
Albert M. K. Cheng

�Outline

� Embedded Real-Time Systems

� Functional Reactive Systems (FRS)

� Cyber-Physical Systems (CPS)

� Haskell and Functional Reactive Programming (FRP)

� Priority-based FRP (P-FRP)

� Response time analysis

� Power-aware scheduling

* Supported in part by the National Science Foundation under Awards No. 0720856 and No. 1219082.

Faculty Seminar

Functional Reactive Programming and Response Time Analysis for
Developing Embedded/Real-Time and Cyber-Physical Systems

Real-Time Systems Group

• Director

Prof. Albert M. K. Cheng

• PhD students

Yong Woon Ahn, Yu Li, Xingliang Zou,

Behnaz Sanati, Sergio Chacon, Zeinab

Kazemi, Chaitanya Belwal (just graduated)

• MS students

Daxiao Liu, Yuanfeng Wen (just graduated),

Fang Liu (just graduated)

• Undergraduate students (NSF-REU)

Mozahid Haque, Kaleb Christoffersen,

Dylan Thompson (just completed), James

Hyatt (just completed)

• Visiting scholars

Yu Jiang, Heilongjiang University, Harbin,

China; Qiang Zhou (arriving in November

2013), Beihang University, Beijing, China

2 / 119

Yu Li (Best Junior PhD Student Awardee and Friends of
NSM Graduate Fellow) and Prof. Albert Cheng visit the
NSF-sponsored Arecibo Observatory (world's largest and
most sensitive radiotelescope) in Arecibo, Puerto Rico,
after their presentation at the flagship RTSS 2012.

Real-time systems research group at Yuanfeng Wen’s
graduation party in May 2013.

Faculty Seminar

Real-Time Systems Theory

3 / 119

Pathfinder mission to Mars: best known Priority Inversion problem.
Failure to turn on priority Inheritance (PI) - Most PI schemes complicate and slow down

the locking code, and often are used to compensate for poor application designs.
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html

Real-Time Systems Theory

4 / 119

• The more components a real-time system

has, the more difficult it is to build and

maintain.

– In such systems, preemptive scheduling may
not be suitable, since it is likely to create
runtime overheads which can result in worst-
case task execution times of up to 40% greater
than fully non-preemptive execution.

• Yao G., Buttazzo G., Bertogna M., "Feasibility analysis under
fixed priority scheduling with limited preemptions," Real-Time
Systems, Volume 47 Issue 3, pages: 198-223, May 2011.

Real-Time Systems Theory

5 / 119

– However, preemptive scheduling allows for
more feasible schedules than non-
preemptive scheduling.

– Non-preemptive scheduling automatically
prevents unbounded priority inversion, which
avoids the need for a concurrency control
protocol, leading to a less complex scheduling
model.

– However, fully non-preemptive scheduling is
too inflexible for some real-time applications,
and has the added disadvantage of potentially
introducing large blocking times that would
make it impossible to guarantee the
schedulability of the task set.

Real-Time Systems Theory

6 / 119

• Simplify the design and scheduling

• Avoid priority inheritance

• Use functional programming

• Use abort-and-restart

• Use harmonic task sets

– However, harmonic tasks sets may be too
restrictive for some situations. For example,
one sensor needs to be serviced every 9
seconds and another (because of its design /
physical characteristics) 10 seconds.

Real-Time Systems Theory

7 / 119

• Example (1) - Harmonic task sets

– Can achieve 100% CPU utilization

– Can avoid preemption and context switches costs

V. Bonifaci, A. Marchetti-Spaccamela, N. Megow, and A. Wiese, “Polynomial-Time Exact Schedulability
Tests for Harmonic Real-Time Tasks,” RTSS 2013.

Real-Time Systems Theory

8 / 119

• Example (2) - Harmonic task sets

Embedded Real-Time Systems

• An embedded system is a computer system designed for
specific control functions within a larger system

(A is embedded into B for control)

• Often with such systems there are constraints such as
deadlines, memory, power, size, etc.

9 / 119

Embedded Real-Time Systems

• Real-time systems (RTS) are reactive systems that are
required to respond to an environment in a bounded amount
of time.

• Functional reactive systems (FRS)

• Cyber-physical systems (CPS)

– Challenges

• Complexity

• Reliability

– Fault-tolerant design

– Meeting deadlines (Response Time Analysis (RTA))

• Security/Privacy

10 / 119

Functional Reactive Systems (FRS)

Systems that react to the environment being monitored and
controlled in a timely fashion using functional (reactive)
programming are known as Functional Reactive Systems
(FRS).

These systems can range from small devices (which are not
a CPS) to distributed and complex components (similar to a
CPS).

11 / 119

Functional Reactive Systems (FRS)

12 / 119

Reactive System Reactive Soft Real-Time System

Reactive Hard Real-Time System Reactive Hard Real-Time System

Cyber-Physical Systems (CPS)

13 / 119

• Systematic integration of computation/information processing
and physical processes and devices.

• Communication and sensing are components of CPS

Cyber-Physical Systems (CPS)

The current set of tools available for analysis cannot handle
the complexity of CPS and thus are unable to predict
system behavior with high degree of accuracy.

The consequences of these shortcomings:

Consider the electric power grid -- Massive failures leading
to blackouts can be triggered by minor events.

14 / 119

Cyber-Physical Systems (CPS)

15 / 119

Classic (non-CPS) electric grid system/behavior

Cyber-Physical Systems (CPS)

16 / 119

• In a CPS, wireless/wired smart meters measuring real-time electricity
usage and historical data (state) feedback (communication) to the
generation station to better manage and distribute electricity.

• Current and predicted weather condition data can also further inform
the decision-making in where to distribute electricity (very hot or very
cold weather increase electricity demand).

• There is also a need to guard against intrusion into the system.

• Advocate formal verification to ensure satisfaction of safety properties.

Cyber-Physical Systems (CPS)

17 / 119

Cyber-Physical Systems (CPS)

Example 2: Imagine an airplane that refuses to
crash. While preventing all possible causes of a
crash is not possible, a well-designed flight control
system can prevent certain causes. The systems
that do this are good examples of cyber-physical
systems.

18 / 119

Cyber-Physical Systems (CPS)

For example, some airplanes use a technique called flight envelope
protection to prevent a plane from going outside its safe operating range,
and prevent a pilot from causing a stall.

19 / 119

Cyber-Physical Systems (CPS)

• The embedded control system can over-ride erroneous operation that would lead to an accident.

http://en.wikipedia.org/wiki/Air_France_Flight_447

20 / 119

Cyber-Physical Systems (CPS)

• The concept of flight envelope protection could be
extended to prevent other causes of crashes. For
example, the soft walls system proposed by Prof. Edward
Lee, if implemented, would track the location of the
aircraft on which it is installed and prevent it from flying
into obstacles such as mountains.

– E. A. Lee, "Soft Walls - Modifying Flight Control Systems to Limit the Flight Space
of Commercial Aircraft," EECS Department, University of California, Berkeley,
Tech. Rep. UCB/ERL M01/31, 2001.

21 / 119

Cyber-Physical Systems (CPS)

22 / 119

Cyber-Physical Systems (CPS)

23 / 119

• One of the key goals in our research is to develop the core tools that
can be used to facilitate the analysis, design and engineering of
highly-complex systems.

• With such tools, we can ensure that these systems are reliable,
predictable, efficient, secure and resilient to multiple points of failure,
and hence that their operation and safety can be depended upon
with a high degree of confidence.

• We advocate formal verification to ensure safety of CPS's, but their
complexity requires further research in verification tools.

Cyber-Physical Systems (CPS)

24 / 119

Small Aircraft Transportation System (SATS)

Self Control Area Airspace Volume

Cyber-Physical Systems (CPS)

25 / 119

Small Aircraft Transportation System (SATS)

Side View of the SCA

Cyber-Physical Systems (CPS)

26 / 119

Small Aircraft Transportation System (SATS)

Top View of SCA

Cyber-Physical Systems (CPS)

27 / 119

Small Aircraft Transportation System (SATS)

3-D View of the SCA

Cyber-Physical Systems (CPS)

28 / 119

Small Aircraft Transportation System (SATS)

Logical Zones of RTL Model

Cyber-Physical Systems (CPS)

29 / 119

• We will introduce RTL-based formal verification later in the tutorial.

Small Aircraft Transportation System (SATS)

Functional Reactive Programming

• Priority-based Functional Reactive Programming (P-FRP)

• P-FRP provides real-time guarantees using static priority assignment

• Higher-priority tasks preempt lower-priority ones; preempted tasks are aborted

• Multi-version commit model of execution

• Atomic execution – “all or nothing” proposition

• Execution different from ‘standard’ models

Other Examples of Functional Programming (FP) Languages:

• Haskell

• Atom - Domain Specific Language in Haskell

• Erlang - Developed at Ericsson for programming telecommunication equipment

• Esterel - Designed for reactive programming

• F# - Developed by Microsoft; available as a commercial platform

30 / 119

The Haskell Functional Programming Language

31 / 119

- The GHC compiler/interpreter uses a round-robin scheduler for Haskell threads
- No thread priorities yet for forkIO threads in GHC

A simple ABS example in Haskell:

import Control.Concurrent -- For threading facilities: “forkIO”, “newEmptyMVar”, “takeMVar”, and “putMVar”.
import Control.Monad (forever) -- For "forever"

-- Type aliases help keep track of what values we are talking about.

type WheelSpeed = Double -- A "double" floating point value
type AverageSpeed = Double

-- | The ABS can either forcibly release, focibly engage, or stay neutral for each wheel.
-- The deriving clause creates the obvious Show instance for this ADT.

data BrakeSignal = Release | Engage | Neutral

deriving Show

32 / 119

-- | Compute the average speed by dividing the sum of the list of speeds by the length.
-- fromIntegral is there to convert the result of length (Int) into a Double
-- Note, this will traverse the list twice, ineffcient for vehicles with millions of wheels.
averageSpeed :: [WheelSpeed] -> AverageSpeed
averageSpeed speeds = sum speeds / (fromIntegral $ length speeds)

-- | This algorithm may be much more complicated, but the basic idea is present.
-- Given the average speed and a particular wheel speed, check to see if we are
-- within 5 (mph, kph, m/s, whatever) of the average. If we are below the minimum
-- send the release signal to the brakes. If we are within 5, remain neutral, otherwise
-- send a signal to engage the brakes.
ecuHelper :: AverageSpeed -> WheelSpeed -> BrakeSignal
ecuHelper average speed | speed < min = Release

| speed < max = Neutral
| otherwise = Engage

where
min = average - 5
max = average + 5

The Haskell Programming Language

33 / 119

-- A list of wheel speeds are averaged and the speed of each wheel compared to it
-- and converted into an ABS signal.

ecu :: [WheelSpeed] -> [BrakeSignal]
ecu speeds = let avgS = averageSpeed speeds

in map (ecuHelper avgS) speeds
-- The Main Function:
-- The first thread does all printing whenever information becomes available to the ABS.
-- The second thread waits for sensor data, sends it to the ECU and stores the result in the ABS
-- The main thread waits for someone to type in a list of numbers and sends it to the “sensors”.

main = do
-- Print initial instructions and an example.
print "Enter wheel speeds: [45,46,45,47]"
-- Create sensors represented as a list of WheelSpeeds, i.e., Doubles.
sensors <- newEmptyMVar
-- Create an ABS represented as as list of BrakeSignals.
abs <- newEmptyMVar

The Haskell Programming Language

34 / 119

-- This thread handles all printing to the console.
forkIO $ forever $ do

putStr "Enter a Speed: "
absOutput <- takeMVar abs -- Read ABS status
print absOutput -- Print ABS status.

-- This thread is the ABS. It reads the sensors, then processes the data and updates the ABS.
forkIO $ forever $ do

sensorData <- takeMVar sensors -- Read sensors.
let brakeCommands = ecu sensorData -- Calculate brake response
putMVar abs brakeCommands -- Update ABS status.

-- The main thread simply waits for users to enter data which is then written to the sensors.
forever $ do

input <- getLine -- User enters a line of text
let wheelSpeedData = read input -- Text is read as [WheelSpeed]
putMVar sensors wheelSpeedData -- wheelSpeedData is written to sensors

The Haskell Programming Language

35 / 119

To run program from the command prompt
In GHCi, type

*Main> main
"Enter wheel speeds: [45,46,45,47]"
Enter a Speed: [45,45,45,55]
[Neutral,Neutral,Neutral,Engage]

Enter a Speed: [45,45,45,45]
[Neutral,Neutral,Neutral,Neutral]

Enter a Speed: [45,45,55,45]
[Neutral,Neutral,Engage,Neutral]

The idea is that you keep entering new sensor data.
The system calculates the new ABS signals to send to the vehicle.
The session should look like this:

The Haskell Programming Language

36 / 119

C# and F#

Execution Time (ns.)

37 / 119

C# and F#

C# : 10,000 Iterations F# : 10,000 Iterations

Functional Reactive Programming (FRP)

38 / 119

• Functional reactive programming (FRP) is a style of functional
programming where programs are inherently stateful, but
automatically react to changes in state.

• FRP allows intuitive specification and formal verification of safety-
critical behaviors, thus reducing the number of defects during the
design phase, and the stateless nature of execution avoids the need
for complex programming involving synchronization primitives.

• Therefore, the program remains an algebraic description of system
state, with the task of keeping the stated (unidirectional) relationships
in sync left to the *language*.

39 / 119

• FRP is essentially (though rarely acknowledged as such) an
extension to the old idea of dataflow programming.

• A key difference is that FRP supports higher-order functions, and
modern FRP systems are generally well-integrated into broader
languages.

• The original (modern) FRP work was built in the context of Haskell,
though major FRP systems have also been built atop many other
languages.

Functional Reactive Programming (FRP)

40 / 119

• Type-safe programming language

• Discrete and Continuous aspects

• Transactional model prevents priority inversion

• Synchronization primitives not required

• Ideal for parallel execution

Basic Abstractions

• FRP divides inputs into two basic classes:

– Behaviors or signals: Functions of time.

– Events: Temporal sequences of discrete values.

• An FRP language must include a means of altering or replacing a program
based on event occurrences - this is the basis of FRP's reactivity.

• These abstractions may be reified in an FRP language or may form the
basis of other abstractions, but they must be present.

Functional Reactive Programming (FRP)

41 / 119

• Classic FRP

– Fran (Functional Reactive Animation: Bouncing Balls)

– Reactive

– Reactive-banana

– Elm

• Signal-Function FRP

– Fruit

– RT-FRP

– Yampa (Animations and Games: Space Invaders)

– Netwire

Functional Reactive Programming (FRP)

42 / 119

Examples in FRAN

• Values, called behaviors, that vary over time

• As an example the following expression evaluates to an
animation (i.e., an image behavior) containing a circle
over a square. At time t, the circle has size sin t, and the
square has size cos t.

bigger (sine time) circle

bigger (cos time) square

Functional Reactive Programming (FRP)

43 / 119

Examples in FRAN

• Events

• Like behaviors, events may refer to happenings in the
real world (e.g., mouse button presses). For example the
event describing the first left-button press after time t0 is
simply lbp t0;

• One describing time squared being equal to 5 is just:

predicate (time^2 == 5) t0

Functional Reactive Programming (FRP)

44 / 119

Examples in FRAN

• Many behaviors are expressed in terms of reactions to events. But
even these reactive behaviors have declarative semantics in terms of
temporal composition.

• For example, a color-valued behavior that changes from red to
green with each button press can be described by the following
simple recurrence:

colorCycle t0 =

red 'untilB' lbp t0 *=> \t1 ->

green 'untilb' lbp t1 *=> \t2 ->

colorCycle t2

Functional Reactive Programming (FRP)

45 / 119

Examples in FRAN and RT-FRP

• At the moment of an event occurrence, it is good to take a snapshot

of a behavior’s value. For example, the behavior:

b1 untilB (lbp t0 snapshot (sin time)) => X(e,y), b2

• Grabs the sine of the time at which the left button is pressed, binds it
to y, and continues with behavior b2, which depends on y.

Functional Reactive Programming (FRP)

46 / 119

Examples in FRAN and RT-FRP

• The following computes the difference between the
current time and the time at the previous execution step:

let snapshot t0 <- time in

let snapshot t1 <- delay 0 time in ext (t0 -t1)

Functional Reactive Programming (FRP)

47 / 119

Netwire

Netwire is a library for functional reactive programming

This language lets you express reactive systems, which means systems that
change over time.

It shares the basic concept with Yampa

The Haskell Cabal is a system for building and packaging

Haskell libraries and programs.

Functional Reactive Programming (FRP)

48 / 119

A simple ABS example with Netwire

Everything above "main" is identical to the Haskell program example (except imports)

import Control.Wire

-- Print initial instructions and an example.

print "Enter wheel speeds: [45,46,45,47]"

let loop w' session' = do --This is the main loop

(mx, w, session) <- stepSession w' session' () --Step forward in session

case mx of --Check for success

Left ex -> putStrLn (“Error: " ++ show ex) --If failure, print why

Right x -> putStrLn (“Success: " ++ show x) --If success, print result

loop w session --Loop again

loop (absControl . sensors) clockSession --Create the connection between

- --the sensors and absControl and

--create a clock session

Functional Reactive Programming (FRP)

49 / 119

-- This WIRE waits for input which is checked for validity then written to the sensors.

-- This wire also handles printing to the console.

sensors :: Wire String IO () [WheelSpeed]

sensors = mkStateM [] (_ (_,s) -> do

putStr "Enter a Speed: " -- Print prompt

r <- getLine -- User enters a line of text

let r2 = case maybeRead r -- Text is read as [WheelSpeed]

of Just x -> (Right x,x)

Nothing -> (Left "Bad Input",s) -- If read fails, inhibit the wire.

return r2) -- wheelSpeedData is sent to sensors

Functional Reactive Programming (FRP)

50 / 119

-- This WIRE is the ABS.

-- It reads the sensors, then processes the data and updates the ABS.

absControl :: Wire String IO [WheelSpeed] [BrakeSignal]

absControl = mkPure (_ sensorData -> (Right (ecu sensorData),absControl))

-- Helper function for read.

maybeRead :: Read a => String -> Maybe a

maybeRead s = case reads s of

[(x, "")] -> Just x

_ -> Nothing

Functional Reactive Programming (FRP)

51 / 119

• Weaknesses

• FRP is still relatively new and the design space is still being
explored.

• Strengths

• FRP makes writing reactive programs easier to reason about and to
avoid common errors

• It is easier to expand and create new behaviors. Once the program
becomes more complex, forkIO and multiple threads might start
interfering with each other, or there would be odd interleaving,
blocking, or other bad concurrency behavior.

FRP is still Haskell. It is just a different style.

Functional Reactive Programming (FRP)

52 / 119

• Using FRP makes the controllers (the computational components of CPS)
more amenable to analysis and verification.

• We can treat components (programed in FRP) as mathematical functions,
which can be composed and synthesized to form a much larger, complex
system.

• More resistant to faults since there are no intermediate states. They can be
connected and composed more easily.

• With procedural programs, there are more uncertainties, for example,
intermediate states if faults/interruptions occur that need to be
specified/modeled, making developing a CPS with guaranteed safety and
response much more complex and potentially intractable.

• In the electric grid example, different generating stations have control
components which analyze real-time data from smart meters, weather data,
and industrial plants' energy usage to determine optimal or near-optimal
generation and distribution of electricity.

Functional Reactive Programming (FRP)

Priority-based FRP (P-FRP)

• P-FRP aims to improve the programming of reactive real-
time systems.

– Supports assignment of different priorities to events

– Benefits of using P-FRP over the imperative styles

• P-FRP allows the programmer to intuitively describe safety-
critical behaviors of the system, thus lowering the chance of
introducing bugs in the design phase.

• Its stateless nature of execution does not require the use of
synchronization primitives like mutexes and semaphores, thus
reducing the complexity in programming.

53 / 119

54 / 119

Priority-based FRP (P-FRP)

• To preserve data consistency, shared resources must
be accessed in mutual exclusion:

55 / 119

Priority-based FRP (P-FRP)

• However, mutual exclusion introduces extra delays:

Priority-based FRP (P-FRP)

56 / 119

Example: The Car Controller

* C = worst case execution time
* T = (sampling) period = D (deadline)

• Speed Measurement: C=4ms, T=20ms, D=20ms

• ABS control: C=10ms,T=40ms, D=40ms

• Fuel injection: C=40ms,T=80ms, D=80ms

• Other software with soft deadlines, audio, air condition, etc.

Try any method to schedule the tasks

Priority-based FRP (P-FRP)

57 / 119

Static cyclic scheduling: + and –

• Deterministic: predictable (+)

• Easy to implement (+)

• Inflexible (-)

– Difficult to modify, e.g., adding another task

– Difficult to handle external events

• The table can be huge (-)

– Huge memory-usage

– Difficult to construct the time table

Priority-based FRP (P-FRP)

58 / 119

The Car Controller (Time table constructed with EDF)

Can use the Stack
Resource Policy (SRP)
or the Priority Ceiling
Protocol (PCP) for

concurrency control.

- Inheritance algorithms
are complicated and
difficult to program

correctly.

Priority-based FRP (P-FRP)

• In P-FRP, the scheduling model is called Abort-and-Restart (ANR)

– Copy and restore operations

• To allow for correct restarting of handlers, compilation is

extended to generate statements that store variables

modified in an event handler into fresh temporary (or

scratch) variables in the beginning of the handler while

interrupts are turned off, and to restore variables from the

temporary variables at the end of the handler while

interrupts are turned off.

59 / 119

Priority-based FRP (P-FRP)

60 / 119

Priority-based FRP (P-FRP)

• The Abort-and-Restart (ANR) Scheduling Model

– The idea of the ANR model is that a lower-priority task is aborted
when a higher priority task arrives into the system. Once the higher-
priority task is done, the lower priority task restarts as new.

61 / 119

Priority-based FRP (P-FRP)

62 / 119

Priority-based FRP (P-FRP)

• Advantages of Abort-and-Restart (ANR)

– A simpler programming model

– Tasks execute atomically so no task is blocked by another task

• The priority inversion problem is removed

• No overheads caused by priority inheritance

• Closer adherence to priority scheduling

63 / 119

Priority-based FRP (P-FRP)

64 / 119

Priority-based FRP (P-FRP)

65 / 119

Priority-based FRP (P-FRP)

66 / 119

Priority-based FRP (P-FRP)

67 / 119

Priority-based FRP (P-FRP)

68 / 119

Priority-based FRP (P-FRP)

69 / 119

Priority-based FRP (P-FRP)

Limited Work on Scheduling and Schedulability Analysis

• While there is an extensive understanding of the theory and
proof-carrying capability of functional programs and their
reactive versions, relatively little work is available on the
scheduling of primitives in the corresponding imperative code.

• Also, performance studies of the computational platforms on
which these functional programs execute are mostly absent.

70 / 119

Priority-based FRP (P-FRP)

• The worst-case response time of a task is the length of the
longest interval from a release of that task till its completion.

• With ANR, interference from higher-priority tasks induces
both an interference cost and an abort cost on the response
time of the preempted lower-priority task.

• Current focus is on response time analysis with abstract
memory and I/O access times. Next challenges include
accounting for precise memory and I/O access times.

71 / 119

Priority-based FRP (P-FRP)

• Response time analysis is an exact schedulability test to calculate the
worst-case response time of a task which includes the time of
interference from other higher priority tasks and blocking from lower
priority tasks.

• RTA is not exact unless blocking is exact - which it is not. If the worst-
case response time of a task is longer than its deadline (D), it means the
task will not meet its deadline. The opposite situation is that if the worst-
case response time of the task is less than or equal to its deadline, the
task will meet its deadline.

• The analysis can be applied for D = T (task’s period), D < T, or D > T.

72 / 119

Priority-based FRP (P-FRP)

Response time Analysis for ANR

• For the highest-priority task, its worst response time will be equal to its

own computation time, that is R = C.

• If task j has the highest arrival rate, then the execution time of a task i

cannot exceed Tj − Cj or task i will suffer interference (I) and aborts

(α). So for a general task i :

Ri = Ci + Ii + αi

73 / 119

Priority-based FRP (P-FRP)

Interference Cost

• If the execution time of some task i exceeds Tj − Cj, then
task i will never be able to complete execution.

• A simple expression for obtaining this Interference Cost is
using the ceiling function:

74 / 119

Priority-based FRP (P-FRP)

Maximum Interference

• Each task of higher-priority is interfering with task i, and so:

• This gives us the following equation:

75 / 119

Priority-based FRP (P-FRP)

Maximum Abort Costs

• Each higher-priority task is interfering with task i, so the
maximum Abort Costs are as follows:

• Ck is the maximum execution time between i and the
highest-priority task.

76 / 119

Priority-based FRP (P-FRP)

Maximum Abort Costs

• The maximum abort cost equation is sensible and simple but
overly pessimistic. Therefore, the test is said to be sufficient
but not necessary.

77 / 119

Priority-based FRP (P-FRP)

78 / 119

• Abort-and-Restart with a limit on the number of aborts

Priority-based FRP (P-FRP) Example

Antilock braking system in a car is a simple example of an embedded hard
real-time system with real-time constraints.

The ABS is expected to release a vehicle’s brakes, preventing dangerous
wheel locking, in a predictably short time frame.

ABS uses a kind of an Abort-and-Restart Scheme.

Kaleb R. Christoffersen and Albert M. K. Cheng, ``Model-Based Design: Anti-lock Brake
System with Priority-Based Functional Reactive Programming,’’ submitted to RTSS WIP
2013.

79 / 119

Priority-based FRP (P-FRP)

80 / 119

Anti-Lock Brake Types
ABS uses different schemes depending on the type of brakes in use.

• Four-channel, four-sensor ABS (the best scheme) - there is a speed
sensor on all 4 wheels and a separate valve for all four wheels. With this
setup, the controller monitors each wheel individually to make sure it is
achieving maximum braking force.

• Three-channel, three-sensor ABS - this scheme found often on pickup
trucks. It has a speed sensor and a valve for each of the front wheels,
with one valve and one sensor for both rear wheels.

• One-channel, one-sensor ABS - this system found also often on pickup
trucks with rear-wheel ABS. It has one valve, which controls both rear
wheels, and one speed sensor.

Priority-based FRP (P-FRP)

Example: ABS Controller

– Activities of an ABS control system

1. C = worst case execution time

2. T = (sampling) period = D (deadline)

– (A) Car speed measurement: C= 1 ms, T= 5 ms

– (B) Wheel speed measurement: C= 2 ms,T=8 ms

– (C) Analysis and computation task : C= 3 ms,T=20 ms

– (D) Brakes (Abort (release) /Retry (pressure)) : C= 1 ms,T=25 ms

81 / 119

Priority-based FRP (P-FRP)

82 / 119

Priority-based FRP (P-FRP)

83 / 119

Priority-based FRP (P-FRP)

84 / 119

Typically ABS includes

• Electronic control unit (ECU)

• Wheel speed sensors

• At least two hydraulic valves within the brake hydraulics

• The ECU constantly monitors the rotational speed of each wheel;
if it detects a wheel rotating significantly slower than the others, a
condition indicative of impending wheel lock, it actuates the valves
to reduce hydraulic pressure to the brake at the affected wheel,
thus reducing the braking force on that wheel; the wheel then
turns faster.

Priority-based FRP (P-FRP)

85 / 119

Abort-and-Restart Scheduling

Priority-based FRP (P-FRP)

86 / 119

Priority-based FRP (P-FRP)

87 / 119

Priority-based FRP (P-FRP)

88 / 119

Priority-based FRP (P-FRP)

89 / 119

Priority-based FRP (P-FRP)

90 / 119

Highlights of Research Results

1. Real-time Systems, CPS, FRS, P-FRP background

2. Actual Response Time

3. Worst-case Response Time (WCRT) through Exhaustive Enumeration

4. Approximating WCRT in polynomial time

5. Feasibility Interval

6. Optimal Priority Assignments

7. Utilization Bounds

8. Partitioned Scheduling in Multi-processor Systems

9. Dynamic Voltage and Frequency Scaling

10. Response Time through Timed Automata

11. Response Time through Time Petri Nets

Priority-based FRP (P-FRP)

92 / 119

- On-line Schedulability Test returns the gap (the amount of execution time
available) for the next lower-priority task.
- Precise (tight) timing characterization of the embedded controller software
execution leads to faster physical system response compared with one designed
without accurate controller timing analysis (and thus requires more tolerance of
execution time variations).

Non-Preemptive Execution

Preemptive Execution

P-FRP Execution

P-FRP Challenges

• Ascertaining temporal properties is difficult

– Execution time is dynamic in nature

– Information known a priori cannot be used

– No notion of Critical Instant

• Existing methods for preemptive / non-
preemptive execution cannot be applied

• New methods are required for Response Time
Analysis and Schedulability

Critical Instant -
Synchronous

Critical Instant -
Asynchronous

Definitions

• Interference cost - In the preemptive model of
execution, if a higher priority τi interferes with the
execution of a lower priority task τj, then τi will
preempt τj. The response time of τj will be delayed by
time taken to process τi, which is Pi. This is referred
to as the interference cost

• Abort Cost - In the P-FRP execution model,
preempted tasks are also aborted. The amount of
time spent in aborted processing is called the abort
cost

Contributions

• This work deals with finding actual response time in
P-FRP

• Actual response time is not an approximate value

• Actual response time is found for a priori known
release scenario

• Method for finding actual response time is required
for determining worst-case response time …

… as well as developing exact schedulability tests,
analyzing multi-processor schedulability etc.

Existing Approach: Audsley
et al

Existing Approach: Audsley
et al

52
7

2
1

4

2
2 =⋅








+⋅








+

62
7

5
1

4

5
2 =⋅








+⋅








+

62
7

6
1

4

6
2 =⋅








+⋅








+

Iteration 1 : 22
7

0
1

4

0
2 =⋅








+⋅








+

Iteration 2 :

Iteration 3 :

Iteration 4 :

Existing Approach: Ras & Cheng

• Extension of Audsley’s Method

• Abort cost is added on response time

• Abort cost from each higher priority task is
accounted for

• Computed response time is not exact, but an
upper bound on WCRT

• Solution does not converge for several cases

Simulation

• Iteration 1
•

Iteration 2

Gap Enumeration

Gap Enumeration

Gap Enumeration – Storage

•Red-Black Tree

•Self-balancing binary search tree

•Root and leaf nodes are black

•Red node has black children

• log2 n time for insertion, delete and

search

Gap Enumeration – Dynamic Size

Iteration 1

Gap Enumeration – Dynamic Size

Iteration 1

Experimental Analysis

7 Tasks

0

2000

4000

6000

8000

10000

0 100 200 300 400 500

Task Set Number

C
o
m

p
u
ta

tio
n
 S

te
p
s

Steps-TAS # Steps-GE

Remarks

• New method for response time computation

• Can compute response time under any given release
scenario

• Chaitanya Belwal and Albert M. K. Cheng, “Determining
Actual Response Time in P-FRP”, 13th International
Symposium on Practical Aspects of Declarative
Languages (PADL), Austin, Texas, USA January 24-25,
2011

Contents

1. P-FRP and Real-time Systems background

2. Actual Response Time

3. Worst-case Response Time (WCRT) through Exhaustive Enumeration

4. Approximating WCRT in polynomial time

5. Feasibility Interval

6. Optimal Priority Assignments

7. Utilization Bounds

8. Partitioned Scheduling in Multi-processor Systems

9. Dynamic Voltage and Frequency Scaling

10. Response Time through Timed Automata

11. Response Time through Time Petri Nets

Determining Exact WCRT

Determining Exact WCRT

• For a task set of size n, the total number of
enumerations whose response time has to be
evaluated is:

(Dj – t + t+1)n–j = (Dj+1)|HP| where |HP| is the
number of higher priority tasks

• Number of enumerations and hence the
computational cost, is dependent on the deadline of
τj as well as the size of the task set

• Prior works in P-FRP only deal with computing
approximate values of response time

Contributions

• We present techniques for determining the lower and
upper bound on release offset of higher priority tasks
for computation of exact WCRT in P-FRP

• This reduces the number of enumerated release
scenarios by a considerable amount

• Highlight schedulability characteristics

• Present algorithm to computer release offset upper
bound

Determining WCRT

• Theorem. Let Γn be a n task set: Γn = {τ1, τ2, …,τn}.
The release offsets of tasks τj+1 …τn which lead to the
worst-case response time of τj, are guaranteed to be
more than or equal to the worst-case abort costs that
can be induced on τj

• Theorem establishes a lower bound on release
offset (lower bound = worst-case abort costs that can
be induced on τj)

• Lower bound = Processing time of τj - 1

Determining WCRT

• Theorem. For a n-task set Γn = {τ1, τ2, …,τn}, the
release offset values of tasks τj+1 …τn, which lead to
the worst-case response time of τj, have an upper
bound

• Theorem proves that there is an upper bound on
release offset of higher priority tasks

Release Offset Upper Bound

• Intuitive way to compute the release offset upper
bound is to release the highest priority task first

• Followed by other tasks in priority order

• Release tasks at intervals such as to induce
maximum abort cost on the lower priority task τj

• Does not lead to WCRT

• The 2nd or 3rd job of a higher priority tasks can further
delay the response time

• Algorithm is used to compute Upper Bound

Results – 5 Tasks

0

5

10

15

20

25

30

0 100 200 300 400 500

% of enumerations required in offset bound relative to the number
of enumerations computed in the deadline

Remarks

• Till now all release offset scenarios in the period [0,Tj)
have to be evaluated to determine WCRT of τj

• Our approach requires evaluation between the release
offset bounds and is more efficient

• Chaitanya Belwal, Albert M. K. Cheng and Walid Taha,
“Release Offset Bounds for Response Time Analysis
of P-FRP”, 8th IEEE International Conference on
Embedded Software and Systems (ICESS),
Changsha, China, Nov. 16-18, 2011

Contents

1. P-FRP and Real-time Systems background

2. Actual Response Time

3. Worst-case Response Time (WCRT) through Exhaustive Enumeration

4. Approximating WCRT in polynomial time

5. Feasibility Interval

6. Optimal Priority Assignments

7. Utilization Bounds

8. Partitioned Scheduling in Multi-processor Systems

9. Dynamic Voltage and Frequency Scaling

10. Response Time through Timed Automata

11. Response Time through Time Petri Nets

Approximate WCRT in Polynomial Time

• As shown, Audsley’s method cannot be used to
determine response time in P-FRP

• Ras and Cheng’s method computes approximate value
of WCRT…

• …However this method does not converge for several
task sets

• Guaranteed method for approximating WCRT in P-FRP
is required

Contributions

• Derive an algorithm to compute approximate values of
WCRT in P-FRP

• This algorithm is guaranteed to converge to a result

• Approximation factors evaluated through experimental
task sets

Algorithm Outline

• Set lower bound of WCRT equal to the value computed
by Audsley’s algorithm

• Use the lower bound as a base value and add
interference and abort costs

• Run an iterative loop based on number of higher priority
tasks

• Add costs for prior tasks in every iteration

• Iterative loop is guaranteed to complete

Results – 3 Tasks / Low Utilization

Results – 5 Tasks / Low Utilization

Results – 3 Tasks / High Utilization

Results – 5 Tasks / High Utilization

Remarks

• High approximation factor for larger task sets due to
larger pessimism in abort costs

• Reducing pessimism while maintaining correctness is
challenging

• C. Belwal, A. M. K. Cheng, W. Taha, and A. Zhu, “Time
Analysis of the Priority based FRP System”, IEEE-CS
Real-Time and Embedded Technology and Applications
Symposium WIP Session, St. Louis, MO, April 22-24,
2008

Contents

1. P-FRP and Real-time Systems background

2. Actual Response Time

3. Worst-case Response Time (WCRT) through Exhaustive Enumeration

4. Approximating WCRT in polynomial time

5. Feasibility Interval

6. Optimal Priority Assignments

7. Utilization Bounds

8. Partitioned Scheduling in Multi-processor Systems

9. Dynamic Voltage and Frequency Scaling

10. Response Time through Timed Automata

11. Response Time through Time Petri Nets

Feasibility Interval

• Real-time System tasks can run infinitely often

• No tasks should have a deadline miss as long as
system is running (hard real-time)

• Ascertaining schedulability for an infinite period
is not possible

• Finite time is used to analyze schedulability

• Termed feasibility interval in real-time studies

Feasibility Interval for Preemptive Execution

• In their seminal paper, Liu and Layland have shown
that the WCRT occurs when tasks are released
synchronously (at the same time)

• The feasibility interval in a synchronous release is [0,
L), where L is the least common multiple of all task
periods

• Schedulability in [0,L) guarantees schedulability since
worst-case schedulability is also analyzed

Contributions

• Formally present execution characteristics
of tasks in a P-FRP system with 2 tasks

• Formally present execution characteristics
of tasks in a P-FRP system with > 2 tasks

• Derive the feasibility interval of P-FRP

Processing Pattern

• Two time intervals of equal lengths [t1,
t1+a) and [t2, t2+a) are said to have the
same processing pattern, if for every
value of relative time t: 0 ≤ t < a, the task
that is processed at relative time t in [t1,
t1+a) (absolute time t1 + t), is also
processed at relative time t in [t2, t2+a)
(absolute time t2 + t)

Feasibility Interval in P-FRP

• In P-FRP preempted tasks are aborted

• Leads to different execution semantics

• Unknown if feasibility interval of the
preemptive model can be applied to this
execution model

• Fresh approach required to determine the
feasibility interval

Feasibility Interval

• Theorem. For Γn={τ1, τ2,…, τn} and Rmax =

max{Φi}, the feasibility interval of Γn is [t,

t+L), where t ≥ Rmax

• Corollary. The earliest feasibility interval
of Γn is [Rmax, Rmax+L)

• Corollary. If all tasks in Γn are
synchronously released, then the earliest
feasibility interval is [0, L)

Remarks

• Formally derived the feasibility interval in P-FRP

• Can be extended to consider non-periodic tasks

• Chaitanya Belwal and Albert M. K. Cheng, “Feasibility
Interval for the Transactional Event Handlers of P-FRP”,
8th IEEE International Conference on Embedded
Software and Systems (ICESS), Changsha, China, Nov.

16-18, 2011.

Contents

1. P-FRP and Real-time Systems background

2. Actual Response Time

3. Worst-case Response Time (WCRT) through Exhaustive Enumeration

4. Approximating WCRT in polynomial time

5. Feasibility Interval

6. Optimal Priority Assignments

7. Utilization Bounds

8. Partitioned Scheduling in Multi-processor Systems

9. Dynamic Voltage and Frequency Scaling

10. Response Time through Timed Automata

11. Response Time through Time Petri Nets

Optimal Priority Assignments

• Rate-Monotonic (RM) priority assignment is optimal in the
preemptive model (Liu and Layland)

• RM is not optimal in P-FRP ...

• … can be easily proven with an example

• Unknown if an optimal priority assignment can even exist for
this execution model

Contributions
• Analyze schedulability characteristics of P-FRP

tasks

• Several Theorems are proved

• Study priority assignment for 2 tasks and formally
prove that U-RM (Utilization and Rate Monotonic)
priority assignment is optimal

• Prove that no single priority assignment can be
optimal for more than 2 tasks

• Experimentally evaluate results

Intermediate Release Points (IRPs)

Task pr P T U

τ1 1 7 15 0.46

τ2 2 3 12 0.25

Results

Remarks

• U-RM is the optimal priority assignment in 2-task sets

• For more than 2 tasks no single priority assignment can
be optimal

• Several large tasks sets are still U-RM schedulable

• Chaitanya Belwal and Albert M. K. Cheng. “On Priority
Assignment in P-FRP”, Proc. IEEE-CS Real-Time and
Embedded Technology and Applications Symposium
(RTAS) WIP Session, Stockholm, Sweden, April 13-16,
2010

Contents

1. P-FRP and Real-time Systems background

2. Actual Response Time

3. Worst-case Response Time (WCRT) through Exhaustive Enumeration

4. Approximating WCRT in polynomial time

5. Feasibility Interval

6. Optimal Priority Assignments

7. Utilization Bounds

8. Partitioned Scheduling in Multi-processor Systems

9. Dynamic Voltage and Frequency Scaling

10. Response Time through Timed Automata

11. Response Time through Time Petri Nets

12. Analysis Tools

Utilization-based Sufficient Tests

• Liu and Layland’s (LL) utilization bound is widely used
as a sufficient schedulability test

U ≤ n·(21/n – 1)

n = number of tasks,

U = sum of utilization ratios of all tasks

• For 2 tasks U ≤ 0.83, for 3 tasks U ≤ 0.78 etc, for task
set to be guaranteed schedulable

Utilization-based Sufficient Tests

• Liu and Layland’s bound is derived by considering worst-
case release scenario

• Worst-case release scenario is also assumed in
derivations of other schedulability tests (e.g. Bini and
Baruah’s)

• Worst-case scenario is derived using critical instant

• In P-FRP, the worst case release scenario is not the
synchronous release of tasks

Contributions

• Derive a worst-case release scenario with 2 P-FRP
tasks

• Use this worst-case scenario to derive sufficient
utilization bounds for P-FRP tasks sets with 2 tasks

• Prove that worst-case scenario for 2 and n (n > 2)
tasks is different

• Present a pessimistic condition with n tasks

• Use the pessimistic condition to derive utilization
bound for n tasks

• Experimental Analysis

Utilization Bound for 2 Tasks

• Theorem. A task set with 2 tasks {τ1, τ2} where
T2 ≤ 2·T1 is guaranteed to be schedulable when
the total utilization factor U of this task set is less
than or equal to 0.5. Or, the sufficient utilization
bound of the task when T2 ≤ 2·T1 is: U ≤ 0.5.

• When T2 > 2·T1 then tasks with U → 0 can also
be schedulable, and a sufficient bound does not
exist

Utilization Bound with n
Tasks

• Approach used for 2 tasks cannot be directly
applied

• Worst-case release scenario can be different for
unique task sets

• Identify a low utilization task set

• Derive bound under full utilization for this task
set

Utilization Bound for n Tasks

Worst-case release scenario for a pessimistic task set

Utilization Bound with n
Tasks

Theorem. A task set having n tasks {τ1, τ2,…,τn}
such that n·T1 ≥ Ti, i = 2,…, n, is guaranteed to
be schedulable when the total utilization factor U
of this task set is less than or equal to 1/n. Or,
the sufficient utilization bound of Γn when n·T1 ≥

Ti is U ≤ 1/n.

Results 3 Tasks -
Schedulability

Results 3 Tasks -
Unschedulability

Comparisons with LL Bound

Comparisons with LL Bound

Remarks

• Determined sufficient utilization condition for P-FRP task
sets

• Chaitanya Belwal and Albert M. K. Cheng, “A Utilization
based Sufficient Condition for P-FRP”, IEEE/IFIP
International Conference on Embedded and Ubiquitous
Computing (EUC), Melbourne, Australia, Oct 24-26, 2011

Contents

1. P-FRP and Real-time Systems background

2. Actual Response Time

3. Worst-case Response Time (WCRT) through Exhaustive Enumeration

4. Approximating WCRT in polynomial time

5. Feasibility Interval

6. Optimal Priority Assignments

7. Utilization Bounds

8. Partitioned Scheduling in Multi-processor Systems

9. Dynamic Voltage and Frequency Scaling

10. Response Time through Timed Automata

11. Response Time through Time Petri Nets

Static vs. Global Partitioning

• Partitioning refers to assignment of tasks that will
execute in a processor

• In static partitioning, task assignment to processors is
done offline

• Task assignment cannot be changed while system is
running

• Global partitioning is dynamic, and tasks can move
between processors while system is running

• No partitioning scheme is ideal

Contributions

• Study static partitioning of P-FRP in multi-processor
systems

• Develop an exact schedulability test for P-FRP tasks

• Three schemes applying first-fit algorithm on different
sorting criterion

• Partitioning schemes analyzed in rigorous
experimental analysis by comparing it with an optimal
scheme

• Valid for synchronous release of tasks

Exact Schedulability Test

Exact Schedulability Test

Bin-Packing

• Classical NP-hard problem in Computer
Science

• Object with different sizes are packed in finite
number of bins

• Has previously been used in static
partitioning of tasks in SMP platforms

• Tasks are sorted using some criterion

• First-fit, last-fit heuristics widely used

Bin-Packing with Schedulability Test

• Tasks are sorted based on a defined criterion

• First-fit scheme is used

• P-FRP exact schedulability test is used to
identify if processor (bin) is ‘full’

• Tasks are assigned to the next processor until it
is ‘full’ and so on

• After last task in sorted order is assigned to a
processor, partitioning is complete

Optimal Partitioning – Brute
Force

Combinatorial B-tree for enumeration all partitions in ‘N’ processors

Difference with Optimal:
FFDR

0

1

2

3

0 100 200 300 400 500

Task Set

Difference with Optimal:
FFDU

0

1

2

3

0 100 200 300 400 500

Task Set

Difference with Optimal:
FFDP

0

1

2

3

0 100 200 300 400 500

Task Set

Remarks

• Applied first-fit partitioning using a new exact
schedulability test for P-FRP

• Three sorting criterion used with first-fit algorithms

• Chaitanya Belwal and Albert M. K. Cheng, “Partitioned
Scheduling of P-FRP in Symmetric Homogeneous
Multiprocessors”, IEEE/IFIP International Conference on
Embedded and Ubiquitous Computing (EUC),
Melbourne, Australia, Oct 24-26, 2011

Contents

1. P-FRP and Real-time Systems background

2. Actual Response Time

3. Worst-case Response Time (WCRT) through Exhaustive Enumeration

4. Approximating WCRT in polynomial time

5. Feasibility Interval

6. Optimal Priority Assignments

7. Utilization Bounds

8. Partitioned Scheduling in Multi-processor Systems

9. Dynamic Voltage and Frequency Scaling

10. Response Time through Timed Automata

11. Response Time through Time Petri Nets

Dynamic Voltage and Frequency Scaling

• Energy function of CMOS

E = C·V2·f

• Operating the CPU at a lower voltage consumes less
energy

• Lowering the voltage decreases the number of CPU
clock cycles available per unit time

• Goal is to save energy as well meet real-time guarantees

• Applying DVFS in P-FRP is different from preemptive
execution

Contributions

• Derived Schedulability conditions for Static
DVFS

• Presented algorithm for Progressive Voltage
Scale (PVS)

• Presented the Voltage Scaling Points (VSP)
algorithm

• Experimental evaluations and comparison
between each approach

Variable Voltage Scheduling with P-FRP

172 / 119

In static-mode DVFS, the task set operates on a single scaled CPU voltage, which
we set before the start of task execution. The voltage is kept constant as long as
the task set is unchanged. Before setting the scaling voltage, it is necessary to
determine if the task set can be scheduled under the scaled voltage.

Variable Voltage Scheduling with P-FRP

173 / 119

Example : Normal execution of this task set without any voltage scaling.

Variable Voltage Scheduling with P-FRP

174 / 119

Example : Static Voltage Scaling (The total power that is consumed in the feasibility
interval in normal execution is 29.06, while with static voltage scaling, it is 23.25.

Variable Voltage Scheduling with P-FRP

175 / 119

Example : Static Voltage Scaling (If the voltage is scaled to 50%, the first job of 1 will
have a deadline miss at time 20).

Variable Voltage Scheduling with P-FRP

176 / 119

Example : Progressive Voltage Change (During the execution of tasks 2 and
3, the voltage can be scaled down to a factor of 0.5, while during execution of
1 the voltage can be scaled down to a factor of 0.75 . The total power
consumed in the feasibility interval is 17.06.

Variable Voltage Scheduling with P-FRP

177 / 119

Example : The figure below shows the level-1 idle periods. The black areas
identify those idle periods present in the feasibility interval.

Variable Voltage Scheduling with P-FRP

178 / 119

Example : Voltage Scaling Points (The total power that is consumed is 17.25)

Variable Voltage Scheduling with P-FRP

179 / 119

Experiments:

Tested from 100 to 500 task sets with different
configurations.

Utilization factors for these tasks were in the range [0:22 to
0:65] and execution times and arrival periods were selected
from the ranges [3 to 70] respectively.

Variable Voltage Scheduling with P-FRP

180 / 119

Experiments: For the static voltage scaling, 15% to 25% savings was achieved for
maximum task sets.

Variable Voltage Scheduling with P-FRP

181 / 119

Experiments: PVS produced a more distributed range, with voltage savings
for 500 task sets in the range of 0-52%.

Variable Voltage Scheduling with P-FRP

182 / 119

Experiments: VSP produced voltage savings in the range 26-52%.

Variable Voltage Scheduling with P-FRP

183 / 119

Experiments:

Variable Voltage Scheduling with P-FRP

184 / 119

Experiments:

Remarks

• DVFS can lead to significant energy savings

• VSP gives the best results

• Did not consider leakage current

• Chaitanya Belwal and Albert M. K. Cheng, “Optimizing
Energy Use in P-FRP through Dynamic Voltage Scaling”,
17th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS) WIP Session, Chicago,
IL, USA, part of the Cyber-Physical Systems Week (CPS
Week), April 11-14, 2011

Contents

1. P-FRP and Real-time Systems background

2. Actual Response Time

3. Worst-case Response Time (WCRT) through Exhaustive Enumeration

4. Approximating WCRT in polynomial time

5. Feasibility Interval

6. Optimal Priority Assignments

7. Utilization Bounds

8. Partitioned Scheduling in Multi-processor Systems

9. Dynamic Voltage and Frequency Scaling

10. Response Time through Timed Automata

11. Response Time through Time Petri Nets

Contributions

• Developed Timed Automata (TA) models for
schedulability analysis of P-FRP

• Prove that TA models offers an efficient alternative for
schedulability analysis of P-FRP

• Use a publicly available tool for TA modeling

• Validate correctness through experimental task sets

Timed Automata

• Developed by Alur and Dill in 1994

• Extends finite state automata by using clocks

• Extended Timed Automata (ETA): states
represent the execution of tasks (Fersman et al)

• ETA - standard for representing schedulability
models using Timed Automata

• Used in this work

UPPAAL

• Developed at Aalborg and Uppsala Universities

• GUI-based tool

• Allows the description and evaluation of a Timed
Automata (TA) model

• Several automata can run in parallel

• Allows user variables and synchronization
channels

UPPAAL

• Transitions between locations are protected by
clock guards

• Invariants - clock constraints in locations

• User declared variables can change value

• All TA encodings in our work have been tested
in UPPAAL

• More details: http://www.uppaal.org

UPPAAL – Simple Automata

Task Release Automaton –
Lowest Priority Task

Task Release Automaton –
Other tasks

Generic Variables

• GC

• cli

• Ti

• Ci

• TaujInQ

Scheduler Automaton - 2
Tasks

Scheduler Automaton - 3
Tasks

Schedulability Analysis

• Schedulability analysis is same as determining
the reachability of state ‘Taui_Unsched’

• Achieved by the following Computation Tree
Logic (CTL) query:

E<> Scheduler.Taui_Unsched

• Should return false for task i to be schedulable

Schedulability Analysis

• Determine the schedulability of n-task set

• Query needs to be executed for every lower priority task

• Example for the 2 task automaton following CTL should
return false:

E<> Scheduler.Tau1_Unsched

• For the 3-task automaton the following queries should
return false:

E<> Scheduler.Tau1_Unsched

E<> Scheduler.Tau2_Unsched

Remarks
• Schedulability analysis in P-FRP is difficult

• Current techniques scales exponentially with task size

• We have derived an alternate approach using TA and
validated it

• Chaitanya Belwal and Albert M. K. Cheng, “Schedulability
Analysis of Transactions in Software Transactional Memory
using Timed Automata”, 8th IEEE International Conference on
Embedded Software and Systems (ICESS), Changsha, China,
Nov. 16-18, 2011

Contents

1. P-FRP and Real-time Systems background

2. Actual Response Time

3. Worst-case Response Time (WCRT) through Exhaustive Enumeration

4. Approximating WCRT in polynomial time

5. Feasibility Interval

6. Optimal Priority Assignments

7. Utilization Bounds

8. Partitioned Scheduling in Multi-processor Systems

9. Dynamic Voltage and Frequency Scaling

10. Response Time through Timed Automata

11. Response Time through Time Petri Nets

12. Analysis Tools

Contributions

• Developed Time Petri Net (TPN) models for
schedulability analysis of P-FRP

• Prove that TPN models offers an efficient alternative for
schedulability analysis of P-FRP

• Prove that conversion to corresponding TA models is not
required

• Use a publicly available tool for TPN modeling

• Validate correctness through experimental task sets

Time Petri Nets
• A Time Petri Net (TPN) is a tuple (P, T, B, F, MO, SI) where:

• P={p1,p2,p3,…,pn} is a finite non-empty set of places; T=
{t1,t2,t3,…,tn} is a finite nonempty, set of transitions

• B: P x T → N is the backward incidence function; where N is the
set of non-negative integers; F: T x P → N is the forward incidence
function

• MO is the initial marking (P, T, B, F and MO together define a Petri
net)

• SI is a mapping called static interval, ∀t∈T,SI(t)= [SEFT(t), SLFT(t)
], where SEFT(t) is the static earliest firing time and SLFT(t) the
static latest firing time

ROMEO – Tool for TPN

TPN – Periodic Task Release

TPN – 2 Tasks

TPN – 3 Tasks

Schedulability Analysis

• TPN is converted to corresponding state space

• Uses Timed CTL queries

• EF[37,37](M(22)=0)

• At time 37 is it possible for place at index 22 (i.e.
‘Tau_1_Complete’) to have no tokens ?

• No token => release scenario of higher priority tasks
exists in which τ1 misses it deadline

• For τ1 to be schedulable, the query should be false

Remarks

• TPN offers an efficient alternative to schedulability
analysis

• TPNs for large models can be complicated

• Chaitanya Belwal and Albert M. K. Cheng,
“Schedulability Analysis of P-FRP using Time Petri Nets”,
17th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications
(RTCSA) WiP Session, Toyama, Japan, August 28-31,
2011

Future Work

• Modify techniques to consider variables times for copy
and restore operations

• Develop pruning techniques to reduce the number of
release scenarios in determining exact WCRT

• Improve the polynomial time method for greater accuracy
(lower the approximation factors)

• Develop an algorithm for finding the specific optimal
priority assignment for any n-task set

• Develop global partitioning algorithms for P-FRP tasks in
multi-processor platforms

Future Work

• Experimentally evaluate multi-processor partitioning
schemes in hardware

• Implement DVFS algorithms in the Real-Energy platform

• Modify DVFS algorithms to consider leakage current

• Modify TA and TPN models for easier scalability

• Formally prove if exact WCRT can be determined/or not
determined in polynomial time

• Extend this work to STM and lock-free execution as well
as general scheduling theory (job-shop)

Evaluation

• Does precise timing characterization of the embedded controller software
execution lead to faster physical system response compared with one
designed without accurate controller timing analysis (and thus requires more
tolerance of execution time variations)?

• How does the time to develop new control components with accurate
response time analysis tools compare to doing the same with older
methods?

• Automotive application: Do the new scheduling/execution such as AWR lead
to safer physical system behaviors such as shorter stopping distance for
ABS-equipped cars?

• Do optimizations to the runtime controller software such as reducing event-
handler preemptions and better priority assignments result in faster
controller response as measured by developed analytical methods,
simulation, and actual physical system testing?

211 / 119

Evaluation

• Does the inclusion of power-aware and power-saving measures maintain the
satisfaction of timing and space/memory constraints imposed on the
embedded controller and controlled physical system behaviors? What is the
amount of energy savings in the physical system and embedded controller
achieved with these approaches compared with systems without them?

• Does the resulting approach make it easier and safer to make minor
modifications to components of the control systems?

• Does this framework and toolset facilitate the design of the controller and its
timing/safety verification? Is the time from design to actual implementation
shortened and the development cost lowered?

212 / 119

Concluding Remarks

• Our goal: Enhance the safety and performance of a physical system
controlled by an embedded controller consisting of single or networked
control components with functional reactive programming (FRP).

• FRP allows intuitive specification and formal verification of safety-critical
behaviors, thus reducing the number of defects injected during the design
phase, and the stateless nature of execution avoids the need for complex
programming involving synchronization primitives.

• Accurate response time analysis tools (accounting for CPU execution,
memory access, I/O, and sensor processing times), novel scheduling
techniques, and new power-conserving methods are needed.

• Research impact: Facilitate the design and update of the embedded
controller (or network of controllers) as well as its (their) timing and safety
verification.

213 / 119

Faculty Seminar

Albert M. K. Cheng

214 / 119

Thank you!

Comments?
Questions?

215 / 119

References (1)

• Andrei S., Mozahid H., and Cheng A.M.K., "Optimizing the Linear Real-Time Logic
Verifier,'' 19th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS) WIP Session, Philadelphia, PA, April 8, 2013.

• Andrei S. and Cheng A.M.K., "Decomposition-based Verification of Linear Real-Time
Systems Specifications,'' 2nd Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems (CRTS), Washington, D.C., USA (Co-located with
IEEE RTSS 2009), December 1, 2009.

• Andrei S. and Cheng A.M.K., "Efficient Verification and Optimization of Real-Time
Logic Specified Systems,'' IEEE Transactions on Computers, vol. 58, no. 12, pp.
1640-1653, December 2009.

• Andrei S., Chin W., Lupa M., Cheng A.M.K., "Automatic Debugging of Real-Time
Systems Based on Incremental Satisfiability Counting,'' IEEE Transactions on
Computers, Vol. 55, No. 7, pp. 830-843, July 2006. Selected as this issue's featured
article.

• Andrei S., Mozahid H., and Cheng A.M.K., Optimizing the Linear Real-Time Logic
Verifier,'' 19th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS) WIP Session, Philadelphia, PA, April 8, 2013.

216 / 119

References (2)

• Andrei S., Radulescu V., McNicholl T., Cheng A.M.K., "Toward an optimal power-
aware scheduling technique,'' 14th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Romania,
September 26-29, 2012.

• Belwal C. and Cheng A.M.K., "Chaitanya Belwal, Albert M. K. Cheng, and Bo Liu, ``
Feasibility Interval for the Transactional Event Handlers of P-FRP,'' Special Issue on
UbiSafe Computing and Communications, Elsevier's Journal of Computer and
System Sciences, 2012.

• Belwal C. and Cheng A.M.K., "Determining Actual Response Time in P-FRP," Proc.
Thirteenth International Symposium on Practical Aspects of Declarative Languages
(PADL), Austin, Texas, USA, pages: 250-264, January 24-25, 2011.

• Belwal C. and Cheng A.M.K., "Determining Actual Response Time in P-FRP using
Idle-Period Game Board," Proc. 14th IEEE International Symposium on Object,
Component, and Service-Oriented Real-time Distributed Computing (ISORC),
Newport Beach, CA, USA, pages: 136-143, March 28-31, 2011.

217 / 119

References (3)

• Belwal C. and Cheng A.M.K., "Response Time Bounds for Event Handlers in the
Priority-based Functional Reactive Programming (P-FRP) Paradigm," ACM Research
in Applied Computation Symposium (RACS), San Antonio, Texas, USA, October 23-26,
2012.

• Cheng A.M.K, Niktab H., and Walston M., "Timing Analysis of Small Aircraft
Transportation System (SATS),'' International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA), Seoul, Korea, August 2012.

• Ras J. and Cheng A.M.K., "Response Time Analysis of the Abort-and-Restart Model
under Symmetric Multiprocessing." The 7th IEEE International Conferences on
Embedded Software and Systems (ICESS-10)," pages: 1954-1961, 2010.

• Ras J. and Cheng A.M.K., "Response Time Analysis for the Abort-and-Restart Event
Handlers of the Priority-Based Functional Reactive Programming (P-FRP) Paradigm,"
Embedded and Real-Time Computing Systems and Applications (RTCSA-09), pages:
305-314, 2009.

218 / 119

References (4)

• Ras J. and Cheng A.M.K., "An Evaluation of the Dynamic and Static Multiprocessor
Priority Ceiling Protocol and the Multiprocessor Stack Resource Policy in an SMP
System," Proc. IEEE-CS Real-Time and Embedded Technology and Applications
Symposium (RTAS), San Francisco, California, April 2009.

• Wen Y., Liu Z., Shi W., Jiang Y., Yang F., Kohar A., Cheng A.M.K., "Support for Power
Efficient Mobile Video Playback on Simultaneous Hybrid Display,'‘ 10th IEEE
Symposium on Embedded Systems for Real-Time Multimedia Tampere, Finland,
October 11-12, 2012.

• Wen Y., Belwal C., Cheng A.M.K., "Response Time Bounds for Event Handlers in the
Priority based Functional Reactive Programming (P-FRP) Paradigm,'' ACM Research
in Applied Computation Symposium (RACS), San Antonio, Texas, 2012.

• Wen Y., Belwal C., Cheng A.M.K., "Time Petri Nets for Schedulability Analysis of the
Transactional Event Handlers of P-FRP,'' ACM Research in Applied Computation
Symposium (RACS), San Antonio, Texas, USA, October 23-26, 2012.

• Li Y. and Cheng A.M.K., "Static Approximation Algorithms for Regularity-based
Resource Partitioning,'' 33rd Real-Time Systems Symposium (RTSS), San Juan,
Puerto Rico, USA, December 4-7, 2012.

219 / 119

References (5)

• Chaitanya Belwal, Yuanfeng Wen and Albert M. K. Cheng, ``Utilization Bounds of P-
FRP Tasks,'' to appear in International Journal of Embedded Systems, 2013.

• Yong woon Ahn, Albert M. K. Cheng, Jinsuk Baek, Minho Jo, and Hsiao-Hwa Chen,
``An Auto-Scaling Mechanism for Virtual Resources to Support Mobile, Pervasive,
Real-Time, Healthcare Applications in Cloud Computing,'' IEEE Network, Sept. 2013.

• Chaitanya Belwal, Albert M. K. Cheng, and Bo Liu, `` Feasibility Interval for the
Transactional Event Handlers of P-FRP,'' Special Issue on UbiSafe Computing and
Communications, Elsevier's Journal of Computer and System Sciences, Volume 79,
Issue 5, pages 530-541, August 2013.

• Yuanfeng Wen, Chaitanya Belwal, and Albert M. K. Cheng, ``Towards Optimal Priority
Assignments for the Transactional Event Handlers of P-FRP,'' ACM International
Conference on Reliable And Convergent Systems (RACS), Montreal, QC, Canada,
October 1-4, 2013.

• Chaitanya Belwal, Albert M. K. Cheng, J. Ras, and Yuanfeng Wen, ``Variable Voltage
Scheduling with the Priority-based Functional Reactive Programming Language,''
ACM International Conference on Reliable And Convergent Systems (RACS),
Montreal, QC, Canada, October 1-4, 2013.

