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Abstract

A posteriori error estimators are fundamental tools for providing confidence in the
numerical computation of PDEs. In this paper we have generalized our least square
extrapolation method [Garbey13th international conference on domain decomposition
and Garbey& Shyy JCP 2003] to an optimized extrapolation method. The choice of
the objective function as well as the representation of the unknown weight function
in the extrapolation formula is discussed. This technique produces global a posteriori
error estimates. This paper focuses on applications governed by the elliptic problem
div(ρ∇u) = f, with Dirichlet boundary conditions. Special attention is given to prob-
lems where the positive coefficientρ exhibits large variations throughout the domain
or f contains some singular source terms. These features are commonly encountered
in physical problems including heat transfer with heterogeneous material properties and
pressure solver in multiphase flows with large ratio of density between fluids.
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well as the representation of the unknown weight function in the extrapolation formula is
discussed. This technique produces global a posteriori error estimates. This paper focuses
on applications governed by the elliptic problemdiv(ρ∇u) = f, with Dirichlet boundary
conditions. Special attention is given to problems where the positive coefficientρ exhibits large
variations throughout the domain orf contains some singular source terms. These features
are commonly encountered in physical problems including heat transfer with heterogeneous
material properties and pressure solver in multiphase flows with large ratio of density between
fluids.
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I. I NTRODUCTION AND M OTIVATION

We consider the elliptic problem

div(ρ∇u(x)) = f(x), x ∈ Ω ⊂ IR2, u = g on ∂Ω, (1)

with ρ(x) > ε, x ∈ Ω, ε > 0. Ω is a polygonal domain.
We assume that the elliptic problem is well posed and has a unique smooth solution. We

consider a finite volume approximation of (1) on a Cartesian mesh with square cells of sizeh. We
use centered finite volume cells with a classical second order scheme. We denote symbolically
the corresponding linear system

AhUh = Fh. (2)

The goal of this paper is to present an optimization framework for extrapolation methods
to construct improved numerical approximation of (1) from a set of two or three coarse grid
approximations and provide a posteriori error estimates. While a posteriori error estimates is
well understood for problems having smooth solutions [1], [26], [32], we address here the
solution verification of elliptic problems when multi-scales or singularities are present. Let us
first define our application.

We are first interested in situations where the coefficientρ exhibits large variations throughout
the domainΩ. This is a common problem for many applications. A typical example is the
pressure solver in a two-phase flow problem with large ratio of the density of the two fluids.
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For example, bubbles of air rising in a liquid may have a density several orders of magnitude
smaller than the density of the liquid itself. The inverse situation corresponds to drops of liquid
falling in air [7], [8].

A second example is the pressure solves for flow in porous media through multi-layered
materials with large permeability ratio between each layers. A third example is the problem
of heat transfer in an heterogeneous material that has large ratio in the thermal conductivity
between each component.

To simplify, we will consider test cases with the domainΩ being partitioned into two subsets
Ω1

⋃
Ω2, such that

||ρ||2,Ω1 ∼ 1, and ||ρ||2,Ω2 ∼ τ.

We assume eitherτ << 1 or alternativelyτ >> 1. The more extreme is the ratioτ, the larger is
the conditioning number ofAh, the more difficult it is to have an efficient numerical procedure
as well as a good numerical approximation of the solution.

We are second interested in situation where the source termf(x) is a collection of dipoles.
This is typically the situation, for example, in the pressure equation in the immersed boundary
method of Peskin [25]. While the Peskin’s method is a very elegant technique for the simulation
of fluid structure interaction and widely used in biological situations, it is well known that the
accuracy of the method is not very high. A posteriori error estimator are then needed as a safe
guard in the computation.

From the applied mathematics point of view, a posteriori estimates have been around for many
years [1], [32]. Most rigorous work has been done in the framework of finite element analysis
on linear elliptic problems in order to drive adaptive mesh refinement. More recently a general
framework for finite element a posteriori error control that can be applied to linear and non-
linear elliptic problems has been introduced by Sarrate et al [29]. A posteriori finite-element free
constant output bounds can be constructed for the incompressible Navier Stokes equation [20].
While these methods have the advantage of being rigorous, they are not easy to adapt to finite
volume approximations widely employed in fluid flow and heat transfer computation. They have
also their own limitation on problem with stiff coefficients, singular sources or multi-scales.

On the other hand Richardson Extrapolation (RE) is a common practice in computational
fluid dynamic and used extensively as an error indicator [26]. This tool is widely used because
it is simple to implement, it uses the fact that one always compute several solutions on several
meshes for a CFD application, and it does not require any detailed knowledge of the computer
code used to generate the solution. While RE is a simple, elegant and general mathematical idea
that works on approximations that have uniform convergence properties described by a Taylor
expansion, its use on multi-scale problems is questionable. In Computational Fluid Dynamics
(CFD) [3], [4], [17], [22], [23], [26], [27], [28], [31] the applicability of RE is limited by the fact
that meshes might not be fine enough to satisfy accurately the a priori convergence estimates
that are only asymptotic in nature. Furthermore, the order of convergence of a CFD code is often
space dependent and eventually parameter dependent [12], [31]. Boundary layers corresponding
to large Reynolds number impact dramatically the convergence rate of the numerical methods
and makes the assumption on a uniform asymptotic rate of convergence invalid.

This paper focuses on an optimized extrapolation technique to improve the numerical accuracy
of the solution that is a generalization of RE. This improved solution might be used either to
provide an error estimate on the coarse grid solution or to construct an initial guess for the
iterative solver in a cascade of computations with finer and finer grids.

To cope with the limitations of RE, we have introduced recently [10], [12] the so-called
Least Square Extrapolation method (LSE) that is based on the idea of finding automatically
the order of convergence of a method as the solution of a minimization problem on theL2
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norm of the residual. From a practical point of view, we have shown that LSE is more robust
than RE with several multiple-scale problems. We have benchmarked our method with a two
dimensional turning point problem [24] exhibiting a sharp transition layer, the incompressible
cavity flow problem with a sliding wall, and the back step incompressible flow problem with
substantial Reynolds number. The implementation of the LSE method is fairly easy and its
numerical procedure inexpensive.

In this paper, we pursue the research initiated in [10], [12] to elliptic problems with coefficients
having large variations as described above or singular source terms such as a set of dipoles.
In this context we will present a general optimization framework for the unknown weight
coefficients of the extrapolation formula that can be set for various objective functions or norms.
We will demonstrate in our numerical experiments that our method lead to robust a posteriori
error estimates using different error norms.

The plan of this paper is as follows. In Section 2, we describe the general concept of an
optimized extrapolation method and its application to error estimates. In Section 3, we present
the numerical procedure to construct the extrapolation and the error estimate. In Section 4,
we discuss the numerical results for the elliptic problem (1). Section 5 is our conclusion and
perspective for future work.

II. THE OPTIMIZED EXTRAPOLATION M ETHOD

Let us first describe the general concept of the method.

A. Presentation of the method

Let G1 andG2 be two regular Cartesian meshes used to build two finite volume approxima-
tions of the elliptic problem (1). Let us denoteh1 andh2 the size of the square cells for both
meshes, andU1 andU2 to be the two corresponding approximations of the continuous solution
u ∈ (E, || ||). We assume the convergence of these approximations, that is

U1, U2 → u in (E, || ||) as h1, h2 → 0.

A consistent linear extrapolation formula should have the form

αU1 + (1− α)U2,

whereα is a weight function. In classical RE theα function is a constant. In our optimized
extrapolation methodα is a space dependent function. IfU1 and U2 are in a finite element
space(Eh, || ||), α must be such that the linear combination is still in(Eh, || ||).

We formulate the following optimization problem for the unknown functionα:

Pα: Find α ∈ Λ(Ω) ⊂ L∞ such thatG(α U1 + (1− α) U2) is minimum in(Eh, || ||),
whereG is an objective function to be defined. The Optimized Extrapolated Solution (OES) is
thenVe = α U1 + (1− α) U2.

For computational efficiency,Λ(Ω) should be a finite vector space of very small dimension
compared to the size of matrixAh defined in (2). The objective functionG can be any a
posteriori existing error estimators, provided that it operates on the space of approximation
(Eh, || ||).

In the most general situation, i.e, in the absence of the knowledge of any rigorous a posteriori
estimator, we choose to minimize the consistency error for the numerical approximation of (1)
on a fine meshMo of steph0. The fine meshM0 should be set such that it captures all the
scales of the continuous solution with accuracy required by the application. We have a priori
h0 << h1, h2. Let us emphasize thath1 and h2 do not have to be very different, and that
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the ratioh1
h2

does not have to be an integer. Both coarse grid solutionsU1 andU2 must be then
interpolated ontoM0. We will denoteŨ1 and Ũ2 the corresponding grid functions. One needs
second to get the approximation of the elliptic operatorAh0 . The objective function is then

G(U0
h) = ||Ah0 Uh0 − Fh0 ||, (3)

whereU0
h = α Ũ1 + (1− α) Ũ2.

The choice of the space(Eh0 , || ||) and its norm should depend on the property of the
solution. In LSE [12], [13] we chose the discreteL2 norm onM0. We will investigate here
other possibilities such as theL1 or theL∞ norm.

One of the difficulties encountered with such a two-level extrapolation method is the so-called
cancelation problem [12]. In practice there exists subsets ofΩ whereU1 andU2 are much closer
to each other than what the expected order of accuracy based on local error analysis should
provide. In such areas the sensitivity of the extrapolation to the variation ofα is very weak
and the problem is ill posed. These subsets should be treated as outliers of the optimization
computation procedure. A potentially more robust optimization procedure consists of using three
levels of grid solution. The optimization problem writes then

Pα,β: Find α, β ∈ Λ(Ω) ⊂ L∞ such thatG(α U1 + β U2 + (1− α− β) U3) is minimum
in (Eh, || ||),

whereG is an objective function to be defined. The optimized extrapolated solution is then
Ve = α U1 + β U2 + (1− α− β) U3.

We notice that if allUj , j = 1..3, coincide at the same space location there is either no local
convergence or all solutionsUj are exact. In such a situation, one cannot expect improved local
accuracy from any extrapolation technique. The robustness of the OES method should come
from the fact that we do not suppose a priori any asymptotic formula on the convergence rate
of the numerical method as opposed to RE.

Let us assume that the optimization problemPα or Pα,β has been solved and that we have
computedVe either from the two levels or three levels method. We are going to discuss now
its application to provide a posteriori error estimators.

B. Application to a posteriori estimates

Let us denoteUj to be one of the coarse grid approximations at our disposal. A global a
posteriori estimate of the error(Uj − u) may come in two different ways.

• First is the recovery method based on the idea that the optimized extrapolated solution
is more accurate than the coarse grid solution: Let us denoteŨj the coarse grid solution
projected onto the fine gridMo via a suitable interpolation procedure. Let us assume that
the extrapolated solution is decisively more accurate than that based on interpolation from
the coarse grid solution, namely,

(Ve − u) << (Ũj − u), in (Eh, || ||). (4)

Then ||Ve − Ũ2|| is a good error indicator to assess the accuracy onG2 solution. We have
then

(Ũj − Ve) ∼ (Ũj − u), in (Eh, || ||). (5)

We will show in our experiments that this method may give a goodlower bound error
estimates. But we do not know in general if the hypothesis (4) is correct. IfG is chosen
to be the residual on the fine grid, there is no guarantee that a smaller residual forVe than
for U2 on the fine gridMo will lead to a smaller error.
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• Second is a globalupper bound that follows from a stability estimate with the discrete
operator. Let us assume that the objective function is the residual in the discrete norm
|| ||, namely (3). Let us denoteU0 to be the fine grid solution onM0, andA0 to be the
corresponding linear operator. We have

||Ve − U0|| < µ G(Ve),

whereµ ≥ ||(A0)−1||.
We conclude then

||Ũ2 − U0|| < µ G(Ve) + ||Ve − Ũ2||. (6)

The procedure to derive an estimate forµ will be discussed later.
(6) is a good global a posteriori error estimator provided that

||U0 − u||2 << ||U0 − Ũ2||2. (7)

One way to test this hypothesis (7) is to measure the sensitivity of the upper bound (6) with
respect to the choice of the fine gridM0. This is a feasible test because the fine grid solution
is never computed in OES. Our verification procedure then checks that||U0 − U2||2 increases
toward an asymptotic limit asMo gets finer.

We will now present in detail the solution procedure to obtain OES and a posteriori error
estimates. We will assume thatG is a linear operator.

III. PROCEDURE TO CONSTRUCT THE OPTIMIZED EXTRAPOLATION

Let ei, i = 1..m be a set of basis function ofΛ(Ω). The solution process ofPα and/orP(α,β)

can be decomposed into three steps.
• First, interpolation of the coarse grid solution fromGj , j = 1..p to M0. We have two

coarse grids to interpolate forPα, respectively three forP(α,β).
• Second, evaluation of the objective function

G[ei (Ũj − Ũj+1)], i = 1..m, j = 1..p− 1, and G[Ũp]

on the fine gridM0.
• Third, the solution of the optimization problem that hasm unknowns for each weight

coefficientα andβ used in the extrapolation procedure.
In practice, we should keepm much lower than the number of grid points on any coarse

grid used. If one chooses the discreteL2 norm, the optimization problem can be solved easily
and the arithmetic complexity of the overall procedure should be of orderCard(M0). In the
general case, the algorithm might be coded in a stand-alone program independent of the main
numerical code.

Remark 1: This procedure can be generalized to non-linear elliptic problems via a Newton
like loop [12], [13].

We will now discuss the first step of the algorithm.

A. Projection on the fine grid and postprocessing

To compute the objective function properly, the interpolation procedure should preserve the
properties of the numerical solution.

For conservation laws, one may require that the interpolation operator should satisfy the same
conservation properties. Other constraints related to physical realization can also be added. For
example, for reacting flow problems, one can require that the interpolant preserves the positivity
of species. One may use for example a transform of the unknown variable,

Ψ = Φ(U),
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such that the inverse mapΦ−1(αΨ1 + (1− α)Ψ2) satisfies intrinsically the constraint.
For positivity, one may use a bijective mapΦ from IR+ to IR. For mass conservation, we

used in [13] the standard stream function transform.
As discussed in [12] the interpolated solutionsŨi on the fine grid contains spurious high

frequency components. Linear interpolation is much worse than spline interpolation from this
point of view. This problem is amplified by the fact that the objective function usually requires
the computation of the discrete derivatives ofŨj .

This spurious frequency components of the interpolated solution are obviously carried on in
all linear combinationVe. The computation of the objective function might then be polluted
to the point where minimizingG(Uh) does not guarantee any longer that one minimizes the
numerical error.

One postprocessing procedure to overcome this difficulty is to filter out the artificial high
frequency components ofUj that cannot be present on the coarse gridGj . However for the
elliptic problems (1) discretized by (2) on M0, it is convenient to postprocess the interpolated
functionsŨj , by few steps of the artificial time stepping scheme

V n+1 − V n

δt
= A0V

n+1 − Fh0 , V 0 = Ũj , (8)

with appropriate artificial time stepδt. This will readily smooth out the interpolant. We will
discuss later a criterion to stop this smoothing relaxation (8).

We will also compare in our numerical experiments on (1) the numerical results obtained
with linear interpolation and spline interpolation. Let us now discuss the choice of the objective
function in OES.

B. Choice of the objective function

In principle, OES should be much cheaper than the computation of the fine grid solutionU0

on M0. The easiest solution is to choose the objective function to be the residual computed in
L2 norm. This choice presents two essential advantages.

First, the optimization problem to be solved is a least square problem that is well understood,
easy to solve, and easy to process with existing software libraries [2].

Second, we can easily estimateµ to asses the global error bounds in (6). We have

µ =
1
|λ| ,

where λ is the smallest eigenvalue in modulous of the matrixA0. λ can be computed, for
example, with few iterations of the inverse power method [14]. As a matter of fact, we expect
to useµ with no better than a ten percent error margin. For very fine gridM0, this procedure
is still fairly expensive. We can alternatively make use of the numerical approximations ofλ
obtained with the coarse grid operators.

We found in our numerical experiments thatλ converges with second order to its lower limit
as the space discretization parameterh → 0. We have then computed the sequences ofλ for
the coarse grid operatorsAhj

, j = 2, 3, and use a second order RE formula, namely,

λ =
(h2)2 λ3 − (h3)2 λ2

(h2)2 − (h3)2
(9)

to predictµ for the fine grid operatorA0.
For problems with discontinuous solution the choice of theL2 norm might not be best. We can

devise an entirely similar approach using for example theL1 norm. That choice might be more
relevant for problems having a discontinuous solution. Unfortunately, the minimization of the
residual inL1 norm is a more difficult task because the objective function is non-differentiable.
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We have used in this case the simplex search of Nelder and Mead [21] implemented in Matlab
starting from the optimum solution obtained with theL2 norm. The computation of an estimate
of theL1 norm||A−1

0 ||1 might be done with an iterative procedure as well. We refer to the papers
of N J.Higham [15], [16] that presents the method. A well known procedure that implements
this algorithm is available in LINPACK. We have chosen in our numerical experiment to apply
RE to the sequence of estimates||A−1

hj
||1, j = 1, 2, 3, to get an estimate onµ. This computation

is less expensive than to compute directly||A−1
0 ||1. For problem where one is interested in the

maximum of the error, we can devise a similar OES using theL∞ norm.
Finally, one can use standard finite element a posteriori estimators [1], [32] in place of the

norm of the residual to defineG. We will not discuss this approach in this paper, since we
work with finite volume discretization for which, to our knowledge, such rigorous estimators
for (1) are not available.

Remark 2: We emphasize that all fine scales that are not present in the two or three coarse
grid solutions will not be computed properly by the OESVe. OES tries at best to recover all
the scales that are present in the provided coarse grid solutions.

Remark 3: In multiscale problems, the numerical error is often dominant in some small local
area of the domain where the solution is stiff. One example is a boundary layer or a singularity
at some corner of the domain. One criterion to choose the objective functionG is to be able
to capture such singularities. We refer to the literature in singular perturbation theory to give
an extensive review of the choice of the norms to analyze boundary layer problems and its
numerical solution - see for example [5], [11], [18].

Let us now discuss the representation of the weight function ofΛ(Ω).

C. Representation of the weight functions

We look for a compact representation of the weight function that can capture the main feature
of the convergence order of the method with very few coefficients. Let us assume for the time
being thatΩ is a square domain.

As presented in [12], one can use a trigonometric expansion of the weight functionsα and
β that is adapted to square domain. The space of unknown weight function is chosen to be the
set of trigonometric polynomial functions

α(x) =
∑

i=1..m, j=1..m

αi,j ei(x1) ej(x2), (10)

with x = (x1, x2), e0 = 1, e1 = cos(πx1/2) andei = sin((i− 2)πx1/2), for i = 3..m.
This set of trigonometric functions allows us to approximate at second order inL2 norm any

smooth non-periodic functions ofC1[(0, 1)2], [9]. One additional advantage of this choice of
approximation space for the weight function is that it allows us to easily interpret our numerical
result in the frequency space.

We observe in practice that the higher order is the expansion (10), the more amplified are the
spurious modes in the interpolated solutionŨi. Postprocessing is then particularly important to
stabilize the OES.

In this paper we have tested a second alternative that might be better suited to capture the
local properties of the convergence rate. First, let us defineei,j to be the set ofQ1 basis function
of the square domainΩ on the very coarse grid ofm×m cells. ei,j is then one at the center
of the cell of coordinates(i, j) and zero elsewhere. Second we transformei,j into ẽi,j that is
the interpolated function defined on the fine meshMo. Our second solution is then to look for
the weight functions as follows:

α(x) =
∑

i=1..m, j=1..m

αi,j ẽi,j(x1, x2), (11)
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Both representations of the weight coefficients will be compared in our numerical experiments.
In the general case,Ω is a polygonal domain that can be embedded, after appropriate rescaling,

into a square(0, 1)2. Because no boundary conditions are imposed on the unknown weight
functions of the OES, we can use exactly the same set of basis functions. However the OES
problem depends only on the grid point of the interpolated solutions that are inside the domain
Ω. With the representation given in (11), all coefficients of the basis functioñei,j that are null
identically insideΩ should be then removed from the OES formulation.

We have now described all the components of the solution procedure to build the OES and
some global a posteriori error estimate.

We are going to show in the next section that the OES method provides robust a posteriori
global error estimates for the elliptic problem (1) with stiff coefficientρ.

IV. RESULTS AND DISCUSSION FOR THE div(ρ∇) OPERATOR

We are going to consider seven test cases based on the homogeneous Dirichlet problem

div(ρ∇u(x)) = f(x), x ∈ Ω ⊂ IR2, u = 0 on ∂Ω, (12)

with a smooth right hand side function:

f(x) = exp
(−2 (x1(i)− 0.5)2 − 2 (x2(j)− 0.5)2

)
. (13)

The first test caseT1 used as a basic reference is the Poisson problem into the square
(0, 1)2. All other test cases correspond to different distribution of theρ function and/or different
geometry of the domain.

Let us defineD1 (respectivelyD2) the disc of centerC = (0.38, 0.48) (C = (0.64, 0.74))
and radiusR = 0.15. The coefficientρ is as follows

ρ(x, y) = 1 + 0.5 (τ − 1) (1. + tanh(−100 (dist((x, y), C)−R))) , x ∈ Ω, (14)

wheredist((x, y), C) is the distance from the point of coordinates(x, y) to the centerC of
the disc.ρ is close toτ inside the disc of centerC and radiusR, and1 outside.

For the five first test casesTi, i = 1..5, Ω is the unit square. The test casesT6 and T7

correspond to an L-shape domain(0, 1)2 \ (0, 0.5)2. The last test caseT8 is for a Poisson
problem with a circle of dipoles source terms. This test case will be used to analyze the impact
of the choice of the norm in the error estimate. Figures 1 to 4 show respectively the solution
on the fine gridM0 for the test casesTi, i = 2, 6, 7, 8.

The test casesTi, i = 1..7, are designed to be representative of the pressure equation for a
two-phase flow problem. The discD1/2 is the analogue of a bubble of circular shape that has
the relative densityτ with its medium. Smallτ are for bubble of gas immersed in liquid. Large
τ can be interpreted as a liquid drop immersed in air.

We see in Figure 1 that smallτ gives a high pressure pick in the disc. Largeτ in Figures 2
and 3, induces a plateau in the pressure that matches the disc contours. In test caseT6 the
disc D1 intersects the wall, and the plateau matches the zero boundary condition. In test case
T7 the discD2 stays inside the L shape domain, and we have a strong interaction between the
"bubble" and the singularity of the solution at the entry corner.

With homogeneous Dirichlet boundary conditions, complex geometry does not play a signifi-
cant role for smallτ values. As a matter of fact, it can be observed that for smallτ the solution
of the elliptic problem is of orderτ outside the discD.

We have done a fairly large number of experiments with various grid resolutions forGi, i =
1..3 as well asM0. We focus this experimental section on the discussion of
• the postprocessing of the interpolated solution, i.e., the number of time steps in the relax-

ation procedure (8),
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• the impact of the parameterτ,
• the choice of the interpolant: linear versus spline,
• the choice of the basis function forΛ(Ω), i.e., Fourier versus interpolatedQ1,
• the choice of the normL2 versusL1 in the objective function

G(Uh) = ||Ah Uh − Fh||.
All the codes have been written in Matlab. In all the graphics representing the performance of

our method for these seven test cases, we have chosen for convenience and comparison purposes
to fix the parameters of the method as follows.

• We solve each test case with a direct solver on the Cartesian grid of the same space step
hi in both space directions. For the coarse gridG1, (respectivelyG2 and G3) we have
h1 = 1/14 (respectivelyh2 = 1/20 andh3 = 1/26).
This coarse grid does not resolves the sharp transition of the density functionρ defined in
(14). ρ appears to be almost a step function on these coarse grids.

• The fine grid solutionM0 is chosen to be a grid of step1/128. To verify the quality of
this fine grid solution we use as a benchmark solution the gridM∞ of space step1/256.

• The coarse grid solutions are interpolated onM0 either by the bilinear interpolation or by
the cubic spline procedure of Matlab.

• These interpolated solutions are post-processed with the time integration of the heat equa-
tion

∂u

∂t
= div(ρ∇u(x))− f(x), x ∈ Ω ⊂ IR2, u = 0 on ∂Ω. (15)

on the interval of time length of order10−2. To this end, we use time steps of orderδt =
10−3 in a first order implicit Euler scheme. Typically each time step requires two iterates
of a biconjugate gradient method (BICGSTAB) with an incomplete LU pre-conditioner.
The fine grid solutionMo is not resolved by this scheme by all means. We will see that
the quality of the OES improves dramatically with this relaxation procedure.

In Figures 5 to 7, we use the following conventions. The left graph gives an error estimate
based on the recovery method (4), while the right graph gives an upper bounds of the error
based on the global estimate (6). The graph in the middle shows the residual obtained in the
norm of choice for the OES method.

To check the accuracy of the error prediction, we have computed theMo fine grid solution.
The curves labeled with ’*’ gives the error||Ũ3 − U0||.

To check the accuracy of theM0 solution, the curve with ’v’ labels gives the error of the
M0 solution versus the ground true solutionM∞, that is ||U0 − U∞|| on M0.

We will compare systematically the OES with the two-level methods using the coarse grid
solutionU2 andU3, with the three-level methods based on all three coarse grid solutions. The
influence of the time stepping used to postprocess all three projected solutionsŨj , j = 1..3,
is demonstrated by representing on the horizontal axis of each graph the time variable of the
postprocessing (15).

The dashed curved ’- -’ in the left and right graphs are the Aitken acceleration of the sequences
of error prediction versus the time step based on the three-level method. By construction, this
Aitken acceleration does improve the convergence of the numerical approximationonly if the
sequence of error prediction has linear rate of convergence. Oscillation of the sequence of
number generated by the Aitken process detect the lack of linear convergence, or possibly occurs
when the accelerated sequence is close to convergence within computer arithmetic accuracy.

We will now analyze the result that we obtained in our numerical experiments. Let us report
first on the result with the LSE method for all the test cases.
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A. L2 norm

All estimates here used the discreteL2 norm and the trigonometric expansion (10) of α and
β. Let us discuss the influence of the relaxation procedure (8).

1) Discussion on the postprocessing method:Both the recovery method and upper bound
estimate (6) are providing accurate estimates for the Poisson problem in a square. This is the
minimum that we should expect from a new method, since a basic second order Richardson
extrapolation gives already satisfactory results. One notices, however, that four time steps are
needed to reach good accuracy in the prediction, and that the spline interpolant gives slightly
better results than the bilinear interpolant. Further, for this Poisson problem there is no advantage
to using a three-level extrapolation versus a two level-method. For the Laplace operator, one
can easily derive a priori how many time steps are required to damp the artificial frequency
components of the interpolated solution that were not present in the coarse grid solution.

Let us write algebraically

(Id− δt A0) Ũn+1 = Ũn − δt F 0
h ,

to be the time stepping (8) applied to each interpolated coarse grid solutionŨj , j = 1, 2, 3. A0

is symmetric definite negative and we can order its eigenvaluesλk as follows

0 > λ1 > λ2..... > λm.

m = (No)2 is the number of grid points on the fine Cartesian gridM0. Let us denotevk, k =
1..N the corresponding orthonormal eigenvectors ofAo.
The matrixB = (Id−δt A0)−1 has for eigenvaluesµk with µk = (1−δtλk)−1. The eigenvalues
of B are ordered as follows0 < µm < µm−1..... < µ1 < 1.
Let us express̃Un

j in the orthonormal eigenvector basisvk, with

Ũn
j =

∑

k=1..m

Ũn
j,k vk.

The following high frequency component of the solution

∑

k=mj+1..m

Ũn
j,k vk,

is an artifact of the interpolation procedure. It leads to the following error term that is part of
the residualRn+1 ∑

k=mj+1..m

λk Ũn
j,k vk.

Let us assume that we expect a priori an error onŨj , j = 1..3, much larger than the tolerance
numbertol in L2 norm.
The high frequency component of the residual due to the interpolation process will decay as

∑

k=mj+1..N

µq
kλk Ũn

j,k vk,

after q time steps.q should be chosen such that


 ∑

k=mj+1..N

(µq
kλk)2




1
2

< tol. (16)

A practical bound onq can be derived from (16) and the analytical formula on the eigenvalue
of the discrete Laplacian operator. The same analysis is not straightforward for stiff problem
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with arbitrary ρ function in (12). As a matter of fact the operatorAo is still definite negative
but no longer symmetric.

We use then the following heuristic argument. We know that forq large enough, the decay
of the numerical errorEn = Ũn − Uo satisfies the asymptotic estimate

En ∼ Ctµq
1. (17)

Similarly the residual satisfies

Rn ∼ Ctλ1µ
q
1 (18)

Once the spurious high frequency components of the error due to the interpolation process have
been damped enough, the errorand the residual decay at the same linear rateµ1. Further the
larger is the number of time steps, the more accurate is this convergence rate. This is the essence
of the power method [14] to computeµ1. We look then for a stop criterion that estimates how
close the sequence is to its asymptotic rate of convergence.

Our criterion to stop the iteration is to compute the discrete second order derivative in time
of log10 ||Rn||2 that is

Rn
tt =

log10(||Rn+1||2)− 2 log10(||Rn||2) + log10(||Rn−1||2)
(δt)2

, (19)

and insure that this number is below some a priori tolerance values.
We are going to show that our heuristic stop convergence criterion is also consistent with the

use of the Aitken acceleration on our sequence of upper error bounds

µ ||A0V
n
e − F ||2 + ||Ve − Ũ2||2, (20)

whereVe is the LES based oñUn
j , j = 1, 2, 3.

Let us denotern the sequence of numbers

rn = µ ||A0V
n
e − F ||2.

The sequencern has also a linear rate of convergence at the speedµ1.
The Aitken acceleration procedure that we apply to our upper-bound estimate (20) writes

sn = ||Ve − Ũ2||2 +
rn rn+2 − r2

n+1

rn+2 − 2 rn+1 + rn
. (21)

Let us rewritern as follows

rn+1 − r∞ = (µ1 + δn) (rn − r∞). (22)

We haveδn → 0, asn →∞. We get

sn − s∞ = (rn − r∞)
(µ1 + δn+1) (µ1 + δn) − (µ1 + δn)2

(µ1 + δn+1) (µ1 + δn) − 2 (µ1 + δn)2 + 1
. (23)

We have then
sn − s∞ ∼ (rn − r∞)

µ1

(µ1 − 1)2
(δn+1 − δn). (24)

In the meantime
||Rn||2 ≈ rn,

and therefore
Rn+1 −R∞ ≈ (µ1 + δn) (Rn −R∞). (25)
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Using this estimate (25) in (19), we have

Rn
tt ≈ (δn+1 − δn). (26)

To insure thatRn
tt is small is then a good stop criterion for the Aitken acceleration because

of (24). This Aitken acceleration will systematically be applied to enhance the upper bounds
(20).

We are going now to study the impact of theτ scale on the results obtained with the LSE
method.

2) Impact ofτ on the LSE result:In Figures 5 to 7, we present the results with spline
interpolation usingm = 4 in the trigonometric expansion ofα, β. Let us consider the test cases
T2 to T7. In all these test cases, we have checked that the second order RE improves the solution
accuracy, but not consistently. The corresponding error estimate based on the recovery method
is then unreliable. Because of the effect of the discrete operator on the interpolation, the upper
bound error based on the computation of the residual is far too crude.

The LSE method always gives better results than RE with very few time steps to postprocess
the coarse grid solution on the fine grid. For these stiff problems, the three-level method gives
consistently better results than the two-level method.

In most of the cases the recovery method may give an acceptable estimate from below of the
error after very few time steps as shown in Figures 5 and 6. The test caseT7 in Figure 7 is
an exception. It can be checked in this test case that the code is not converging well, because
||U0 − U∞|| is not much smaller than||U3 − U0||.

The Aitken acceleration of the sequence of estimates based on the recovery method may
sharpen this estimate, but not consistently. There is no obvious reason for which||Ve − Ũ3||
should converge linearly. In all these test cases, the failures of the Aitken acceleration might
be easily detected from the existence of oscillations.

In all test cases, the upper bound (6) overestimates the error by a factor five to ten at most
provided that we process the time integration of the solution with few time steps for an interval
of time of size2 10−2.

The Aitken acceleration of this time sequence of estimate provides a faster improvement of
the upper bound for largeτ than for smallτ. This is consistent with the fact that the time
stepping converges faster to the linear rate of convergence for largeτ than for smallτ. In the
test caseT7 we do have a strong oscillation of the Aitken acceleration of the upper bounds
sequence. We conjecture that this is a good indicator of the bad convergence properties of the
code due to the reentry corner in this specific situation.

We found in all test cases the LSE method is robust provided that the relaxation scheme (8)
is used to post-process the interpolated coarse grid solutions.

Let us now discuss the advantage of spline interpolation versus bilinear interpolation.
3) On the choice of the interpolant:In principle spline interpolation preserves the smoothness

of the solution and should give better results than linear interpolation with LSE. On the contrary
if the solution is very stiff, the spline interpolant smooths out the interpolated solution where
it should exhibit a sharp front. The result should then be worse than linear interpolation with
LSE. This is exactly what we have observed for the numerical error after very few time steps.
However, thanks to the relaxation process the difference between both solutions after five time
steps is completely marginal. We should rather use then bilinear interpolation that is easier to
implement in more complicated geometry. Let us discuss now the choice of the representation
of the weight function.

4) On the choice of the basis function to represent the weight function:We have also tested
the impact of the choice of the basis function to represent the unknown weight coefficients
α and β. The general observation is that the accuracy of the LES prediction increases when
one increases the value ofm from one to few units, typically four. The gain obtained in
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further increasingm becomes then marginal in the Fourier case (10). On the contrary our
numerical simulation withm up to 12 shows slightly better convergence using (11). However
the postprocessing procedure may make this improvement marginal after few time steps. We
speculate that the main contribution of the error with stiff problem is so dominant in some
local area that even the coarser grid solution is good enough outside the region of stiffness. In
other words the weight coefficient has very little influence on the quality of the LES outside
the region of stiffness. The LES method can then capture the main component of the error with
local or non local basis functions as well . This hypothesis should be revised indeed when the
coarse grid solutions are computed with locally refined meshes. Let us further notice that the
representation (11) gives less unknowns to compute for complex shape domains than with (10).
We will now compare the LSE method with OES usingL1 norm andL∞ norm.

B. Discussion on the choice of the norm

In Figure 8, we compare the error estimate based on the recovery method obtained with the
L1 , (curved with ’-’ lines) and theL2 norm (curved with continuous line), for the test case
T5. Curves labeled with¤ ando correspond to the two level methods and three level methods.
Except in this test caseT5 reported here, we did not found any significant advantages to using
the L1 norm instead of theL2 norm for the objective function. The recovery method gives
similar results for all other test cases with theL1 and theL2 norm.

In particular our conclusion on the impact ofτ , the choice of the interpolant and the basis
function to represent the weight function is identical to our previous conclusion with LSE.

Further, the simplex search of the Nelder and Mead minimization procedure is obviously much
more time consuming than the least square method and generally less accurate at convergence.
The Aitken acceleration of the upper bound estimate is therefore not very effective. Figure 9
gives a representative example of our result. While a more efficient optimization procedure to
construct OES might be used, we have also noticed that the upper bound obtained with theL1

norm is much coarser than in theL2 norm case for all test cases. This is a major draw back of
the method.

There is however a significant interest to use theL1 norm for solution of PDE problems
exhibiting discontinuities. Let us consider then the following test case denotedT8:

∆u = div(~a δΓ(x, y), (x, y) ∈ (−1, 1)2, u|∂Ω = 0, (27)

whereΓ is a circle of center0 and radius1
2 .

This test case is designed to represent the pressure solve in the Peskin method [25] when the
membrane is the circleΓ. The force is distributed along the membrane with a set of discrete
dirac delta function. These force terms have the direction of the radius of the circle. We choose
then~a to be the vector of components(2πx, 2πy). These force terms leads to a distribution of
dipoles in the pressure equation. Letδh be the discrete approximation of the dirac delta function
based on the piecewise cubic function given in [6] with a support of radius two space steph.
The discrete representation ofΓ usesM points. To insure that the space steps between these
grid points is of orderh we takeM = 6N with N = 2/h. The source term in (27) writes then

δΓ(x, y) =
1
M

i=M∑

i=1

δh

(
x− 0.5 cos

(
2(i− 1)π

M

))
δh

(
y − 0.5 sin

(
2(i− 1)π

M

))
.

The solution of (27) on the fine grid is given in Figure 4. One can notice the severe oscillation
of the solution at theΓ location. Figure 10 shows respectively our results using successively
the L2, L1 andL∞ norm and linear interpolation for the coarse grid projection onM0.

Spline interpolation gives less accurate results as one can expect from the discontinuity of
the solution.
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One can notice that there is almost no advantage to use the three-level solution instead of the
the two-level solution. We conjecture thatŨ2 − Ũ3 and Ũ1 − Ũ3 have similar random behavior
in the vicinity of Γ. There is then no advantage to useŨ1 in the three-level method.

The two upper bounds of the error inL2 and L∞ norm are accurate after five time steps.
The L1 error estimate is more accurate than in the previous test cases. Although the error in
L∞ norm is very large, theL∞ error estimate gives a good prediction of the error that comes
from the inaccuracy in the interface location. There is therefore no real advantage to use theL1

norm versus theL2 norm. Further, theL∞ norm gives interesting complementary information
to theL2 norm estimate, on how inaccurate the solution can be near the circle of discontinuity.
We present in the next section our general conclusion of this study.

V. CONCLUSIONS

In this paper we have extended the LSE method to a general optimization framework that
allows one to use arbitrary norms and/or objective functions. We concentrate our work on giving
a posteriori estimates. We have presented a rigorous upper bound error estimator technique to
predict very fine grid solutions. We have used an acceleration technique to sharpen this error
estimate and/or detect failures of convergence. We have applied the method to a multi-scale
elliptic problem and a Poisson problem with a singular source term to demonstrate the robustness
of the OES method . The overall concept of our method is simple and easy to implement with
off the shelf component software.

Our experimental results motivate further numerical analysis studies. There should be many
interesting ways of expanding this method, and deriving rigorous constructions.
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Fig. 1. Solution of T2 with ρ ≈ 0.1 in the disc
D1.
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Fig. 2. Solution of T6 with ρ ≈ 100 in the disc
D1.
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Fig. 3. Solution of T7 with ρ ≈ 100 in the disc
D2.
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Fig. 5. Error estimates withT3. τ = 0.01.

0 0.005 0.01
1

2

3

4

5

6

7

8
x 10

−4

Recovery method

for two levels
for three levels
for Aitken acc.
for true error
fine grid accuracy

0 0.01 0.02
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

L2 residual for LSE 

L2 two levels
L2 three levels

0 0.01 0.02
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Upper bound on the error

for three levels
for Aitken acc.
for true error
fine grid accuracy
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Fig. 7. Error estimates withT7. τ = 100.
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Fig. 9. Upper error bounds inL1 norm with T4, i.e τ = 10, based on linear interpolation.

0 0.01 0.02
−2

−1.5

−1

−0.5

0

0.5

1

1.5

L2 error

for three levels
for Aitken acc.
for true error
fine grid accuracy

0 0.01 0.02
−3

−2

−1

0

1

2

3

L1 error
0 0.01 0.02

−1

−0.5

0

0.5

1

1.5

2

2.5

Linf error

Fig. 10. Upper bound on the error withL2, L1, andL∞ norm with T8 based on linear interpolation.


