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Abstract  

We have developed a novel method for non-contact measurement of breathing function. The method is 
based on statistical modeling of dynamic thermal data captured through a highly sensitive infrared 
imaging system. The air that is breathed out has higher temperature than the typical background of indoor 
environments (e.g., walls). Therefore, the particles of the expired air emit at a higher power than the 
background, a phenomenon that is captured as a distinct thermal signature in the infrared imagery. There 
is significant technical difficulty in computing this signature, however, because the phenomenon is of 
very low intensity and transient nature. We use an advanced statistical algorithm based on multi-Normal 
data representation, the method of moments, and the Jeffreys divergence measure to address the problem. 
In experimental tests, we were able to compute correctly the breathing waveforms in eight (8) infrared 
video clips of three (3) subjects at distances ranging from 6-8 feet. The results were compared with 
ground-truth data collected concomitantly with a traditional contact sensor. Our experiments 
demonstrated the promise of this modality, which may find applications among others in the next 
generation contact-free polygraphy and in sleep studies. 
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I. INTRODUCTION 
O
e

M NITORING of breathing function has applications among others in polygraphy, sleep studies, sport training, 
arly detection of sudden infant death syndrome in neonates, and patient monitoring.  

Various contact measurement methods have been developed for estimating the breathing rate of a subject. 
George B. Moody, et al. developed a contact modality in which numerous Electrocardiogram (ECG) electrodes and 
sensors are attached to the subject [1]. The principle of operation is based on the fact that the heart rate is typically 
modulated by breathing, a phenomenon known as sinus arrhythmia [2]. Therefore, a signal corresponding to the 
heart function contains breath information, which is filtered out using band-pass filters. 

As an improvement over the ECG method, the BioMatt method [3] was developed in Finland by a group of 
researchers who were studying sleep disorders. BioMatt performs measurements of vital signs, such as breathing 
and cardiac activity without electrodes. Initially, BioMatt could not distinguish motion that was due to breathing 
versus cardiac activity or body movement. Later, Larson developed a signal processing technique to separate out 
the components of the BioMatt signal [4]. 

Photoplethysmography (PPG) is a variant method of the ECG, developed to measure blood volume changes in 
living tissues by absorption or scattering of near-infrared radiation. This modality consists of an infrared Light 
Emitting Diode (LED) and a photodiode which can be clamped to the ear lobes, thumbs, or toes. It is advantageous 
in that it is portable, compact, and needs very little maintenance. The measurement of blood volume changes by 
PPG depends on stronger absorption of near-infrared light by blood when compared to other superficial tissues [5]. 
The amount of backscattered light corresponds to the variation of the blood volume. As in ECG, the breath 
waveform is separated from the cardiac signal through various methods that have been developed [6], [7]. 
However, using heart function as a basis for acquiring the breathing waveform is unreliable since sinus arrhythmia 
is not present in all individuals. Control of cardiac activity by breathing depends on the age and medications 
administered to subjects. 

Other contact modalities are capable of measuring directly the breathing signal. An example of such modality is 
the abdominal strain gauge transducer [8] that is strapped around the subject's chest and measures the change in 
thoracic or abdominal circumference while breathing. Another example is a thermistor measuring nasal air 
temperature variation as an indication of breathing [9].  

The disadvantage of all the aforementioned technologies is that they require close contact with the subject, 
which in certain cases may be quite uncomfortable and awkward (e.g., abdominal transducer). A contact-free but 



 

 

2
active technology called Radar Vital Signs Monitor (RVSM) [10] was developed in 1996 to monitor the 
performance of Olympic athletes. The RVSM detects breathing-induced movement of the chest based on the 
Doppler phenomenon. It measures breath at distances of up to 15 feet behind an 8 inch hollow concrete or wooden 
wall. A Radar Flashlight [11] was built to make use of this capability in assisting law enforcement personnel to 
detect individuals hidden behind walls. In 2000, RVSM was used in non-contact polygraphy [12]. The disadvantage 
of this technique is that motion artifacts corrupt breath signals and specialized frequency filters need to be used to 
separate them. 

In 2000, infrared imaging proved its potential in deception detection when thermal image analysis was used by 
Pavlidis et al. to detect facial patterns of stress at a distance [13]. A little later Pavlidis et al. used infrared imaging 
to compute periorbital perfusion as a replacement of the corresponding polygraph channel that uses finger contact 
sensing [14], [15]. The proposed use of infrared imaging for computing breathing function may also replace the 
corresponding polygraph channel that uses abdominal transducer. Incremental replacement of contact channels with 
non-contact ones may prove very effective in the field of polygraphy, where it is essential that subjects feel as 
comfortable as possible during examination.  

Moreover, highly automated, non-contact monitoring of breathing function may have a significant impact on 
certain biomedical applications. For example, in sleep studies this new methodology will enable monitoring of 
sleep apnea with minimal or no wiring of the subject, potentially at his\her home and not in the lab. This will not 
only improve the subject’s comfort but also facilitate much more sustained monitoring than is currently feasible. 

The use of infrared imaging for measuring breathing function is based on the fact that the exhaled air has 
temperature higher than the typical background of indoor environments. This creates a discriminating thermal 
signature that can be captured through an infrared imaging sensor. The phenomenon is quasi-periodic and can be 
quantified using either statistics or calculus. From the statistical point of view one can model the breathing cycles as 
multi-Normal distributions – one with “cold” temperatures corresponding to inhalation and one with “hot” 
temperatures corresponding to exhalation. From the Calculus point of view one can model the quasi-periodicity of 
breathing through Fourier analysis. 

In the present article, we describe a statistically based methodology for quantifying breathing rate on infrared 
imaging data. Alternative methodologies, like Fourier analysis, can be used but are not addressed in our present 
work. Our goal is to open a new line of research by demonstrating the feasibility of monitoring breathing function 
in a highly automated and non-contact fashion.  

In the rest of the paper we describe briefly the physiology of breathing (section II). Then, in section III we refer 
to the visual tracking mechanism that enables consistent breathing measurements in the presence of subject motion. 
In section IV we describe our breath visualization scheme, which is of paramount importance during the training 
phase of our measurement algorithm. In section V, we explain in great detail the statistical algorithm that performs 
the breathing measurement on the infrared imaging data. In sections VI and VII we outline our experimental design 
and results. We conclude our paper in sections VIII and IX, where we discuss the strong and weak points of our 
methodology, its prospects, and our planned work for the future. 

 

II. BREATHING FUNCTION 
Respiration in a man involves three well defined stages [16]. The first stage called breathing comprises of 

inspiration, which is the process of taking oxygenated air into the lungs and expiration, which is discharging out air 
rich in carbon dioxide. The second stage involves the transport of the oxygen to the cells of the body using the heart 
and the vascular system. The third stage is called cellular respiration where oxygen is used in the process of 
generating energy for physiological activities. 

In our study, we are interested in monitoring breathing using infrared imaging. The breathing cycle consists of 
inspiration, expiration, and post-expiratory pause. During quiet breathing, inspiration begins due to negative 
pressure created inside the chest cavity by the contraction of the diaphragm. Expiration is a passive process where 
the air flow occurs due to the elastic recoil property of the lungs. The post-expiratory pause is caused when there is 
equalization of the pressures inside the lungs and the atmosphere. 

Breathing cycle is defined as the time interval between the beginning of inspiration and the end of post-
expiratory pause. During quiet breathing, the breathing rate may vary from 12-20 breaths/min and after physical 
activity, 30-40 breaths/min in healthy individuals. Figures 1(a) and 1(b) show typical duration of the three phases 
during quiet breathing and after physical activity respectively. 
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         (a)            (b) 
Fig. 1.  Output from a piezo-respiratory belt transducer showing the three breathing phases during (a) quiet breathing and (b) 
after exercise.   
 

During quiet breathing, the duration of post-expiratory pause is comparable to that of inspiration and 
expiration. After a person undergoes physical exertion, the post-expiratory duration reduces considerably and in 
some cases, this phase may even cease to exist. 

 

III. TRACKING THE REGION OF INTEREST (ROI) 
We define as the Region of Interest (ROI) R the region in the background, where there is possible presence of 

respiratory airflow. It is in this small image region that our statistical algorithm is applied. The ROI is characterized 
by its size, shape, and position. Over time the size and shape of ROI remain the same but its position changes to 
cope with the subject’s motion (tracking). We have experimented with different ROI sizes and we will give more 
details about the optimal determination of this parameter in section VII. In this section, we will address the issues of 
ROI shape and dynamic positioning. 

For simplicity, R was chosen to be a rectangular region. Typically, subjects are breathing through the nasal 
cavity, which results in a downward airflow profile. Breathing through the mouth is less prevalent and results in 
horizontal airflow profile. In our data set we observed downward airflow profiles (Figure 2(a)) in eight (8) video 
clips and horizontal profile (Figure 2(b)) in one (1) video clip. Hence, we chose a rectangular region R arranged in a 
longitudinal fashion to closely match the prevalent downward profile of airflow. Our experiments have also shown 
that this shape still worked quite well on the video clip featuring the horizontal airflow profile (accuracy of 
97.74%).  

                                                         
           (a)                               (b) 

Fig. 2.  Respiratory airflow profiles: (a) downward and (b) horizontal. 

The respective aims of the initial positioning and tracking algorithms are to provide the user with an 
approximate position of the ROI in the vicinity of the nasal-mandible region and follow it automatically throughout 
the breathing rate computation process. Technical details of the initial positioning and tracking algorithms can be 
found in [17]. In summary, the initial positioning algorithm locates the tip of the subject’s nose and places the ROI 
underneath it, in a position that is between the nostrils and the mouth (Figure 3). This placement works for the 
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typical monitoring scenario of a subject imaged at a side view. For different monitoring scenarios the above 
heuristic approach tends to place R incorrectly. But, the Graphical User Interface (GUI) gives options to move the 
ROI around the image so that it can be placed within the airflow with just a mouse click. In such adjustments the 
user is aided by the breath visualization tool (see Section IV). Hence, the initial positioning of ROI is semi-
automatic wherein, the algorithm gives the approximate position of R and then the user may need to move it to a 
better position, within the field of the airflow. By contrast, the tracking algorithm is completely automatic since it 
tracks R with respect to the tip of the nose in subsequent video frames without any feedback from the user. 
 

IV. VISUALIZATION OF BREATH 
Visualization is important among other reasons for adjusting the initial ROI position and for training the 

statistical algorithm. Since the thermal signature of breath is not very strong, we have to apply image processing 
techniques to visually perceive breath in infrared video frames. Specifically, we apply the following operations on 
the video clip frames:  

1. Otsu's adaptive thresholding [18];  
2. Differential Infrared Thermography (DIT) [19]; and 
3. Image opening [20]. 
Otsu’s adaptive thresholding is applied to segment the skin region from the background. Then, in the 

background region, we apply DIT to generate a breath mask of all pixels whose temperature has increased beyond a 
preset threshold. This operation makes sure that the color-map is applied only to expiration frames in which DIT 
senses an increase in ROI pixel temperatures above the preset value. The result is a highly contrasting effect of no 
color during inspiration versus vivid color during expiration (see Figure 3(a) and (b)). As a final step, an image 
open operation is applied on the output binary mask of DIT to improve breath visualization. 

 

             
    (a)                 (b) 
Fig. 3.  Visualization of breath during (a) non-expiration and (b) expiration. The ROI is anchored just under the subject’s nose 
tip. 

The visualization scheme works well only for a limited period, as the temperature distributions of inspiration 
and expiration tend to drift over time for physiological and other reasons. DIT cannot handle this distribution drift 
well. If it did, it could have also been used to measure breathing rate in the place of the more sophisticated 
statistical algorithm (see section V). However, the short time window of good visualization performance is 
adequate for adjusting the initial ROI position and training the statistical algorithm.  
 

V. STATISTICAL METHODOLOGY 
Integral to breathing rate computation using infrared imaging is the labeling of frames as expiratory and non-

expiratory. For this purpose, we have adopted a statistical methodology based on multi-Normal distributions, the 
method of moments, and the Jeffreys’ divergence measure [21]. We identify two phases in the statistical method: 
training and testing. We describe both phases in subsequent sections.  

First, we ascertain the Normal nature of the temperature distributions in the ROI for the various breathing stages 
(Figure 4). Therefore, we can represent ROI distributions by their mean μ  and variance 2σ  only. Our method 
lumps together inspiration and post-expiratory pause phases, since the thermal signatures of these two are almost 
identical. We designate the combined stage as non-expiratory phase. 
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Fig. 4.  Experimental temperature distributions for expiration, post-expiratory pause, and inspiration. The Normal nature of the 
distributions and overlapping between post-expiratory pause and inspiration are evident. 
 

A. Training Phase 
The algorithm runs through a training phase to generate estimates of the expiration and non-expiration 

distributions from the first few video frames. These estimates are then used to label pixels as expiratory or non-
expiratory in the initial video frame of the testing phase. 

We use a variant of the K-means clustering algorithm [22] to generate training data. Our objective is to form 
2K = representative distributions through an iterative process; a “hot” one for expiration and a “cold” one for non-

expiration. Initially, we specify as the expiration distribution the one with the “hottest” mean temperature ,0eD ,0eμ  

in the training set; respectively, we specify as the non-expiration distribution the one with the “coldest” mean 

temperature 
,0iD

,0iμ  in the training set: 

,0 1
max{ },e j M jμ μ
≤ ≤

=                                                                       (1) 

,0 1
min{ },i j M jμ μ
≤ ≤

=                                                                        (2) 

where, is the set of temperature distributions for ROI R corresponding to the first 

 training frames of infrared video. We sort the distributions in ascending order with respect to their 
means, in order to facilitate the iterative process.  
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The Jeffreys’ Divergence measure is a symmetric form of the Kullback-Leibler Divergence measure. It is a 

function of the means and standard deviations of the two distributions being compared. Hence, it is an appropriate 
distance measure for bivariate distributions. We choose the winner distribution , 1w jD −  ( ) at step  or w e i= j as the 

one whose Jeffreys’ distance from the training population 1jD −  is the smallest. The mean and variance of the 
winning distribution are then updated at each step as follows: 

, 1
, ,

2
w j j

w j

μ μ
μ − +

=                                                                         (5) 

2 2
, 12

, .
2

w j j
w j

σ σ
σ − +

=                                                                        (6) 

The loser distribution retains its previous values.  
We iterate this process for all the training populations except those that were marked as initial clusters. At the end 

of the process we obtain the estimates of the two distributions corresponding to the expiration and non-expiration 
phases of the breathing cycle. Figure 5 depicts our K-means training method. 
 

 
Fig. 5.  Iterations in the K-means training data acquisition method. The resulting expiration and non-expiration distributions at 
the end of the M=100th iteration are used to jump start the testing phase. 

 

B. Testing Phase 
During the testing phase we represent at frame t each pixel tx  in region R as a mixture of two distributions: 
 

2 2
, , , , ,( ) ~ ( , ) ( , )t e t e t e t i t i t if x N N ,tπ μ σ π μ σ+

                                                  (7) 
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2

, ,( ) ( , )e t e t e tf x N μ σ  is the Normal expiration distribution, 2
, ,( ) ( , )i t i t i tf x N μ σ is the Normal non-expiration 

distribution, and ,e tπ  and ,i tπ  are their respective weights in the mixture satisfying the criterion: 

, , 1.e t i tπ π+ =  
 
In the beginning of the testing phase (t = 0) the distributions for non-expiration and expiration are equiprobable 

with ,e tπ = ,i tπ  = 0.5 and are parameterized by the respective means and variances that we computed during the 
training phase. Therefore, every pixel in region R is represented as having the following starting distribution: 

2
0 ,0 ,0 ,0( ) ~ 0.5 ( , ) 0.5 ( , )i i e ef x N Nμ σ μ σ+ 2

,0                                                 (8) 
 

At time t > 0 and for pixel tx  we compare the incoming temperature value from the sensor with the estimated 
distribution from the previous frame at time t – 1. For this comparison to be effective we consider that the incoming 
temperature 

txθ  can be associated to a Normal distribution 2
, ,( ) ( , )

tx g t g tg Nθ μ σ , where , ,g t x tμ θ=  and 

,g t NEDTσ = . For the camera model that we use 00.01NEDT C=  . 

We compute the Jeffreys’ divergence measures between the incoming distribution (
t
)xg θ  and the existing non-

expiration 1(i t )f x −  and expiration 1(e t )f x −  distributions respectively. Specifically: 

(
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                                  (10) 

We consider that the incoming distribution is closer to the existing distribution that features the minimum 
Jeffreys’ divergence measure. We call this the winning distribution 1(w tf x −  and the other the losing 
distribution 1(l t )f x − . Based on this information we update the parameters of the mixture following the method of 
moments. Specifically, we update the weights for both distributions and the mean and variance of the winning 
distribution only. The mean and variance of the losing distribution remain the same. 

The weights of the winning and losing distributions are updated as follows: 
, ,(1 ) ,w t w t 1π ρ π ρ−= − +                                                                            (11) 

, (1 ) .l t l t, 1π ρ π −= −                                                                                      (12) 
 

The mean and variance of the winning distribution are updated as follows: 
                                 , , 1(1 ) ,w t w t g t,μ ρ μ ρμ−= − +                                                                          (13) 

2 2 2
, , 1 , ,(1 ) (1 )( ) .w t w t g t g t w tσ ρ σ ρσ ρ ρ μ μ− −= − + + − − 2

, 1                             (14) 
 

The parameter ρ is a learning parameter that is computed from the following formula [23]: 

, , 1

, 1

1( )1 2
2

.

g t w t

w t

e

μ μ
σ

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−

−

−
−

=                                                                     (15) 
Figure 6 is a visualization example of how the incoming distribution may affect the existing distribution. The 

updated data acts as the new estimate for the corresponding pixel in the next incoming frame. 
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Fig. 6.  Overview of the statistical methodology for labeling infrared video frames as expiration or non-expiration. 

 
The pixel tx is given the label of the distribution with the highest updated weight. A count is kept of the number 

of expiration   and non-expiration  pixels in region R at time t. Once all the pixels in region R are processed 
the frame gets the label of the most frequently occurring pixel label. For example, if the frame is labeled as 
non-expiration. Otherwise, the frame is labeled as expiration. Figure 7 shows the flow of control and data through 
the statistical algorithm. 

eC iC

iC C> e

 

 
Fig. 7.  Comparison of a training distribution before and after the application of the Method of Moments. 
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The breathing rate computation algorithm keeps track of the frame labels and continuously updates the time of 

the current breathing cycle  by using the current timestamp  and the previous timestamp . The initial run 
of similar frame labels (Figure 8) is skipped since the testing phase might have started in the middle of a cycle. The 
algorithm keeps track of the two sub-cycles in the breathing cycle and once it detects the beginning of the next 
cycle, the breathing rate of the current cycle is computed in cycles/min using the formula: 

cT nT 1nT −

60 / min.
c

Rate cycles
T

=                                                                  (16) 

 
Fig. 8.  Example labeling of the video frame line and computation of the breathing rate. 

 

VI. EXPERIMENTAL SETUP 
We used a cooled mid-wave infrared Phoenix camera with a spectral range of 3.0 5.0 mμ−  (Indigo Systems, 

Goleta, CA) equipped with a 50  lens (Figure 9). The focal plane array of the camera is pixels in 
size and has thermal sensitivity . An external black body (Santa Barbara Infrared, Santa Barbara, CA) 
was used to calibrate the camera. Infrared video frames were acquired at a rate of 31 frames per second. 

mm 640 512FPA = ×
00.01NEDT C=

 

 
Fig. 9.  Phoenix mid-wave infrared camera equipped with a  lens. 50mm
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We captured the profile view of the subjects' face and respiratory airflow from a distance of 6-8 feet (Figure 10). 

A piezo-strap transducer (Figure 11(a)) wrapped around the subject's diaphragm was measuring the thoracic 
circumference during expiration and non-expiratory phase. The transducer was sending its signal to a PowerLab 
Data Acquisition System (ADI Instruments, Australia – Figure 11(b)). This was the gold standard that we used for 
ground truthing the infrared imaging measurements. 
 

 
Fig. 10.  Experimental setup with the profile view of the subject’s face captured by a mid-wave IR Phoenix camera and ground 
truth data recorded concomitantly using a piezo-strap transducer and a PowerLab Data Acquisition System. 
 

           
                                          (a)           (b) 

Fig. 11.  (a) Piezo-strap transducer. (b) PowerLab Data Acquisition System. 
 

VII. EXPERIMENTAL RESULTS 
In this section we investigate experimentally different aspects of the breathing function and our method’s 
parameters. We also describe the performance of our non-contact methodology against ground-truth measurements 
taken by the PowerLab/4SP ADI instrument.  

   When air is breathed in, it gets warmed up during its passage into the respiratory system and during its brief 
stay in the lungs. Figure 12 shows the plot of mean ROI temperature along the timeline for one of the subjects in 
our data set. From the plot, we observe that the ROI temperature increases by around 0.1oC during expiration. 
Figure 13 shows the plot of ROI variance along the timeline for one of the subjects in our data set. From the plot we 
observe that the ROI variance during expiration is quadrupled. This is due to the fact that within ROI there are 
clusters of “hot” air molecules interspersed with “cold” air resident in the room. The “hot” air molecules are the 
ones recently expired through the nostrils. 

Our experimental protocol called for measurements during the following phases: 
1. Breathing while the subject rests in a chair; 
2. Breathing after the subject has stepped on and off a foot step 30 times in 30 sec; 
3. Breathing after the subject rested for 10 min so that his physiology reverts back to baseline; and  
4. Breathing after the subject has stepped on and off a foot step 60 times in 60 sec. 

 
We measured the performance of our method on eight (8) thermal clips captured from three (3) subjects. The 

thermal clips were 1000 frames long. The first 100 frames of each clip were used for training and the remaining 900 
frames for testing. Only for subject #2 we were able to perform the infrared imaging measurements for all four 
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phases of the experimental protocol. For the other two subjects, we had to discard some of the measurements, 
because of technical problems in synchronizing the camera with the ADI vital signs monitor. 

 
Fig. 12.  Plot of the mean pixel temperature in the ROI along the timeline. 

 

 
Fig. 13.  Plot of the variance of pixel temperature in the ROI along the timeline. 

 
Since the performance of the method clearly depends on the size of the ROI where the statistical computation is 

taking place, we have experimented with three different ROI sizes: small ( 7 3×  pixels), medium ( 21 9×  pixels), and 
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large (  pixels). From the experimental results in Table 1 we observe that the medium size ROI outperforms 
the other two sizes. The interesting fact is that there is a clear breakdown in performance when the ROI size is 
getting large. In such a case a significant number of the ROI pixels are background and not expiratory pixels. As a 
result they bias the ROI labeling towards non-expiration and the accuracy drops. The absolute ROI sizes are of 
course dependent on the optics. In our specific experimental scenario we recorded from a distance of 6-8 feet with a 
50mm lens and the ROI sizes we cite are commensurate to this optical arrangement. 

63 27×

 
TABLE I 

EXPERIMENTAL RESULTS 

 
Accuracy of breathing rate measurements based on infrared imaging. Results are shown for three (3) different ROI sizes. The 
accuracy was determined by ground-truthing the imaging measurements against concomitant measurements performed with the 
ADI vital signs monitor. 
 

Figure 14, Figure 15, Figure 16, and Figure 17 show the variation of breathing rate computed through the 
infrared imaging method for the four (4) phases of the experimental protocol for subject #2. They also show the 
comparison between the mean breathing rate computed through the infrared imaging method and the mean ground 
truth rate measured by the ADI vital signs monitor. From the plots we observe that the breathing rate increases from 
12-20 cycles/min during rest to 30-40 cycles/min after the brief exercise. The accuracy of the infrared imaging 
method appears to be consistent during rest as well as during active periods. 
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Fig. 14.  Breathing rate measurements during initial resting phase for subject #2. 

 
Fig. 15.  Breathing rate measurements after 30 sec of exercise for subject #2. 

 
Fig. 16.  Breathing rate measurements after 10 min rest for subject #2. 
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Fig. 17.  Breathing rate measurements after 60 sec of exercise for subject #2. 

The ground truth signal has output proportional to the expansion (zero level signal) and relaxation (positive 
level signal) of the breathing monitor belt during non-expiration and expiration respectively. The signal computed 
from the infrared imaging method has output labeled either as non-expiration or expiration. To make comparison 
between ground truth data and algorithmic results easier, we have digitized both signals by assigning a zero level 
signal to non-expiration and a positive level signal to expiration. In addition, we have assigned a negative signal 
level to frames used for acquiring training data. In Figure 18, we can observe that the cycles detected by the 
infrared imaging method are slightly out of phase with the ground truth cycles. This accounts for the small 
discrepancy that exists between the measurements of the infrared imaging method (middle ROI) and the ground-
truth instrument. 

 
Fig. 18.  This plot shows the phase shift between the breathing signal (subject #2, clip #4) computed from the infrared imaging 
method and the corresponding ground truth signal 
 
Three primary factors account for this phase shift: 

1. Imperfect (manual) synchronization of the beginning of the two recordings (infrared video and monitor 
belt). 

2. Mismatch of recording frequencies. Our infrared camera records at 31 frames per second while the monitor 
belt samples at 100 times per second. 

3. The monitor belt records ground truth data at the diaphragm level while our infrared imaging method 
classifies air flow at the nasal-mandible level.  

The first factor can be addressed by developing a hardware trigger. The second factor can be addressed by 
down-sampling the ground-truth signal. The amount of phase shift due to the third factor can be determined and 
taken into account by performing further research in this direction.  
 

VIII. CONCLUSION 
Breathing function is one of the major indicators of an individual's health. It can be used to predict various 

life threatening disorders like sudden infant death syndrome and heart attacks. It is also used in sleep studies to 
detect sleep apnea. Finally, it is one of the psycho-physiological channels in polygraph examinations. Various 
modalities have been developed to measure breathing rate. Almost all the legacy methods require contact and hence 
they compromise the subject's comfort and mobility. Moreover, measurements by these methods are corrupted 
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either by movement artifacts or by their dependence on other physiological variables, like heart rate.  We have 
proposed a method that is based on infrared imaging and statistical computation to measure passively, breathing 
rate at a distance. This method achieved an accuracy of 96.43% on a small set of subjects during rest and after brief 
exercise. It has the potential to provide a unique capability for sustained monitoring of chronic or acute breathing 
problems and in sleep studies by overcoming the deficiencies of the existing measurement modalities. It also opens 
the way for the next generation contact-free polygraphy that will not affect the subject's psycho-physiology. 
 

IX. FUTURE WORK 
Since our method is contact-free, it has significant advantages over contact modalities like ECG, photo-

plethysmography, nasal temperature probe, and breathing monitor belt in terms of comfort. With the use of a simple 
tracking algorithm, our method has overcome the drawback of active non-contact modalities, like the Radar Vital 
Signs Monitor, whose output gets corrupted by motion artifacts. But, our tracking algorithm cannot deal with 
situations wherein the ROI fails to remain in the field of respiratory airflow, which occur when:  

1. The subject rotates his/her head towards or away from the camera (Figure 19). 
2. The source of airflow (either the nose or the mouth) changes. 

 
Fig. 19.  ROI wrongly positioned when the subject turns his head towards the camera due to the loss of the reference point. 

The first problem may be addressed by developing an advanced nasal-mandible tracking algorithm (Figure 20) 
along with further research on detecting the respiratory airflow signal in frontal views. The second problem can be 
addressed by using two ROIs, one each for nasal and mandible airflow (Figure 21). 

 
Fig. 20.  Likely position of ROI if an advanced tracking algorithm were employed. 

 

 
Fig. 21.  The problem of change in source of respiratory airflow can be solved by using an ROI each at the nose and the mouth. 

 
In our algorithm we have made use of the Gaussian nature of the thermal signature of breath to develop a 

statistical algorithm which classifies the frames as expiration or non-expiration. An alternative approach would be 
to consider the quasi-periodic nature of the thermal signal (Figure 12, Figure 13), which renders itself naturally to 
Fast Fourier Transforms.  
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