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Abstract  

In developing suitable numerical techniques for computational aero-acoustics, the Dispersion-
Relation-Preserving (DRP) scheme by Tam and coworkers, and the optimized prefactored compact (OPC) 
scheme by Ashcroft and Zhang have shown desirable properties of reducing both dissipative and 
dispersive errors. These schemes, originally based on the finite difference, attempt to optimize the 
coefficients for better resolution of short waves with respect to the computational grid while maintaining 
pre-determined formal orders of accuracy. In the present study, finite volume formulations of both 
schemes are presented to better handle the nonlinearity and complex geometry encountered in many 
engineering applications. Linear and nonlinear wave equations, with and without viscous dissipation, have 
been adopted as the test problems.  Highlighting the principal characteristics of the schemes and utilizing 
linear and nonlinear wave equations with different wavelengths as the test cases, the performance of these 
approaches is documented. For the linear wave equation, there is no major difference between the DRP 
and OPC schemes. For the nonlinear wave equations, the finite volume version of both DRP and OPC 
schemes offer substantially better solutions in regions of high gradient or discontinuity.   
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Abstract 
 

In developing suitable numerical techniques for computational aero-acoustics, the Dispersion-
Relation-Preserving (DRP) scheme by Tam and coworkers, and the optimized prefactored compact (OPC) 
scheme by Ashcroft and Zhang have shown desirable properties of reducing both dissipative and 
dispersive errors. These schemes, originally based on the finite difference, attempt to optimize the 
coefficients for better resolution of short waves with respect to the computational grid while maintaining 
pre-determined formal orders of accuracy. In the present study, finite volume formulations of both 
schemes are presented to better handle the nonlinearity and complex geometry encountered in many 
engineering applications. Linear and nonlinear wave equations, with and without viscous dissipation, have 
been adopted as the test problems.  Highlighting the principal characteristics of the schemes and utilizing 
linear and nonlinear wave equations with different wavelengths as the test cases, the performance of these 
approaches is documented. For the linear wave equation, there is no major difference between the DRP 
and OPC schemes. For the nonlinear wave equations, the finite volume version of both DRP and OPC 
schemes offer substantially better solutions in regions of high gradient or discontinuity.   

 
Nomenclature   

c  sound speed (Eq.(1), (7), (8)) 

CFL  Courant – Friedrichs – Lewy number =              

Di                     derivative in point i (Eq.(35)) 

Di
F, Di

B           Forward and Backward derivative operators in the point i (Eqs.(24) - (26), (33), (34)) 

 E error (Eqs.(4), (27), (78) - (80)) 

fd  finite difference 

fv  finite volume 

K(i)                  function computed in the stage i, in the Runge-Kutta time integration (Eqs.(46),(47))  

Pe Peclet number =  

si, eN-i              coefficients used to compute the derivative operator on the boundary, for 
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                       OPC scheme (Eq.(33), (34), (37), (38)) 

t  time 

ui
Be, ui

Fe  forward, and backward operator computed on east face in the cell i (Eqs. (29)-(32), (57)- 

(60), (66) - (69)) 

ui
Bw, ui

Fw forward, and backward operator computed on west face in the cell i (Eqs. (29)-(32), (57)- 

(60), (66) - (69)) 

ui
e                    the value of parameter u on face e, in cell i (Eq.(35), (36), (55), (56)(89), (91)) 

ui
w                    the value of parameter u on face w, in cell i (Eq.(35), (36), (55), (56)(89), (91)) 

u(m)  the value of function u in the stage m in the Runge-Kutta time integration (Eqs. (46),(47)) 

un the value of function u in the n iteration, it is related to time integration (Eqs. (41)(42), (46)  

(47)) 

x, y  coordinate in space 

Δx, Δy, Δt length of grid in space, in x and y direction, respecyively time step size 

,  wavenumber of a space marching scheme (Eqs.(3), (4), (27) ) 

α wavenumber (Eq.(3), (70)) 

µ viscosity (Eq.(92)-(96)) 

ω*  angular frequency (Eqs. (42), (43),(72), (73)) 

()F,  ()B             parameter designed for forward, respectively  backward operator  (Eqs.(25), (26), (37), 

(38)) 

 

  

 
1. Introduction 

 
In computational aero-acoustics (CAA) accurate prediction of the generation of sound is 

demanding due the requirement of preserving the shape and frequency of wave propagation and 
generation. Furthermore, the numerical schemes need to handle multiple scales, including long and short 
waves, and nonlinear governing laws arising from sources such as turbulence, shocks, interaction between 
fluid flows and elastic structures, and complex geometries. It is well recognized (Hardin and Hussaini [1], 
Tam and coworkers [2, 3]) that in order to conduct satisfactory CAA, numerical schemes should induce 
minimal dispersion and dissipation errors. In general, higher-order schemes would be more suitable for 
CAA than the lower-order schemes since, overall, the former are less dissipative. That is why higher-order 
spatial discretization schemes have gained considerable interest in computational acoustics [4, 5, 6]. Table 
1 summarizes several approaches proposed in the literature. 
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For longer wavelengths, the formal order of accuracy is sufficient to indicate the performance of a 
scheme. However, for shorter waves relative to the grid size, it is known that the leading truncation error 
terms are not good indicators [7, 8]. To handle broad band waves, the idea of optimizing the scheme 
coefficients via minimizing the truncation error associated with a particular range of wave numbers has 
been used over the years by many researchers, e.g., Refs.[9-16] . A successful approach is the Dispersion-
Relation-Preserving (DRP) finite difference scheme proposed by Tam and coworkers [2, 3]. The basic 
idea in the DRP scheme is to optimize coefficients to satisfactorily resolve short waves with respect to the 
computational grid, namely, waves with wavelengths of 6-8Δx (defined as 6-8 points per wave or PPW) or 
shorter. It maximizes the accuracy by matching the wave number and frequency characteristics between 
the analytical and the numerical operators in the range of resolvable scales.  Recently, Ashcroft and Zhang 
[15] have reported a strategy for developing optimized prefactored compact (OPC) schemes, requiring 
smaller stencil support than DRP. The prefactorization strategy splits the central implicit schemes into 
forward and backward biased operators. Using Fourier analysis, they have shown that it is possible to 
select the coefficients of the biased operators such that their dispersion characteristics match those of the 
original central compact scheme. Hixon and Turkel [17] proved that the “prefactored scheme is equivalent 
to the initial compact scheme if: i) the real components of forward and backward operators are equal to 
those at the corresponding wavenumber of the original compact scheme; ii) the imaginary components of 
the forward and backward operators are equal in magnitude and opposite in sign. 

Both DRP and OPC schemes are originally designed based on the finite difference approach. In 
order to satisfy the governing laws of the fluid physics, it can be advantageous to adopt the finite volume 
approach [18 - 20], which ensures that fluxes estimated from different sides of the same surface are 
identical, i.e., no spurious source/sink is generated due to numerical treatment. Such a requirement is 
particularly important when nonlinearity is involved, as is typically the case in shock and turbulence 
aspects of the aero-acoustic computations. Furthermore, a finite volume formulation can offer an easier 
framework to handle the irregular geometry and moving boundaries. In this work, we extend the concept 
embodied in the original, finite difference-based DRP scheme (which we call DRP–fd) to a finite volume 
formulation (which we call DRP-fv). Similarly, for the OPC-scheme, we extend the basic concepts of the 
original, finite difference-based OPC (OPC-fd) scheme, to a finite volume formulation, called OPC-fv. 
Our overall goal is to develop the finite volume version of DRP and OPC schemes into a cut-cell type of 
Cartesian-grid computational technique that we have developed earlier for moving and complex boundary 
computations [19- 22] to treat aero-acoustic problems needed for engineering practices.  

In this paper, we present the finite volume formulation of both DRP and OPC schemes, and assess 
both fd and fv versions of the DRP and OPC schemes, using well defined test problems to facilitate 
systematic evaluations. Both linear and nonlinear wave equations with different wavelengths and viscous 
effects are utilized for direct comparisons. In the following, we first summarize the essence of the 
individual schemes, including derivations, then present assessment of the test cases. 

 
 
2. Numerical Schemes 
    
In the following we use the following one-dimensional wave equation to facilitate the development 

and presentation of the concept and numerical procedures:  
 

  (1) 
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The equation contains time and space derivative. In our work the space derivative term is treated with 
either DRP or OPC scheme, and the time derivative by a Low –Dissipation and Low-Dispersion Runge-
Kutta (LDDRK) scheme [9], to be discussed later. 

In the section 2.1 we first summarize the original finite difference procedure of DRP. In Sec. 2.2,  
we present the finite volume version of DRP.  The boundary treatment of the DRP schemes is presented in 
section 2.3. 

The OPC scheme is the second method considered for the space derivative. The finite difference 
procedure of the OPC scheme is offered in section 2.4. The extension of this approach to a finite volume 
framework is presented in 2.5. The specific boundary treatment of OPC schemes is given in 2.6. 

In section 2.7, the  LDDRK scheme [9] is presented. As mentioned earlier, this scheme is used to 
approximate time derivative in all treatment trough. 

 
 
2.1. Discretization in space - The Finite Difference-Based DRP Scheme (DRP-fd) 
 

Consider the simple one-dimensional wave equation, 
In [2, 3], the discretization in space is given by:  
 

  (2) 

  
where Δx is the space grid, and coefficients aj are constant. This approach is based on two goals: (i) the 
behavior of the numerical solution in the resolvable wavenumber range closely matches that of the exact 
solution, and (ii) the formal order of accuracy of scheme spanning 2N + 1 nodes is 2(N - 1). 

To obtain the value of the wave number of the scheme the author used the Fourier transform and 
shift theorems 

  

                     (3) 

 
The goal is to ensure that  (wavenumber of the scheme) is as close to α as possible. To 

accomplish this goal the error is minimized over a certain wavenumber range, αΔx ∈[−η; η] − the 
numerical dispersion is reduced by specifying the range of optimization [2, 3] 

 

  (4) 

 
It is noted that  is real, and hence the coefficients aj must be anti-symmetric, i.e., 
 
 a0 = 0 and a-j = -aj. (5) 
 
On substituting Eq. (3) into Eq.(4), and taking Eq. (5) into account, E can be written as, 
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  (6) 

 
where λ = αΔx 

The coefficients are determined by imposing a certain order of accuracy to the scheme, and 
minimizing the error E.  

 
 

2.2. The Finite Volume-Based DRP Scheme (DRP-fv) 
To incorporate the DRP-fd concept into a finite volume framework, let us consider a one-

dimensional linear wave equation: 
 

  (7) 

 
To derive the discredized equation, we employ the grid point cluster shown in Figure 1. We focus 

on the grid point i, which has the grid points i -1, and i+1 as its neighbors. The dashed lines define the 
control volume, and letters e and w denote east and west faces, respectively, of the control volume. For the 
one-dimensional problem under consideration, we assume a unit thickness in the y and z directions; thus, 
we obtain  

 

   (8) 

 
where (Aφ)e and (Aφ)w are the flux across the east and west face, respectively. 

Hence, the discretized wave equation (7) can be written as 
 

  (9) 

 
where is the averaged value of φ over a control volume. 

Taking into account Eq. (9) we describe the general form of the approximation of  in 1-D using 

the control volume concept: 
 

  (10) 

 
The general form of the DRP scheme is: 
 

  (11) 
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where Δx is the space grid, and coefficients aj are constant. 
The DRP scheme has a general form similar to the central difference approximation. Hence, one 

can adopt a central difference scheme to express φe in the neighborhood: 
 
   (12) 
 
   (13) 
 

Taking into consideration Eqs. (10), (11), (12) and, (13) we obtain the values of the βi, i=1,…,6 by 
imposing that the value of φ at the same locations has the same values as that of the DRP-fd. 
 

  (14) 

 
Hence, the values of coefficients β’s are 

 

  (15) 

To illustrate the above-described concept, we consider the following equation:   
 

  (16) 

If we integrate Eq. (16) on the surface we have (see Figure 2):  
 

   (17) 

 
The resulting DRP-fv  scheme is: 
 

  (18) 

 
where  
 

  (19) 

 
  (20) 
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  (21) 
 
  (22) 
 

  (23) 
 
 
 
 
 

2.3. The Boundary Treatment of the DRP scheme 
 

The current version of the DRP scheme requires seven grid points in space. Consequently, it is 
necessary to impose some supplementary condition for boundary treatments. In this regard, Tam and 
Webb [2] devise ghost points. The minimum number of ghost points is equal to the number of boundary 
conditions. For example, for an inviscid flow the condition of no flux through the wall requires a 
minimum of one ghost value per boundary point on the wall. It is desirable to use a minimum number of 
ghost points to maintain simplicity in coding and structuring data.  

In this paper we use only backward difference for grid points near the computational boundary and 
a ghost point is used only for wall boundary condition. 

 
 
 

2.4.  The Finite-Difference-Based Optimized Prefactored Compact (OPC-fd) Scheme 
 

To derive the factorized compact scheme Ashcroft and Zhang [15] define forward and backward 
operators  and , such that 

 

  (24) 

The generic stencil for the forward and backward derivative operators are then defined as: 
 

  (25)  

 

  (26) 

 
The coefficients of the scheme are chosen such that: i) the wavenumber of the scheme is close to 

the important wavenumber of the exact solution; ii) the imaginary components of the forward and 
backward stencil are equal in magnitude and opposite in sign, and the real components are equal and 
identical to original compact scheme; iii) the scheme preserves a certain order of accuracy.  The authors 
[15] define the integrated error (weighted deviation) as: 



 

 
 

9 

 
  (27)  

 
where W(αΔx) is a weighting function, and r is a factor to determine the optimization range (0< r < 1). 
The integrated error, defined in Eq.(27), is different from the one of Tam and Web [2] in that it contains 
the weighting function. The coefficients are obtained by imposing that, within a given asymptotic order, 
the error is minimal. In space discretization, one sacrifices formal order of accuracy in favor of wide-band 
performance, especially for the short wave components.  

 
 
2.5. The Finite Volume-Based OPC Scheme (OPC-fv) 

 
Taking into account Equation (8) that describes the approximation of the first derivative in the 

finite volume formulation, equations that describe the OPC scheme, (25) and (26), and the idea that the 
general form of approximation of the function for points at the center of the cell face, namely, e and w 
assumes similar forms : 

  (28) 

 
where uFe, uBe, uFw and uBw are determined from: 
 

  (29) 
  
  (30) 
 
  (31) 
 
  (32) 
 

where the coefficients are the same as those in the OPC-fd scheme: η = ηF= γB, β = βF= βB, b = bB= -dB, 
d= = dF. = -bB. These relationships among forward and backward operators are obtained by Ashcroft and 
Zhang [15]. 
 

 
2.6. The boundary treatment of the OPC scheme 
 
Boundary Formulation of the OPC scheme employs a biased explicit stencil. Ashcroft and Zhang 

[15] design OPC – fd scheme with the follow boundary stencil:  
 

  (33) 
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and 
 

  (34) 

 
where the coefficients sj and ej are determined by matching the Taylor series of the forward and backward 
compact interior stencils to third-order accuracy. 

The boundary treatment in case of OPC-fv approach is similar to that of OPC–fd, but the boundary 
stencil is computed on the face: 
 

 Di  =  (uA)i
e –(uA)i

w (35) 
 

  (36) 

 
where the value of the coefficients are: 
 

  (37) 

 

  (38) 

  
 

2.7. Time discretization – the Low Dispersion and Dissipation Runge-Kutta (LDDRK) method  
 
Hu et al.[9] consider time integration using the Runge-Kutta algorithm of the differential equation 

   

    (39) 

 
where the operator F is a function of u. An explicit p-stage algorithm advances the solution of Equation 
(39) from the nth to the (n + 1)th iteration as 
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  (40) 

 
where  

− bp = 1, 
− u(p), where p indicates the stage in algorithm advances 
− un+1, where n indicates the number of iterations for time dependent computation 

The vale of the un+1 can be written on short like  

  (41) 

 
The resulting algorithm is obtained by optimizing the dispersion and dissipation properties. 

Assuming F(u) is linear and applying temporal Fourier transform to (41), the amplification factor is given 
by 

 

  (42) 

 
The exact amplification factor is 
 

  (43) 
 

The numerical amplification factor r in (42) is viewed as an approximation of the exact factor.  
The order of the optimized Runge-Kutta scheme is indicated by the leading coefficient in (42) that 
matches the Taylor series expansion of e-iσ. For instance, the third order algorithm is obtained by setting γj 
=1/j! for j=1, 2 and 3. 

 To compare the numerical and exact solutions we take into consideration the ratio: 
 

  (44) 

 
where |r| represents the dissipation rate (obviously, the correct value should be 1), and δ represents the 
phase error (or dispersive error) where the correct value should be 0.  
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Hu et al [9] obtained coefficients of the low dispersion and low dissipation Runge-Kutta (LDDRK) 
scheme by  imposing that: i) the scheme has certain order of  accuracy, ii) the error of the amplification 
factor of the scheme is minimized, which means that both dispersion and dissipation errors are minimized. 
In other words the following integral is minimized: 

 

  (45) 

 
and iii) the amplification factor of the scheme is less than one within the given stability limit 

In this work we use a two-step alternating scheme: in odd steps we use four stages and in the even 
steps we use six stages. The scheme is a fourth-order accurate scheme in time for a linear problem and 
second-order accurate for a nonlinear problem. The advantage of the alternating schemes is that, when two 
steps are combined, the dispersion and the dissipation errors can be reduced and higher order of accuracy 
can be maintained. The specific procedure is given bellow. 

1. four-stage 

  (46) 

2. six-stage 
 

  (47)  

In the follow we will give an example implementation of LDDRK scheme when we use OPC and 
DRP scheme for space discretization. Base on Eq.(1), the value of F in point l is defined as follow: 

− DRP – fd: 
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  (48) 

 
− DRP-fv: 

     Fl =-( ul e – ul w )/Δx                   (49)  
where 

 
  (50) 
 
  (51) 
 

In the linear case, the fv and fd schemes are equivalent.  
 

− OPC-fd  
 

  (52) 

 
where Dl

B and Dl
F are obtained from the following system of equations: 

 

  (53) 

 

  (54) 

where N represent the number of grid points in space. 
 

− OPC-fv 
   Fl = - c( ul

 e – ul
 w )/Δx        (55) 

Where  
 
 ul

 e= 0.5(ul
 Be + ul

Fe), and ul
w = 0.5(ul

Bw + ul
Fw) (56) 

 
The value of ul

Be,  ul
Fe, ul

Bw,  ul
Fw are obtained by solving the follow system of equations 

 
  (57) 
 
  (58) 
 
  (59) 
 
  (60) 
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3. Analytical Assessment of DRP and OPC Schemes 
 
3.1. Operation Counts 

 
We will compare the cost between the alternative approaches only for the approximation of the 

first derivative, because we employ the same time stepping scheme for both scheme.   
The efficient form of general formula for the discretization in space of the DRP–fd scheme is: 
 

  (61) 

 
This scheme requires a total of three multiplications and five additions to evaluate the first derivatives in a 
certain point. In case of DRP-fv the most efficient form of the computations scheme is: 
 

  (62) 

 

  (63) 

 
DRP–fv requires a greater number of operations than DRP-fd: six multiplications and eleven additions to 
compute the first derivatives at a given point.  

To see the computational cost of the OPC-fd scheme we adopt the most efficient form that is: 
 

   (64) 

  (65)  

 
where the relation between the coefficients of the forward and backward stencils have been substituted to 
highlight the equivalent terms in the two stencils. The operation count is then four multiplications and five 
additions per point [15]. 

OPC-fv can be written in the form:  
 

  (66) 

 

    (67) 
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where 
 

  (68) 

 

  (69) 

 
In this case the operation count is eleven additions and six multiplications per point 

So we can see also, in Table 2 the finite volume approach is computationally more expensive. 
 
 

3.2. Dispersive Characteristics 
 

The characteristics of the OPC and DRP schemes, in the finite difference form over the interval 0 to π,  
are shown in Figure 3. One can see that the difference between the effective wave number of the scheme 
and the real wave is maintained to be within 2% if αΔx < 1.30 for the DRP scheme, and αΔx < 1.84 for 
the OPC scheme. The dispersive characteristics of these schemes can be more clearly seen in Figure 4, 

which shows the phase speed error, , as a function of wave number on a log-arithmetic 

scale. We see that the DRP scheme has a somewhat larger error than the OPC scheme until around 3π/4. 
The error is maintained to be within 2% for αΔx less than 0.85 for the DRP scheme, and less than 1.53 for 
the OPC scheme. Overall, the OPC scheme yields slightly less dispersion error than the DRP scheme.  

The dispersive characteristics of LDDRK are obtained by studying the value of |r| and δ, i.e. 
dissipation rate and dispersion error (see equation  (44)), respectively. In Figure 5 we can see conditions of 
stability: |r|<1 for ω*Δt ≤ 2.52 .To obtain an accurate solution the dispersive characteristics (|r| and δ) 
should be close to the exact solution (|r| close to one and δ close to zero). Hu et al. [9] considered time 
accurate criterion ||r| -1| ≤ 0.001 (i.e ω*Δt ≤ 1.64), and δ ≤ 0.001 (i.e. ω*Δt ≤ 1.85). These two conditions 
are satisfied if ω*Δt ≤ 1.64.  

 
 

3.3. Stability of the schemes 
 

The Fourier-Laplace transformation of the wave equation (Eq.(1)) is 

 

  (70) 
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where α, ω* characterize the PDE . For the long wave we can approximate wavenumber of the scheme 
with wavenumber of the PDE 

  (71) 
which leads to 

  (72) 
Hence 

  (73) 
 

The condition of the numerical stability is that amplification factor for time discretization is less than 
1, and hence ω*Δt ≤ 2.52 (see Fig.5a). It is also noted from Figure 3 that  

 

  (74) 

hold true. By introducing Eq.  (74) into (73) and upon multiplying by Δt it is found that 

  (75) 

where M is mach number. From Fig.5a it is clear that the condition of stability is satisfied if |ω*Δt| is less 
than 2.52. Therefore to ensure numerical stability it is sufficient by Eq. (75) to restrict Δt to be less than 
Δtmax, where Δtmax is given by 

  (76) 

Therefore, for Δt < Δtmax the schemes are numerically stable. Consequently, the schemes yield the 
following criteria for numerical stability: 

  (77) 

Although it is clear that CFL≤1.4 is the stability condition for DRP scheme, this limit does not assure 
accuracy of the solution. In the previous analysis we have established that the solution is time accurate for 
4-6 LDRRK if ||r|-1| ≤ 0.001 and | δ | ≤ 0.001. But this limit is not fixed, but depends on the scheme that is 
used for space discretization. For example, in the case of the DRP scheme, the solution is considered time 
accurate as long as ||r|-1| ≤ 0.02 and | δ | ≤ 0.02, or ω*Δt ≤2.0. Hence, in this case the condition of being 
both accurate and stable is CFL ≤ 1.1 

The OPC scheme is less sensitive to the dispersive characteristics of the LDDRK scheme; hence 
CFL<1.2 is a condition of the stability and accuracy for the OPC scheme. This limit is in concordance 
with the stability analysis of Ashcroft and Zhang [15]. 

.  
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4. Computational Assessment of the DRP and OPC Schemes 
 

To investigate the behavior of the schemes, we will use four test problems. First, we consider a 
one-dimensional wave equation with constant speed. The purpose of this test is to check the accuracy, 
stability, dissipation and dispersion of the scheme. The second test problem is a one-dimensional non-
linear wave equation with no viscous dissipation. The purpose of this test case is to i) check the influence 
of singularities on the performance of the scheme, and ii) analyze dispersion properties when waves are 
coupled. In the third test problem, we consider the one-dimensional viscous Burgers equation, which 
contains unsteady, nonlinear convection and viscous terms. In this case we pay attention to the influence 
of the viscosity on the solution accuracy. The last test problem is a 2D acoustic scattering problem from 
the second CAA Workshop [35]. This problem tests the curved wall boundary and the capacity of the 
scheme to reproduce different wavelengths. 

To evaluate the solution accuracy, we define the error vector as: 
 
  (78) 

 
where  

             (79) 
 
U(xi) is the exact solution at the point xi, and ui is the numerical solution at the point xi .We choose to use 
the discrete L1 norm: 
 

  (80)  

 
to measure the order of accuracy in our numerical computations. 
 
 

4.1. Test problem 1:  One-Dimensional Linear Wave Equation 
 

To assess the behavior of the DRP and OPC schemes the following simple test problem is studied 
first. 

 

  (81) 

  

 ; at  t = 0 (82) 

 
which is a Gaussian profile. This is one of the test problems offered in the second CAA Workshop [35] 
The exact solution is: 
 



 

 
 

18 

  (83) 

 
In this study we evaluate the performance of the schemes in short, intermediate, and long waves relative to 
the grid spacing, which is assured by the value r/Δx.  

For time discretization, we previously presented the detailed formulas for the 4-6 LDDRK, see 
equations (46), and (47). 

Tam et al [2, 3] show that  is related to αΔx, and in function of αΔx they divided the wave 
spectrum into two categories; i) the long waves (waves for which , in this case αΔx is less than αΔxc, 
ii) the short waves (waves for which  is not close to α ). This difference between long and short waves 
is totally dependent upon the grid space. Hence, by inspecting the number of grid points on the 
wavelength, we can decide that we have a certain category of wave.  

In the following, we will present the results based on three categories: 
• long wave (r/Δx = 20) 
• intermediate wave (r/Δx = 6) 
• short wave (r/Δx = 3) 

The categories are defined according to the ratio r/Δx, where r is a parameter that characterizes the 
wavelength of this problem. This test problem is linear; hence we do not expect differences between finite 
difference and finite volume approach 

In regard to the time step selection, the CFL number (ν) limit is similar for all schemes. We can 
see from Figure 6 that the critical CFL number of both schemes is close to 1.1. From the study of the error 
in time for linear equations with constant convection speed it is clear that the DRP-fv and OPC-fv 
schemes have essentially the same behavior as the corresponding finite difference approach; hence, we 
only present comparison for DRP–fv and OPC-fv schemes. 

The error decreases when the grid size in space decreases until a critical value is reached. For all 
schemes the errors have slopes consistent with the formal order of accuracy in space. This conclusion is 
confirmed in Figure 7, where the CFL number is maintained at 0.5. For the long time scale solution, the 
accumulation of error for both DRP and OPC schemes is very close (as seen in Figure 7b). Here, we 
consider: i) different grid space, so both schemes have almost the same initial error, and ii) the same CFL 
number (0.5). This behavior is expected because both schemes present the same discretization in time. The 
DRP scheme presents a marginally faster accumulation of error in time. 

 
 

4.2. Test problem 2: One-Dimensional Nonlinear Wave Equation  
The finite volume and finite difference schemes are equivalent for a linear equation. The difference 

between them appears for the nonlinear convective equation. To observe the merits and similarities of 
DRP, and OPC schemes, we restrict ourselves to the 1-D case. In this test, a nonlinear wave equation with 
a different speed is solved:  

 

  (84) 

 
This equation is solved in the conservative form: 
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  (85) 

 
To better understand the effect of high gradients and discontinuities, we chose the following initial 
conditions: 
 

  (86) 

 
The solution for this problem can be written:  
 

  (87) 

 
In this case, for both DRP and OPC schemes, the finite difference version behaves differently from the 
finite volume version. In the Eqs.(46) and (47) the function F takes the form: 

• DRP-fd 

  (88)  

 
• DRP-fv  

  (89) 

 
where ue and uw are as defined before 

• OPC-fd  
  (90) 
 

where Di
B and Di

F is backward and forward derivative of u2 in place of u 
 

• OPC-fv 

  (91) 

 
where ue and uw are defined by (57) - (60) 

The similarities and differences for all three categories (short waves [Δx/U= 1.0], intermediate 
waves [Δx /U = 0.25], and long waves [Δx/U = 0.06]) are first presented. It should be noted again that the 
short, intermediate and long waves are defined based on the numerical resolution. Here, U is defined as 
the jump (umax - umin); in our case U = 1, hence in the on the following we discuss only the effect of the 
grid space step (Δx). 
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The evolution of the error as a function of grid spacing (Δx) is similar for both DRP and OPC 
schemes; the difference between the finite volume and finite difference versions are far greater, as shown 
in Figure 8. In the case of finite volume, error decreases with decreasing grid space. For finite difference, 
a totally different behavior is seen.  The error not only does not decrease when grid spacing decreases, but 
in fact increases, as seen in Figure 8, Figure 9 and Figure 11.  

For short waves, all solutions show substantial errors, but the finite difference schemes perform 
noticeably worse. In the case of intermediate or long waves, the finite volume schemes exhibit satisfactory 
or better performance than the finite difference schemes. 

 
 

4.3. Test problem 3:  One-Dimensional Nonlinear Burgers Equation 
 

In this test the solution for the one-dimensional nonlinear Burgers equation is evaluated.  
 

  (92) 

 
The numerical solution will approach equation (92) in conservative form; 
 

  (93) 

 
The initial condition is: 

  (94) 

 
In this case the exact solution is: 

 

  (95) 

 
The scheme described earlier for inviscid Burgers’ equation can also be applied to the current 

equation. This is accomplished by simply adding a second-order central-difference expression for the 
viscous term uxx. In other words Fi  is replaced by Hi

 

 
  (96) 
Because of the viscosity that characterizes the scheme in this case, it is expected that the solution 

of both approaches would be stable and similar. Hence this term will have a large influence over the value 
of the error.  

In our discussion, we will distinguish the following three categories of results: 
• short wave (Δx/µ = 10) 
• intermediate wave (Δx/µ = 3 ) 
• long wave (Δx/µ = 1) 
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In this case the numerical performance is affected by two parameters: the CFL number and the Peclet 
number (Pe=UΔx /µ).  

First we compare the solution of all four schemes as function of the Peclet number (Pe) under 
constant CFL number (0.2). The value of CFL number is fixed at 0.2, because the critical value for all 
schemes is much lower in the present case than for the linear case. The behavior of the error is similar 
among DRP-fv, DRP-fd, OPC-fd and OPC-fv: the error increases with increasing Peclet number, until a 
certain value beyond which the schemes can no longer perform satisfactorily.  

For the four schemes (DRP-fv, DRP-fd, and OPC-fv, OPC-fd), the solution and error are very 
similar for all categories of wave, as shown in Figure 13, Figure 14 and Figure 15. For long waves the 
solution is reproduced with high accuracy with all four schemes, but the finite volume approach presents a 
slightly higher accuracy than the finite difference schemes. The error for the intermediate wave is nearly 
the same with all four approaches. 

 
 
4.4. Test problem 4:  Two-Dimensional Acoustic Scattering Problem 

 
To check the accuracy of the finite volume schemes in multi-dimensional situations, we consider a 

test problem from the Second CAA Workshop [35]: the two-dimensional acoustic scattering problem. The 
physical problem is to find the sound field generated by a propeller scattered off by the fuselage of an 
aircraft. The pressure loading on the fuselage is an input to the interior noise problem. The fuselage is 
idealized by a circular cylinder and the noise source (propeller) as a line source so that the computational 
problem is two-dimensional. The cylinder has a radius of R = 0.5 and is located at the center of the 
domain.  

The linearized Euler equations in polar coordinates are: 

  (97) 

At time t = 0, the initial conditions are: 
ur = uθ = 0                                                                        (98) 

  (99) 

The test problem asks for the unsteady pressure time history at three points A(r=5, θ = 900), B(r=5, 
θ = 1350) and C(r=5, θ = 1800), over the interval t = 5 → 10. 

The numerical computations were performed over the domain: R∈ [0.5, 10.5] and θ ∈ [0, 2π]. For 
this problem three kinds of the boundary conditions are needed: 

• Wall condition on the wall of the cylinder at R = 0.5 
• Periodic condition along both azimuthal boundaries at θ = 0 and θ = 2π 
• Outfield boundary condition, along of the far field boundary, is the acoustic radiation of 

Bayliss and Turkel [36]. 
The wall condition is based on the wall condition of Tam and Dong [37]. This requires that: 

  (100) 

This condition is satisfied by imposing the pressure derivatives on the wall to be zero, and vr = 0 on the 
wall.  
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For this calculation, a uniformly spaced grid of 101 radial points and 153 azimuthal points was 
used, with a time step of CFL = 0.5. Figure 16 shows an instantaneous pressure at t = 7. In this figure, the 
acoustic pulse is reflected by the cylinder and reaches the outer boundary. We can see that two transients 
are shown: the first and larger transient travels directly from the source; the second and smaller transient is 
reflected from the cylinder. Both schemes reproduce both transients with acceptable accuracy. Figure 17 
compares the solution given by the fourth order schemes: DRP-fv and OPC-fv. Between the two schemes 
the OPC-fv scheme performs better. 

 
 

5. Summary and Conclusions 
 

The DRP and OPC schemes, originally proposed in the finite difference form, have been assessed. 
To better handle nonlinearity and geometric complexities, the finite volume version of both schemes has 
also been developed. Linear and nonlinear wave equations, with and without viscous dissipation, have 
been adopted as the test problems.  

For the linear wave equation with constant convection speed, the numerical stability bound posed 
by the CFL number is comparable between the DRP and OPC schemes. Both OPC and DRP produce 
solutions of a comparable order of accuracy, but the magnitude of the error of the OPC scheme is lower. 

For the nonlinear wave equation, the finite volume schemes can produce noticeably better 
solutions and can handle the discontinuity or large gradients more satisfactorily. However, as expected, all 
schemes have difficulties when there is insufficient mesh resolution, as reflected in some of the short wave 
cases. 

In conclusion, the finite volume version of both DRP and OPC schemes improve the capabilities of 
the original version of the finite difference formulas in regard to nonlinearity and high gradients. They can 
enhance performance of the original DRP and OPC schemes for many wave propagation problems 
encountered in engineering applications. 
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Scheme The philosophy of the scheme  Applications 
DRP [2, 3] In this scheme a central difference is employed to 

approximate first derivative. The coefficients are 
optimized to minimize a particular type of error 

Wave propagation 

LDDRK [9, 10]  Traditionally, the coefficients of the Runge-Kutta 
scheme are optimized to minimize the dissipation and 
propagation waves. The optimization does not 
compromise the stability consideration  

Wave propagation problem 
 

LDFV [11, 12] Scheme minimizes the numerical dispersion errors 
that arise in modeling convection phenomena, while 
keeping dissipation errors small. This is 
accomplished by special high-order polynomials that 
interpolate the properties at the cell centers to the left 
and right sides of cell faces. A low pass filter is 
implemented to remove high frequency oscillation 
near shock waves 

Shock noise prediction 

GODPR [13] It is derived, based on optimization that gives finite 
difference equations locally the same dispersion 
relation as the original partial differential equations 
on the grid points in the nonuniform Cartesian or 
curvilinear mesh 

Used for geometry, that 
rectangular grid is not 
appropriate: 
• Acoustic radiation from 
an oscillating circular 
cylinder in a wall 
• Scattering of acoustic 
pulse from a cylinder  
• Acoustic wave 
propagation 
 

OWENO [14] The idea is to optimize WENO in wave number 
schemes, following the practice of DRP scheme to 
achieve high resolution for short wave. But in the 
same time it retains the advantage of WENO scheme 
in that discontinuity are captured without extra 
numerical damping. 

Simulation of the 
shock/broadband acoustic 
wave 

CE/SE [26,27]  (i) space and time are unified and treated as a single 
entity; (ii) both local and global flux conservation in 
space and time are enforced; (iii) multidimensional 
scheme is constructed without using the dimensional-
splitting approach 

Flow involving shock; 
acoustic wave 

FDo, RKo[38] Optimized schemes are obtained by similar approach 
as DRP (space discretization), respectively LDDRK 
(time discretization). The difference consists that: i) 
error is minimized taking into account logarithm of 
the wavenumber; ii) the error is minimized on an 
interval that starts from ln(π/16). The stability and 
accuracy increase for these schemes 

a)convective wave 
equation 
b)subsonic flows past 

rectangular open cavities; 

c) circular jet 

Table 1 The computational cost for DRP and OPC schemes  
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Scheme Number of 
operation 

DRP-fd 8 
DRP-fv 17 
OPC-fd 9 
OPC-fv 17 

 
Table 2 The computational cost for DRP and OPC schemes 

 
 

 
 

 
 

 

 

 

Figure 1 Grid points cluster for one-dimensional problem 
 
 

 
Figure 2 Grid notation for two-dimensional problem, where (i) P denotes the center of a cell, (ii) 

E, W, N, and S denote, respectively, the nodes corresponding to the east, west, north and south 

neighbors, (iii) e, w, n and s denote, respectively, the center of the east, west, north and south 

face of the cell, and (iv) a, b, c, and d denote, respectively, the corners of the cell 

i e i+1(W) i+2 i+3 w i-1(E) i-2 

Δx 

(δx)w (δx)e 
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Figure 3. Dispersive characteristics of the schemes 

 
 

 
Figure 4. Phase speed error on a logarithmic scale 
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a)                                                                      b) 
Figure 5 Four-six–stage optimized Runge-Kutta of order four scheme: a) dissipation error; b) 

phase error 
  

   
a) r/Δx=3 (short wave);                                  b) r/Δx= 10 – long wave 

Figure 6. Errors with respect to the time step size under a fixed space Δx, at t=50 - linear wave 
equation 
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Figure 7. Errors under a fixed CFL = 0.5, at t=50 - linear wave equation: a) error with respect to 
the space size; b) accumulation of the error in time 

  

 
Figure 8. Errors with respect to the space step size under a fixed CFL = 0.5,  

at t=5,– nonlinear wave equation 
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a) -Δx = 1                                    b) -Δx = 0.25                                 c) Δx = 0.06 

Figure 9. DRP–fd solution - nonlinear wave equation; t = 5; CFL=0.5 

 

  

a) x = 1                                 b) -Δx = 0.25                        c) Δx = 0.06 
Figure 10. DRP–fv solution - nonlinear wave equation; t = 3; CFL=0.5 

 

   

a ) Δx = 1                                 b) Δx = 0.25                             c) Δx = 0.06 
Figure 11. OPC-fd solution  - nonlinear wave equation; t = 5; CFL=0.5 
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a) Δx = 1                                c) Δx = 0.25                              d) Δx = 0.06 

Figure 12. OPC-fv solution  - nonlinear wave equation; t = 5; CFL=0.5 

  

 
Figure 13. Error in function of Pe - nonlinear Burgers equation; Δx = 0.25; CFL= 0.2; t = 20  

 

 
a) Pe = 10                                     b) Pe = 3                                   c) Pe = 1 

Figure 14. Numerical solution obtained by DRP schemes - nonlinear Burgers equation; 
Δx = 0.25; CFL= 0.2; t = 20 
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a) Pe = 10                                         b) Pe = 3                                     c) Pe = 1 

Figure 15 

Figure 15. Numerical solution obtained by OPC schemes - nonlinear Burgers equation; Δx = 
0.25; CFL= 0.2; t = 20 

 

    
a) DRP-fv                                                        b)OPC-fv 

Figure 16. Instantaneous pressure contours at time t = 7 – two-dimensional acoustic scattering 
problem 
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a) position of the testing points                               b) A: R=5 ,θ = 900 

    
c) θ = 1350                                              d) θ = 900 

Figure 17. The pressure history at point A, B and C - – two-dimensional acoustic scattering 
problem: finite volume approach 

 
 

 


