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Yu Li (Best Junior PhD Student Awardee and Friends of 
NSM Graduate Fellow) and Prof. Albert Cheng visit the 
NSF-sponsored Arecibo Observatory (world's largest and 
most sensitive radiotelescope) in Arecibo, Puerto Rico, 
after their presentation at the flagship RTSS 2012. 

Real-time systems research group at Yuanfeng Wen’s 
graduation party in May 2013.

Faculty Seminar



Real-Time Systems Theory
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Pathfinder mission to Mars: best known Priority Inversion problem.
Failure to turn on priority Inheritance (PI) - Most PI schemes complicate and slow down 

the locking code, and often are used to compensate for poor application designs.
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html



Real-Time Systems Theory
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• The more components a real-time system 

has, the more difficult it is to build and 

maintain.

– In such systems, preemptive scheduling may 
not be suitable, since it is likely to create 
runtime overheads which can result in worst-
case task execution times of up to 40% greater 
than fully non-preemptive execution.

• Yao G., Buttazzo G., Bertogna M., "Feasibility analysis under
fixed priority scheduling with limited preemptions," Real-Time
Systems, Volume 47 Issue 3, pages: 198-223, May 2011.



Real-Time Systems Theory
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– However, preemptive scheduling allows for 
more feasible schedules than non-
preemptive scheduling.

– Non-preemptive scheduling automatically 
prevents unbounded priority inversion, which 
avoids the need for a concurrency control 
protocol, leading to a less complex scheduling 
model.

– However, fully non-preemptive scheduling is 
too inflexible for some real-time applications, 
and has the added disadvantage of potentially 
introducing large blocking times that would 
make it impossible to guarantee the 
schedulability of the task set.



Real-Time Systems Theory

6 / 119

• Simplify the design and scheduling

• Avoid priority inheritance

• Use functional programming 

• Use abort-and-restart

• Use harmonic task sets

– However, harmonic tasks sets may be too 
restrictive for some situations. For example, 
one sensor needs to be serviced every 9
seconds and another (because of its design / 
physical characteristics) 10 seconds.



Real-Time Systems Theory
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• Example (1)  - Harmonic task sets

– Can achieve 100% CPU utilization

– Can avoid preemption and context switches costs

V. Bonifaci, A. Marchetti-Spaccamela, N. Megow, and A. Wiese, “Polynomial-Time Exact Schedulability
Tests for Harmonic Real-Time Tasks,” RTSS 2013.



Real-Time Systems Theory
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• Example (2)  - Harmonic task sets



Embedded Real-Time Systems

• An embedded system is a computer system designed for 
specific control functions within a larger system  

( A is embedded into B for control )

• Often with such systems there are constraints such as 
deadlines, memory, power, size, etc.
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Embedded Real-Time Systems

• Real-time systems (RTS) are reactive systems that are 
required to respond to an environment in a bounded amount
of time.

• Functional reactive systems (FRS)

• Cyber-physical systems (CPS)

– Challenges

• Complexity  

• Reliability  

– Fault-tolerant design 

– Meeting deadlines (Response Time Analysis (RTA))

• Security/Privacy

10 / 119



Functional Reactive Systems (FRS)

Systems that react to the environment being monitored and
controlled in a timely fashion using functional (reactive)
programming are known as Functional Reactive Systems
(FRS).

These systems can range from small devices (which are not
a CPS) to distributed and complex components (similar to a
CPS).
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Functional Reactive Systems (FRS)
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Reactive System Reactive Soft Real-Time System

Reactive Hard Real-Time System Reactive Hard Real-Time System



Cyber-Physical Systems (CPS)
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• Systematic integration of computation/information processing 
and physical processes and devices.

• Communication and sensing are components of CPS



Cyber-Physical Systems (CPS)

The current set of tools available for analysis cannot handle
the complexity of CPS and thus are unable to predict
system behavior with high degree of accuracy.

The consequences of these shortcomings:

Consider the electric power grid -- Massive failures leading
to blackouts can be triggered by minor events.
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Cyber-Physical Systems (CPS)
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Classic (non-CPS) electric grid system/behavior



Cyber-Physical Systems (CPS)
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• In a CPS, wireless/wired smart meters measuring real-time electricity
usage and historical data (state) feedback (communication) to the
generation station to better manage and distribute electricity.

• Current and predicted weather condition data can also further inform
the decision-making in where to distribute electricity (very hot or very
cold weather increase electricity demand).

• There is also a need to guard against intrusion into the system.

• Advocate formal verification to ensure satisfaction of safety properties.



Cyber-Physical Systems (CPS)

17 / 119



Cyber-Physical Systems (CPS)

Example 2: Imagine an airplane that refuses to
crash. While preventing all possible causes of a
crash is not possible, a well-designed flight control
system can prevent certain causes. The systems
that do this are good examples of cyber-physical
systems.
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Cyber-Physical Systems (CPS)

For example, some airplanes use a technique called flight envelope
protection to prevent a plane from going outside its safe operating range,
and prevent a pilot from causing a stall.
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Cyber-Physical Systems (CPS)

• The embedded control system can over-ride erroneous operation that would lead to an accident.

http://en.wikipedia.org/wiki/Air_France_Flight_447
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Cyber-Physical Systems (CPS)

• The concept of flight envelope protection could be
extended to prevent other causes of crashes. For
example, the soft walls system proposed by Prof. Edward
Lee, if implemented, would track the location of the
aircraft on which it is installed and prevent it from flying
into obstacles such as mountains.

– E. A. Lee, "Soft Walls - Modifying Flight Control Systems to Limit the Flight Space
of Commercial Aircraft," EECS Department, University of California, Berkeley,
Tech. Rep. UCB/ERL M01/31, 2001.
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Cyber-Physical Systems (CPS)
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Cyber-Physical Systems (CPS)
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• One of the key goals in our research is to develop the core tools that
can be used to facilitate the analysis, design and engineering of
highly-complex systems.

• With such tools, we can ensure that these systems are reliable,
predictable, efficient, secure and resilient to multiple points of failure,
and hence that their operation and safety can be depended upon
with a high degree of confidence.

• We advocate formal verification to ensure safety of CPS's, but their
complexity requires further research in verification tools.



Cyber-Physical Systems (CPS)
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Small Aircraft Transportation System (SATS)

Self Control Area Airspace Volume



Cyber-Physical Systems (CPS)
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Small Aircraft Transportation System (SATS)

Side View of the SCA



Cyber-Physical Systems (CPS)
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Small Aircraft Transportation System (SATS)

Top View of SCA



Cyber-Physical Systems (CPS)
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Small Aircraft Transportation System (SATS)

3-D View of the SCA



Cyber-Physical Systems (CPS)
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Small Aircraft Transportation System (SATS)

Logical Zones of RTL Model



Cyber-Physical Systems (CPS)
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• We will introduce RTL-based formal verification later in the tutorial.

Small Aircraft Transportation System (SATS)



Functional Reactive Programming

• Priority-based Functional Reactive Programming (P-FRP)

• P-FRP provides real-time guarantees using static priority assignment

• Higher-priority tasks preempt lower-priority ones; preempted tasks are aborted

• Multi-version commit model of execution

• Atomic execution – “all or nothing” proposition

• Execution different from ‘standard’ models

Other Examples of Functional Programming (FP) Languages: 

• Haskell

• Atom - Domain Specific Language in Haskell

• Erlang - Developed at Ericsson for programming telecommunication equipment

• Esterel - Designed for reactive programming

• F# - Developed by Microsoft; available as a commercial platform
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The Haskell Functional Programming Language 
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- The GHC compiler/interpreter uses a round-robin scheduler for Haskell threads 
- No thread priorities yet for forkIO threads in GHC

A simple ABS example in Haskell:

import Control.Concurrent  -- For threading facilities: “forkIO”, “newEmptyMVar”, “takeMVar”, and “putMVar”.
import Control.Monad (forever) -- For "forever"

-- Type aliases help keep track of what values we are talking about.

type WheelSpeed    = Double  -- A "double" floating point value
type AverageSpeed = Double

-- | The ABS can either forcibly release, focibly engage, or stay neutral for each wheel.
-- The deriving clause creates the obvious Show instance for this ADT.

data BrakeSignal = Release | Engage | Neutral

deriving Show
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-- | Compute the average speed by dividing the sum of the list of speeds by the length.
-- fromIntegral is there to convert the result of length (Int) into a Double
-- Note, this will traverse the list twice, ineffcient for vehicles with millions of wheels.
averageSpeed :: [WheelSpeed] -> AverageSpeed
averageSpeed speeds = sum speeds / (fromIntegral $ length speeds)

-- | This algorithm may be much more complicated, but the basic idea is present.
-- Given the average speed and a particular wheel speed, check to see if we are
-- within 5 (mph, kph, m/s, whatever) of the average. If we are below the minimum
-- send the release signal to the brakes. If we are within 5, remain neutral, otherwise
-- send a signal to engage the brakes.
ecuHelper :: AverageSpeed -> WheelSpeed -> BrakeSignal
ecuHelper average speed | speed < min = Release

| speed < max = Neutral
| otherwise = Engage

where
min = average - 5
max = average + 5

The Haskell Programming Language 



33 / 119

-- A list of wheel speeds are averaged and the speed of each wheel compared to it
-- and converted into an ABS signal.

ecu :: [WheelSpeed] -> [BrakeSignal]
ecu speeds = let avgS = averageSpeed speeds

in map (ecuHelper avgS) speeds
-- The Main Function:
-- The first thread does all printing whenever information becomes available to the ABS.
-- The second thread waits for sensor data, sends it to the ECU and stores the result in the ABS
-- The main thread waits for someone to type in a list of numbers and sends it to the “sensors”.

main = do
-- Print initial instructions and an example.
print "Enter wheel speeds: [45,46,45,47]"
-- Create sensors represented as a list of WheelSpeeds, i.e., Doubles.
sensors <- newEmptyMVar
-- Create an ABS represented as as list of BrakeSignals.
abs <- newEmptyMVar

The Haskell Programming Language 
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-- This thread handles all printing to the console.
forkIO $ forever $ do

putStr "Enter a Speed: " 
absOutput <- takeMVar abs         -- Read ABS status
print absOutput                     -- Print ABS status.

-- This thread is the ABS. It reads the sensors, then processes the data and updates the ABS.
forkIO $ forever $ do 

sensorData <- takeMVar sensors     -- Read sensors.
let brakeCommands = ecu sensorData  -- Calculate brake response
putMVar abs brakeCommands   -- Update ABS status.

-- The main thread simply waits for users to enter data which is then written to the sensors.
forever $ do 

input <- getLine                    -- User enters a line of text
let wheelSpeedData = read input     -- Text is read as [WheelSpeed]
putMVar sensors wheelSpeedData      -- wheelSpeedData is written to sensors

The Haskell Programming Language 
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To run program from the command prompt
In GHCi, type

*Main> main
"Enter wheel speeds: [45,46,45,47]"
Enter a Speed: [45,45,45,55]
[Neutral,Neutral,Neutral,Engage]

Enter a Speed: [45,45,45,45]
[Neutral,Neutral,Neutral,Neutral]

Enter a Speed: [45,45,55,45]
[Neutral,Neutral,Engage,Neutral]

The idea is that you keep entering new sensor data. 
The system calculates the new ABS signals to send to the vehicle. 
The session should look like this:

The Haskell Programming Language 
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C# and F#

Execution Time (ns.)
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C# and F#

C# : 10,000 Iterations F# : 10,000 Iterations



Functional Reactive Programming (FRP)
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• Functional reactive programming (FRP) is a style of functional
programming where programs are inherently stateful, but
automatically react to changes in state.

• FRP allows intuitive specification and formal verification of safety-
critical behaviors, thus reducing the number of defects during the
design phase, and the stateless nature of execution avoids the need
for complex programming involving synchronization primitives.

• Therefore, the program remains an algebraic description of system
state, with the task of keeping the stated (unidirectional) relationships
in sync left to the *language*.
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• FRP is essentially (though rarely acknowledged as such) an
extension to the old idea of dataflow programming.

• A key difference is that FRP supports higher-order functions, and
modern FRP systems are generally well-integrated into broader
languages.

• The original (modern) FRP work was built in the context of Haskell,
though major FRP systems have also been built atop many other
languages.

Functional Reactive Programming (FRP)
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• Type-safe programming language

• Discrete and Continuous aspects

• Transactional model prevents priority inversion

• Synchronization primitives not required

• Ideal for parallel execution

Basic Abstractions

• FRP divides inputs into two basic classes:

– Behaviors or signals: Functions of time.

– Events: Temporal sequences of discrete values.

• An FRP language must include a means of altering or replacing a program 
based on event occurrences - this is the basis of FRP's reactivity.

• These abstractions may be reified in an FRP language or may form the 
basis of other abstractions, but they must be present.

Functional Reactive Programming (FRP)
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• Classic FRP

– Fran  (Functional Reactive Animation: Bouncing Balls)

– Reactive

– Reactive-banana

– Elm

• Signal-Function FRP

– Fruit

– RT-FRP

– Yampa  (Animations and Games: Space Invaders)

– Netwire

Functional Reactive Programming (FRP)
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Examples in FRAN

• Values, called behaviors, that vary over time

• As an example the following expression evaluates to an
animation (i.e., an image behavior) containing a circle
over a square. At time t, the circle has size sin t, and the
square has size cos t.

bigger (sine time) circle

bigger (cos time) square

Functional Reactive Programming (FRP)
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Examples in FRAN

• Events

• Like behaviors, events may refer to happenings in the
real world (e.g., mouse button presses). For example the
event describing the first left-button press after time t0 is
simply lbp t0;

• One describing time squared being equal to 5 is just:

predicate (time^2 == 5) t0

Functional Reactive Programming (FRP)
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Examples in FRAN

• Many behaviors are expressed in terms of reactions to events. But
even these reactive behaviors have declarative semantics in terms of
temporal composition.

• For example, a color-valued behavior that changes from red to
green with each button press can be described by the following
simple recurrence:

colorCycle t0 =

red 'untilB' lbp t0 *=> \t1 ->

green 'untilb' lbp t1 *=> \t2 ->

colorCycle t2

Functional Reactive Programming (FRP)
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Examples in FRAN and RT-FRP

• At the moment of an event occurrence, it is good to take a snapshot

of a behavior’s value.  For example, the behavior:

b1 untilB (lbp t0 snapshot (sin time)) => X(e,y), b2

• Grabs the sine of the time at which the left button is pressed, binds it 
to y, and continues with behavior b2, which depends on y.

Functional Reactive Programming (FRP)
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Examples in FRAN and RT-FRP

• The following computes the difference between the 
current time and the time at the previous execution step:

let snapshot t0 <- time in

let snapshot t1 <- delay 0 time in ext (t0 -t1)

Functional Reactive Programming (FRP)
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Netwire

Netwire is a library for functional reactive programming

This language lets you express reactive systems, which means systems that
change over time.

It shares the basic concept with Yampa

The Haskell Cabal is a system for building and packaging

Haskell libraries and programs.

Functional Reactive Programming (FRP)
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A simple ABS example with Netwire

Everything above "main" is identical to the Haskell program example (except imports)

import Control.Wire

-- Print initial instructions and an example.

print "Enter wheel speeds: [45,46,45,47]"

let loop w' session' = do                               --This is the main loop

(mx, w, session) <- stepSession w' session' ()      --Step forward in session

case mx of                                          --Check for success

Left ex -> putStrLn (“Error: " ++ show ex)  --If failure, print why

Right x -> putStrLn (“Success: " ++ show x)  --If success, print result

loop w session                                      --Loop again

loop ( absControl . sensors ) clockSession            --Create the connection between 

- --the sensors and absControl and 

--create a clock session

Functional Reactive Programming (FRP)
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-- This WIRE waits for input which is checked for validity then written to the sensors.

-- This wire also handles printing to the console.

sensors :: Wire String IO () [WheelSpeed]

sensors = mkStateM [ ] (\_ (_,s) -> do

putStr "Enter a Speed: "           -- Print prompt

r <- getLine -- User enters a line of text

let r2 = case maybeRead r           -- Text is read as [WheelSpeed]

of Just x -> (Right x,x)

Nothing -> (Left "Bad Input",s) -- If read fails, inhibit the wire.

return r2)                                  -- wheelSpeedData is sent to sensors

Functional Reactive Programming (FRP)
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-- This WIRE is the ABS. 

-- It reads the sensors, then processes the data and updates the ABS.

absControl :: Wire String IO [WheelSpeed] [BrakeSignal]

absControl = mkPure (\_ sensorData -> (Right (ecu sensorData),absControl))

-- Helper function for read.

maybeRead :: Read a => String -> Maybe a

maybeRead s = case reads s of

[(x, "")] -> Just x

_         -> Nothing

Functional Reactive Programming (FRP)
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• Weaknesses

• FRP is still relatively new and the design space is still being
explored.

• Strengths

• FRP makes writing reactive programs easier to reason about and to
avoid common errors

• It is easier to expand and create new behaviors. Once the program
becomes more complex, forkIO and multiple threads might start
interfering with each other, or there would be odd interleaving,
blocking, or other bad concurrency behavior.

FRP is still Haskell. It is just a different style.

Functional Reactive Programming (FRP)
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• Using FRP makes the controllers (the computational components of CPS)
more amenable to analysis and verification.

• We can treat components (programed in FRP) as mathematical functions,
which can be composed and synthesized to form a much larger, complex
system.

• More resistant to faults since there are no intermediate states. They can be
connected and composed more easily.

• With procedural programs, there are more uncertainties, for example,
intermediate states if faults/interruptions occur that need to be
specified/modeled, making developing a CPS with guaranteed safety and
response much more complex and potentially intractable.

• In the electric grid example, different generating stations have control
components which analyze real-time data from smart meters, weather data,
and industrial plants' energy usage to determine optimal or near-optimal
generation and distribution of electricity.

Functional Reactive Programming (FRP)



Priority-based FRP  (P-FRP)

• P-FRP aims to improve the programming of reactive real-
time systems.

– Supports assignment of different priorities to events

– Benefits of using P-FRP over the imperative styles 

• P-FRP allows the programmer to intuitively describe safety-
critical behaviors of the system, thus lowering the chance of
introducing bugs in the design phase.

• Its stateless nature of execution does not require the use of
synchronization primitives like mutexes and semaphores, thus
reducing the complexity in programming.
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Priority-based FRP  (P-FRP)

• To preserve data consistency, shared resources must 
be accessed in mutual exclusion:
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Priority-based FRP  (P-FRP)

• However, mutual exclusion introduces extra delays:



Priority-based FRP  (P-FRP)
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Example: The Car Controller

* C = worst case execution time
* T = (sampling) period   = D (deadline)

• Speed Measurement: C=4ms, T=20ms, D=20ms

• ABS control: C=10ms,T=40ms, D=40ms

• Fuel injection:  C=40ms,T=80ms, D=80ms

• Other software with soft deadlines,  audio, air condition, etc. 

Try any method to schedule the tasks



Priority-based FRP  (P-FRP)

57 / 119

Static cyclic scheduling: + and –

• Deterministic: predictable (+)

• Easy to implement (+) 

• Inflexible (-) 

– Difficult to modify, e.g., adding another task

– Difficult to handle external events

• The table can be huge (-)

– Huge memory-usage

– Difficult to construct the time table



Priority-based FRP  (P-FRP)
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The Car Controller (Time table constructed with EDF) 

Can use the Stack 
Resource Policy (SRP) 
or the Priority Ceiling 
Protocol (PCP) for 

concurrency control.

- Inheritance algorithms 
are complicated and 
difficult to program 

correctly.



Priority-based FRP (P-FRP)

• In P-FRP, the scheduling model is called Abort-and-Restart (ANR)

– Copy and restore operations

• To allow for correct restarting of handlers, compilation is

extended to generate statements that store variables

modified in an event handler into fresh temporary (or

scratch) variables in the beginning of the handler while

interrupts are turned off, and to restore variables from the

temporary variables at the end of the handler while

interrupts are turned off.
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Priority-based FRP  (P-FRP)
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Priority-based FRP  (P-FRP)

• The Abort-and-Restart  (ANR) Scheduling Model

– The idea of the ANR model is that a lower-priority task is aborted
when a higher priority task arrives into the system. Once the higher-
priority task is done, the lower priority task restarts as new.
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Priority-based FRP  (P-FRP)

62 / 119



Priority-based FRP  (P-FRP)

• Advantages of Abort-and-Restart (ANR)  

– A simpler programming model

– Tasks execute atomically so no task is blocked by another task

• The priority inversion problem is removed

• No overheads caused by priority inheritance

• Closer adherence to priority scheduling
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Priority-based FRP  (P-FRP)
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Priority-based FRP  (P-FRP)

65 / 119



Priority-based FRP  (P-FRP)
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Priority-based FRP  (P-FRP)
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Priority-based FRP  (P-FRP)
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Priority-based FRP  (P-FRP)
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Priority-based FRP  (P-FRP)

Limited Work on Scheduling and Schedulability Analysis

• While there is an extensive understanding of the theory and 
proof-carrying capability of functional programs and their 
reactive versions, relatively little work is available on the 
scheduling of primitives in the corresponding imperative code.

• Also, performance studies of the computational platforms on 
which these functional programs execute are mostly absent.
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Priority-based FRP  (P-FRP)

• The worst-case response time of a task is the length of the 
longest interval from a release of that task till its completion.

• With ANR, interference from higher-priority tasks induces 
both an interference cost and an abort cost on the response 
time of the preempted lower-priority task.

• Current focus is on response time analysis with abstract 
memory and I/O access times. Next challenges include 
accounting for precise memory and I/O access times.
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Priority-based FRP  (P-FRP)

• Response time analysis is an exact schedulability test to calculate the
worst-case response time of a task which includes the time of
interference from other higher priority tasks and blocking from lower
priority tasks.

• RTA is not exact unless blocking is exact - which it is not. If the worst-
case response time of a task is longer than its deadline (D), it means the
task will not meet its deadline. The opposite situation is that if the worst-
case response time of the task is less than or equal to its deadline, the
task will meet its deadline.

• The analysis can be applied for D = T (task’s period), D < T, or D > T.
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Priority-based FRP  (P-FRP)

Response time Analysis for ANR

• For the highest-priority task, its worst response time will be equal to its

own computation time, that is R = C.

• If task j has the highest arrival rate, then the execution time of a task i

cannot exceed Tj − Cj or task i will suffer interference (I) and aborts

(α). So for a general task i :

Ri = Ci + Ii + αi
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Priority-based FRP  (P-FRP)

Interference Cost

• If the execution time of some task i exceeds Tj − Cj, then
task i will never be able to complete execution.

• A simple expression for obtaining this Interference Cost is
using the ceiling function:
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Priority-based FRP  (P-FRP)

Maximum Interference

• Each task of higher-priority is interfering with task i, and so:

• This gives us the following equation:
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Priority-based FRP  (P-FRP)

Maximum Abort Costs

• Each higher-priority task is interfering with task i, so the
maximum Abort Costs are as follows:

• Ck is the maximum execution time between i and the 
highest-priority task.
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Priority-based FRP  (P-FRP)

Maximum Abort Costs

• The maximum abort cost equation is sensible and simple but 
overly pessimistic. Therefore, the test is said to be sufficient
but not necessary.
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Priority-based FRP  (P-FRP)
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• Abort-and-Restart with a limit on the number of aborts



Priority-based FRP (P-FRP) Example

Antilock braking system in a car is a simple example of an embedded hard
real-time system with real-time constraints.

The ABS is expected to release a vehicle’s brakes, preventing dangerous
wheel locking, in a predictably short time frame.

ABS uses a kind of an Abort-and-Restart Scheme.

Kaleb R. Christoffersen and Albert M. K. Cheng, ``Model-Based Design: Anti-lock Brake 
System with Priority-Based Functional Reactive Programming,’’ submitted to RTSS WIP 
2013.
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Priority-based FRP  (P-FRP)
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Anti-Lock Brake Types 
ABS uses different schemes depending on the type of brakes in use.

• Four-channel, four-sensor ABS (the best scheme) - there is a speed 
sensor on all 4 wheels and a separate valve for all four wheels. With this 
setup, the controller monitors each wheel individually to make sure it is 
achieving maximum braking force.

• Three-channel, three-sensor ABS - this scheme found often on pickup 
trucks. It has a speed sensor and a valve for each of the front wheels, 
with one valve and one sensor for both rear wheels.

• One-channel, one-sensor ABS - this system found also often on pickup 
trucks with rear-wheel ABS. It has one valve, which controls both rear 
wheels, and one speed sensor.



Priority-based FRP  (P-FRP)

Example: ABS Controller

– Activities of an ABS control system 

1. C = worst case execution time

2. T = (sampling) period   = D (deadline)

– (A) Car speed measurement: C= 1 ms, T= 5 ms

– (B) Wheel speed measurement: C= 2 ms,T=8 ms

– (C) Analysis and computation task : C= 3 ms,T=20 ms

– (D) Brakes (Abort (release) /Retry (pressure)) : C= 1 ms,T=25 ms 
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Priority-based FRP  (P-FRP)
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Priority-based FRP  (P-FRP)
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Typically ABS includes 

• Electronic control unit (ECU)

• Wheel speed sensors

• At least two hydraulic valves within the brake hydraulics

• The ECU constantly monitors the rotational speed of each wheel;
if it detects a wheel rotating significantly slower than the others, a
condition indicative of impending wheel lock, it actuates the valves
to reduce hydraulic pressure to the brake at the affected wheel,
thus reducing the braking force on that wheel; the wheel then
turns faster.



Priority-based FRP  (P-FRP)
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Abort-and-Restart Scheduling
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Priority-based FRP  (P-FRP)
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- On-line Schedulability Test returns the gap (the amount of execution time
available) for the next lower-priority task.
- Precise (tight) timing characterization of the embedded controller software
execution leads to faster physical system response compared with one designed
without accurate controller timing analysis (and thus requires more tolerance of
execution time variations).



Non-Preemptive Execution 



Preemptive Execution



P-FRP Execution 



P-FRP Challenges

• Ascertaining temporal properties is difficult

– Execution time is dynamic in nature

– Information known a priori cannot be used

– No notion of Critical Instant

• Existing methods for preemptive / non-
preemptive execution cannot be applied

• New methods are required for Response Time 
Analysis and Schedulability



Critical Instant -
Synchronous



Critical Instant -
Asynchronous



Definitions

• Interference cost - In the preemptive model of 
execution, if a higher priority τi interferes with the 
execution of a lower priority task τj, then τi will 
preempt τj. The response time of τj will be delayed by 
time taken to process τi, which is Pi. This is referred 
to as the interference cost

• Abort Cost - In the P-FRP execution model, 
preempted tasks are also aborted. The amount of 
time spent in  aborted processing is called the abort 
cost



Contributions

• This work deals with finding actual response time in 
P-FRP

• Actual response time is not an approximate value

• Actual response time is found for a priori known 
release scenario

• Method for finding actual response time is required 
for determining worst-case response time …

… as well as developing exact schedulability tests,  
analyzing multi-processor schedulability etc.



Existing Approach: Audsley 
et al



Existing Approach: Audsley 
et al
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Existing Approach: Ras & Cheng

• Extension of  Audsley’s Method

• Abort cost is added on response time

• Abort cost from each higher priority task is 
accounted for

• Computed response time is not exact, but an 
upper bound on WCRT

• Solution does not converge for several cases



Simulation

• Iteration 1
•

Iteration 2



Gap Enumeration



Gap Enumeration



Gap Enumeration – Storage

•Red-Black Tree

•Self-balancing binary search tree

•Root and leaf nodes are black

•Red node has black children

• log2 n time for insertion, delete and 

search



Gap Enumeration – Dynamic Size

Iteration 1



Gap Enumeration – Dynamic Size

Iteration 1



Experimental Analysis

7 Tasks
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Remarks

• New method for response time computation

• Can compute response time under any given release 
scenario

• Chaitanya Belwal and Albert M. K. Cheng, “Determining 
Actual Response Time in P-FRP”, 13th International 
Symposium on Practical Aspects of Declarative 
Languages (PADL), Austin, Texas, USA January 24-25, 
2011 
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Determining Exact WCRT



Determining Exact WCRT

• For a task set of size n, the total number of 
enumerations whose response time has to be 
evaluated is:

(Dj – t + t+1)n–j = (Dj+1)|HP| where |HP| is the 
number of higher priority tasks

• Number of enumerations and hence the 
computational cost, is dependent on the deadline of 
τj as well as the size of the task set

• Prior works in P-FRP only deal with computing 
approximate values of response time 



Contributions

• We present techniques for determining the lower and 
upper bound on release offset of higher priority tasks 
for computation of exact WCRT in P-FRP

• This reduces the number of enumerated release 
scenarios by a considerable amount

• Highlight schedulability characteristics

• Present algorithm to computer release offset upper 
bound



Determining WCRT

• Theorem. Let  Γn be a n task set: Γn = {τ1, τ2, …,τn}. 
The release offsets of tasks τj+1 …τn which lead to the 
worst-case response time of  τj, are guaranteed to be 
more than or equal to the worst-case abort costs that 
can be induced on τj

• Theorem establishes a lower bound on release 
offset (lower bound = worst-case abort costs that can 
be induced on τj)

• Lower bound = Processing time of τj  - 1



Determining WCRT

• Theorem. For a n-task set  Γn = {τ1, τ2, …,τn}, the 
release offset values of tasks τj+1 …τn, which lead to 
the worst-case response time of  τj, have an upper 
bound

• Theorem proves that there is an upper bound on 
release offset of higher priority tasks



Release Offset Upper Bound

• Intuitive way to compute the release offset upper 
bound is to release the highest priority task first

• Followed by other tasks in priority order

• Release tasks at intervals such as to induce 
maximum abort cost on the lower priority task τj

• Does not lead to WCRT

• The 2nd or 3rd job of a higher priority tasks can further 
delay the response time

• Algorithm is used to compute Upper Bound



Results – 5 Tasks
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Remarks

• Till now all release offset scenarios in the period [0,Tj) 
have to be evaluated to determine WCRT of  τj

• Our approach requires evaluation between the release 
offset bounds and is more efficient

• Chaitanya Belwal, Albert M. K. Cheng and Walid Taha, 
“Release Offset Bounds for Response Time Analysis 
of P-FRP”, 8th IEEE International Conference on 
Embedded Software and Systems (ICESS), 
Changsha, China, Nov. 16-18, 2011  
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Approximate WCRT in Polynomial Time

• As shown, Audsley’s method cannot be used to 
determine response time in P-FRP

• Ras and Cheng’s method computes approximate  value 
of WCRT…

• …However this method does not converge for several 
task sets

• Guaranteed method for approximating WCRT in P-FRP 
is required



Contributions

• Derive an algorithm to compute approximate values of 
WCRT in P-FRP 

• This algorithm is guaranteed to converge to a result

• Approximation factors evaluated through experimental 
task sets



Algorithm Outline

• Set lower bound of WCRT equal to the value computed 
by Audsley’s algorithm

• Use the lower bound as a base value and add 
interference and abort costs 

• Run an iterative loop based on number of higher priority 
tasks

• Add costs for prior tasks in every iteration

• Iterative loop is guaranteed to complete



Results – 3 Tasks / Low Utilization



Results – 5 Tasks / Low Utilization



Results – 3 Tasks / High Utilization



Results – 5 Tasks / High Utilization



Remarks

• High approximation factor for larger task sets due to 
larger pessimism in abort costs

• Reducing pessimism while maintaining correctness is 
challenging

• C. Belwal, A. M. K. Cheng, W. Taha, and A. Zhu, “Time 
Analysis of the Priority based FRP System”, IEEE-CS 
Real-Time and Embedded Technology and Applications 
Symposium WIP Session, St. Louis, MO, April 22-24, 
2008
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Feasibility Interval

• Real-time System tasks can run infinitely often

• No tasks should have a deadline miss as long as 
system is running (hard real-time)

• Ascertaining schedulability for an infinite period 
is not possible

• Finite time is used to analyze schedulability

• Termed feasibility interval in real-time studies



Feasibility Interval for Preemptive Execution

• In their seminal paper, Liu and Layland have shown 
that the WCRT occurs when tasks are released 
synchronously (at the same time)

• The feasibility interval in a synchronous release is [0, 
L), where L is the least common multiple of all task 
periods

• Schedulability in [0,L) guarantees schedulability since 
worst-case schedulability is also analyzed



Contributions

• Formally present execution characteristics 
of tasks in a P-FRP system with 2 tasks 

• Formally present execution characteristics 
of tasks in a P-FRP system with > 2 tasks

• Derive the feasibility interval of P-FRP



Processing Pattern

• Two time intervals of equal lengths [t1, 
t1+a) and  [t2, t2+a) are said to have the 
same processing pattern, if for every 
value of relative time t: 0 ≤ t < a, the task 
that is processed at relative time t in [t1, 
t1+a) (absolute time t1 + t), is also 
processed at relative time  t in [t2, t2+a) 
(absolute time t2 + t)



Feasibility Interval in P-FRP

• In P-FRP preempted tasks are aborted

• Leads to different execution semantics

• Unknown if feasibility interval of the  
preemptive model can be applied to this 
execution model

• Fresh approach required to determine the 
feasibility interval



Feasibility Interval

• Theorem. For Γn={τ1, τ2,…, τn} and Rmax = 

max{Φi}, the feasibility interval of Γn is [t, 

t+L), where t ≥ Rmax

• Corollary. The earliest feasibility interval 
of Γn is [Rmax, Rmax+L)

• Corollary. If all tasks in Γn are 
synchronously released, then the earliest 
feasibility interval is  [0, L)



Remarks

• Formally derived the feasibility interval in P-FRP

• Can be extended to consider non-periodic tasks

• Chaitanya Belwal and Albert M. K. Cheng, “Feasibility 
Interval for the Transactional Event Handlers of P-FRP”, 
8th IEEE International Conference on Embedded 
Software and Systems (ICESS), Changsha, China, Nov. 

16-18, 2011.
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Optimal Priority Assignments

• Rate-Monotonic (RM) priority assignment is optimal in the 
preemptive model (Liu and Layland)

• RM is not optimal in P-FRP ...

• … can be easily proven with an example

• Unknown if an optimal priority assignment can even exist for 
this execution model



Contributions
• Analyze schedulability characteristics of P-FRP 

tasks

• Several Theorems are proved

• Study priority assignment for 2 tasks and formally 
prove that U-RM (Utilization and Rate Monotonic) 
priority assignment is optimal

• Prove that no single priority assignment can be 
optimal for more than 2 tasks

• Experimentally evaluate results



Intermediate Release Points (IRPs)

Task pr P T U

τ1 1 7 15 0.46

τ2 2 3 12 0.25



Results



Remarks

• U-RM is the optimal priority assignment in 2-task sets

• For more than 2 tasks no single priority assignment can 
be optimal

• Several large tasks sets are still U-RM schedulable

• Chaitanya Belwal and Albert M. K. Cheng. “On Priority 
Assignment in P-FRP”, Proc. IEEE-CS Real-Time and 
Embedded Technology and Applications Symposium 
(RTAS) WIP Session, Stockholm, Sweden, April 13-16, 
2010
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Utilization-based Sufficient Tests

• Liu and Layland’s (LL) utilization bound is widely used 
as a sufficient schedulability test

U ≤ n·(21/n – 1)

n = number of tasks,

U = sum of utilization ratios of all tasks 

• For 2 tasks U ≤ 0.83, for 3 tasks U ≤ 0.78 etc, for task 
set to be guaranteed schedulable



Utilization-based Sufficient Tests

• Liu and Layland’s bound is derived by considering worst-
case release scenario

• Worst-case release scenario is also assumed in 
derivations of other schedulability tests (e.g. Bini and 
Baruah’s)

• Worst-case scenario is derived using critical instant

• In P-FRP, the worst case release scenario is not the 
synchronous release of tasks



Contributions

• Derive a worst-case release scenario with 2 P-FRP 
tasks

• Use this worst-case scenario to derive sufficient 
utilization bounds for P-FRP tasks sets with 2 tasks

• Prove that worst-case scenario for 2 and n (n > 2) 
tasks is different

• Present a pessimistic condition with n tasks

• Use the pessimistic condition to derive utilization 
bound for n tasks

• Experimental Analysis



Utilization Bound for 2 Tasks

• Theorem. A task set with 2 tasks {τ1, τ2} where 
T2 ≤ 2·T1 is guaranteed to be schedulable when 
the total utilization factor U of this task set is less 
than or equal to 0.5. Or, the sufficient utilization 
bound of  the task when T2 ≤ 2·T1 is: U ≤ 0.5.

• When T2 > 2·T1 then tasks with U → 0 can also 
be schedulable, and a sufficient bound does not 
exist



Utilization Bound with n
Tasks

• Approach used for 2 tasks cannot be directly 
applied

• Worst-case release scenario can be different for 
unique task sets

• Identify a low utilization task set 

• Derive bound under full utilization for this task 
set



Utilization Bound for n Tasks

Worst-case release scenario for a pessimistic task set



Utilization Bound with n
Tasks

Theorem. A task set having n tasks {τ1, τ2,…,τn} 
such that n·T1 ≥ Ti, i = 2,…, n, is guaranteed to 
be schedulable when the total utilization factor U
of this task set is less than or equal to 1/n. Or, 
the sufficient utilization bound of  Γn when n·T1 ≥

Ti is U ≤ 1/n. 



Results 3 Tasks -
Schedulability



Results 3 Tasks -
Unschedulability



Comparisons with LL Bound



Comparisons with LL Bound



Remarks

• Determined sufficient utilization condition for P-FRP task 
sets

• Chaitanya Belwal and Albert M. K. Cheng, “A Utilization 
based Sufficient Condition for P-FRP”, IEEE/IFIP 
International Conference on Embedded and Ubiquitous 
Computing (EUC), Melbourne, Australia, Oct 24-26, 2011
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Static vs. Global Partitioning

• Partitioning refers to assignment of tasks that will 
execute in a processor 

• In static partitioning, task assignment to processors is 
done offline

• Task assignment cannot be changed while system is 
running

• Global partitioning is dynamic, and tasks can move 
between processors while system is running

• No partitioning scheme is ideal



Contributions

• Study static partitioning of P-FRP in multi-processor 
systems

• Develop an exact schedulability test for P-FRP tasks

• Three schemes applying first-fit algorithm on different 
sorting criterion 

• Partitioning schemes analyzed in rigorous 
experimental analysis by comparing it with an optimal 
scheme

• Valid for synchronous release of tasks



Exact Schedulability Test



Exact Schedulability Test



Bin-Packing

• Classical NP-hard problem in Computer 
Science

• Object with different sizes are packed in finite 
number of bins

• Has previously been used in static 
partitioning of  tasks in SMP platforms

• Tasks are sorted using some criterion

• First-fit, last-fit heuristics widely used



Bin-Packing with Schedulability Test

• Tasks are sorted based on a defined criterion

• First-fit scheme is used

• P-FRP exact schedulability test is used to 
identify if processor (bin)  is ‘full’

• Tasks are assigned to the next processor until it 
is ‘full’ and so on

• After last task in sorted order is assigned to a 
processor, partitioning is complete



Optimal Partitioning – Brute 
Force

Combinatorial B-tree for enumeration all partitions in ‘N’ processors
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Remarks

• Applied first-fit partitioning using a new exact 
schedulability test for P-FRP

• Three sorting criterion used with first-fit algorithms

• Chaitanya Belwal and Albert M. K. Cheng, “Partitioned 
Scheduling of P-FRP in Symmetric Homogeneous 
Multiprocessors”, IEEE/IFIP International Conference on 
Embedded and Ubiquitous Computing (EUC), 
Melbourne, Australia, Oct 24-26, 2011
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Dynamic Voltage and Frequency Scaling

• Energy function of CMOS

E = C·V2·f 

• Operating the CPU at a lower voltage consumes less 
energy

• Lowering the voltage decreases the number of CPU 
clock cycles available per unit time

• Goal is to save energy as well meet real-time guarantees

• Applying DVFS in P-FRP is different from preemptive 
execution



Contributions

• Derived Schedulability conditions for Static 
DVFS

• Presented algorithm for Progressive Voltage 
Scale (PVS)

• Presented the Voltage Scaling Points (VSP) 
algorithm

• Experimental evaluations and comparison 
between each approach 



Variable Voltage Scheduling with P-FRP

172 / 119

In static-mode DVFS, the task set operates on a single scaled CPU voltage, which
we set before the start of task execution. The voltage is kept constant as long as
the task set is unchanged. Before setting the scaling voltage, it is necessary to
determine if the task set can be scheduled under the scaled voltage.



Variable Voltage Scheduling with P-FRP
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Example : Normal execution of this task set without any voltage scaling.



Variable Voltage Scheduling with P-FRP
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Example : Static Voltage Scaling (The total power that is consumed in the feasibility 
interval in normal execution is 29.06, while with static voltage scaling, it is 23.25.



Variable Voltage Scheduling with P-FRP

175 / 119

Example : Static Voltage Scaling (If the voltage is scaled to 50%, the first job of 1 will 
have a deadline miss at time 20).



Variable Voltage Scheduling with P-FRP
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Example : Progressive Voltage Change (During the execution of tasks 2 and
3, the voltage can be scaled down to a factor of 0.5, while during execution of
1 the voltage can be scaled down to a factor of 0.75 . The total power
consumed in the feasibility interval is 17.06.



Variable Voltage Scheduling with P-FRP
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Example : The figure below shows the level-1 idle periods. The black areas
identify those idle periods present in the feasibility interval.



Variable Voltage Scheduling with P-FRP
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Example :  Voltage Scaling Points (The total power that is consumed  is 17.25)  



Variable Voltage Scheduling with P-FRP
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Experiments: 

Tested from 100 to 500 task sets with different 
configurations. 

Utilization factors for these tasks were in the range [0:22 to 
0:65] and execution times and arrival periods were selected 
from the ranges [3 to 70] respectively.



Variable Voltage Scheduling with P-FRP
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Experiments: For the static voltage scaling, 15% to 25% savings was achieved for 
maximum task sets.



Variable Voltage Scheduling with P-FRP

181 / 119

Experiments: PVS produced a more distributed range, with voltage savings
for 500 task sets in the range of 0-52%.



Variable Voltage Scheduling with P-FRP
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Experiments: VSP produced  voltage savings in the  range 26-52%.



Variable Voltage Scheduling with P-FRP
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Experiments:



Variable Voltage Scheduling with P-FRP

184 / 119

Experiments:



Remarks

• DVFS can lead to significant energy savings

• VSP gives the best results

• Did not consider leakage current

• Chaitanya Belwal and Albert M. K. Cheng, “Optimizing 
Energy Use in P-FRP through Dynamic Voltage Scaling”, 
17th IEEE Real-Time and Embedded Technology and 
Applications Symposium (RTAS) WIP Session, Chicago, 
IL, USA, part of the Cyber-Physical Systems Week (CPS 
Week), April 11-14, 2011
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Contributions

• Developed Timed Automata (TA) models for 
schedulability analysis of P-FRP

• Prove that TA models offers an efficient alternative for 
schedulability analysis of P-FRP

• Use a publicly available tool for TA modeling

• Validate correctness through experimental task sets



Timed Automata

• Developed by Alur and Dill in 1994

• Extends finite state automata by using clocks

• Extended Timed Automata (ETA): states 
represent the execution of tasks (Fersman et al)

• ETA - standard for representing schedulability 
models using Timed Automata 

• Used in this work



UPPAAL

• Developed at Aalborg and Uppsala Universities

• GUI-based tool 

• Allows the description and evaluation of a Timed 
Automata (TA) model

• Several automata can run in parallel

• Allows user variables and synchronization 
channels



UPPAAL

• Transitions between locations are protected by 
clock guards

• Invariants - clock constraints in locations

• User declared variables can change value

• All TA encodings in our  work have been tested 
in UPPAAL

• More details: http://www.uppaal.org



UPPAAL – Simple Automata



Task Release Automaton –
Lowest Priority Task



Task Release Automaton –
Other tasks



Generic Variables

• GC

• cli

• Ti

• Ci

• TaujInQ



Scheduler Automaton - 2 
Tasks



Scheduler Automaton - 3 
Tasks



Schedulability Analysis

• Schedulability analysis is same as determining 
the reachability of state ‘Taui_Unsched’

• Achieved by the following Computation Tree 
Logic (CTL) query:

E<> Scheduler.Taui_Unsched

• Should return false for  task i to be schedulable



Schedulability Analysis

• Determine the schedulability of n-task set

• Query needs to be executed for every lower priority task 

• Example for the 2 task automaton following CTL should 
return false: 

E<> Scheduler.Tau1_Unsched

• For the 3-task automaton  the following queries should 
return false:

E<> Scheduler.Tau1_Unsched

E<> Scheduler.Tau2_Unsched



Remarks
• Schedulability analysis in P-FRP is difficult

• Current techniques scales exponentially with task size

• We have derived an alternate approach using TA and 
validated it

• Chaitanya Belwal and Albert M. K. Cheng, “Schedulability 
Analysis of Transactions in Software Transactional Memory 
using Timed Automata”, 8th IEEE International Conference on 
Embedded Software and Systems (ICESS), Changsha, China, 
Nov. 16-18, 2011
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Contributions

• Developed Time Petri Net (TPN) models for 
schedulability analysis of P-FRP

• Prove that TPN models offers an efficient alternative for 
schedulability analysis of P-FRP

• Prove that conversion to corresponding TA models is not 
required

• Use a publicly available tool for TPN modeling

• Validate correctness through experimental task sets



Time Petri Nets
• A Time Petri Net (TPN) is a tuple (P, T, B, F, MO, SI) where:

• P={p1,p2,p3,…,pn} is a finite non-empty set of places;  T= 
{t1,t2,t3,…,tn} is a finite nonempty, set of transitions 

• B: P x T → N is the backward incidence function; where N is the 
set of non-negative integers; F: T x P → N is the forward incidence
function

• MO is the initial marking (P, T, B, F and MO together define a Petri 
net)

• SI is a mapping called static interval, ∀t∈T,SI(t)= [SEFT(t), SLFT(t) 
], where SEFT(t) is the static earliest firing time and SLFT(t) the 
static latest firing time



ROMEO – Tool for TPN



TPN – Periodic Task Release



TPN – 2 Tasks



TPN – 3 Tasks



Schedulability Analysis

• TPN is converted to corresponding state space

• Uses Timed CTL queries

• EF[37,37](M(22)=0)

• At time 37 is it possible for place at index 22 (i.e. 
‘Tau_1_Complete’) to have no tokens ?

• No token => release scenario of higher priority tasks 
exists in which τ1 misses it deadline 

• For τ1 to be schedulable, the query should  be false



Remarks

• TPN offers an efficient alternative to schedulability 
analysis

• TPNs for large models can be complicated

• Chaitanya Belwal and Albert M. K. Cheng, 
“Schedulability Analysis of P-FRP using Time Petri Nets”, 
17th IEEE International Conference on Embedded and 
Real-Time Computing Systems and Applications 
(RTCSA) WiP Session, Toyama, Japan, August 28-31, 
2011



Future Work

• Modify techniques to consider variables times for copy 
and restore operations

• Develop pruning techniques to reduce the number of 
release scenarios in determining exact WCRT

• Improve the polynomial time method for greater accuracy 
(lower the approximation factors)

• Develop an algorithm for finding the specific optimal 
priority assignment for any n-task set

• Develop global partitioning algorithms for P-FRP tasks in 
multi-processor platforms



Future Work

• Experimentally evaluate multi-processor partitioning 
schemes in hardware

• Implement DVFS algorithms in the Real-Energy platform

• Modify DVFS algorithms to consider leakage current

• Modify TA and TPN models for easier scalability

• Formally prove if exact WCRT can be determined/or not 
determined in polynomial time

• Extend this work to STM and lock-free execution as well 
as general scheduling theory (job-shop)



Evaluation

• Does precise timing characterization of the embedded controller software 
execution lead to faster physical system response compared with one 
designed without accurate controller timing analysis (and thus requires more 
tolerance of execution time variations)?

• How does the time to develop new control components with accurate 
response time analysis tools compare to doing the same with older 
methods?

• Automotive application: Do the new scheduling/execution such as AWR lead 
to safer physical system behaviors such as shorter stopping distance for 
ABS-equipped cars?

• Do optimizations to the runtime controller software such as reducing event-
handler preemptions and better priority assignments result in faster 
controller response as measured by developed analytical methods, 
simulation, and actual physical system testing?
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Evaluation

• Does the inclusion of power-aware and power-saving measures maintain the 
satisfaction of timing and space/memory constraints imposed on the 
embedded controller and controlled physical system behaviors? What is the 
amount of energy savings in the physical system and embedded controller 
achieved with these approaches compared with systems without them?

• Does the resulting approach make it easier and safer to make minor 
modifications to components of the control systems?

• Does this framework and toolset facilitate the design of the controller and its 
timing/safety verification?  Is the time from design to actual implementation 
shortened and the development cost lowered?
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Concluding Remarks

• Our goal: Enhance the safety and performance of a physical system 
controlled by an embedded controller consisting of single or networked 
control components with functional reactive programming (FRP).

• FRP allows intuitive specification and formal verification of safety-critical 
behaviors, thus reducing the number of defects injected during the design 
phase, and the stateless nature of execution avoids the need for complex 
programming involving synchronization primitives.

• Accurate response time analysis tools (accounting for CPU execution, 
memory access, I/O, and sensor processing times), novel scheduling 
techniques, and new power-conserving methods are needed.

• Research impact: Facilitate the design and update of the embedded 
controller (or network of controllers) as well as its (their) timing and safety 
verification.
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Faculty Seminar

Albert M. K. Cheng
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Thank you!

Comments?
Questions?
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