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Abstract

In this paper, we present a family of domain decomposition based on an Aitken like acceleration of the
Schwarz method seen as an iterative procedure with linear rate of convergence. This paper is a gener-
alization of the method first introduced at the12th International Conference on Domain Decomposition
that was restricted to regular Cartesian grids. The potential of this method to provide scalable parallel
computing on a geographically broad grid of parallel computers was demonstrated for some linear and
nonlinear elliptic problems discretized by finite differences on a Cartesian mesh. The main thrust of this
paper is to present a generalization of the method to non-uniform Cartesian meshes. The salient feature
of the method consists of accelerating the sequence of traces on the artificial interfaces generated by the
Schwarz procedure using a good approximation of the main eigenvectors of the trace transfer operator.
For linear separable elliptic operators, our solver is a direct solver. For nonlinear operators, we use an
approximation of the eigenvectors of the Jacobian of the trace transfer operator. The acceleration is then
applied to the sequence generated by the Schwarz algorithm applied directly to the nonlinear operator.
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In this paper, we present a family of domain decomposition based on an Aitken like acceleration of the Schwarz
method seen as an iterative procedure with linear rate of convergence. This paper is a generalization of the method first
introduced at the12th International Conference on Domain Decomposition that was restricted to regular Cartesian
grids. The potential of this method to provide scalable parallel computing on a geographically broad grid of parallel
computers was demonstrated for some linear and nonlinear elliptic problems discretized by finite differences on a
Cartesian mesh. The main thrust of this paper is to present a generalization of the method to non-uniform Cartesian
meshes. The salient feature of the method consists of accelerating the sequence of traces on the artificial interfaces
generated by the Schwarz procedure using a good approximation of the main eigenvectors of the trace transfer
operator. For linear separable elliptic operators, our solver is a direct solver. For nonlinear operators, we use an
approximation of the eigenvectors of the Jacobian of the trace transfer operator. The acceleration is then applied to
the sequence generated by the Schwarz algorithm applied directly to the nonlinear operator.
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I. I NTRODUCTION

The idea of using Aitken acceleration [14], [24], on the classical additive Schwarz Domain Decomposition (DD)
method [17], [18], [19], [22], [23] has been introduced in [10] . These authors have called the corresponding
method Aitken-Schwarz (AS) method. They have shown its very good numerical performances on linear and
nonlinear elliptic problems discretized by a five point scheme on a rectangular Cartesian grid [13]. More recently,
it was shown that this technique gives efficient meta-computing of the Poisson and Bratu problem in three space
dimensions with supercomputers abroad linked by a regular internet connection [4], [9]. For an elliptic separable
operator with constant coefficient, AS method is a direct solver. All these studies have been made on uniform
meshes. In this case the (discrete) Fourier transform plays a crucial role (although the name of Fourier does not
appear in the name of the method).

More recently a general framework of the AS method was introduced by one of the authors [8]. The technique
was applied to elliptic problems with the finite volume discretization of Faille on arbitrary quadrangle cells [5]. It
was shown that a compact representation of the trace of the solution generated by the Schwarz method could be
used to improve drastically the convergence rate of the method via Aitken acceleration.

In this paper we propose to extend the AS method to Cartesian grids that are not necessarily uniform. Because
the grid is a tensorial product of one dimensional grid with arbitrary space step, one can compute some numerical
approximation of the main eigenvectors of the trace transfer operator more easily than with unstructured grids. In
this paper we will present the method for finite differences as well as finite element approximations.

For linear separable elliptic operators, our solver is a direct solver. For nonlinear operators, we use an approx-
imation of the eigenvectors of the Jacobian of the trace transfer operator. The acceleration is then applied to the
sequence of traces generated by the Schwarz algorithm applied directly to the nonlinear problem. This acceleration
procedure is repeated iteratively until convergence, in a scheme analogous to the Steffensen algorithm. While our
method can be applied to an arbitrary number of space directions, the numerical efficiency of our method is justified
in this paper by computing various linear and nonlinear test cases in two space dimensions.
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It should be point out that our method requires only postprocessing of the traces generated by the Schwarz
method. Our algorithm is therefore easy to implement to accelerate the convergence of an existing parallel code,
and does not add a high overhead on communications. The plan of this paper will be as follows. In Sect. 2, we
introduce a formalism for the trace transfer operator that is appropriate to construct the Aitken like acceleration. In
Sect. 3, we compare our solver for the Helmholtz problem to other methods implemented in the general purpose
library PETSc. This result motivates the generalization presented in Sect. 4 with a generalized Fourier transform for
rectangular meshes with arbitrary space steps. Sect. 5 shows an application to finite element on tensorial product
of one-dimensional grids. Sect. 6 gives a broader range of examples with some linear nonseparable operators and
nonlinear test cases. Sect. 7 is our conclusion.

II. GENERAL FRAMEWORK OF THE M ETHOD

The AS method is built upon three ideas:

1) The Schwarz method is an iterative method applied to a trace transfer operator acting on functions defined
on the interfaces. Sparsity of the Jacobian of this operator is related to the domain decomposition (DD).

2) The discretization and choice of the interface representation may in some cases, if well chosen, increase this
sparsity.

3) For an operator with a sparse matrix, simple acceleration processes can be constructed using, for example,
the so-called Aitken acceleration procedure.

We are going to present the formal construction of the trace transfer operator of the Schwarz method for a DD
where the connection between subdomains can be described by a one dimensional graph. We make no assumption
on the PDE problem to be solved, except that all subdomain problems should be well posed.

We consider a bounded domainΩ in RN with a two neighbors overlapping DD in P domainsΩp, i.e Ωp only
intersectsΩp−1 andΩp+1, with obvious modifications for p=1 and P.

The non-oriented graph associated to this DD is a segment. Let us notice that the case of an annular domain
with Ω1 only intersectsΩP andΩ2, andΩP only intersectsΩP−1 andΩ1 is handled with minor modifications.

The boundaryΓp of Ωp is decomposed into three parts:Γl
p (resp.Γr

p) included in Ωp−1 (resp.Ωp+1) and the
remaining part̃Γp.

Let (Π) be a boundary value problem well posed inΩ. One step of the additive Schwartz DD method with
Dirichlet-Dirichlet boundary conditions is: for all p, given the Dirichlet boundary conditionslp (resp.rp) on Γl

p

(resp.Γr
p) solve the problem(Πp) restriction of(Π) to Ωp with these boundary conditions and the one of(Π) on

Γ̃p ; (Πp) is assumed to be well posed.
We denote bȳrp−1 (resp.̄lp+1) the trace of the solution of(Πp) on Γr

p−1 (resp.Γl
p+1). So one step of the Schwarz

method is described by one application of the trace transfer operator

(l̄2, r̄1, . . . , l̄P , r̄P−1) = T (l2, r1, . . . , lp, rp−1, . . . , lP , rP−1), (1)

acting on trace spaces of functions or distributions adapted to the boundary value problem. Note that if(Π) is a
system, then for eachp, lp andrp are vectors.

T has the special structure:

l̄2 = T r
1 (r1), . . . ,

{
r̄p−1 = T l

p(lp, rp)
l̄p+1 = T r

p (lp, rp)

}
p = 2, · · · , P − 1, . . . , r̄P−1 = T l

P (lP )

Here (r̄p−1, l̄p+1) = Tp(lp, rp) is composed of a local solver of the boundary value problem(Πp) and the trace
operators onΓr

p−1 andΓl
p+1. These operators can be exact or approximated.
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Formally the2(P − 1) Jacobian matrix of T has the pentadiagonal structure:




0 δrr
1 0 0

δll
2 0 0 δlr

2 0
δrl
2 0 0 δrr

2 0 0

0 0 δll
3 0 0 δlr

3
.. .

0 δrl
3 0 0 δrr

3
.. .

0 0 δll
4 0

.. .
... ... .. . .. .





(2)

with δlr
p = ∂T l

p/∂rp(lp, rp). The derivatives are assumed to exist in some sense in the traces functional spaces.
We have described the matrix of the trace transfer operator in an abstract form that is completely general. We

will now specify the discretization and therefore address the problem of the generalization of the method [13] for
Cartesian grids with arbitrary irregular space step in each space direction.

We introduce a discrete approximation of the traces. Each tracelp (resp.rp) is approximated by J numberslpj

(resp.rpj), j = 1 to J . These numbers may be point values, coefficients in a basis,...etc.

lp and rp are now J-vectors andδp =
(

δll
p δlr

p

δrl
p δrr

p

)
is a 2J square matrix. T is an application fromR2J(P−1)

into itself with a sparse Jacobian matrix.

For some particular problems, DD and meshes, a well chosen change of unknownslpj → l̂pj may greatly increase
the sparsity of the Jacobian of the transformed trace transfer operatorT̂ . This idea, which is the core of AS method,
has been introduced on a uniform mesh-using Fourier transform-in [10]. We are going to recall in the next section
this algorithm and compare its efficiency to some classical fast elliptic solvers.

III. APPLICATION TO THE HELMHOLTZ PROBLEM ON A SQUARE CARTESIAN GRID

We consider the situation whereN = 2 and Ω is a rectangle with a strip DD into rectangles. The left (resp.
right) boundary ofΩp is x = xl

p (resp.xr
p). Interfaces of the DD are therefore parallel to they direction. We focus

our attention on the Helmholtz problemL[u] = uxx + uyy − λu = f in the square(0, π)2 with homogeneous
Dirichlet boundary conditions and suppose thatλ is a positive constant. For simplicity, we present the method in
two space dimensions, however the three-dimensional case is a straightforward generalization [4]. We introduce
the regular discretization in they directionyj = (j − 1)h, h = 1

J , and central second-order finite differences (FD)
of the uyy derivative. Let us denote bŷum (resp. f̂m) the coefficient of the sine expansion ofu (resp.f ) and
uj = u(x, jh). The Helmholtz problem decomposes intoJ independent semi-discretized equations corresponding
to the sinus wavessin(ky), k = 1..J ,

ûm,xx − µm ûm = f̂m, (3)

with µm = 4/h2 sin2(mh
2 ) + λ.

The coefficientsδll, δlr, δrl, δrr in (2) can be computed analytically using the basis functions of the two-
dimensional vector space of the solutions of (3) for each wave component. We get a matrixPm, similar to (2) for
each wave componentm = 1..J

The DD algorithm writes then
• step 1: apply one additive Schwarz iterate to the PDE problem with a two-dimensional subdomain solver of

choice (i.e., multigrids, FFT etc...)
• step 2:

- compute the sine expansion̂um
k|Γp

, n = 0, 1 of the traces on the artificial interfaceΓp, p = 1..P, for the
initial boundary conditionu0

|Γp
and the solution given by one Schwarz iterateu1

|Γp
.

- apply generalized Aitken acceleration withn = 0 separatelyto each wave coefficient:

ũ∞m = (Id− Pm)−1(ũ1 − Pũm
0)

in order to getû∞m|Γp
.
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- recompose the traceu∞|Γp
in physical space.

• step 3: compute in parallel the solution in each subdomainΩp, with new inner BCsu∞|Γp
and subdomain solver

of choice.
We have compared the efficiency of our AS solver with a number of other elliptic solvers on a Beowulf cluster

of dual 32 bit AMD processors connected by a Gigabit ethernet switch. This switch exhibits high latency compared
to a Myrinet switch, for example, but is much cheaper. We have used for this comparison PETSc [2] that is an
excellent general purpose software for PDE problems. PETSc consists of a variety of libraries which include many
linear solvers such as Lapack, Krylov solver and algebraic multigrid solver.

In Figure 1 , we report the speedup performance of PETSc and AS on the same graphic, while on Figure 2,
we give the elpased time. We choose to run PETSc using V-cycle multigrid. The preconditioner is of Richardson
type to get traditional (non-Krylov accelerated) multigrid. One has two pre and two post smoothing steps of SSOR
(running independently on each process) and direct LU on the coarsest grid. To be accurate, the option in the
PETSc code is:

-dmmg_nlevels 3 mg_levels_ksp_type richardson -mg_levels_pc_type
sor -mg_levels_pc_sor_lits 2 -mg_levels_pc_sor_local_symmetric

This combination of options seems to give some of the best performances for PETSc.
We use the GMRES implementation of Sparskit [21] to solve the subdomain problem. This choice gives the best

elapse time in the framework of the software Sparskit.
Our implementation of AS does not neglect any wave components of the interface and uses blocking broadcast

and gathers for the acceleration process in Step 3 of the algorithm. This implementation is then far from optimum.
We refer to [9] for a detailed description of these comparisons.

PETSc, as expected, is faster than our implementation of AS with two processors and also for three processors.
However, as the number of processors increases, one can observe that the multigrid solver does not speed up well,
while AS performs better. Eventually, for more than three processors, AS gives a better elapsed time than the
multigrid solver. PETSc requires a better network than Gigabit ethernet to get better performances.

This is by no means a general conclusion because this test case is particularly simple. But it is rather a
demonstration than the AS algorithm is tolerant for high latency network, while traditional optimum solvers are
not.

We should have used PETSc as a subdomain solver, and AS for the DD method in this specific case. This is part
of our ongoing software development. This result however motivates further studies to generalize the AS algorithm
toward more complex situations as presented in the next section.

IV. A GENERALIZED FOURIER TRANSFORM FOR RECTANGULAR M ESHES WITH ARBITRARY SPACE

STEPS

We present here an extension to nonuniform rectangular meshes in a FD context with the one dimensional DD
of Sect. 3.
(Π) is a homogenous Dirichlet boundary value problem whose equationLu = f has a separable second order
operator:

L = L1 + L2

L1 = a1∂xx + b1∂x + c1, L2 = a2∂yy + b2∂y + c2.

a1, b1, c1 are functions of x, anda2, b2, c2 are functions of y. Our main objective now will be to rewrite the
discretized problem, in such a way that we get a set of one dimensional decoupled problems on the interface to
take advantage of the classical scalar acceleration technique on linear sequences of numbers [14], [24].

Since we are mainly interested in the trace of the solution on the artificial interfaces, we can first concentrate
on the semi-discretization of the operator iny variable. We use an irregular mesh in y:yj , j = 0, . . . , J + 1,
Lk

2 a discretization ofL2 on the y-mesh.uj(x) (respectivelyfj(x)) is an approximation ofu(x, yj) (respectively
f(x, yj)). The semi-discrete approximation(Πk

p) of problem(Πp) is solved on a rectangle denoted by [e,w]x[n,s]
in order to simplify the notations:

L1uj(x) + Lk
2uj(x) = fj(x), x ∈]e, w[ (4)
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uj(w) anduj(e) given (5)

u0(x) = uJ+1(x) = 0. (6)

We now show that a suitable change of unknown (the generalized Fourier transform) increases the sparsity of
the Jacobian of̂T . We set :

uj(x) =
J∑

m=1

ûm(x)Φmj ; j = 1, · · · , J

where theΦmj are to be chosen and satisfy alsoΦm0 = ΦmJ+1 = 0, m = 1, · · · , J . The same transformation is
applied tofj(x). Extending the relation betweenu and û to j = 0 and j = J + 1 satisfies (6). Applying the hat
transform to (4-5) gives:

J∑

m=1

[Φmj(L1ûm(x)− f̂m(x)) + ûm(x)Lk
2Φmj ] = 0

J∑

m=1

Φmj ûml(e/w) given

If we introduce the eigenvalue problem:

Lk
2Φm = λmΦm, Φm0 = ΦmJ+1 = 0 (E)

we obtain formally:

J∑

m=1

Φmj [(L1 + λm)ûm(x)− f̂m(x))] = 0 (7)

J∑

m=1

Φmj ûm(e/w) given (8)

and we have the following result:
Theorem 4.1:Assume problem (E) has J linearly independent real eigenvectors associated to real eigenvalues.

Then each problem(Πk
p) is constituted of J uncoupled continuous one dimensional linear problemsm = 1, · · · , J :

[L1 + λm]ûm(x) = f̂m(x) (9)

ûm(e/w) given (10)

The hat trace transfer operator is affine onR2J(P−1) with a block-diagonal matrix of J blocks of the form (2) ; the

m-th diagonal block corresponds to the modeΦm and uses theδpm =
(

δll
pm δlr

pm

δrl
pm δrr

pm

)
associated toL1 + λm.

Proof: the eigenvectors of problem (E) being independent, the matrixΦmj is invertible and the equations (7-8) give
the first part of the theorem.

We denote bye′ (resp.w′) the right bound of the left neighboring domain (resp. the left bound of the right
neighboring domain). The local part of the trace transfer operator is

(u(e), u(w)) → (u(e′), u(w′))

and its hat transform is
(û(e), û(w)) → (û(e′), û(w′)).

The second part of the theorem follows then from(9-10)¤
We can now proceed with the full discretization of the problem. But the Aitken like acceleration will make use

only of the interface representation in the appropriate eigenvector basisûm. This allows the scalar Aitken formula
to be applied independently to each component to give the exact interface condition.
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We introduce an irregular x-meshxi, i = 0, · · · , I+1, Lh
1 a discretization ofL1 on the x-mesh. The unknownsuij

are approximations ofu(xi, yj). We setfij = f(xi, yj) andUj = (uij)i=0,...,I+1. From (6), we haveU0 = UJ+1 = 0.
The full discrete approximation(Πhk

p ) of problem(Πp) is

Lh
1Uj + Lk

2Uj = Fj , j = 1, · · · , J (11)

uoj anduI+1j given, j = 1, · · · , J (12)

With the generalized Fourier transform:

uij =
J∑

l=1

ûilΦlj ; j = 1, . . . , J

we have the same theorem as in the case of the semi-discretization in y except that the J continuous hat problems
(9-10) are replaced by the following discrete hat problemm = 1, . . . , J :

[Lh
1 + λm]Ûm = F̂m (13)

Û0m, ÛI+1m given (14)

Remark 4.1:The case of cylindrical domainΩ =]e, w[×B, B ⊂ RN−1 with boundaryΓ is (in theory) similar.
We look for uj(x) an approximation ofu(x, yj) where theyj are the vertexes of a mesh inB. Let J (resp.JΓ) be
the index set of interior points inB (resp.onΓ). L2 is a multidimensional y-operator andLk

2 its approximation on
the mesh inB. The semi-discrete problemΠk

p is for j ∈ J

L1uj(x) + Lk
2uj(x) = fj(x), x ∈]e, w[ (15)

uj(e) anduj(w) given (16)

uj(x) = 0, x ∈]e, w[, j ∈ JΓ (17)

The generalized Fourier transformuj(x) =
∑

m∈J ûm(x)Φmj introduces the eigenvalue problem with eigenvectors
Φm = (Φmj)j∈J:

Lk
2Φm = λmΦm, Φm0 = ΦmJ+1 = 0, (Ec)

We can then generalize in principle the DD method of [4] for the three dimensional case to tensorial product of
one dimensional grids with arbitrary space steps.

Remark 4.2:The case of a cylindrical domainA×]s, n[ is better described using the notations of section 2. The
semi-discrete problemΠk

p is for j = 1, . . . , J :

L1uj(x) + Lk
2uj(x) = fj(x),

uj(x) given onΓl
p, Γ

r
p, and boundary conditions ofΠ on Γ̃p

u0(x) = uJ+1(x) = 0, x ∈]e, w[.

Theorem 4.1 may be adapted to this situation.
The caseΩ = A×B may be handled by mixing the two previous techniques.

We will now use this discretization framework to present the generalized AS algorithm for nonuniform Cartesian
grids.

The Schwarz method can be considered as an iterative method for the hat transform of T which is vectorial of
size2J(P − 1); so in general a large system.

Any acceleration process can be used [14], [24]. The AS method uses Aitken acceleration, taking advantage of
the sparsity of the hat transform of T coming on one hand from the special DD, and on the other hand of the
generalized Fourier transform. In fact all the modes of the hat transform are uncoupled. This allows us to use the
special version of Aitken method introduced in [10] for each independent wave component problem

[Lh
1 + λm]Ûm = F̂m, x ∈ (e, w).
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To be more specific the left (resp. right) boundarye (resp.w) corresponds to the indexilp (resp.irp); the right
boundary ofΩp−1 (resp. the left boundary ofΩp+1) corresponds to the indexirp−1 (resp.ilp+1).

The trace transfer operator inΩp is
(lp, rp) 7→ (r̄p−1, l̄p+1)

with lp = Ûil
pm, rp = Ûir

pm, r̄p−1 = Ûir
p−1m, l̄p+1 = Ûil

p+1m
.

First we observe that we can use the superposition principle to construct the solution without any acceleration
process. We introducẽUm solution of

[Lh
1 + λm]Ũm = F̂m

Ũil
pm = Ũir

pm = 0;

Vm solution of:
[Lh

1 + λm]Vm = 0

Vil
pm = 1, Vir

pm = 0;

andWm solution of:
[Lh

1 + λm]Wm = 0

Wil
pm = 0,Wir

pm = 1

Then we havêUm = Ũm + lpVm + rpWm, so the local trace transfer operator inΩp for the modem is:

r̄p−1 = Ũir
p−1m + lpVir

p−1m + rpWir
p−1m

l̄p+1 = Ũil
p+1m

+ lpVil
p+1m

+ rpWil
p+1m

.

Note that the matrixδmp in Theorem 3.1 is:

δpm =
(

Vir
p−1m Wir

p−1m

Vil
p+1m

Wil
p+1m

)

The following algorithm is then an exact solver

Algorithm 1
step 1: compute the eigenelementsλm,Φm,m = 1 to J solution of problem (E).
step 2: computêF .
step 3: in all subdomains and for all m solve the three one dimensional problems givingŨm, Vm,Wm. (Vm,Wm

give theδpm of the matrixPm of the affine operatorT̂m, andŨm the constant partcm of this operator).
step 4: for all m solve(I −Pm)b̂∞m = cm, whereb = (· · · , lp, rp−1, · · · ) to obtain the hat transforms of the traces.
step 5: recompose the physical traces from the result of step 4.
step 6: from these traces, make one step of Schwarz method (i.e., solve the two-dimensional problems in each
subdomain).

This algorithm is very similar to the DD method of Averbuch et al [1], [15] and also [12]. As described in detail in
these references, this algorithm must be modified to reduce the overhead on communications between sub-domains.
Further this algorithm is limited to linear operators and needs a careful and fairly technical implementation.

In the present work, we focus on a method that (i) can make use of an existing parallel implementation of the
basic Schwarz method that is very simple to code, (ii) is limited to the postprocessing of the interface sequences
in order to speed up the code, (iii) can be extended to several approximation theory frameworks including non
regular meshes or non matching grids, and (iv) might be applied directly on nonlinear operators. The practical
range of application of this method is therefore not limited to the uncoupled situation described above. However,
in the particular situation of a separable linear operator, the Aitken acceleration provides a direct solver with the
following algorithm:
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Algorithm 2
step 1: compute the eigenelementsλm,Φm,m = 1 to J solution of problem (E).
step 2: given the traces on the interfaces, make three steps of Schwarz method.
step 3: take the generalized Fourier transform of the last four traces.
step 4: apply the one-dimension Aitken-Steffensen acceleration formula to each mode of these transformed traces.
step 5: recompose the physical traces from the result of step 4.
step 6: from these traces, make one step of Schwarz method.

We notice that step 2 and step 6 are processed by a basic additive Schwarz implementation for the elliptic solver.
One can use any solver of choice for each sub-domain such as multigrids (or preconditioned Krylov) methods if a
good initial guess is available, or a fast direct solver as in [20].

The main cost of each acceleration corresponds to the computation of the eigenvectors in step 1. This problem
is of order equal to the sizeJ of the interface. The QR algorithm, for example, requires9J3 flops. Step 1 is a
preprocessing step that can be done once and for all, if the elliptic problem should be solved many times. This
is the case for the pressure equation in unsteady Incompressible Navier-Stokes simulation that uses the projection
method [9]. Further step 1 can be done in asynchronous mode with distributed computing because the J problems
(E) are totally independent. Step 3 to step 5 is the postprocessing procedure that is the kernel of our method. It
can be coded independently of the main code for additive Schwarz.

As shown in [4], [13] this acceleration procedure might be done adaptively as a function of the eigenvalueλm

in order to minimize the amount of global and local communications. To be more specific here, because of the
evaluation cost of the eigenelements of (E) and the fact that in many cases the high modes are damped very fast
by the Schwarz method itself, it is worthwhile to use only a limited number of modes. In that case steps 3 and 5
are modified and the direct and inverse hat transform uses only theJ ′ < J first modes.

For more general problems the AS method is fully iterative and uses a Steffensen iteration [14], [24] procedure
on each mode of the hat transform of the traces as follows:

Algorithm 3
step 1: compute once and for all the eigenelementsλm, Φm,m = 1 to J solution of problem (E).
step 2 to step 6 are identical to the corresponding steps inAlgorithm 2.
step7: check convergence. If necessary go to step2 for an additional cycle.

We observe that one needs to apply the one-dimensional Aitken-Steffensen acceleration of step 4 (algorithm 2
or 3) only on the generalized Fourier transform of the traces, that is to say, only on the different interfaces of the
sub-domains, which limits the costs of the computation of the eigen-elements.

One advantage of our method is that it can be applied to many different situations involving block-wise relaxation
method for the Schwarz iteration that may not require overlapping. It can be applied, for example, to the Dirichlet-
Neumann DD method. Let us choose for example for problem (Πp) a Neumann condition onΓp and a Dirichlet
condition onΓp−1. Denoting bydp andnp the Dirichlet and Neumann traces onΓp the trace transfer operator is:

d2 = T r
1 (n1), . . . ,

{
np−1 = T l

p(dp, np)
dp+1 = T r

p (dp, np)

}
p = 2 to P − 1, . . . , nP−1 = T l

P (dP )

with a matrix that takes the form (2). For the full discretization we approximate the normal derivative by a linear
combination of some mesh values; then the trace transfer operator has an uncoupled structure. This is of course the
key to get a direct solver. We refer to [10] for an application of this type with a transmission problem. It should
be noticed that our technique relies only on the construction of the main eigenvectors of this operator. Our method
can be extended easily to Robin boundary conditions or similar optimized interface conditions [7], and possibly
boundary conditions that include relaxation terms [6].

Finally let us emphasize that the extension of this method to multidimensional DD associated to a graph that
is a multidimensional grid can be done in a straightforward way with the multilevel DD of [11] that uses at each
level a strip DD algorithm.

Let us now consider our DD method in the framework of Finite Element (FE) approximations of elliptic problems.
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V. APPLICATION TO FINITE ELEMENT ON TENSORIAL PRODUCT OF ONE-D GRIDS

We still restrict ourselves to a separable operator, but in a form that is better suited to FE approximation:

L1 = −∂x(a1∂x) + b1∂x + c1, L2 = −∂y(a2∂y) + b2∂y + c2,

The problem to be solved on the rectangleR = [e, w]× [n, s] is:

L1ū + L2ū = f̄ , inR, ū(x, s/n) = 0, ū(w/e, y) = uw,y/ue,y,

The change of unknownu = ū− uw
e−x
e−w − ue

x−w
e−w gives the homogenous Dirichlet problem:

L1u + L2u = f, u(x, s/n) = 0, u(w/e, y) = 0,

with variational form:u in H1
0 , for all v in H1

0∫

R
(a1uxvx + b1uxv + c1uv + a2uyvy + b2uyv + c2uv − fv) = 0. (18)

We consider a semi discrete FE approximation of this variational problem. On a y-mesh we have a FE space
with basis functionϕq, q = 1, · · · , J . The unknown function isuk(x, y) =

∑J
q=1 uq(x)ϕq(y) with uq(w/e) = 0.

Replacingu by uk andv by v(x)ϕj(y) in (18) we obtain the semi discrete variational problem:

∑
q

∫ e

w
[a1∂xuq∂xv + · · · ]dx

∫ n

s
ϕqϕjdy...

+
∑

q

∫ e

w
uqvdx

∫ n

s
[a2∂yϕq∂yϕj + · · · ]dy =

∫
R fvϕjdxdy.

(19)

We introduce the following notations:

α1(u, v) =
∫ e

w
(a1uxvx + b1uxv + c1uv)dx

α2(u, v) =
∫ n

s
(a2uyvy + b2uyv + c2uv)dy

fj(x) =
∫ n

s
fϕjdy, β1(u, v) =

∫ e

w
uvdx, β2(u, v) =

∫ n

s
uvdy

βjq = β2(ϕj , ϕq), αjq = α2(ϕj , ϕq).

Then the semi discrete variational problem (19) is: for allq = 1, · · · , J find uq in H1
0 (w, e) such that for allv in

H1
0 (w, e) and j = 1, · · · , J ∑

q

[βjqα
1(uq, v) + αjqβ

1(uq, v)] = β1(fj , v). (20)

We use the generalized Fourier transform:

uq(x) =
J∑

m=1

ûm(x)Φmq; q = 1, · · · , J.

In order to obtain uncoupled problems we need a modified transform of the right hand side:

fj =
J∑

m=1

J∑

q=1

βjqΦmqf̃m.

Substitution in equation (20) gives:
∑

q

∑
m

[βjqα
1(ûm, v) + αjqβ

1(ûm, v)− βjqβ
1(f̃m, v)]Φmq = 0. (21)
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Choosing theΦ’s as the eigenvectors of the spectral problem:
∑

q

αjqΦmq = λm

∑
q

βjqΦmq, m = 1, · · · , J, (E′)

gives to equation (21) the uncoupled form:

α1(ûm, v) + λmβ1(ûm, v) = β1(f̃m, v). (22)

For the full FE approximation we introduce an x-mesh and a FE space with basis functionθp, p = 1, · · · , I. We
replaceuq by

∑
p upqθp and v by θi in (20). The generalized Fourier transformupq =

∑
m ûpmΦmq using the

eigenvectors of the spectral problem(E′) gives the uncoupled discrete hat problem:

∀m ∈ (1, .., J), ∀i ∈ (1, .., I),
∑

p

[α1(θp, θi) + λmβ1(θp, θi)]ûpm = β1(f̃m, θi) (23)

We are then back to the situation where we can apply the algorithm of Sect. 4, as it was the case for FD.
To illustrate this result, we consider the following numerical experiment with the homogeneous Dirichlet Poisson

problem
−(uxx + uyy) = f, (x, y) ∈ Ωs, u∂Ωs

= 0.

Ωs is the square domain(0, 1)2.
The functionf is such that the exact solution is the polynomial

u0(x, y) = 150x(x− 1)y(y − 1)(y − 1/2). (24)

We use a Cartesian grid ofΩs with 73× 73 elements that is uniform inx, but random in y.

In Figure 3, we monitor the error inL2 norm according to the number of sub-domains, and the number of
modes that are accelerated. The space step in they direction parallel to the interface is given in Figure 4. The
ratio between the largest space step and smallest space step in they direction is about96. While the solver is in
principle a direct solver, we notice that the error obtained with AS is of order10−6. A second iteration cycle of
AS is needed to obtain the discrete solution with machine accuracy. We attribute this imperfect resolution that is
not present with the original AS method on regular Cartesian mesh [11] to the inaccuracy of the computation of
the eigenvectors that have high frequency components. As a matter of fact, if we apply the AS algorithm with an
acceleration on the main half of the eigenvectors components only (i.e.,J ′ = J

2 ) we obtain roughly the same level
of accuracy after one cycle. It is only for the second cycle of AS that the differences between an acceleration of
all components or half of them shows up.

Let us notice, however, that AS is fairly insensitive to the number of subdomains. This is one of the reasons
why AS appears to be a scalable parallel linear solver [4], [9].

So far we have restricted ourselves to separable linear operators. In the next section we will address some of the
difficulties in using AS to nonseparable and/or nonlinear elliptic operators.

VI. NONSEPARABLE AND NONLINEAR OPERATORS

We consider now an operatorL = L1 + L2 that isnot separable. We will focus on the following example,

L1 = −∂xxu + c1(x)u, L2 = −∂yyu + c2(x, y)u.

We introduce a full FD discretization and denote by∆h
2 (resp.∆k

2) the approximation of∂xx (resp.∂yy). Then an
approximation of the equationLu = f is:

−∆h
2uij + c1(xi)uij −∆k

2uij + c2(xi, yj)uij = fij (25)

The generalized Fourier transformuij =
∑

l ûilΦi
lj with a family of eigenvectorsΦi

l indexed byi applied to this
equation gives:

∑

l

[(−∆h
2(ûilΦi

lj) + (c1(xi))ûil − f̂il)Φi
lj ] +

∑

l

[−∆k
2 + c2(xi, yj)]Φi

lj ûij = 0 (26)
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To handle the second sum we introduce thei-indexed family of spectral problems:

[−∆k
2 + c2(xi, yj)]Φi

mj = λi
mΦi

mj ,m = 1, · · · , J (Ei)

and choose theΦi
m’s as the eigenvectors of(Ei). In the first sum we have (assuming for simplicity the h-mesh

uniform):
−∆h

2(ûilΦi
lj) = −1/h2(ûi+1lΦi+1

lj + ûi−1lΦi−1
lj − 2ûilΦi

lj).

We multiply equation (26) byΦi
mj for a fixedm and sum overj. Using the orthogonality of theΦi

l for a fixed i

and the notationsci
lm =

∑
j Φi−1

lj Φi
mj anddi

lm =
∑

j Φi+1
lj Φi

mj , we obtain the coupled problem:

−1/h2(ci
mmûi−1m + di

mmûi+1m − 2ûim)
+(c1(xi) + λi

m)ûim +
∑

l 6=m

−1/h2(ci
lmûi−1l + di

lmûi+1l) = f̂im (27)

This shows that the hat unknownŝUm = (ûim)i are coupled by tridiagonal matricesClm with a sub-diagonal of
ci
lm , a null diagonal, and an upper-diagonal ofdi

lm.
This coupling depends on how different are theΦi’s. For example if there are only two different families of

eigenvectors :Φ1 for i ≤ ī andΦ2 for i ≥ ī +1 then the matrixClm has only two nonzero elementscī+1
lm anddī

lm.
Moreover the diagonal m-block hasdī

mm in position (̄i, ī + 1) andcī+1
mm in position (̄i + 1, ī).

To illustrate this situation, let us consider a problem with non separable operator, on the same Cartesian grid

−∆u(x, y) + c(x, y).u(x, y) = f(x, y), (x, y) ∈ Ωs, u∂Ωs
= 0.

The rhsf is such that the exact solution isu0 from (24).
We use two sub-domains, with an overlap from one to five meshes ; the functionc(., .) depends only on they-
variable on each mid-part of the domain (here:c(x, y) = 10y on the first mid-part of the domain, andc(x, y) = 1
on the second).

We use algorithm3 to accelerate the Schwarz method, this time with the resolution of problem(Ei) in each
sub-domain. We have then to solve one problem(Ei) per interface of the overlap (in our case: two problems(Ei)).

We observe that the error after only one acceleration is almost of order10−4, in comparison of the error of the
Schwarz method, which is of order10−2. Note that the error after each acceleration decreases according to the size
of the overlap (see Figure 5).

Further the same argument may be applied to more general second order operator

L1 = −a1(x)∂xxu + b1(x)∂xu + c1(x)u, L2 = −a2(x, y)∂xxu + b2(x, y)∂xu + c2(x, y)u,

if the approximationLh
1 has coefficients depending onx but not ony.

We would like further to show numerically, that the nature of the coupling in (27) is fundamental. For flow in
porous media, it is necessary to use fast solver for the operator−div (a(x, y)∇u(x, y)), with disparate scales for
the size ofa between geologic layers.

The simplest case corresponds to parallel geologic layer that can be aligned to the grid of discretization. To
illustrate this situation we define the problem :

−div (a(x, y)∇u(x, y)) = f(x, y), (x, y) ∈ Ωs, u∂Ωs
= 0,

with a(., .) as follows

a(x, y) = a0 + (1− a0)(1 + tanh((x− 1
2
)/ε))/2, a0 = 101, ε = 10−2.

The functiona(x, y) exhibits a jump of order10, across an interface aligned with they direction in the middle
of the domain. As shown in Figure 6, the AS method exhibits fast convergence with a minimum overlap.

In contrast, the convergence of AS becomes very poor if the functiona(., .) is chosen with a jump not parallel
to the interface. Figure 7 gives such evidence with

a(x, y) = a0 + (1− a0)(1 + tanh((x− (3h ∗ y + 1/2− h))/ε))/2.
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Because of the construction of the functiona(., .), the problem becomes ”strongly” nonseparable, i.e., the
tridiagonal matricesClm cannot be neglected any longer.

The method described in this section is not cost effective in the general case. As a matter of fact the number
of eigenvector problems to be solved is prohibitively large. We conclude this section with an illustration of the
performance of the AS method when we use a priori an analytical approximation of the eigenvectors of the trace
transfer operator.

The first example is a Poisson problem solved on an overset mesh (see Figure 8). The domain of computation
is Ωr \D, whereΩr is the rectangle(0, 2π)× (0, π) andD is the disc of center(π, π) and radiusπ/12. We use a
multiplicative Schwarz algorithm between two overlapping subdomains whose boundary fits respectively∂Ωr and
∂D. The mesh of the subdomain with the boundary∂Ωr is a subset of a regular Cartesian mesh denotedΩh

r . The
mesh of the second subdomain denotedCh is a regular mesh in polar coordinates(ρ, θ). The overlap between both
subdomains in radial directionρ is bounded by2 h. The transmission conditions of Dirichlet type between the
two subdomains are obtained by using the standard second order bilinear interpolation. Because the interpolation
satisfies a maximum principle, we have a linear convergence of the multiplicative Schwarz algorithm. We accelerate
the trace of the solution on the artificial interface∂Ch by usingexp(k2πiθ), k ∈ Z as an approximation of the
eigenvectors of the trace transfer operator. Figure 9 shows the decay of the error in maximum norm when one
iterates on the cycle of AS accelerations. In this example the exact solution isu(x, y) = sin(2x) + cos(2y). The
Cartesian mesh is a subset of the regular grid70×54. The annular subdomain has a regular mesh in polar coordinate
(ρ, θ) with 20× 48 grid points. This algorithm reaches the level of accuracy of the discrete overset solution after
5 iterations of the AS method. We have checked that the convergence speed is similar for larger overlaps. Let us
notice, however, that the convergence rate may deteriorate when the disc boundary∂D approaches the boundary
of the rectangle∂Ω.

Our second and last example is for the weakly non linear problem

∆u + λ exp(u) = f, (x, y) ∈ Ωs, u∂Ωs
= 0. (28)

This Bratu problem [25] is solved on a Cartesian grid using the approximation of the eigenvectors of the trace
transfer operator corresponding to∆h, that is sin kπy, k ∈ Z. We use a strip DD as in Section 3, and apply
a Newton algorithm to solve each subdomain. The AS algorithm is therefore applied to the nonlinear problem
directly. The AS cycle is repeated until convergence to the discrete solution. An alternative solution would be to
use AS on the linearized operator itself, inside a global Newton loop [4].

We analyze the numerical efficiency of our iterative solver by counting the number of linear solves in each
subdomain to reach convergence with an error in maximum norm that is less than a tolerance numbertol. The
interesting result is that the number of subdomain solves is fairly insensitive to the space step iny direction. The
sensitivity of the number of iterations to reach convergence to the number of subdomains decays as the overlap get
larger. Overall we have a very moderate growth of the number of iterations as the number of subdomains grows.
This important property makes the AS method numerically relevant to achieve scalable performance on a parallel
system. Figure 10 reports on the number of subdomain solves with respectively a11×80 and81×80 discretization
grids,λ = 6 and tol = 10−5. The stop criterium for the Newton algorithm is one order of magnitude smaller than
tol. The overlap can be one or three mesh points in thex direction. This result is an average of twenty runs starting
with a random positive initial condition of maximum norm10−1. The standard deviation is of order one to two
iterations. We may have larger deviation iftol is close to the level of accuracy obtained after a given AS cycle. We
have an average of 11 AS cycle to reach a10−5 discrete error in maximum norm. The more cost effective solution
corresponds to the larger number of subdomains that is used in parallel computation. Let us now summarize the
conclusions of this paper.

VII. CONCLUSION

We have shown in this paper how to extend to general Cartesian mesh with arbitrary space steps in each direction,
the so-called AS method first presented in [10] for FD discretization of elliptic operators onregular Cartesian grids.
Results were presented for FD as well as FE approximations. This paper demonstrates that the AS method is not
inherently dependent on the Fourier method, but rather on the possibilities to split the elliptic operator using a
family of dominant eigenvectors. The trace-transfer operator can then be well approximated by a set of uncoupled
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one dimensional operators. Therefore, the Aitken acceleration applied to the coefficient of the traces generated by
the Schwarz method in this decomposition has high numerical efficiency.

This acceleration technique is not a linear technique by nature, and can be applied to nonlinear elliptic problems
as well [13]. One may consider using this technique to build preconditioner to Krylov methods [16]. We preferably
pursue the development of this method with an objective that to speed up existing CFD code with minimum changes
in the code and allow efficient distributed computing with slow networks [4], [9] that are characteristic of affordable
Beowulf clusters.
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