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Abstract  

Statistical analysis of the appearance of short subsequences in different DNA sequences, from individual 
genes to full genomes, is important for various reasons.  Applications include PCR primers and 
microarray probes design.  Moreover, the distribution of short subsequences (n-mers) in a genome can be 
used to distinguish between species with relatively short genome sizes (e.g., viruses and microbes).  To be 
able to perform such an analysis, a group of algorithms were developed to specifically deal with the 
problem of finding the appearance of all possible patterns of size n (n-mers) in a sequence or text of size 
m.  The concept of a counting array allows us to map our problem for large subsequences onto a useful 
data structure.  The run-time operation count estimation O(4n+m) makes it computationally convenient to 
accomplish the calculation of the statistics of the presence/absence of all possible 7-20-mers in more than 
250 genomes including the human genome. 

 



 

 

1

FAST ALGORITHM FOR THE ANALYSIS OF 
THE PRESENCE OF SHORT 

OLIGONUCLEOTIDE SUBSEQUENCES IN 
GENOMIC SEQUENCES 

V. Fofanov, C. Putonti, S. Chumakov, B.M. Pettitt, Y. Fofanov 

Abstract  

Statistical analysis of the appearance of short subsequences in different DNA sequences, from individual genes 
to full genomes, is important for various reasons.  Applications include PCR primers and microarray probes design.  
Moreover, the distribution of short subsequences (n-mers) in a genome can be used to distinguish between species 
with relatively short genome sizes (e.g., viruses and microbes).  To be able to perform such an analysis, a group of 
algorithms were developed to specifically deal with the problem of finding the appearance of all possible patterns of 
size n (n-mers) in a sequence or text of size m.  The concept of a counting array allows us to map our problem for 
large subsequences onto a useful data structure.  The run-time operation count estimation O(4n+m) makes it 
computationally convenient to accomplish the calculation of the statistics of the presence/absence of all possible 7-
20-mers in more than 250 genomes including the human genome. 
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I. INTRODUCTION 
 Statistical analysis of the appearance of short subsequences in different DNA sequences, from individual genes 
to full genomes, attracts attention for various reasons.  An incomplete list of its applications includes PCR primer 
[1,2] and microarray probe design [3].  In literature, several previous attempts have also been made to employ the 
frequency distribution of short subsequences (n-mers or motifs) to identify species for relatively short genome sizes 
(e.g., viruses and microbes).  In such an approach, the shape of the frequency distribution for certain short 
subsequences, 2-4-mers [4-8] and 8-9-mers [9,10], was proposed to be used to decide what microbial genome is 
being considered based on a given random piece of genome or the entire genome.  Algorithmically, such types of 
analyses employ a repeatable search for the short patterns in genomes, also known as the exact string matching 
problem. 
 Exact string matching is a well-developed area in computer science.  The traditional definition of this problem 
is the following:  Given a string P of size n called the pattern and the longer string T of size m called the text, the 
exact matching problem is to find all occurrences, if any, of pattern P in text T.  Many algorithms have been 
previously developed (overviews provided in [11,12]) based on the idea of precomputing. 
 Some algorithms, such as Rabin-Karp [13], Boyer-Moore [14], and Knuth-Morris-Pratt [15] apply 
precomputing to the pattern.  The memory usage in such approaches is not very extensive, and if n<<m the time is 
proportional to the length of the text or sequence: O(m).  Other approaches are based on the idea of precomputing 
the text [16-18].  While such algorithms are more memory-expensive and the estimation of time required for 
precomputing is O(m), string matching can be done extremely fast and depends only of the pattern size: O(n).  Here 
it is necessary to note that there is some variation in the problem definition.  In some cases one needs to find any 
occurrence instead of all occurrences of the pattern in the text; nevertheless the problem has the same notation. 
 To make an optimal choice as to which algorithm is better, one has to take into account additional parameters 
for the problem under consideration.  In fact, it is rare to match just one pattern against one sequence.  In many 
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cases a finite set of k sequences and a finite set of l patterns are considered necessitating kl searches to be performed 
to find the occurrence of all patterns in all sequences. 
 Another important parameter to consider is the average ratio r=n/m.  Assume one needs to compare the Knuth-
Morris-Pratt [15] and the Suffix Tree [16-18] algorithms.  Taking into account that the precomputing time will be 
O(nl) for Knuth-Morris-Pratt and O(km) for Suffix Tree, the running time estimations are O(nl+lkm) and O(km+knl) 
respectively.  If memory usage (which in some cases can be critical for the Suffix Trees) is not a concern, one can 
easily estimate which algorithm would be preferable based on the parameters of a real given problem.  The 
estimates above are typical for these two classes of algorithms.  In general, one needs linear time for precomputing; 
this allows performing the search in linear time. 
 In the problem of finding all possible n-mers, n=101-102 (length typical for microarray probes and PCR 
primers), in a sequences on the order of 103-109 (length typical for a complete genome), a very specific kind of the 
exact matching problem is encountered.  Such a problem needs to be solved if, for example, one needs to perform a 
comparative statistical analysis of the presence of all possible n-mers of the length from 7 to 25 “characters” (bases, 
b) in genomes of more than 250 microbial, viral and multicellular organisms varying from 0.32Kb (Cereal yellow 
dwarf virus-RPV satellite RNA NC_003533) to 2.87 Gb (human).  Such studies are necessary not only to explore 
statistical characteristics of genomes, but also to estimate limitations of such promising technologies as microarray 
analysis for microbial, viral, and even human recognition.  According to our knowledge, no such studies have been 
performed for n>11 due to the rapid increase in computational difficulties that appear because the total number of 
different n-mers grows exponentially fast when n increases, 4n.  The operation count estimation O(4nkm) for 
existing algorithms which precompute patterns and O(4nkn) for algorithms which precompute sequence is simply 
unacceptable. 
 
 

II. RESULTS 

A. Calculation of the presence of all possible n-mers in a given text 
 There are four specific points that characterize our problem versus previous algorithmic studies:  

1. Relatively short pattern lengths: max(N)=25; 
2. Only 4 characters in the alphabet. All DNA sequences contain only 4 nucleotides A (adenine), T 

(thymine), C (cytosine), and G (guanine); 
3. For each value of n, the search has to be performed simultaneously for all possible (4n) n-mers. 
4. Regarding each n-mer (pattern), we are interested only in its presence/absence in each genome (text), or 

in some rare cases how many times it appears in genome. 
To take advantage of the specifics of our problem, in particular the fact that we can perform the calculation for all 
n-mers simultaneously for each given value of n (which is relatively small), we decided to employ an approach 
similar to the one used in the well-known counting-sort algorithm (for example see [12]).  The basic idea is to set in 
correspondence to each of 4n n-mers a particular element of counting array A and define a procedure to convert the 
n-mer character sequence to the index of an element in such an array.  One could view such an array as an extreme 
case of the hash table and the procedure to convert the sequence to the index as the hash function.  Assume we need 
to calculate how many different n-mers are present in the text T. 
 
ALGORITHM 1. 
NUMBER-OF-N-MERS-IN-TEXT(T,n) 

1 for i ← 0 to 4n-1 
2  do A[i] ← 0 
3 sum ← 0 
4 for j ← 0 to length [T]-n 
5  do index=CONVERT_TO_INTEGER_VALUE(T(j, j+n-1)) 
6   if A[index]=0 
7   then sum ← sum+1 
8    A[index]=1 
9 return sum 
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 In this algorithm, T(j1, j2) stands for a substring of the string T, starting in position j1 and ending in position j2.  
The function CONVERT_TO_INTEGER_VALUE(s) is needed to convert the string s of length n, which in our 
case is created using only a 4 character alphabet, to a unique integer value corresponding to an index in the array A.  
In fact, if we assign to each character of our alphabet values from 0 to 3, each string can be interpreted as an integer 
value in a base-4 number system.  Using a naïve algorithm this function can be implemented to have a running time 
O(n).  We can utilize the fact that only 2 bits are needed for each character and that we read the text T sequentially, 
so that each string T(j1, j2) already contains n-1 elements of the next one T(j1+1, j2+1).  Thus, the function 
CONVERT_TO_INTEGER_VALUE() can be implemented using simple binary shift operations such that 
execution can be in O(1) time. 
 The overall running time estimation for ALGORITHM 1 is then O(4n+m).  If both text T and the counting array A 
can be placed in memory, it takes only seconds on a regular PC (1 GHz clock) to calculate, for example, how many 
15-mers are present in both complementary DNA sequences of the Mycobacterium tuberculosis H37Rv 
(NC_000962), a 4,411,529 bp genome. 
 The biggest concern with this algorithm is memory usage, especially because of the size of the counting array.  
The necessary size of A can be defined based on the value of n and the characteristics of the problem.  If we are 
interested only in the presence or absence on n-mers in a text, we need only 1 bit for each element to keep track of 
whether the corresponding pattern has already appeared in the text (A[…]=1) or not (A[…]=0).  For example, 17-
mers will require 417 = 17,179,869,184 bits = 2 GB (gigabyte) of memory.  This size of RAM can be placed in 
practically any PC or workstation.  This is, however, a limiting factor for larger n-mers, say up to 20 in length. 
 If the required memory is not available or is inconvenient, we can decompose the counting array A.  The idea is 
a simple divide and conquer strategy; we divide our n-mer into two parts: a prefix of size n1 and a suffix of size n-n1.  
One then creates the array A to track the appearance of (n-n1)-mers in the suffixes and summarizes the results for all 
prefixes. This is shown in ALGORITHM 2. 
 
ALGORITHM 2. 
NUMBER-OF-N-MERS-IN-TEXT-2(T, n, n1) 

1 sum ← 0 
2 for prefix ←0 to -114n

3  do for i ← 0 to -1 14 nn−

4   do A[i] ← 0 
5  for j ← 0 to length [T]-n 
6   if (prefix=CONVERT_TO_INTEGER_VALUE(T(j, j+n1-1)) 
7   then index=CONVERT_TO_INTEGER_VALUE(T(j+n1, j+n-1)) 
8    if A[index]=0 
9    then sum ← sum+1 
10     A[index]=1 
11 return sum 

 
 
 The operation count of ALGORITHM 2 is O( ( +m))= O( + m).  In fact, in the case mentioned 
above, if the available computer has more than 2.5 GB RAM, which means it can handle an array A necessary to 
keep track of 17-mers, it takes only about 4 times longer to count all 18-mers and 64 times longer to count all 20-
mers.  Using ALGORITHM 2, the number of 20-mers in the above mentioned Mycobacterium tuberculosis H37Rv 
genome can be calculated in less than a minute on a 1 GHz CPU.  Similar calculations were also performed in less 
than one hour for the 20-mers in all chromosomes of the human genome (available from NCBI at 

14n 14 nn− n4 14n

http://www.ncbi.nih.gov/).  It is important to note that increasing the prefix size n1 in this algorithm causes an 
exponential increase of the run time.  At the same time, because the algorithm can be easily parallelized (using for 
example the “for prefix” loop in line 2), the required run time can be essentially linearly decreased by increasing 
the number of processors.  Such scaling makes the large-scale application of this algorithm very attractive. 

http://www.ncbi.nih.gov/
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 For our problem area, another interesting task was to find how many n-mers are present in only one of two 
given texts T1 and T2 and how many of these n-mers belong to both texts.  Three different approaches to this 
problem were implemented and tested in our calculations:  

1. Run ALGORITHM 1 or ALGORITHM 2 three times to calculate the value of sum for text T1 (sum1), text T2 
(sum2), and for both texts simultaneously (sum12).  Then sum1-sum12 will be number of n-mers present 
only in T1, sum2-sum12 will be number of n-mers present only in T2, and of course sum12 will be number of 
n-mers present in both texts; 

2. Use two arrays, A1 and A2, to keep track of the information regarding the presence/absence of n-mers in 
each text separately;  

3. Use 2 bits for each element of the array A and use them separately to track the presence/absence of n-mers 
in each text. 

 

B. Calculation of the frequency of the presence of all possible n-mers 
 Our approach, similar to that described in ALGORITHMS 1 and 2 can also be used to calculate the actual number 
of n-mers present in the text.  A rough or naïve algorithm can be created by employing the counting array A to store 
the number of appearances of each n-mer. 
 
ALGORITHM 3. 
FREQUENCY-OF-N-MERS-IN-TEXT-2(T, n) 

1 for i ←0 to -1 n4
2  do A[i] ← 0 
3 for j ← 0 to length [T]-n 
4  do index=CONVERT_TO_INTEGER_VALUE(T(j, j+n-1)) 
5   A[index]= A[index]+1 
6 return A 

 
 
 As a result, ALGORITHM 3 produces array A with a run time of O(4n+m).  In contrast to the cases discussed 
earlier, the array A contains integer values for the number of times each n-mer is present in the text or sequence.  
The required memory in this case is much larger: instead of one bit we will need from 1 to 8 bytes to keep integer 
values.  For example, if 4 bytes are used to store each integer value, the necessary memory for the case of 14-mers 
will be 1 GB. 
 To make this algorithm more efficient it is necessary to take a more careful look at the structure of the original 
data and the produced results.  Tables I and II list how many n-mers appear only once, more than once, and never 
appear in the genome of Mycobacterium tuberculosis H37Rv and in the human genome.  As one can see, if the text 
size m is less than 4n, practically all n-mers are found to be present.  However, for 4n >>m a very different situation 
arises: (1) the majority of n-mers are simply absent in the text and (2) the number of n-mers present in that text just 
once far exceeds the number of n-mers present more than once.  Although the memory for n>12 was previously of 
concern, Tables I and II lead us to conclude that for such numbers the majority of array A will be occupied by zeros 
(sparse).  In fact, the number of different n-mers cannot be larger than m-n. (The number of n-mers which appear 
more than once is not expected to be larger than (m-n)/2.)  Thus, to conveniently keep information about all present 
n-mers we need two arrays: one (R) to keep the “sequence” of n-mers and another (Q) to keep the integer number of 
times of appearance.  Of course it would be even easier to place both the n-mer and the number of its appearances 
in one data structure.  The estimation of the memory usage is straightforward.  For the array R it is rn(m-n) ≅ rnm, 
where rn is the size reserved for the n-mer.  For the array Q it is rinteger(m-n) ≅ rintegerm, where rinteger is the size 
reserved for the integer variable.  Such a size is manageable given the parameters of our problem area.  For 
example using 5 bytes for integers and 2 bits for all 20-mers in the sequence on the order of 5,000,000 
(approximate size of the complete genome of Mycobacterium tuberculosis H37Rv), we will need in the worst-case 
only 52.5MB RAM (size of R + size of Q).  In this estimation, both strands of the genomic sequence are 
considered:  R= (2bits/byte)∗(5Mb*2)=2.5MB and Q= (5Mb*2) ∗5bytes=50MB.  From Tables I and II, one can see 
that the number of n-mers present in real genomes is much less than the hypothetical worst case. 
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 The following algorithm can be introduced to generate arrays R and Q: 
 
ALGORITHM 4. 
FREQUENCY-OF-N-MERS-IN-TEXT-2(T, n) 

1 for i ←0 to -1 n4
2  do A[i] ← 0 
3 sum ← 0 
3 for j ← 0 to length [T]-n 
4  do index=CONVERT_TO_INTEGER_VALUE(T(j, j+n-1)) 
5   A[index]= A[index]+1 
7   if A[index]= 1 
8   then sum ← sum +1 
9 Use value of sum to reserve memory for arrays R and Q of size sum 
10 counter ← 0 
11 for i ← 0 to 4n-1 
12 if A[i]=1 
13 then R[counter]= i 
14   Q[i]= A[i] 
15   counter ← counter + 1 
16 return sum 

 
 
The ALGORITHM 4 produces two synchronized arrays R and Q of dynamically defined size sum.  The total run time 
estimation of ALGORITHM 4 is O(4n +m+4n) = O(4n+m).  Because the array R of the present n-mers is created 
sorted, the time estimation to check the presence of any n-mer in such an array requires only logarithmic time 
O(log(sum)) such that the worst case would be O(ln(m)). 
 It is important to mention that because these two arrays (R and Q) represent the set of all n-mers present in the 
original sequence, it is reasonable to store them into a data structure which can then be used for future analysis.  
Traditional set operations, e.g. union, intersection, and subtraction, can be introduced and implemented on such 
objects with linear run time O(sum1+sum2), where sum1 and sum2 are the sizes of the arrays in the two data 
structures under consideration. 
 
 

TABLE I 
PRESENCE/ABSENCE STATISTICS FOR MYCOBACTERIUM TUBERCULOSIS H37RV (NC_000962) 

n-mer size Number of different 
n-mers (4n) 

Number of absent 
n-mers 

Number of n-mers 
present just once 

Number of n-mers 
present 1+ times 

7 16,384 0 2 16,382 
8 65,536 152 318 65,066 
9 262,144 9,234 11,826 241,084 

10 1,048,576 186,370 147,776 714,430 
11 4,194,304 1,918,866 862,428 1,413,011 
12 16,777,216 12,415,707 2,624,671 1,736,838 
13 67,108,864 60,778,599 4,938,895 1,391,370 
14 268,435,456 260,837,795 6,777,575 820,086 
15 1,073,741,824 1,065,526,021 7,798,705 417,098 
16 4,294,967,296 4,286,498,557 8,245,983 222,756 
17 17,179,869,184 17,171,299,773 8,424,979 144,432 
18 68,719,476,736 68,710,863,745 8,499,559 113,432 
19 274,877,906,944 274,869,272,195 8,534,649 100,100 
20 1,099,511,627,776 1,099,502,979,652 8,555,193 92,931 

Calculation was performed using both (original and complementary strands, each 4,411,529 b) DNA sequences. 
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TABLE II 

PRESENCE/ABSENCE STATISTICS FOR THE HUMAN GENOME 

n-mer size Number of different 
n-mers (4n) 

Number of 
absent n-mers 

Number of n-mers 
present just once 

Number of n-mers 
present 1+ times 

7 16,384 0 0 16,384 
8 65,536 0 0 65,536 
9 262,144 0 0 262,144 

10 1,048,576 0 0 1,048,576 
11 4,194,304 42 324 4,193,938 
12 16,777,216 42,501 91,146 16,643,569 
13 67,108,864 2,382,096 2,642,582 62,084,186 
14 268,435,456 41,634,971 30,411,367 196,389,118 
15 1,073,741,824 410,828,287 166,998,278 495,915,259 
16 4,294,967,296 2,717,880,983 671,192,253 905,894,060 
17 17,179,869,184 14,452,040,667 1,790,043,813 937,784,704 
18 68,719,476,736 65,147,397,575 2,881,849,256 690,229,905 
19 274,877,906,944 270,850,664,602 3,538,156,028 489,086,314 
20 1,099,511,627,776 1,095,257,688,530 3,866,031,543 387,907,703 

Calculation was performed using both (original and complementary strands, each 2,874,736,094 b) DNA sequences. 
 
 

III. CONCLUSIONS 
 Herein we have presented a novel group of algorithms for the problem of finding the appearances of all possible patterns 
of size n in a text or sequence of size m.  The operation count estimation O(4n+m) makes it possible to accomplish the 
calculation for the statistics of the presence of all possible 7-20-mers in more than 250 genomes, including the human genome.  
By using the concept of a counting array and parallel processing, the length of n-mers considered can be increased. 
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