−1
0 and the neutral

direction of the damping matrix, A. The direction for the zero eigenvalue is, in
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turn, perpendicular to the direction of the damping. Therefore, coupling induces

a symmetry breaking and a single preferred direction emerges from the interaction

between the deterministic dynamics and stochastic terms.

3.2.2 Effect of Coupling on Gradient Systems

Stochastic mode reduction has been designed to reproduce statistical behavior of

complex models with time-scale separation. The time-scale separation is controlled

by the coupling strength, λ. For small values of λ, 0 ≤ λ ≤ 1, behavior of u1,2 in

(3.5) is dominated by stochastic terms. This is the exactly the regime where the

mode-elimination strategy works accurately. The system has clear scale separation

and the variables, x1,2 evolve slowly compared to u1,2. To see this, we consider

correlation functions which are computed as time averages; correlation function of

f(t) is given by CF (τ) =
〈
(f(t) − f̄))(f(t+ τ) − f̄)

〉
t
, where f̄ is the mean of f ,

and 〈·〉t denotes temporal average. For our system, we consider correlation functions

that are normalized by the variance, so that NCF (0) = 1, where NCF (τ) =
CF (τ)

CF (0)
.

For λ = 0.5, the coupling is small and there is clear scale separation. This is visible

in Figure 3.3, where x1,2 evolve on a longer time-scale while the fast variables, u1,2

evolve on a faster time-scale. In Figure 3.4 we justify that the mode-elimination

strategy works and the slow variables x1,2 in the full coupled system and reduced

gradient system have normalized correlation functions that have good agreement.
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Figure 3.3: Comparison of Normalized Correlation Functions of x1 (solid line), x2

(dashed line) with correlation functions of u1, u2 (dash-dot line) for simulations of
the coupled system in (3.5) with parameters in (3.20)

The parameters used in the simulations are

µ = 0.1, α0 = 0.8, λ = 0.5,

A1,2,3 = −2, − 2.5, 4.5, B1,2,3 = −0.5, − 0.5, 1,

γ1 = γ2 ≡ γ = 5, σ1 = σ2 ≡ σ = 3.1622.

(3.20)
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Figure 3.4: Comparison of Normalized Correlation Functions of x1 and x2 in the
simulations of the full coupled system in (3.5) (solid line) in the regime (3.20) and
the corresponding reduced equation in (3.7) (dashed line).

Since the mode-elimination strategy reproduces the statistical properties of the slow

modes in the full system using the reduced system, other statistical quantities, in

particular, probability density function (pdf) of x1 and x2 are also computed. With

this in mind, marginal density functions were calculated for the slow variables and

compared. In Figure 3.5, the close agreement between the pdf of the slow variables in

the full and corresponding reduced system is evident. Further simulations for the case

where λ = 2 were also performed. This value of λ is an upper bound for our case where

the scale separation still exists and the mode reduction works well. The figure for the

case where λ = 2 is not presented here due to the monotony of the presentation. To

verify the mode-reduction strategy, other statistical quantities of the slow variables
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Figure 3.5: Comparison of marginal probability density functions of x1 and x2 of the
full coupled system in (3.5) (solid line) in the regime (3.20) and the corresponding
reduced equation in (3.7) (dashed line).

x1,2 were computed. The agreement of the slow dynamics were clearly evident. Joint

probability distribution (jpdf) of the slow variables were also considered. The choice

of jpdf is due to its effectiveness in explaining the symmetry breaking phenomena.

We will illustrate the idea first using low coupling strength where λ lies in the range of

[0, . . . , 2]. In Figure 3.6, jpdf of the slow variables are presented. In particular, we used

λ = 0.5 to show the joint distribution of the slow modes in the full coupled system

and the mode-reduced system. Initial conditions in both simulations were chosen

above the eigendirection corresponding to the non-zero eigenvalue. It is important

to note that if the initial conditions are chosen below the eigenvector corresponding

to the non-zero eigenvalue, we will not see the same behavior. In particular, we will
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Figure 3.6: Contour plot of the joint probability density function of x1, x2 for the
coupled system in (3.5) (left) and the reduced model in (3.7) (right) with parameters
in (3.20). The eigenvectors of the matrix A in (3.8) are shown in blue dashed (zero
eigenvector) and red solid (non-zero eigenvector). Circle x2

1 + x2
2 = α−1

0 is plotted as
dotted line.

see a similar jpdf below the eigendirection associated with zero eigenvalue. We would

like to comment that the reduced system is not ergodic, since trajectories cannot

cross the line corresponding to the non-zero eigenvector. Therefore, a symmetric part

with respect to the direction of the non-zero eigenvalue would also emerge in the

joint distribution of x1, x2 for ensemble simulations of both systems. Notice that

in our case, the joint distribution lies strictly above the solid line. Furthermore,

there is very good agreement in the contour plots of the joint distribution of x1, x2.

Hence the mode-elimination strategy worked well under the set of parameters given in

(3.20). The orientation of the joint distribution is almost parallel to the eigenvector
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for the non-zero eigenvalue. This is due to the strength of noise moving parallel

to the eigendirection of the non-zero eigenvalue. Hence it is possible to predict the

orientation of the joint distribution using the eigenvector of the damping matrix,

A. As discussed before, we can also use the diffusion matrix, Σ, to reach a similar

conclusion.

In Figure 3.6, notice that the intersection of the circle of equilibrium x2
1+x2

2 = α−1
0

with the eigenvector associated with the zero eigenvalue lies exactly at the local basin

of attraction. This local minimum of the potential in (3.19) corresponds to peak in

the joint probability function. Hence, the position of the peak can be predicted apriori

as the point of intersection of the stable circle of equilibria with the eigendirection of

the zero eigenvalue.

The fact that we can use the damping matrix in the reduced system as a tool

to predict the joint distribution of x1 and x2 in the full system is quite remarkable.

Though this seems trivial, the consequences of this result are far reaching. For ex-

ample, systems with many degrees of freedom that have significantly small number

of slow modes as compared to the fast modes can be reduced and simply using the

damping/drift matrix we can predict the preferred direction of the joint distribution

as well as the local basin of attraction.

We will now explain the same phenomena, using different set of parameters. In

particular, the effect of coupling strength on the full system given in (3.5) and its ef-

fective model in (3.7) will be considered. An increase in γ1,2 and σ1,2 in system (3.5) is

the regime where the mode-reduction strategy works accurately. The applicability of

the result in a regime where the mode-reduction fails is of significant interest. With

this in mind, parameters are chosen in a regime with no scale separation between
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the slow and the fast modes. The strength of coupling λ and its effect on the joint

probability distribution of x1, x2 in the full and the mode-reduced model are consid-

ered. Under conditions where mode reduction fails, the joint probability distribution

is affected tremendously. For this reason, λ is increased from 0.5 in (3.20) to 5. Now

since λ ≥ 2, the system is dominated by λ on the right side of (3.5) when γ1,2 and σ1,2

are fixed. Hence u1,2 are dominated by λ, the case where there is no scale separation.

Parameters used in the simulations are

µ = 0.1, α0 = 1.0, λ = 5.0,

A1,2,3 = −2, − 2.5, 4.5, B1,2,3 = −0.5, − 0.5, 1,

γ1 = γ2 ≡ γ = 2.5, σ1 = σ2 ≡ σ = 2.2361.

(3.21)

Notice again that
σ2

2γ
= 1. To demonstrate lack of scale separation, we draw the

correlation functions of x1,2 as well as u1,2. Figure 3.7 (Left) shows clearly that

there is no scale separation between the fast and slow modes. Notice how the slow

variables x1,2 evolve on almost the same time scale as the fast variables u1,2. In

Figure 3.7 (Right) the disagreement in the correlation function of x1 in the coupled

full model and the effective reduced model is shown; another justification that the

mode-reduction strategy has failed. Notice the difference in Figure 3.7 and Figure

3.4. Similar behavior is manifested in the correlation function of x2. The discrepancy

is also visible in the joint probability distribution of x1,2 in the full and the reduced

model. Joint distribution of x1,2 are drawn in Figure 3.8, where parameters are taken

from (3.21). Irrespective of this disagreement, notice that the preferred direction

of the joint distribution can be predicted using the eigendirection of the non-zero

eigenvector of the drift matrix A. As mentioned before, in Figure 3.8 (Left) it is
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Figure 3.7: Left: Comparison of correlation functions of x1 (solid line), x2 (dashed
line) with correlation functions of u1, u2 (dash-dot line) for simulations of the coupled
system in (3.5) with parameters in (3.21). Right: Comparison of the Correlation
Function of x1 in the simulations of the full coupled system in (3.5) (solid line) in the
regime (3.21) and the corresponding reduced equation in (3.7) (dashed line).

visible that the joint distribution lies above the eigenvector associated with the non-

zero eigenvalue of matrix A, but for the reduced system such results are not possible

since stochastic mode-reduction strategy does not work. Hence, it is possible to

predict apriori the orientation of the joint distribution of the slow dynamics using the

mode-reduced system. Therefore, the reduced system still retains some information

about the full system in the essential modes.
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Figure 3.8: Contour plot of the joint probability density function of x1, x2 for the
coupled system in (3.5) (left) and the reduced model in (3.7) (right) with parameters
in (3.21). The eigenvectors of the matrix A in (3.8) are shown in blue dashed (zero
eigenvector) and red solid (non-zero eigenvector).

3.3 Low-Dimensional Systems with Stable Peri-

odic Orbit

Although systems with stable periodic orbit cannot be recast as gradient systems,

the argument from Section 3.2 regarding the modification of the potential can be

extended to this case as well. To illustrate the symmetry breaking of systems with
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stable periodic orbit, we consider the following low-dimensional system

ẋ1 = µ(1 − α0|x|2)x1 − (α + β|x|2)x2 + λA1u1u2,

ẋ2 = µ(1 − α0|x|2)x2 + (α+ β|x|2)x1 + λB1u1u2, (3.22)

u̇1 = λA2x1u2 + λB2x2u2 − γ1u1 + σ1Ẇ1,

u̇2 = λA3x1u1 + λB3x2u1 − γ2u2 + σ2Ẇ2.

Notice that the system (3.23) is very similar to the one considered in (3.5) except for

the terms −(α+β|x|2)x2 and (α+β|x|2)x1 on the right side. The additional terms on

the right side add rotation into the system, hence at times the system given in (3.23)

will be referred to as the “system with rotation”. For fixed values of α0, increase in

α and β increases the effect of rotation in the system. Clearly, for α = β ≡ 0 the

system in (3.23) is the same as (3.5). It is easy to show that the system in (3.23)

projected onto x1, x2,

ẋ1 = µ(1 − α0|x|2)x1 − (α + β|x|2)x2,

(3.23)

ẋ2 = µ(1 − α0|x|2)x2 + (α + β|x|2)x1,

possesses a stable periodic orbit

x(t) = α
−1/2
0 (cosωt, sinωt) , with ω = α + βα−1

0 . (3.24)

Derivation of the reduced system is similar to the case of the gradient system in Sec-

tion 3.3.1. A general outline of the derivation of reduced system is given in Appendix
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B. The reduced system for (3.23) is given by

ẋ1 = µ(1 − α0|x|2)x1 − (α + β|x|2)x2 − A11x1 −A12x2 + Σ1Ẇ1,

(3.25)

ẋ2 = µ(1 − α0|x|2)x2 + (α + β|x|2)x1 − A12x1 − A22x2 + Σ2Ẇ2,

where Aij are entries of the damping matrix in (3.8). Therefore, the effective damping

is identical to the case of the gradient system and can be diagonalized by the rotation

transformation in (3.15). Similar to the example discussed in the previous section,

the diffusion matrix can also be diagonalized at the same time.

3.3.1 Symmetry Breaking in System with Stable Periodic

Orbit

Although the system in (3.24) cannot be recast as a gradient system, parts of the

right-hand side of the coupled system and the reduced equations are identical to the

gradient systems in (3.5) and (3.7), respectively. Therefore, we expect that the peaks

in the joint density of x1, x2 will occur near the intersection of the circle x2
1+x2

2 = α−1
0

and the eigenvector corresponding to the zero eigenvalue of the damping matrix. This

is confirmed by numerical simulations with surprising accuracy. Joint probability

density for the coupled system and the reduced system is depicted in Figure 3.9.

Parameters in the simulation were chosen to be similar to the parameters in Section
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Figure 3.9: Joint probability density of x1, x2 for the coupled system in (3.23) (left)
and the reduced model in (3.25) (right) with parameters in (3.26). The eigenvectors
of the matrix A in (3.8) are shown in blue dashed (zero eigenvector) and red solid
(non-zero eigenvector). Circle x2

1 + x2
2 = α−1

0 is plotted as dotted line.

3.2

µ = 0.1, α0 = 0.8, λ = 0.5, α = 0.06, β = 0.05,

A1,2,3 = −2, − 1.5, 3.5, B1,2,3 = −1.25, − 1.2, 2.45,

γ = 5, σ = 3.1622.

(3.26)

The stochastic mode-reduction was designed to reproduce the statistical features of

complex models with separation of time-scales. For the coupling strength λ = 0.5, the

E{x1} E{x2} V ar{x1} V ar{x2} Kurt{x1} Kurt{x2}
Coupled Model -0.00224 0.00339 0.57894 0.63812 2.1703 2.0556
Effective Model -0.00482 0.01155 0.58613 0.65066 2.2636 2.1143

Table 3.1: One-point statistics of x1 and x2 for the coupled system in (3.23) and
reduced system in (3.25) in the regime with λ = 0.5; Kurt{y} = 〈(y−ȳ)4〉/〈(y−ȳ)2〉2.
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Figure 3.10: Left: Comparison of Normalized Correlation Functions of x1 (solid line),
x2 (dashed line) with correlation functions of u1, u2 (dash-dot line) for simulations
of the coupled system in (3.23) with parameters in (3.26). Right: Comparison of
Normalized Correlation Functions of x1 in the simulations of the full coupled system
in (3.23) (solid line) in the regime (3.26) and the corresponding reduced equation in
(3.25) (dashed line).

stochastic mode-reduction strategy is utilized in the correct regime and reproduces

statistical features of x1 and x2 extremely well. Normalized correlation functions of

x1,2 and u1,2 depicted in Figure 3.10 (Left) demonstrate that the time-scale of x1,2 is

much slower than for u1,2. Statistical agreement of the coupled and reduced model

is presented in Table 3.1 and correlation function of x1 for two models is depicted in

Figure 3.10 (Right). Correlation function of x2 also agree between the system with

rotation given in (3.23) and the effective reduced system in (3.25). The results are not

shown here due to redundancy and are very similar to gradient system. From Section

3.2.2, an increase in coupling strength leads to a regime where the mode-reduction
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Figure 3.11: Joint probability density function of x1, x2 for the coupled system in
(3.23) (left) and the reduced model in (3.25) (right) with parameters in (3.26) where
the coupling strength λ = 10. The eigenvectors of the matrix A in (3.8) are shown in
blue dashed (zero eigenvector) and red solid (non-zero eigenvector).

fails. Hence, the statistical agreement between the full and effective reduced system

is weak and the stochastic mode-reduction strategy is not supposed to be utilized to

explain the statistical behavior of x1 and x2. This was confirmed by choosing coupling

strength λ = 10 and observing a large discrepancy between the correlation functions

of x1 and x2 in the coupled and reduced models.

For large values of λ, there is no scale separation between x1,2 and u1,2. This

behavior was verified by checking the correlation functions of x1,2 and u1,2. It was

demonstrated that x1 and x2 cannot be treated as slow variables since initial decay

rates of correlation functions for x1 and u1 are comparable. Therefore, λ = 10 is the

regime which is not appropriate for the application of the stochastic mode-reduction

strategy. Nevertheless, as in the case of gradient systems the reduced model in (3.25)
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still can be utilized to explain the symmetry breaking phenomena qualitatively. Joint

probability density for x1 and x2 is presented in Figure 3.11. Clearly, there is a

large discrepancy between the joint distribution of these variables, but the stochastic

mode-reduction predicts the location of the peaks in the joint distribution with good

accuracy. This example demonstrates that in some cases the predictive power of the

stochastic mode-reduction extends beyond regimes with scale-separation.

3.3.2 Effect of Rotation on Symmetry Breaking

As mentioned before, α and β in system (3.23) affect the rotation frequency of the

system. Figure 3.9 (left) has peaks in the left upper half of the plane and in the

right bottom half of the plane. These peaks in the joint distribution of x1 and x2

correspond to high probability regions in the system. An increase in the rotational

terms, pushes the peaks along the circle x2
1 + x2

2 = α−1
0 . Notice that an increase in

α and β for fixed values of λ, α0, µ, moves the peak in quadrant II down the circular

path while the peak in quadrant IV is pushed up. This can be seen easily by looking

at the terms −(α+β|x|2)x2 and (α+β|x|2)x1 in the right side of (3.23). For example,

in quadrant II, x1 is negative while x2 is positive. For α ≥ 0 and β ≥ 0, since x1 ≤ 0

and x2 ≥ 0 in quadrant II, −(α + β|x|2)x2 forces x1 to become negative along the

circle x2
1 +x2

2 = α−1
0 and (α+β|x|2)x1 forces x2 to be negative as well. The same idea

applies to quadrant IV and both x1 and x2 are forced to become positive and hence

move anti-clockwise along the circle of equilibria x2
1 + x2

2 = α−1
0 . The other terms on

the right side of (3.23) counter these forces and the forces are constantly competing.

If µ is comparatively greater than λ, α and β, then the first term will dominate

the dynamics of the system. We would like to observe the behavior of the joint
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probability distribution of x1 and x2 when rotation is increased for a fixed coupling

strength. Notice that not only the regime where the mode-reduction strategy works

is of interest but also when mode-reduction fails. Particularly, the effect of rotation

on symmetry breaking and the apriori prediction of the peaks are of interest.

The values of α and β are positive in our simulations. It might be of interest to

consider other possible combination of values for α and β. We would like to mention

that all the other possible cases can be easily mimicked just by using α > 0 and

β > 0. Consider the stable periodic orbit

x(t) = α
−1/2
0 (cosωt, sinωt) , with ω = α + βα−1

0 ,

where ω depends on α an β. Hence, we consider considering only positive values of

α and β. Furthermore, we only need to increase the α or β parameter in (3.23) to

see the increase in rotation. There is no significant difference in increasing both the

parameters as compared to increasing one parameter at a time, α or β. Hence, to

study the rotational effect on symmetry, we consider possible values of α, where α

increases from 0.06 to 0.3 while other parameters are fixed. The results are shown

in Figure 3.12. Hence the conclusions of the previous section are valid for a wide

range of parameters. In particular, the direction of symmetry breaking is related to

the eigenvectors of the damping matrix and rotation terms only stretch the regions

of high probability.
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Figure 3.12: Top: Joint probability density function of x1, x2 for the coupled system
in (3.23) (left) and the reduced model in (3.25) (right) with parameters in (3.26)
except for the change in β to 0.1. The eigenvectors of the matrix A in (3.8) are shown
in blue dashed (zero eigenvector) and red solid (non-zero eigenvector). Bottom: Joint
probability density function of x1, x2 for the coupled system in (3.23) (left) and the
reduced model in (3.25) (right) with parameters in (3.26) except for the change in
β to 0.3. The eigenvectors of the matrix A in (3.8) are shown in blue dashed (zero
eigenvector) and red solid (non-zero eigenvector).
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3.4 Conclusion

Two coupled systems are presented here as prototype examples elucidating interac-

tions between various deterministic coherent structures and noise. Coupled systems

are constructed by coupling a low-dimensional dynamical system with a particular

structure with additional variables. It is demonstrated that the coupling breaks the

original symmetry of the underlying dynamics and a preferred direction emerges in

the two-dimensional projection of the full higher-dimensional distribution. Although

not all low-dimensional projections considered here can be recast as gradient systems,

rotational symmetry of the gradient part of the right-hand side plays a crucial role

in describing this symmetry breaking mechanism. The gradient system considered

here, has a stable circle of equilibria and can be used to show analytically the symme-

try breaking phenomena. Furthermore, it is demonstrated that coupling terms can

be successfully replaced by stochastic terms utilizing the stochastic mode-reduction

technique. Under assumptions of ergodicity, the stochastic mode reduction gives

closed-form stochastic models for the slow variables in the limit of infinite separation

of timescales. The stochastic models reproduce exactly the statistical behavior of the

slow modes, when the fast modes are artificially accelerated to enforce the separation

of timescales.

Symmetry breaking can be explained easily in the context of stochastic reduced

models since the preferred direction is directly linked to the eigenvectors of the

stochastic perturbation. Since the diffusion and damping matrices are similar, eigen-

vectors of the two matrices are the same. Hence either the eigenvectors of the damping

or the diffusion matrix can be used to explain this symmetry breaking. Moreover,

these eigenvectors can be computed apriori, without running any computer simu-
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lations, thus, giving a powerful insight into the statistical behavior of the coupled

problem. In addition, it is also demonstrated that the stochastic mode-reduction

strategy can predict the preferred direction for systems without scale separation and,

thus, far outside regimes of the intended applicability of this technique. Therefore,

the stochastic mode-reduction acts as an effective linearization of the full coupled

dynamics where the coupling terms are effectively replaced by stochastic terms. We

expect that the applicability of the stochastic mode-reduction strategy to problems

with symmetry breaking can be extended to more complex systems without scale

separation.
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Chapter 4

Predictability in Full and Reduced

Systems

4.1 Introduction

Stochastic mode reduction in the regime of scale separation yields reduced systems

which have good statistical agreement with the full dynamics. Statistical quantities,

such as in mean, variance, higher moments, correlation functions, etc of the two sys-

tems have almost exactly identical behavior. Moreover, certain statistical properties

of full systems can be inferred from the reduced system even in the regime without

the scale-separation. Hence, reduced system contains significant information about

the full system when the mode reduction technique is not effective. This was detailed

in Chapter 3, where the reduced model was used to correctly predict the orientation

of the joint pdf of x1, x2 in the full model. In this chapter, we investigate the non-

equilibrium behavior of reduced systems. In particular, we analyze the agreement in
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relative entropy of the original and the mode eliminated system. Furthermore, the

conditions necessary under which such agreement occurs will also be established. We

choose parameters where the discrepancy in the decay rate of relative entropy between

systems occur on a longer time scale as well as on a shorter time scale, nevertheless

the systems will behave similarly. A wide range of parameters need to be considered

since we have to verify that the results are not due to happenstance. We show that

the behavior is not due to specific values but is a general occurrence for a large set

of parameters.

4.2 Measure of Difference in Decay Rates

Relative entropy for most system decays exponential in time. This is not true for

oscillatory models. In this chapter, we consider systems with decay rate “close” to

an exponential function. The word “close” is considered in the least square sense. In

particular, we rely on the idea that decay rate of relative entropy can approximated

by exponential functions. In our case, the exponential function as a measure of decay

rates of relative entropy works well. The decay rate is calculated using log of the

exponential fit function. Formally, given (Y,X) and an exponential function g, we

determine the unknown parameters β such that

Y = g(X,β) + e, (4.1)

where X is the time discretization ti for i = 1, .., N , Y is R(ti) and e is the error

in the approximation. In general, X are the independent variables while Y are the
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dependent variables. In our application (4.1) becomes

Yi = β0e
β1Xi + ei, (4.2)

where the residual ei = Yi − Ŷi and Ŷi is the estimate of Yi. Method of ordinary least

squares is used to minimize the function

RSE =

N∑

i=1

e2i . (4.3)

The exponential fit function is denoted by Ŷi, hence

log(Ŷi) = log(β0) + β1Xi. (4.4)

Decay of the exponential fit function is determined from the quantity β1. It is the

slope of the log of the exponential function fitted to R(ti). We use the logarithm of

the absolute error of the quantity β1 to see the comparison in the full and reduced

system. If βf1 is β1 for the full system and βr1 is β1 for the reduced system, then the

absolute error δβ1

δβ1 = |βf1 − βr1|, (4.5)

log(δβ1) will be the measure that we will use to compare the difference in decay rates

of the full and reduced system for R(t).

Generally, the full system has far more variables as compared to its reduced version

(see Appendix B). Hence, it is particularly important to determine and compare the

correct set of modes. The modes that are particularly suited for this comparison
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are the slow variables. Therefore, relative entropy of the full system is the marginal

relative entropy of the slow modes. Consider (x,u) = (slow, fast), the slow-fast

modes in the full system. Relative entropy of the slow modes in the full system

projected onto the x-plane is denoted as Rfx(t), while relative entropy of the reduced

system is denoted as Rr(t).

Under the assumption that the slow variables decorrelate much slowly than the

fast variables, the stochastic-mode reduction strategy can be applied and the corre-

lation function and the marginal/joint probability distributions of the full and the

reduced system have a near perfect agreement in the slow variables, x. Under no

scale separation, the difference in the correlation function of x1 was evident from

Figure 3.7. In this chapter, we show that the difference in the correlation functions of

the slow variables for the full and reduced system is almost the same difference that

we will see in the relative entropies. Hence, establishing a clear connection between

the notion of predictability and correlation function. A simplified intuitive definition

of correlation relation is how fast the system forgets the initial conditions. Hence,

as the system reaches equilibrium state the correlation function decays to zero and

the system has no knowledge of the initial conditions. The same explanation can be

used for the notion of predictability. Once the system is in equilibrium state, the

predictive strength of the system is lost as a whole. Hence one cannot predict with

any confidence where the system will be at a future point in time. Therefore, corre-

lation function can somehow be used to explain the predictive nature of the system.

These ideas will first be applied to a triad model and its mode reduced analogue, the

Ornstein-Uhlenbeck process. This prototype model is very useful, since the OU pro-

cess has explicit closed forms for correlation function and relative entropy. The ideas
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are further applied to the low-dimensional system considered in Section 3.3. Notice

that the system studied in (3.5) and the reduced system (3.7) were not studied since

the system in (3.5) is not ergodic and hence the results are not applicable.

4.3 Comparison of Correlation Function and Rel-

ative Entropy

4.3.1 Triad System and Ornstein-Uhlenbeck Process

We investigate the triad model and the mode reduced Ornstein-Uhlenbeck (OU) pro-

cess. The triad model (i.e. Full System) is

ẋ = A1u1u2,

u̇1 = A2xu2 − γ1u1 + σ1Ẇ1, (4.6)

u̇2 = A3xu1 − γ2u2 + σ2Ẇ2,

where W1, W2 are independent Wiener processes, Aj for j = 1, 2, 3 are known inter-

action coefficients and γi and σi, i = 1, 2 are strength of drift and diffusion terms

respectively. Here we consider the energy-conserving interactions between the slow

variable x and fast variables {u1, u2} by using the interaction coefficients

A1 + A2 + A3 = 0.

Under the assumption that x decorrelates slowly than the fast modes {u1, u2}, the

stochastic mode-reduction strategy (see Appendix B) can be applied to the system
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in (4.6) and the reduced model for x becomes

ẋ = −γx+ σẆ , (4.7)

where

γ =
−1

γ1 + γ2

(
A1A2

σ2
2

2γ2
+ A1A3

σ2
1

2γ1

)
,

σ = A1
σ1σ2√
2γ1γ2

1√
γ1 + γ2

,

(4.8)

where W is the Weiner process. Since the system in (4.7) is a simple, explicitly

representable process, the time correlation function is

〈x(t+ τ), x(t)〉t =
σ2

2γ
e−γτ , (4.9)

where τ ≥ 0, 〈·, ·〉t is averaging w.r.t t and γ, σ are defined explicitly in (4.8). Cor-

relation function can be calculated using a single realization and averaging over two

points separated by a distance τ in time.

Relative entropy requires Monte-Carlo simulation with an ensemble of initial con-

ditions, as discussed in Section 1.4. Given Gaussian distributed initial conditions,

x(t) in (4.7) has mean and variance

〈x(t)〉 = 〈x(0)〉 e−γt,

var{x(t)} = [var{x(0)} − σ2

2γ
]e−2γt +

σ2

2γ
,

(4.10)
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where 〈x(0)〉 is the mean and var{x(0)} is the variance of the initial ensemble. From

(4.10), the limiting/stationary (t → ∞) distribution is normally distributed with

mean 0 and variance
σ2

2γ
. From [31], when the equilibrium distribution q and predic-

tion distribution p have standard form of Gaussian distribution [24] of finite dimension

n, then the closed analytical expression for Relative Entropy, R is

R =
1

2

{
ln

[
det(σ2

q )

det(σ2
p)

]
+ tr[σ2

p(σ
2
q )

−1] + ( ~µp − ~µq)
T (σ2

q )
−1( ~µp − ~µq) − n

}
, (4.11)

where det is determinant and tr is trace. For the OU process, ~µq and ~µp are vector-

valued means and σ2
q and σ2

p are variance-covariance matrix. The equilibrium mean

and equilibrium variance are ~µq and (σ2
q )ii i = 1, 2, respectively. Hence the relative

entropy for the OU process can be calculated explicitly. For the correlation function

and relative entropy of the triad model given in (4.6), Direct Numerical Simulations

(DNS) are employed to achieve the results.

Explicit formula for relative entropy R(t) under Gaussian initial conditions is

known, hence we use an ensemble of normally distributed initial conditions. Different

mean and variance for the set of initial conditions can have different relative entropy

results. To circumvent the problem, we first calculate the stationary distribution of

the two systems given in (4.6) and (4.7). Hence the equilibrium mean and variance are

known for both systems for all the modes. For our first set of numerical simulations,

the mean and variance of the initial ensemble is chosen to be the equilibrium mean

and the equilibrium variance for the fast modes u. For the slow mode x, we used the

mean of the ensemble to be the equilibrium mean but the variance of the ensemble

was 1/10 of the equilibrium variance.

91



Large variance of the ensemble will lead to little or no “spread” in the initial

conditions, hence the decay rate of the relative entropy would not be significant. If the

decay rate of relative entropy is not profound, full and reduced system will not have

an accurate comparison. It is important to emphasize that the variance of the initial

conditions in the slow mode x should be chosen “away” from the equilibrium variance.

Hence the system will reach equilibrium on a very long time scale and the rate of decay

in relative entropy would become significant. In the other set of simulations, the mean

of the slow variables x will be further away from the equilibrium mean, however in

this case the results will remain unaffected. For this set of simulations, the mean and

variance of the initial ensemble of the fast modes were kept as before. Different set

of simulations with different means of initial ensemble is to understand if the mean

of the ensemble has any influence on the non-equilibrium behavior of the model.

4.3.1.1 Mean of the Ensemble as Equilibrium Mean

Parameters used in the simulations are

A1,2,3 = −2, − 1.5, 3.5,

γ = γ1 = γ2, σ = σ1 = σ2.
(4.12)

To simplify the presentation we consider γ and σ such that

σ2

2γ
= 1, (4.13)

but the argument still applies when this simplification is not used. In Figures 4.1,

4.2 and 4.3 we show a comparison of the correlation function of x and the relative
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Figure 4.1: Correlation function of x (left) and relative entropy (right) of the triad
model in (4.6) and the mode reduced Ornstein-Uhlenbeck process in (4.7) with pa-
rameters in (4.12). γ = 1 (top) and γ = 2.5 (bottom) with the simplification given in
(4.13). Monte-Carlo simulation used 250,000 initial conditions normally distributed
mean and variance where the mean of the distribution is the equilibrium mean.

entropy of the full triad model and the reduced OU Process for different values of

γ. The result shows that for increasing value of γ, mode-reduction works and the
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Figure 4.2: Correlation function of x (left) and relative entropy (right) of the triad
model in (4.6) and the mode reduced Ornstein-Uhlenbeck process in (4.7) with pa-
rameters in (4.12). γ = 5.0 (top) and γ = 7.5 (bottom) with the simplification given in
(4.13). Monte-Carlo simulation used 250,000 initial conditions normally distributed
mean and variance where the mean of the distribution is the equilibrium mean.

relative entropy as well as the correlation function have a good agreement in the full

and the reduced system. Furthermore, it is evident that the difference in the relative
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Figure 4.3: Correlation function of x (left) and relative entropy (right) of the triad
model in (4.6) and the mode reduced Ornstein-Uhlenbeck process in (4.7) with pa-
rameters in (4.12). γ = 10 with the simplification given in (4.13). Monte-Carlo
simulation used 250,000 initial conditions normally distributed mean and variance
where the mean of the distribution is the equilibrium mean.

entropy for the full and reduced system is almost the same difference that we see in the

correlation function of x. For the relative entropy calculation, the ensemble of initial

conditions for the fast variables was normally distributed with equilibrium mean and

equilibrium variance. For the slow mode, the mean of the initial condition was the

same as the equilibrium mean while the variance was one-tenth of the equilibrium

variance.

Now using the least squares approach in (4.2), the value of β1 for different values

of γ is calculated. Notice that that there are four different values of β1; β1 for the

relative entropy of the full and reduced system is βf1−re and βr1−re respectively, while

β1 for the correlation function of x in the full and reduced system is βf1−cf and βr1−cf

respectively. Table 4.1 show these values for β1 for different values of γ. It is not
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obvious from the table whether the difference in decay rates are the same for the

correlation function of x and the relative entropy, but using the measure in (4.5),

δβ1, and calculating the logarithm of this quantity one can quantify the difference

in decay rates. In Figure 4.4, value of δβ1 is calculated for different values of γ. In

particular, values of γ in Table 4.1 were used. The graphs for the correlation function

of x and the relative entropy both have the same decay rate. Also, the graphs are

almost a straight line and hence have the same slope. The difference in the logarithm

of the absolute error of the correlation function and the relative entropy is a non-zero

constant. It is easy to see from the graph that in this particular case, the constant is

2. Next, we demonstrate that the mean of the initial condition of the slow variable,

x has no bearing on the result.

4.3.1.2 Mean of the Ensemble Different from Equilibrium Mean

To show the validity of the results, different cases of the mean of the initial conditions

of the slow variable were simulated. In particular, the mean was 0.5 unit, 1 unit and

2 units away from the equilibrium mean.

To show the consistency in the results, simulations were performed where the mean

Table 4.1: β1 for correlation function of x (cf ) and relative entropy (re) for the
systems given in (4.6) and (4.7) with different values of γ.

Values of γ

1 2.5 5 7.5 10

Triad Model
βf1−re -1.77 -2.134 -1.849 -1.499 -1.223
βf1−cf -0.3077 -0.4097 -0.3198 -0.2377 -0.1861

OU Process
βr1−re -13.76 -5.373 -2.668 -1.774 -1.329
βr1−cf -1.982 -0.7816 -0.3907 -0.216 -0.1963
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Figure 4.4: Logarithm of δβ1 for the correlation function of x (line with square) and
relative entropy (line with right-pointing triangle). For the correlation function of x,
logarithm of |βf1−cf − βr1−cf | is calculated and for the relative entropy the logarithm
of |βf1−re−βr1−re| is calculated. The mean of the initial conditions of the slow variable
x is the same as the equilibrium mean.

of initial conditions is the same for the fast variables, u, as in Figure 4.4 but the mean

of the initial condition for the slow variable, x, is 2 units away from the equilibrium

mean. We present results only for the case where the mean of the initial conditions is 2

units away the equilibrium mean. The results were valid for other values of the mean.

Notice again in Figures 4.5, 4.6, and 4.7 that for larger values of γ the difference in

the correlation function and relative entropy is almost the same. Furthermore, Figure

4.8 shows similar results as in Section 4.3.1.1. As a word of caution, notice that the

difference in the logarithm of the absolute error of the correlation function and the
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Figure 4.5: Correlation function of x (left) and relative entropy (right) of the triad
model in (4.6) and the mode reduced Ornstein-Uhlenbeck process in (4.7) with pa-
rameters in (4.12). γ = 1.0 (top) and γ = 2.5 (bottom) with the simplification
given in (4.13). Monte-Carlo simulation used 250,000 initial conditions normally dis-
tributed mean and variance where the mean of the distribution is 2 units away from
the equilibrium mean.

relative entropy is still a non-zero constant but in this case the constant is different

from the one in Section 4.3.1.1. Due to redundancy, the results where the mean of
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Figure 4.6: Correlation function of x (left) and relative entropy (right) of the triad
model in (4.6) and the mode reduced Ornstein-Uhlenbeck process in (4.7) with pa-
rameters in (4.12). γ = 5.0 (top) and γ = 7.5 (bottom) with the simplification
given in (4.13). Monte-Carlo simulation used 250,000 initial conditions normally dis-
tributed mean and variance where the mean of the distribution is 2 units away from
the equilibrium mean.

the IC of x is 0.5 unit and 1 unit away from the equilibrium mean are not presented

here, but they were consistent with this presentation. Hence, mean of the ensemble
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Figure 4.7: Correlation function of x (left) and relative entropy (right) of the triad
model in (4.6) and the mode reduced Ornstein-Uhlenbeck process in (4.7) with pa-
rameters in (4.12). γ = 10 with the simplification given in (4.13). Monte-Carlo
simulation used 250,000 initial conditions normally distributed mean and variance
where the mean of the distribution is 2 units away from the equilibrium mean.

has no influence on the non-equilibrium behavior of the model.

4.3.2 System with Stable Periodic Orbit

We considered a low-dimensional system with a stable periodic orbit in (3.3.1). It is

natural to ask, if results from Section 4.3.1 can still be valid on the system (3.23) and

its mode-reduced analogue (3.24). Recall that the low-dimensional system with stable

periodic orbit has a rotation term in the slow variables, x = (x1, x2)
T . As discussed

in Section 4.1, the rotation term is of great importance. The system without the

rotation term is non-ergodic and the results from this section are not applicable for

that particular system. Recall, the full system with stable periodic orbit has two slow

variables, x1 and x2 and two fast variables u1 and u2, unlike the system in (4.6) where
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Figure 4.8: Logarithm of δβ1 for the correlation function of x (line with square) and
relative entropy (line with right-pointing triangle). For the correlation function of x,
logarithm of |βf1−cf − βr1−cf | is calculated and for the relative entropy the logarithm
of |βf1−re−βr1−re| is calculated. The mean of the initial conditions of the slow variable
x is 2 units away from the equilibrium mean.

there was only one slow variable. Hence, correlation function of the slow variables

maybe either be for x1 or x2. The results are applicable in either case. In addition,

the difference in the decay rates of correlation function in x1 as well as in x2 are

comparable to the difference in decay rates of the relative entropy. The full system in

this case is four-dimensional, but since slow variables are under consideration, relative

entropy of the full system implies marginal relative entropy in the x1, x2 variables.

The reduced system will only mimic the slow dynamics, and hence the relative entropy

of the reduced system is just the full entropy of the system.
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The Ornstein-Uhlenbeck Process in (4.7) is a system which has explicit expres-

sion for the correlation function of x, mean, variance, and in particular the relative

entropy. As you can see from (4.9), (4.10), and (4.11), the correlation function and

relative entropy of an OU Process can be approximated with great accuracy by an

exponential function. Hence in the case for the triad and the OU process the results

are extremely convincing. The system with the stable periodic orbit and its mode-

reduced version, explicit expressions are not present. Furthermore, the correlation

function of the slow variables and relative entropy are not necessarily exponential.

Hence an approximation of the quantities by an exponential function will not neces-

sarily yield very good results. Nevertheless, for high values of γ where the exponential

function approximates very well, the result is still achievable. In Figure 4.9 the corre-

lation function of x1 and x2 with relative entropy for γ = 1 is given. The exponential

function is not a good estimate for the relative entropy as well as the correlation

functions. Compared to Figures 4.10, 4.11, and 4.12 where the function can easily be

approximated by an exponential function. As before, to calculate relative entropy,

Monte-Carlo simulations were used where the initial ensemble has normal distribu-

tion. For the first set of simulations, the mean and variance of the initial ensemble in

the slow variables x1 and x2 has equilibrium mean but the variance of the ensemble

is one-tenth of the equilibrium variance. The reason for this choice is the same as

discussed for the triad model in (4.6). The other sets of simulations were performed

where the mean of the initial ensemble was 0.5 units, 1 unit, and 2 units away from

the equilibrium mean. For the system with rotation, the mean of the initial ensemble

for the slow variables was changed simultaneously for both x1 and x2. The result was
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Figure 4.9: Correlation function of x1 (top left) and x2 (bottom left) for γ = 1.
Relative entropy (top right and bottom right) for γ = 1. Solid line represents the full
model in (3.23) and the dashed line is the reduced model in (3.24).

valid in this situation. Parameters used in the simulations

µ = 0.1, α0 = 0.8, λ = 1, α = 0.06, β = 0.05,

A1,2,3 = −2, − 1.5, 3.5, B1,2,3 = −1.25, − 1.2, 2.45,

γ = γ1 = γ2, σ = σ1 = σ2,

(4.14)
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Figure 4.10: Correlation function of x1 (top left) and x2 (bottom left) for γ = 1.
Relative entropy (top right and bottom right) for γ = 5.0. Solid line represents the
full model in (3.23) and the dashed line is the reduced model in (3.24).

with the simplification that
σ2

2γ
= 1. Notice that the coupling strength, λ, is set to

1 and hence coupling has no affect on the result. Also notice that increase in α and

β for some fixed α0 increases rotation in (3.23), but the result here are independent
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Figure 4.11: Correlation function of x1 (top left) and x2 (bottom left) for γ = 1.
Relative entropy (top right and bottom right) for γ = 7.5. Solid line represents the
full model in (3.23) and the dashed line is the reduced model in (3.24).

of such changes. Furthermore, A1,2,3 and B1,2,3 were changed independently as well

as simultaneously and there was no change. In Figure 4.13 the result is not valid

for small values of γ since the best fit exponential function has high approximation
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Figure 4.12: Correlation function of x1 (top left) and x2 (bottom left) for γ = 1.
Relative entropy (top right and bottom right) for γ = 10.0. Solid line represents the
full model in (3.23) and the dashed line is the reduced model in (3.24).

errors. For large values of γ, where the exponential function approximates with good

accuracy, the result is valid.
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Figure 4.13: Logarithm of δβ1 for the correlation function of x1 (line with square)
and x2 (line with circle) and relative entropy (line with right-pointing triangle). The
variance of the initial conditions of x1 and x2 is one-tenth the equilibrium variance.
Monte-Carlo simulation used 250,000 initial conditions normally distributed mean
and variance where the mean of the distribution of x1 and x2 is 0.5 unit away from
the equilibrium mean.

4.4 Conclusion

We demonstrated that there is a connection between the decay rate of correlation

function and the idea of predictability. Moreover, correlation functions can be used

as an indicator to explain how the decay rate of the relative entropy differs in the full

and reduced system. Numerically, correlation functions are easy to calculate as they

require a single realization, while relative entropy is calculated using Monte-Carlo

simulations which requires multiple, possibly hundred and thousands of realizations.
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Hence using a single realization we are able to understand how the predictability of

the system behaves; moreover, we can explain how the decay rates in relative en-

tropy differs in the full and reduced system. Numerical calculation of relative entropy

requires apriori knowledge of the equilibrium distribution. Hence, in order to fully

calculate relative entropy, simulations are needed to calculate the equilibrium distri-

bution q as well as the predictive distribution p. These Direct Numerical Simulations

(DNS) are time consuming and require tremendous computing power. For our prob-

lem, the calculation of “total” relative entropy requires calculating over all a subset

of variables, in particular the slow variables x. If the problem contains three or more

slow variables, it becomes nearly impossible to calculate the relative entropy since

calculating such a quantity is unrealistic. In these situations, it is easy to rely on

correlation function as a measure of the predictive nature of the system rather than

relative entropy itself. We would like to mention that this result has far reaching

applications and is not confined to correlation functions and relative entropy. It is

possible under certain conditions that the behavior is also evident in other statistical

quantities, in particular the mean and variance of the slow variables. The problem

with these quantities is the approximation using exponential function. In the case

of the triad model and the OU process the result can still be applied using the ap-

proximation of exponential function since the mean and variance of the OU Process

are exponential functions. The result is definitely not applicable for the system with

stable periodic orbit and the mode-reduced analogue, since decay of the statistical

quantities toward equilibrium cannot be well-approximated by exponential functions.

Nevertheless, comparison of correlation functions in the full and reduced models pro-

vide overall indication about the non-equilibrium behavior of the reduced system.
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APPENDICES



APPENDIX A

Consider the general SDE

d ~X = A( ~X)dt+ B( ~X)d ~W, (A.1)

where A is a vector, B is a matrix and ~W is multi-dimensional linearly independent

Wiener process. Notice in our applications, we can assume that B in diagonal. Given

initial conditions ~X0, the backward equation associated with (A.1)

−∂tu =
∑

i

Ai∂iu+
1

2

∑

ij

(Bij)
2∂2

iju, (A.2)

where u( ~X0, t) = Ew( ~Xt| ~X0) and Ew is expectation with respect to the statistics of

the Wiener process ~W. The adjoint of the backward equation is the forward equation

also known as the Fokker-Planck Equation. Given the initial state ( ~X ′, t′) with initial

condition Pr( ~X, t′| ~X ′, t′) = δ( ~X − ~X ′), the forward equation for (A.1)

∂tp = −
∑

i

∂i[Aip] +
1

2

∑

ij

∂2
ij [(Bij)

2p], (A.3)

where p = Pr( ~X, t| ~X ′, t′). Hence we define the operator associated with the forward

equation as

L = −
∑

i

∂i[Ai ] +
1

2

∑

ij

∂2
ij [(Bij)

2 ],

and the operator associated with the backward equation, the adjoint of L as

L∗ =
∑

i

Ai∂i +
1

2

∑

ij

(Bij)
2∂2

ij .
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If we define ρ as the stationary distribution, then notice that

L∗1 = 0,

(A.4)

Lρ = 0.

Hence, 0 is a simple eigenvalue for L and L∗ but the eigenvectors for the two operators

are different. Notice that 0 is the simple eigenvalue, if the SDE is ergodic. Using the

first equation in (A.4) we can find the stationary distribution, ρ.
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APPENDIX B

B.1 General Case

We consider systems with slow-fast decomposition ~X = (~x, ~y) where the equation in

time t has the form

d~x = F1(~x) + F2(~x, ~y),

(B.1)

d~y = G1(~x, ~y) − γ~y + βd ~W,

where γ is a vector and β is a matrix. We assume that the OU term in (B.1) simulate

the ~y behavior. Introducing ǫ in (B.1), we get the equation

d~x = F1(~x) + F2(~x, ~y),

(B.2)

d~y = G1(~x, ~y) −
γ

ǫ
~y +

β√
ǫ
d ~W.

If we coarse-grain (B.2) on a longer time scale, τ = ǫt, to measure the slowly evolving

climate variables ~x, we derive the re-scaled stochastic climate mode in time τ

d~x = F1(~x) +
1

ǫ
F2(~x, ~y),

(B.3)

d~y =
1

ǫ
G1(~x, ~y) −

γ

ǫ2
~y +

β

ǫ
d ~W.
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In the end we would like to compare the behavior of ~X on time t and τ . The the

backward equation associated with the (B.3) becomes

−∂tu = Lu = L0u+
1

ǫ
L1u+

1

ǫ2
L2u. (B.4)

Let u be formally represented as a power series

u = u0 + ǫu1 + ǫ2u2 + . . . (B.5)

where u = u(~x, ~y, t). Plugging in (B.5) in (B.4) and collecting terms for ǫ, we have

1

ǫ2
: L2u0 = 0, (B.6)

1

ǫ
: L1u0 + L2u1 = 0, (B.7)

1 : − ∂tu0 = L0u0 + L1u1 + L2u2, (B.8)

where L2 is the operator associated with the OU process for ~y. Hence using (B.6), we

get that u0 = u0(~x, t), since the elliptic operator L2 is a function of ~y only. Therefore,

u0 is a constant w.r.t. to the ~y variables. Now define operator P as

P =

∫
d~y ρ(~y|~x), (B.9)

where P is averaging w.r.t to ~y. Using (A.4), we know that PL2 = 0. Applying P to

(B.7) and using the fact that PL2 = 0, we have that PL1 = 0. This is the compati-

bility condition. In our case, all systems under consideration have this compatibility

condition. If PL1 6= 0, this is exactly the case of averaging and is not considered in
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our applications. Considering (B.7) again, we get that

u1 = −L−1
2 L1u0. (B.10)

Applying P on (B.8) and using (B.10), we get

P(−∂tu0) = P(L0u0) + P(L1u1) + P(L2u2), (B.11)

−∂tu0 = L0u0 + P(−L1L
−1
2 L1u0) + 0. (B.12)

To explain L−1
2 , consider

∂tg(~y, t) = L2g(~y, t) + f(~y),

(B.13)

g(~y, 0) = 0.

Define ḡ(~y) = lim
t→∞

g(~y, t). If ∂tg = 0, then ḡ = −L−1
2 f from (B.13). Solving for g in

(B.13) we get

g(~y, t) =

∫ t

0

ds eL2(t−s)f(~yt). (B.14)

Given a backward equation ∂th = L2h, we know that the solution is h = eL2t for time

t. Also from (A.2), we know that h( ~Xt| ~X0) = Ew( ~Xt| ~X0). Hence from (B.14) and

setting t− s = τ we have

eL2τf(y) = Ew[f(yτ)|y0 = y]. (B.15)
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Therefore

g(~y, t) =

∫ t

0

dτ Ew[f(yτ )|y0 = y], (B.16)

→
∫ ∞

0

dτ Ew[f(yτ )|y0 = y], (B.17)

= −L−1
2 f(~yt), (B.18)

where CF is the correlation function. Notice that the last implication is using ḡ =

−L−1
2 f . For illustration purposes, consider the case where L1 = ∂xf(y), then

P(−L1L
−1
2 L1u0) =

∫ ∞

0

dτ f(y0)Ewf(yτ ), (B.19)

=

∫ ∞

0

dτ Ewf(y0)f(yτ), (B.20)

=

∫ ∞

0

dτ 〈f(y0)f(yτ )〉 , (B.21)

=

∫ ∞

0

dτ CFf(y), (B.22)

where the last implication is true iff f(y) is linear.

B.2 Triad Case

To illustrate P(−L1L
−1
2 L1u0) for a simple equation, consider a triad model

dx = B1y1y2dt,

dy1 = B2xy2dt− γ1y1dt+ σ1dW1, (B.23)

dy2 = B3xy1dt− γ2y2dt+ σ2dW2.
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Then

P(−L1L
−1
2 L1u0) =

∫ ∞

−∞

∫ ∞

−∞

dy1 dy2 π(y1, y2)L1L
−1
2 L1u0, (B.24)

where π(y1, y2) is the joint normal distribution of y1 and y2. In the case of the triad

model

L1 = B1y1y2∂x +B2xy2∂y2
+B3xy1∂y2

. (B.25)

Now using (B.25) in (B.24) and using the fact B2xy2
∂u0

∂y1

= B3xy1
∂u0

∂y2

= 0, we have

three integrals. We consider the first integral

∫ ∞

−∞

∫ ∞

−∞

dy1 dy2 π(y1, y2)

(
B1y1y2

∂

∂x

)
B1y1y2

∂u0

∂x
,

= B2
1

∂2u0

∂x

∫ ∞

−∞

∫ ∞

−∞

dy1 dy2 π(y1, y2)y1y2L
−1
2 y1y2 (since u0 = u0(x, t)),

= −B2
1

∂2u0

∂x

∫ ∞

0

dt 〈y1(0)y1(t)〉 〈y2(0)y2(t)〉 (from (B.19) to (B.21)),

= −B2
1

∂2u0

∂x

∫ ∞

0

dt
σ2

1

2γ1

e−γ1t σ
2
2

2γ2

e−γ2t,

= − 1

γ1 + γ2
B2

1

(σ1σ2)
2

4γ1γ2

∂2u0

∂x
.

Similarly, we can calculate the other two integrals to get

−∂u0

∂t
=

(
xB1B2

σ2
2

2γ2

1

γ1 + γ2
+ xB1B3

σ2
1

2γ1

1

γ1 + γ2

)
∂u0

∂x

(B.26)

+
1

2

(
B2

1

(σ1σ2)
2

2γ1γ2

1

γ1 + γ2

)
∂2u0

∂x2
.
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Therefore, the reduced equation for the x variable becomes

dx =

(
B1B2

σ2
2

2γ2

1

γ1 + γ2
+B1B3

σ2
1

2γ1

1

γ1 + γ2

)
x dt+ B1

σ1σ2√
2γ1γ2

1√
γ1 + γ2

dW.(B.27)
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