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Abstract

Automated tools for knowledge discovery are frequentlypked in databases where objects already group
into some known (i.e., external) classification schemehéncontext of unsupervised learning or clustering,
such tools delve inside large databases looking for altemalassification schemes that are meaningful
and novel. An assessment of the information gained with nesters can be effected by looking at
the degree of separation between each new cluster and its smogar class. Our approach models
each cluster and class as a multivariate Gaussian distmiband estimates their degree of separation
through an information theoretic measure (i.e., throudhtike entropy or Kullback Leibler distance).
The inherently large computational cost of this step isvaded by first projecting all data over the single
dimension that best separates both distributions (usisigefFs Linear Discriminant). We test our algorithm
on a dataset of Martian surfaces using the traditional idmisnto geological units as external classes
and the new, hydrology-inspired, automatically perforntdsion as novel clusters. We find the new
partitioning constitutes a formally meaningful classifioa that deviates substantially from the traditional
classification.
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. INTRODUCTION

Clustering algorithms are useful tools in revealing suetfrom unlabeled data; the goal is to discover how
data objects gather into natural groups. Research spanpl@dbpics such as the cluster representation (e.g., flat,
hierarchical), the criterion function to identify sengldlusters (e.g., sum-of-squared errors, minimum varjgnce
and the proximity measure that quantifies the degree of aiityil(conversely dissimilarity) between data objects
(e.g, Euclidean distance, Manhattan norm, inner prodécijlitionally, the application of clustering algorithmsrca
be preceded and followed by various steps. First, clustateiecy is a preprocessing step that indicates when data
objects exhibit a clustering structure; it precludes usilugtering when the data appears randomly generated under
the uniform distribution over a sample window of interesthe attribute space [1], [2], [3], [4], [5]. Second, cluster
validation is a postprocessing step that is most necessaysess the quality and meaning of the resulting clusters
6], [71. [8l.

Cluster validation plays a key role in assessing the valuth®foutput of a clustering algorithm by computing
statistics over the clustering structure. Cluster vaiadats calledinternal when statistics are devised to capture the
quality of the induced clusters using the available dataabjonly [9], [10], [8]. If the validation is performed by
gathering statistics comparing the induced clusters agaim external and independent classification of objeats, th
validation is calledexternaf. External cluster validation is based on the assumptionahaunderstanding of the
output of the clustering algorithm can be achieved by findimgsemblance of the clusters with existing classes [11],
[12], [6], [7], [13]. Such narrow assumption precludes mitgive interpretations; in some scenarios high-quality
clusters (as supported by an internal validation step) ansidered novel if they do not resemble existing classes.
We prefer to employ the terraxternal cluster assessmenhen referring to a methodology intended to quantify
the value of new clusters when compared to an external amgardient classification scheme. This adds flexibility
to the validation task. In some scenarios, a large separbtitwveen clusters and classes serves to indicate cluster
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novelty [14]; on the other hand, finding clusters resembénisting classes serves to confirm existing theories of
data distributions [8]. Both types of interpretations aggitimate; the value of new clusters is ultimately decided
by domain experts after careful interpretation of the thstion of new clusters and existing classes.

In this paper we propose a method for external cluster assggsthat runs contrary to the traditional view of
external cluster validation; most traditional metrics puuita single value indicating the degree of match between
the partition induced by the known classes and the one imtlbgethe clusters. Our goal instead is to compute
the distance between each individual cluster and its mositasgi external class; our method works efficiently by
projecting the data to a single dimension that best captheetrue separation between the class-cluster pair on the
original attribute space. Traditional metrics cannot bsilgacompared to our approach for several reasons. First,
by averaging the degree of match across all classes an@rm&ustich metrics fail to identify the potential value of
individual clusters. Moreover, the lack of a probabilistiodel in the representation of data distributions predude
projecting the extent to which a class-cluster pair intetts®ur approach differs in using a probabilistic model
to evaluate each cluster individually, ranking all clasagainst each cluster based on their degree of overlap or
intersection.

We apply our methodology on the characterization and dleason of surfaces on Mars. The planet Mars is
at the center of our solar system exploration efforts. Tla@eeseveral Mars orbiters remotely collecting imagery,
topographic, and spectral data of the planet’'s surface. cthieent principal tool for studying Martian surfaces
is geologic mapping. The standard technique of photogéoloderpretation of images [15] has been developed
to facilitate such mapping. A collection of sites on Mars stitntes a set of objects that are classified manually
by domain experts (geologists) on the basis of their gecldgiroperties. The resultant division of sites into the
so-called “geological units” (see section 4.1) represamtsexternal classification. Geologic mapping, however,
is a slow and subjective procedure. The availability of Néartdigital topography data suggests an alternative
classification of Martian sites based exclusively on sekktbpographical properties. Specifically, a relativelyse
mathematical representation [16], [17] can be construfbeda site’s “drainage” network (see section 4.2). A
guantitative representation enables an automated, olgjeaind fast comparison between different sites. We have
constructed such representation for a large set of Maritas and have used a clustering algorithm to divide this
set into natural groups. Using our approach to externatelessessment, we study whether this novel partitioning
resembles the traditional, external classification. We tlirednew patrtitioning, based on hydrology-inspired vagabl
deviates substantially from the traditional classificatio

This paper is organized as follows. Section Il provides haocknd information and defines traditional metrics
for external cluster validation. Section Il explains oupposed metric. Section IV describes our domain of study
based on the characterization of Martian surfaces. Se#tiogports on the results of clustering Martian sites on
the basis of their topographic properties, and providesngarpretation of the output clusters. Lastly, section VI
gives our summary and discusses future work.

[l. PRELIMINARIES: EXTERNAL CLUSTER VALIDATION

We assume a dataset of objed®; {x;}, where eactx; = (a1, a2, -,ax) iS an attribute vector characterizing
a particular object. We refer to an attribute variable&s and to a particular value of that variable @s The
spacet’ of all possible attribute vectors is called the attributacg We make the simplifying assumption that each
attribute value is a real number, and thuse RF.

A clustering algorithm partitiong into » mutually exclusive and exhaustiveubsetsiC,, K, - - -, K,,, where
U; K; = D. Each subsek’; represents a cluster. The goal of a clustering algorithno ipartition the data such
that the average distance between objects in the samerc{ustethe average intra-distance) is significantly less
than the distance between objects in different clustegs (he average inter-distance) [18]. Distances are medsur
according to some predefined metric (e.g., Euclidean distalanhattan norm, inner product) over spate

We assume the existence of a different mutually exclusivee ethaustive partition of object§;, Co,- -, Cp,
where|J,; C; = D, induced by a natural classification scheme that is indegrenaf the partition induced by the
clustering algorithm. Note that the number of externalsgagsneed not match the number of clusters. Our goal is to
perform an objective comparison of both partitions. It mustemphasized that the previously known classification
is independent of the induced clusters since our main gotl @scribe a meaning to the partition induced by
the clustering algorithm; one may even use multiple exjsemternal classifications to validate the set of induced
clusters.



Traditionally, the goal behind external cluster validatig to find a near-optimal match between clusters and
external classes; if found we say the clusters have simmgvered the external class structure. As mentioned
above, we suggest a broader goal where a form of externakeclassessment indicates the degree of separation
between clusters and classes; the scientific value behirhamatch or strong disagreement can then be elicited
through domain expertise.

A. Metrics Comparing Classes and Clusters

In this section we briefly review representative work in tregdiof external cluster validation. Several approaches
exist attacking the problem of assessing the degree of nimtkeen the sef = {C;} of predefined classes and
the setlC = {IC;} of new clusters. In all cases high values indicate a highlaiity between classes and clusters.
We divide these approaches based on the kind of statistiptoged.

The2 x 2 Contingency Table

One type of statistical metrics is defined in terms of a 2 table where each entt§;;, 7,7 € {1,2}, counts
the number of object pairs that agree or disagree with tresdad cluster to which they belong;; corresponds
to the number of object pairs that belong to the same classclster, similar definitions apply to other entries
where £, corresponds to same class and different clustgr,corresponds to different class and same cluster,
and &,; corresponds to different class and different cluster. Bleg; and&>5; denote the number of object pairs
contributing to a high similarity between classes and elisstwhereag;, and £;; denote the number of object
pairs contributing to a high degree of dissimilarity. LBtbe the total number of possible object pairs fif is

the total number of data objects, théh= W). The following statistics have been suggested as metfics o
similarity or overlap:

Rand [6]:
11+ & (1)
E11+ &2+ &1 + Ex0
Jaccard [13]:
S| — @
i+ &2+ &
Fowlkes and Mallows [7]:
En 3)
V(€ +&12) (€ + En)
' statistic [19]:
P& — (E11+ E21)(E11 + E21) (@)

V(€ +E1) (& +En)(P — (i1 + &) (P — (€11 + Ex))

Experiments using artificial datasets show these metrie® lgwod convergence properties (i.e., converge to
maximum similarity if classes and clusters are identicdiltributed) as the number of clusters and dimensionality
increase [13].

Them x n Contingency Table

A different approach is to work on a contingency taldl¢, defined as a matrix of sizew x n where each row
correspond to an external class and each column to a clAstemtry M;; indicates the number of objects covered
by classC; and clusterC;.

Using M, the simmilarity betweed and IC can be defined in several forms:
Normalized Hamming Distance [12]:
DH.(M)+ DH(M) (5)
2N

where N = |D| is the size of the dataset (i.e., whe¥e=3",3"; M,;) and the directional Hamming distances are
defined as follows:




DH (M) = Z max M, (6)

DHi(M) =" max Mi; 7
J

Equation 5 measures accuracy by adding the highest valuaa@nrew (conversely column) i divided by
the total number of objects. Rows and columns are worked epdrately since the number of classes and clusters
may be different.

Empirical Conditional Entropy [11], [20]:
H(C|K) = ZZ ”1 M ‘ (8)

where M is the marginal sum_, M;; and lower values are preferred. Equation 8 measures theaefimpurity
of the partitions induced by the clustering algorithm andigsed towards distributions characterized by many
clusters; this bias can be adjusted by applying the minimestudption length principle [11].

Hypothesis Testing

The metrics described above serve as an indication of tharpity between the sef = {C;} of classes and the
set/C = {K;} of newly constructed clusters. In addition one must be abkhbw that the output metric score (i.e.,
output statistic) is far from the value one would obtain i¢ thtructure ofD were random (if the object® were
uniformly distributed). To decide if the null hypothesif, (that assumes a uniform distribution ovB) can be
rejected, we rely on Monte-Carlo techniques [21], [22]. Thwput statistics is compared against the sgt;}7_;
of statistics gathered assuming the null hypothesis trins & effected by applying the clustering algorithmrto
different artificial samples where data objects distribunéformly randomly; on each sample we compute statistic
s;. The null hypothesidd is rejected ifs is greater thafl — p)r of the s; values (for a given significance levg).

B. Limitations of Current Metrics

In practice, a quantification of the similarity between sdtslasses and clusters is of limited value; any potential
discovery provided by the clustering algorithm is only itigable by analyzing the meaning of each cluster
individually. As an illustration, Figure 1(left) shows a dvdimensional attribute space where two clustées, (
K2) make a close match with two external classgs (») ; a third cluster £3) denotes a novel structure that does
not resemble any existing classes. Averaging the simjldodtween clusters and classes altogether disregards the
potential discovery carried by the third cluster.

In addition, even when in principle one could analyze theiesbf a contingency matrix to identify clusters having
little overlap with existing classes (section 1l-A), suctidrmation cannot be used in estimating the intersection of
the true probability models from which the objects are draWnis is because the lack of a probabilistic model
in the representation of data distributions precludesreging the extent of the intersection of a class-cluster. pai
As an illustration, Figure 1(right) shows a two-dimensioatiribute space comparing a clust€y with an external
classC;. The z axis represents the conditional probability of a data dbfégx|K;) for clusterC; and P(x|C;)
for classC;). A contingency matrix simply counts the number of data otgjdalling on different regions of the
attribute space (e.gk’; NC;, K;\ C;, C; \ K, IC; UC;); a probabilistic model, in contrast, generates an expiecta
of the number of objects lying on these regions; the expiectaian differ significantly from the actual count. This
is the result of constructing density models using all ddigeats that belong to the class-cluster pair of interest.
We address these issues and our proposed metric next.
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Fig. 1. (left) Averaging the similarity between clusterslaasses altogether disregards the potential discoverieday clusterCs. (right)
A contingency matrix simply counts the number of objectsered by both class and cluster; a probabilistic model géeei@n expectation
based on the density of that intersection that may diffenifi@antly from the actual count.
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Fig. 2. (left) A projection of the data over an attribute sBorms the original problem into a new problem made of omeedisional
Gaussian distributions; (right) Two non-overlapping digttions in ak-dimensional space may appear highly overlapped when qiegje
over each attribute (herke = 2).

I1l. OUR APPROACH TOEXTERNAL CLUSTER ASSESSMENT

We now turn into our proposed approach for external clusssessment. We start under the assumption that
both clusters and classes can be modelled using a muldtga@aussian (i.e., Normal) distribution. In this case
the probability density function is completely defined by aam vector: and covariance matri¥x:

— 1 1 tg—1
fx) = s &P [~5 =)' E (x — )] )
wherex andy arek-component vectors, arfi| andX ! are the determinant and inverse of the covariance matrix.
Our goal is simply to assess the separation or distance bataelusteiC;, modelled asf;(x) : N[u;, 3;], and
its most similar clasg’;, modelled asf;(x) : N[u;, 3;] (where f; corresponds tdP(x|/C;) and f; corresponds to
P(x]|C;)). Before explaining our methodology (section I1I-C) weroduce two preliminary metrics.

A. Integrating Over the Attribute Space

A straightforward approach to measure the degree of separaetweenf;(x) and f;(x), denoted asl(f;, f;),
is to apply a function to each poist, ¥y, r,(x), and to integrate that function over the whole attributecgpa

U(f;, fi) = / V,.1.(x) dx (10)

A simple example ofy;, f,(x) is the square distancf;(x) — fi(x))?. We assume that in the extreme case
where both distributions are identical then, r,(x) = 0, and hence¥(f;, f;) = 0. Although equation 10 can
be approximated using numerical methods, the computdtmost can become very expensive; integrating over
high-dimensional spaces soon turns intractable even fatenadely low values ok. In practice, a solution to this
problem is to assume a form of attribute independence asiegal next.



B. The Attribute-Independence Approach

Instead of integrating over all attribute space one may lablkeach attribute independently. In particular, a
projection of the data over each attribute transforms thgiral problem into a new problem made of one-
dimensional Gaussian distributions, as shown in Figureef)(IWe represent the two distributions on attribute
A, 1 <1<k, an]l-(ac) (corresponding to cluste;) and fH(x) (corresponding to class;); the parameters for
these distributions are easily obtained from ihdimensional multi-variate Gaussian distributions byrasting the
l-entry of the mean vector, and tfig [)-entry of the covariance matrix.

The computation of the separation of the two one-dimeni;idisaxibutions,\I/(fjl.,f}) = ¥y, is now performed
over a single dimension and is thus less expensive (equafdnNevertheless we are now forced to devise a
function | J(-) to combine the degree of separation over all attributes:

V(S fi) = U] @), S @) O (), fE () = W (11)
!

Besides the need to define the nature J¢f), this approach carries a disadvantage. By looking at eddhuae
independently, two non-overlapping distributions ink-aimensional space may appear highly overlapped when
projected over each attribute, as shown in Figure 2 (right)t challenge lies on finding an efficient approach to
estimate¥ ( f;, f;) along a dimension that provides a clear representationeofrtte separation between objects on
both distributions.

C. Projecting Over a Single Dimension Using Fisher Lineas®iminant

Our proposed solution consists of projecting data objeets a single dimension that is orthogonal to Fisher
linear discriminant [18]. The general idea is to find a hypemp that best discriminates data objects in cluster
KC; from data objects in class;. The weight vectow that lies orthogonal to the hyperplane will be used as the
dimension upon which the data objects will be projected. fHtienale behind this method is that among all possible
dimensions over which that data can be projected, clad@iear discriminant analysis identifies the vecteowith
an orientation that results in a maximum (linear) sepanatietween data objects #; andC;; the distribution of
data objects ovew provide a better indication of the true overlap betwé@&nand(; in k dimensions compared
to the resulting distributions obtained by projecting dabjects over the attribute axes. Figure 3 illustrates our
methodology. Weight vectow —which lies orthogonal to the hyperplane that maximizessbgaration between
the objects in clusteiC; and clas<’;— is used as the dimension over which data objects are pedject

Specifically, Fisher linear discriminant finds the vectorthat maximizes the following criterion function:

wiSpw

The termSp is also named the between-class scatter matrix; it is siftq@youter product of two vectors:

Sp = (pj — pi)(py — i)’ (13)

where; is the mean vector of cluster distributigij(x) and; is the mean vector of class distributigi(x).
The term Sy, is also named the within-class scatter matrix; it is the sdnthe scatter matrix over the two
distributions:

Sw =Y (x—p)x—p) + D (x—pa)(x — ) (14)

XEKJ' xECi

Fisher linear discriminant maximizes the ratio of betwetass scatter to within-class scatter. Geometrically the
goal is to find a vectow so that the difference of the projected means oweis large compared to the standard
deviations around each mean. It can be shown that a solutxmmizing J(w) (equation 12) is in fact independent
of Sp:

w = St (g — ) (15)



Fig. 3. Weight vectorw —which lies orthogonal to the hyperplane that maximizessiygaration between the objects in clustgr and
classC;— is used as the dimension over which data objects are pedject

Data Projection

Projecting data objects over the resulting veckombviates working on each attribute separately (as in equa-
tion 11); we have then found an efficient approach to estirttegedegree of separation between two distributions
along a single dimension that captures most of the varighilf classC; and clusterC;. To perform the data
projection mentioned above we need to transform each afigiata pointx into its projectionz’, through a scalar
dot product, =’ = w'x.

We will refer to the projected density functions oweras f/(x) (for classC;) and fj’.(x) (for clusteriC;). Their
parameters can be easily estimated after projecting dgecteboverw. Let i be the mean of density function
f(x), then the projected parameters are defined as

W=wp o= % @ =)’ (16)

where i/ and o'? are the projected mean and variance respectively; if thanpaters correspond tﬁ]ﬂ(x), N is
the number of data objects comprised by clugter(N = |IC;| = N;); otherwiseN is the number of data objects
comprised by clas§; (N = |C;| = N;).

In summary, our approach is to quantify the separation b=twevo one-dimensional Gaussian distributions
fj’.(x) and f/(x) obtained after projecting data objects in cl@sand clusterlC; along vectorw.

D. The Distance Between Two One-Dimensional Distributions

To finalize the description of our approach we need only $p&ow to compute the degree of separation between
the two one-dimensional Gaussian distributigfjsand f;, denoted asP(f;, f/). To that purpose we make use of
the concept of relative entropy of two density functions][2lhe relative entropy (or Kullback Leibler distance)
between two density functions is the expectation of theritiga of a likelihood ratio:

fi(z)
V(A ) = DU = [ fi(a)tog
fi(z)

For our purposes, equation 17 is a measure of the error geddrg assuming that functioff can be used to
represent functiorf’; the integrdl measures the additional amount of information requiredescdbe clustefC;
given its most similar clas§;. The higher the distanégthe higher the amount of information conveyed by cluster
;.
Since the form of the distributions is known to be Gaussiangcan further simplify our measure (we use natural
logarithms to reduce the equation; the resulting inforarats now expressed in nats instead of bits):

dx (17)

U(fi, f)) = DUIIF) = /f;(x) m% dz (18)
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Equation 24 shows the behavior of relative entropy over twe-dimensional Gaussian distributions. If both
distributions are the same, then the expectatiojzof- «/)? according to distributionfj’- is identical t00—§2 and
W(f}, fi) = 0. As the two distributions differ the value df(f}, f;) grows above zero.

E. Overview of our Approach and Computational Complexity
To summarize, our approach is divided into two steps:

1) Projecting data objects in clust&; and classC; over the weight vectotv that lies orthogonal to the

hyperplane that maximizes the separation betw€gmand(C; (section IlI-C), and

2) Computing the degree of separation between the resutirgdimensional Gaussian distributions (section Ill-

D).

Figure 4 provides an algorithmic description of our methbde computational complexity of the algorithm is
dominated by the first step (Fig. 4, lines 1-7) where the gedbifind the weight vectow. The most expensive
calculation is that of the within-class scatter matsix and its inverse. The complexity is of ord@(k[N; + N;]?),
wherek is the number of attributes andl; + V; is the total number of data objects comprised by cluktgand
classC;. Even though the computational cost is quadraticNo- INV;, we expect the number of data objects on
both cluster and class to be mush less than the total sizeeaddta set (i.e., we expedt; + N; < N).

On a pentium 4 processor with 1GB of memory, the executior tior the two steps mentioned above on a
dataset corresponding to Martian landscapes with 386 da¢gts (section V) is on average less than one second.

F. Preliminary Assessment

We report on a preliminary assessment using artificial @gasomparing our method with the attribute-independenc
approach (section llI-B). Our artificial datasets compriésgta objects (i.e. points) drawn from two Gaussian
distributions with different means but same standard dievicon a two-dimensional attribute space. The location
of the means is selected as follows. One mean is chosen mmyfsandomly on the plane, while the other mean
is randomly located away from the first mean at a fixed distgeag, one standard deviation). Our experiments
vary the number of points drawn from each distribution arel distance between the means.

The degree of separation under the attribute independegmm®ach simply averages the relative entropy (or
Kullback Leibler distance) of the distributions obtaineften projecting the data on each attribute. The degree of
separation is then as follows (equation 11):



Algorithm 1. External Cluster Assessment
Input: clusterkC;, classc;

Output: Distance¥ (f;, f/)

DISTANCE(K;,C;)

1) Estimate mean vectqr; (clusterk;)

2) Estimate mean vectgr; (classC;)

3) Compute the within-class scatter matrix:
4 Sw=2gex,(x— HJ)(X — 1)+ e, (x — pi) (x — i)'
(5) Find the vectow = Sy (11 — f1;)

(6) Find projected den5|t|es OVex:

) fi(z) (classC;) and f}(z) (clusterkC;)

(8)  Compute¥(f}, fi) = D(fjl|f;) = [ fi(z )lnf(w) dx
(9)  return W(f}, f})

v

Fig. 4. The logic behind our approach to external clusteesssent.

(i ) = @U@ £ @) B, fE@) = 2D (25)

wheref]’- and f/ are obtained by projecting the data objects on each atxibut

Figure 5 shows our results. On all graphs, thaxis stands for the size of the dataset (on a logarithmitekca
the y-axis stands for the degree of separation (i.e., relativeopy) between both Gaussian distributions. Each
result is the average of ten runs; we sh@¥¥; confidence intervals (using a t-student distribution); sloéd line
corresponds to the true degree of separation assuming aitargample.

Our method takes slightly longer to converge when the digtdoetween the means is zero (i.e., when both cluster
and class belong to the same distribution). This is the redulinding a vectorw orthogonal to Fisher’s linear
discriminant when no decision boundary actually existg.(bitop-left). As the distance between the means grows
larger, however, our method converges to the true separeglatively fast. In contrast, the attribute-independenc
approach tends to underestimate the true degree of separatiribute projections show a distorted view of the
true overlap between the two distributions over the planesummary, our method outperforms the attribute-
independence approach when projections over the attréoge convey a distorted view of the actual location of
the class-cluster pair.

IV. CHARACTERIZATION OF MARTIAN SURFACES

We now turn to an area of application where our approach iede®ur study revolves around the characterization
and classification of Martian surfaces. We study a large géflartian sites showing various types of surfaces.
First, we discuss the notion of geological units - the stamhddassification of Martian sites assigned by domain
experts (geologists) after careful examination of a sii@age. Assigning geological units to each site in our set
divides the dataset intor predefined external classes. Second, we discuss the ndtmetwork descriptor - a
numerical attribute of a Martian site that is calculatedrfrits topography. Network descriptors are 4-dimensional
vectors. Applying a clustering algorithm to network degtors partitions the dataset intoclusters. Our metric is
used to assess the distance between those clusters and dfielssses predefined on the basis of geological units.

A. External Classes: Geological Units

Presently, the main tool for studying the Martian surfaced(ather planetary surfaces) is geologic mapping
[15]. A geologic map is a 2-dimensional projection of theiBwensional distribution of geological units, bodies
of rock that are thought to have formed by a particular preamsset of related processes over a discrete time
span [24]. In a terrestrial context, geological units areedrined from in situ inspections. In a Martian context,
however, these units are determined from images througbgtaphical expressions. A geologic map is a thematic
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Fig. 5. A comparison of our approach with the attribute iretefence approach on four artificial datasets. The differdretween the
means varies from zero standard deviations (upper leftpum standard deviations (bottom right).

map of geological units, an encapsulation of a huge amoumfofmation into a concise output by means of
human interpretation.

Figure 6 shows an example of a geologic map. The East Mangdlas\wegion on Mars (coordinates of the
site’s center are: -147.56E, 9.95S) has been manually mdafopieldle panel) from imagery data (left panel). The
site has been divided [25] into geological units indicatgdilfferent colors and labeled in the legend (right panel).
The criteria considered by a geologist in making this dassincludes terrain texture, geological structure, age,
and stratigraphy. The labels given to geological units d@tsuts for longer natural language descriptions. For
example, the unit Npll is described as “highly cratered enesurface of moderate relief; fractures, faults, and small
channels common.” The vast majority of geological unitsehaames that start with letters N, H, or A indicating
Noachian, Hesperian, and Amazonian stratigraphic epaebpgectively. However, sometimes mappers encounter a
terrain that is specific to a given site and assign it a namsidribf the general framework. An example of such
assignment are units C1 to C4 on Figure 6.

B. Quantitative Characterization of Martian Surfaces

Geological units are the traditional, qualitative meanglagsifying Martian surfaces. One shortcoming of such
classification is that it cannot be automated. Given the aasbunt of data collected by spacecrafts, the field
of Martian geomorphology would benefit from an automatedymiative classification of surfaces. A stumbling
block to the development of such an automated classificédidime lack of an adequate yet concise mathematical
representation of a topographic surface. It has been peopd¥] that a binary tree data structure (tantamount to
a terrain’s “drainage” network) provides such a repregemtaWe explain such representation next.

An automated classification of Martian surfaces uses didgitpography data. Martian topography data was
gathered by the Mars Orbiter Laser Altimeter (MOLA) instemh[26]. This data was subsequently used to construct
the Mission Experiment Gridded Data Records (MEGDR) [27]Jolhbare global topographic maps of Mars with



11

Fig. 6. (left) Image of East Mangala Valles region on Marse Width of this side is~ 340 km. (middle) The geologic map of Mangala
Valles region. Different geological units are indicated different colors. (right) The legends for the geologic mamptoe left.

node #1 ~—— outlet

node #2
(@l &)

Fig. 7. (left) Visual rendering of an elevation field of NakgpVallis region on Mars (31.3E, 6.6N). The black line shoiws boundary of
the catchment and the blue lines show the drainage netwoakbitfary penetration into the catchment. (right) The hinaee representing
the “drainage” network. Red dots indicate three points térigst, an outlet and two out of 145 nodes. Valuega,df, ande are calculated
and stored at the nodes of the tree.

a resolution of~ 0.5 km. For a site of interest the MEGDR is used to construct aaigilevation model (DEM)

of the site. The DEM is a regular grid of cells with assigneglvation values. A hydrology-inspired algorithm was
designed [17] for quantitative analysis of surfaces asesgnted by DEMs. The algorithm can be thought of as
subjecting a surface to “artificial rain” and registeringahib drains. The term “drain” is used here as a metaphor
for connectivity between different points on the surfacbe Tesultant drainage pattern characterizes the texture
and structure of the surface.

Specifically, a point called an outlet is selected and thdigroiof the surface that ultimately drains through this
point is called a catchment. A drainage network is the pathefcatchment where the flow is concentrated. The
extent of penetration of the network into the catchment jssteble, the network can reach into every cell in the
catchment. The network has a spanning binary tree geométnyanw outlet being at the root of the tree. Figure 7
illustrates a relation between the surface, the catchnaemt,the drainage network.

The binary tree network doubles as a data structure withyavede .S holding values of three variables; an
area of catchment with an outlet &t [, length of the longest upstream path startingSate, potential energy
dissipated along a segment of the network terminating.atVe describe the network, and thus the catchment,
and ultimately the surface in terms of probability disttibn functions of these three variables. Reflecting the
fractal structure of the network, all three variables hawegr law distributionsP(a) o< a= (47, P(1) oc 1=+,
P(e) < e~(1+5) and a network can be statistically characterized by thesptaw indicesr, v, and3. An additional
variable,p, the uniformity of drainage density [16] is added to the ¢hpewer law indices to form a 4-dimensional
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Fig. 8. Nine clusters resulting from partition of datasetMdrtian sites with respect to the values of their networkcdgsors. Ellipsoids
represent 3-dimensional projections of clusters in thémedsional space.

vector (1,7, 3, p) which we call a network descriptor. A network descriptoryides an algorithmically derived,
guantitative characterization of a surface that is indepehfrom a descriptive characterization using geological
units.

V. EMPIRICAL STUDY

Our dataset consists of 386 Martian sites taken from a widgeaf Martian latitudes and elevations. They
represent all three major epochs and are classifiedrinte= 16 different geological units (classes): Npl1(28),
Npl2(17), Npld(41), Nple(8), NpIr(31), Nh1(11), Had(1%)h3(12), HNu(16), Hpl3(14), Hr(72), Hvk(32), Ael1(10),
Aoa(15), Apk(38), and Aps(26). The numerical values betwearentheses indicate the number of sites in a given
class. We have clustered the dataset of 386 Martian sitésragpect to the similarity of their network descriptors.
Our empirical study is divided into three steps: 1) an irkbassessment of the quality of the clusters alone; 2) an
external cluster assessment by looking at the separatioveba clusters and classes (geological units) using our
proposed approach; and 3) a geomorphic interpretationeotlinsters.

A. Assessing the Quality of Clusters Alone

We cluster the dataset of Martian sites with respect to thefwork descriptors using a probabilistic clustering
algorithm. The algorithm assumes a data objedielongs to a clustek’; with a posterior probabilityP (X;|x).
Objectx is assigned to the cluster exhibiting highest posteriobahbility (i.e., objectx belongs to clustefC; if
P(IC]‘X) > P(IC[’X), l=1...n,l1 7&])

The algorithm works under a Bayesian framework. The pastgniobability of a clusteiC; given an example
x IS expressed as follows:

P(x|K;)P(K))

P(K;lx) = S P(x|K)P(K) -
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Since the denominator is constant for all clusters we capedise with it. We then assign clust€r to example
x if it maximizes P(x|IC;)P(K;). This requires an estimation of the parameter veéjocharacterizingP (x|/C;)
(if assuming a Gaussian distributiéh = [, ¥;]), and the a priori probability”(C;). Such estimations can be
performed using the Expectation Maximization (EM) techugi¢28]. Since the number of clusters is assumed to
be known, the algorithm tries different values using cresidatior?.

The dataset of 386 Martian sites was partitioned into ninestels labeled C1(23), C2(28), C3(37), C4(49),
C5(29), C6(35), C7(16), C8(129), and C9(40). The numenedlies between parentheses indicate the number of
sites in a given cluster. Each cluster can be representeddadiraensional ellipsoid in théy, 7, 3, p) space. The
center of an ellipsoid is &t(v), (), (5), (p)), where the means are calculated over the objects belongiagyiven
cluster. For visualization purposes, the length of eadpsglid’s semi-axis is equivalent to one standard deviation
(extracted from the diagonal of the covariance matrix).

Figure 8 shows a projection of ellipsoids representing e rclusters onto théy, 7, p) spacé. The clusters are
well separated in the space indicating that our dataset bas Hivided into distinct groups. Similar projections
onto the three other possible 3-dimensional sub-spacdsmaihis conclusion. To assess quantitatively the quality
of our clusters we have calculateddax 9 matrix of Kullback-Leibler distances between the clustgotlowing
the methodology of section Ill). Of course, the diagonatkiestin this matrix are all equal to zero. The smallest
off diagonal entry, corresponding to the distance betwkerctuster C3 and C9 equals$.45. Even this smallest
distance indicates a significant separation (see Tableh®)largest off diagonal entry, corresponding to the distanc
between the clusters C7 and C8, equi@l84. The average distancel$.18, and the standard deviationd$5. Thus,
our clustering of Martian sites resulted in a meaningfussiication. A physical interpretation of this classifioati
is attempted in section 5.3.

B. Comparing Clusters to Geological Units

We now assess the degree of separation between the ninerslastd the sixteen Martian geological units
(classes). The network descriptors for the sites clasdffimda single geological unit form a “concentration” in the
(v, 7,8, p) space. Such a concentration can be represented as a 4-tinamdlipsoid employing the method used
in section 5.1 for cluster representation. Conceptudily,domparison between the clusters and the classes amounts
to assessing the degree of overlapping between the setsrresponding ellipsoids. In practice, the assessment
is achieved using our proposed approach (section IlI-D).nafe calculated 8 x 16 matrix of Kullback-Leibler
distances between the clusters and classes. The distaagefam a minimum of 0.3078 (between C4 and Hr)
to a maximum of 17.97 (between C7 and Had). The average distan2.97 and the standard deviation is 2.67.
Table 1 shows the Kullback-Leibler distances between etasind selected classes. The first column corresponds
to the nine clusters obtained by partitioning the datas@faiftian sites on the basis of similarity between network
descriptors. For each row, the second column correspontietolass with smallest separation to that cluster, the
third column corresponds to the class with the second sstaéparation, and so on. We report on the five classes
with smallest separation for each cluster. Within paresdlewe show the identification label (the name of the
geological unit) for each class. As a baseline for comparid@able 2 shows the degree of separation using our
proposed approach between two one-dimensional Gaussanrbdiions having the same variance. The columns
indicate the difference between the means in units of standeviation.

The results in Table 1 indicate that none of the nine clustarsserve as a surrogate for any geological units. For
a cluster to be consider a candidate for class surrogatéultsack-Leibler distance to that class should be small,
and its distances to all other classes should be large. Smoe of the nine clusters meets such criteria, we conclude
our results point to a new classification of Martian sites.eepler analysis of Table 1 shows that cluster C4 has a
relatively small separation values from a number of cladgdesNpll, Nplr, and Npl2. These separation values have
similar magnitudes, but none stands out as significantlyllemiénan the others. Closer examination reveals that
sites in those four different classes are distributed siryilin the (v, 7, 3, p) space. The Kullback-Leibler distances
between pairs of these classes are all smaller than 0.34, Tl ellipsoids representing Hr, Npll, Nplr, and Npl2
are all very similar to each other. The smaller ellipsoidresenting C4 is located inside the other four ellipsoids.
This geometry explains why the separation between clusfea@l the other four classes is similar and small.
Clearly, cluster C4 groups catchments that occur often imtita terrain classified as Hr, Npl1, Nplr, and Npl2.
However, the differences between these surfaces, prdyiaentified by geologists, are not readily encapsulated
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Geological Units
Clusters Most Similar 2nd 3rd 4rd 5th
C1 1.4622 (Hr) 1.489 (NpIr) 1.502 (Npld) | 1.5983 (Hh3) | 1.8741 (NpIl)
C2 0.6015 (Aoa) | 0.7812 (HpI3) 0.823 (Nple) | 0.8438 (Hvk) | 1.4669 (Aell)
C3 0.9738 (Nh1) 0.9908 (Apk) | 1.0827 (Npll) 1.1275 (Aps) 1.1356 (Hvk)
C4 0.3078 (Hr) | 0.3584 (Npll) | 0.4127 (NpIr) | 0.5756 (Npl2) | 0.7287 (Aps)
C5 0.8789 (Hh3) | 1.6257 (NplIr) | 1.6997 (Npll) 2.011 (Hr) | 2.0254 (Npid)
C6 1.08I8 (Hvk) | 1.3423 (Aell) | L1.7171 (Hpl3) | 1.7177 (Had) | 1.8053 (Npld)
C7 1.1037 (NpIr) | 1.7299 (Npll) | 3.1915 (Nple) | 3.6975 (Npl2) 5.038 (HNuU)
Cs8 0.3461 (HVK) | 0.4909 (Aell) | 0.5942 (Apk) | 0.7608 (Aps) 0.764 (HNu)
C9 0.9535 (Nplr) | 1.2416 (NhI) | 1.2812 (Aps) | 1.3445 (Hpi3) 1.3565 (Hr)
TABLE I
A MEASURE OF THE DEGREE OF SEPARATION BETWEEN TWO ONBIMENSIONAL GAUSSIAN DISTRIBUTIONS, f1 AND f2, WITH EQUAL
VARIANCE.

Difference between the means
020 [ 040 | 060 | 080 | 1.00 | 1.20 | 140 | 160 | 1.80 | 200 | 220

U(f1, f2) 0.02| 0.08| 0.18| 0.32| 050| 0.72| 098] 128| 162| 2.00| 242

by network descriptors. The most populous cluster C8 graapshments that are typical for many surfaces. This
is why it also has relatively small separations from a nundfeclasses. Its average distance from all 16 classes
is 0.97 with a standard deviation of 0.41. On the other hahater C1 groups peculiar catchments that are not
common on any surfaces. These are interiors of large cradars result, cluster C1 is well separated from all
classes. Its average distance from all 16 classes is 3.22andtandard deviation of 1.51.

C. Physical Interpretation of Clusters

Using our method for external cluster assessment, we wdeetaldetermine that partitioning the dataset of
Martian sites on the basis of network descriptors producedve! classification that does not match the traditional
classification based on geological units. In general, theaiassification pertains to the character of catchments. Th
most populous cluster, C8, groups sites with network dpsms describing a catchment that has a character common
to many Martian (and terrestrial) terrains. This charactarld be succinctly described as moderate elongation. In
contrast, cluster C9 groups sites with network descrigtafgating “square” catchments without much elongation;
cluster C6 groups sites with narrow, elongated catchméntemains an open question to explain how the shape
of a catchment relates to terrain attributes such as texstmacture, and stratigraphy.

Figure 9 shows an example of the difference between catctshapes and more traditional geomorphic attributes.
Four Martian surfaces are shown in2ax 2 matrix arrangement. Surfaces in the same row belong to thee sa
geological unit, surfaces in the same column belong to teesealuster. The top two sites show two surfaces
from the Hr geological unit that is described as "ridged mpdaimoderately cratered, marked by long ridges.” These
features can indeed be seen in the two surfaces. Despitdesxtane similarity they have very different catchments
as indicated by their drainage networks. The bottom twossiteow two surfaces from the Apk unit described
as "smooth plain with conical hills or knobs.” Again, lookirat Figure 9 it is easy to see the similarity between
these two surfaces based on that description. Neverthéhestvo terrains have catchments with markedly different
character. On the basis of catchment similarity, thesedatfaces could be divided vertically instead of horizdgtal
Such division corresponds to our cluster partition.

VI. SUMMARY AND CONCLUSIONS

Clustering algorithms arrange data objects into groups ¢bavey potentially meaningful and novel domain
interpretations. When the same data objects have beeropstyiframed into a particular classification scheme,
the value of each cluster can be assessed by estimating gineedef separation between the cluster and its most
similar class. In this paper we propose an approach to extelaster assessment based on modeling each cluster
and class as a multivariate Gaussian distribution; the edegf separation between both distributions follows an
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Fig. 9. Four Martian surfaces from two different geologicaits and belonging to two different clusters. Binary tresygesenting “drainage”
networks are drawn on top of the surfaces.

information-theoretic measure known as relative entrapi{uiback Leibler distance. Compared to previous work,
our method evaluates each cluster individually and empéoysobabilistic model (as opposed to a contingency
table) in estimating the separation between class andeclust

Our approach achieves a balance between the computatmstadfcapproximating the separation of two distribu-
tions when integrating over the whole attribute space, agpaved to integrating over each attribute independently.
In the first case, the cost of integrating over high dimerali@paces soon turns intractable even for moderately
low number of attributes. In the second case, two non-oppitay distributions in the attribute space may appear
highly overlapped when projected over each attribute. Quor@ach estimates the separation of two distributions
along a single dimension, by projecting all data objects ¢he vector that lies orthogonal to the hyperplane that
maximizes the separation between cluster and class (ushgrs Linear Discriminant).

We test our approach on a dataset of Martian surfaces by aingptheir description-based classification into
geological units with a new, algorithm-based division. ndsibur approach we have determined that a particular
automated classification, based on hydrology-inspirelbas, cannot be used in place of geological units. Instead
we discovered the Martian dataset can be divided into higlityuclusters with respect to these novel variables.

Future work will assess the value of clusters obtained witr@ative algorithms (other than the probabilistic
algorithm used in section V-A). We also plan to devise bettedelling techniques for the external class distribution.
Our approach assumes each cluster can be modelled througtltimanate Gaussian distribution; while this
assumption is reasonable due to the expected local natwacbf cluster, the same assumption comes unwarranted
for external classes (their nature is often unknown). Aeralitive approach is to model each external class as
a mixture of models. Finally, one line of research is to desitustering algorithms that search for clusters in a
direction that maximizes a metric of relevanceimmierestingnesas dictated by an external classification scheme.
Specifically, a clustering algorithm can be set to optimizaedric that rewards clusters exhibiting little (conveysel
strong) resemblance to existing classes.
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Footnotes

1) Department of Computer Science, University of Houst@®Calhoun Rd., Houston TX 77204-3010, USA.

2) Lunar and Planetary Institute. 3600 Bay Area Blvd, HonsSIX 77058-1113, USA.

3) A third type of cluster validation, callegtlative, compares different clustering structures obtained frben t
same clustering algorithm [8].

4) We consider a flat type of clustering (as opposed to hibigat) where each object is assigned to exactly
only cluster.

5) The projections have a clear geometrical interpretatitven performed ovew, = % Vector wyg is a
normalized vector (i.el}/wo|| = 1). But the magnitude ofv is of no consequence; I*w’l # 1 the result is
simply a change on the scale of

6) The integral runs along values offor which f;(z) > 0 (i.e., runs along the support set ¢f). We assume
thatOlog% = 0, and thatvz(fj(z) > 0) — (f;(z) > 0) (i.e., the support set of; is embedded in the support
set of f)).

7) Note that althougtD(f/[|f]) > 0,
relative entropy is not a true distance because it is not sstmen[23]; that isD(f;[f]) # D(f;lIf})-

8) The algorithm is part of the WEKA machine-learning too9]2

9) We use a projection to facilitate visualization of ourstkrs.

10) The matrix is not symmetric aB(f;||f]) # D(f;||f;). When referring to the distance between two clusters
CA and CB we assume that particular order (i.e., we assidy& || f};))-
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