
Dinh et al. BMCMedical Informatics and DecisionMaking          (2019) 19:211 
https://doi.org/s12911-019-0918-5

RESEARCH ARTICLE Open Access

A data-driven approach to predicting
diabetes and cardiovascular disease with
machine learning
An Dinh1†, Stacey Miertschin2†, Amber Young3† and Somya D. Mohanty4*

Abstract

Background: Diabetes and cardiovascular disease are two of the main causes of death in the United States.
Identifying and predicting these diseases in patients is the first step towards stopping their progression. We evaluate
the capabilities of machine learning models in detecting at-risk patients using survey data (and laboratory results), and
identify key variables within the data contributing to these diseases among the patients.

Methods: Our research explores data-driven approaches which utilize supervised machine learning models to
identify patients with such diseases. Using the National Health and Nutrition Examination Survey (NHANES) dataset,
we conduct an exhaustive search of all available feature variables within the data to develop models for
cardiovascular, prediabetes, and diabetes detection. Using different time-frames and feature sets for the data (based
on laboratory data), multiple machine learning models (logistic regression, support vector machines, random forest,
and gradient boosting) were evaluated on their classification performance. The models were then combined to
develop a weighted ensemble model, capable of leveraging the performance of the disparate models to improve
detection accuracy. Information gain of tree-based models was used to identify the key variables within the patient
data that contributed to the detection of at-risk patients in each of the diseases classes by the data-learned models.

Results: The developed ensemble model for cardiovascular disease (based on 131 variables) achieved an Area Under
- Receiver Operating Characteristics (AU-ROC) score of 83.1% using no laboratory results, and 83.9% accuracy with
laboratory results. In diabetes classification (based on 123 variables), eXtreme Gradient Boost (XGBoost) model
achieved an AU-ROC score of 86.2% (without laboratory data) and 95.7% (with laboratory data). For pre-diabetic
patients, the ensemble model had the top AU-ROC score of 73.7% (without laboratory data), and for laboratory based
data XGBoost performed the best at 84.4%. Top five predictors in diabetes patients were 1) waist size, 2) age, 3)
self-reported weight, 4) leg length, and 5) sodium intake. For cardiovascular diseases the models identified 1) age, 2)
systolic blood pressure, 3) self-reported weight, 4) occurrence of chest pain, and 5) diastolic blood pressure as key
contributors.

Conclusion: We conclude machine learned models based on survey questionnaire can provide an automated
identification mechanism for patients at risk of diabetes and cardiovascular diseases. We also identify key contributors
to the prediction, which can be further explored for their implications on electronic health records.
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Background
Diabetes and Cardiovascular disease (CVD) are two of the
most prevalent chronic diseases that lead to death in the
United States. In 2015, about 9% of the U.S. population
had been diagnosed with diabetes while another 3% were
undiagnosed. Furthermore, about 34% had prediabetes.
However, of those adults with prediabetes almost 90% of
them were unaware of their condition [1]. CVD on the
other hand is the leading cause of one in four deaths every
year in the U.S. [2]. Approximately, 92.1 million American
adults are living with some form of CVD or the after-
effects of stroke, where the direct and indirect costs of
healthcare is estimated to be more than $329.7 [3]. Addi-
tionally, there is a correlation between CVD and diabetes.
American Heart Association reports at least 68% of peo-
ple age 65 or older with diabetes, die of heart disease [4].
A systematic literature review by Einarson et al. [5], the
authors concluded that 32.2% of all patients with type 2
diabetes are affected by heart disease.
In the world of ever-growing data where hospitals are

slowly adopting big data systems [6], there are great
benefits to employing data analytics in the health care
system to provide insights, augment diagnosis, improve
outcomes, and reduce costs [7]. In particular, success-
ful implementation of machine learning enhances the
work of medical experts and improves the efficiency of
the health care system [8]. Significant improvements in
diagnostic accuracy have been shown through the perfor-
mance of machine learning models along with clinicians
[9]. Machine learning models have since been used in the
prediction of many common diseases [10, 11], including
the prediction of diabetes [12, 13], detection of hyperten-
sion in diabetic patients [14], and classification of patients
with CVD among diabetic patients [15].
Machine learning models can be useful in the identifica-

tion of patients with diabetes or heart disease. There are
often many factors that contribute to identifying patients
who are at risk for these common diseases.Machine learn-
ing methods can help identify hidden patterns in these
factors that may otherwise be missed.
In this paper, we use supervised machine learning mod-

els to predict diabetes and cardiovascular disease. Despite
the known association between these diseases, we design
the models to predict CVD and diabetes separately in
order to benefit a wider range of patients. In turn, we are
able to identify the feature commonalities between the
diseases which affect their prediction. We also consider
the prediction of prediabetes and undiagnosed diabetes.
The National Health and Nutrition Examination Survey
(NHANES) dataset is used to train and test multiple mod-
els for the prediction of these diseases. This paper also
explores a weighted ensemble model which combines the
results of multiple supervised learning models to increase
prediction ability.

NHANES Data
The National Health and Nutrition Examination Survey
(NHANES) [16] is a program designed by the National
Center for Health Statistics (NCHS), which is used to
assess the health and nutritional status of the U.S. popula-
tion. The dataset is unique in the aspect that it combines
survey interviews with physical examinations and labora-
tory tests conducted at the medical locations. The survey
data consists of socio-economic, demographic, dietary,
and health-related questions. The laboratory tests consist
of medical, dental, physical, and physiological measure-
ments conducted by medical personnel.
The continuous NHANES data was initiated in 1999,

and is ongoing with a sample each year consisting of
5000 participants. The sampling utilizes a nationally rep-
resentative civilian sample identified though a multistage
probability sampling design. Apart from the laboratory
results of the individuals, prevalence of chronic conditions
in the population is also collected. For example, infor-
mation about anemia, cardiovascular disease, diabetes,
environmental exposures, eye diseases, and hearing loss
are collected.
NHANES provides insightful data that has made impor-

tant contributions to people in the United States. It gives
researchers important clues to the causes of disease based
on the distribution of health problems and risk factors
in the population. It also allows health planners and gov-
ernment agencies to detect and establish policies, plan
research, and health promotion programs to improve
present health status and prevent future health problems.
For example, past surveys’ data is used to create growth
charts to evaluate children’s growth, which have been
adapted and adopted worldwide as a reference standard.
Education and prevention programs increasing public
awareness, emphasizing diet and exercise were intensi-
fied based on the indication of undiagnosed diabetes,
overweight prevalence, hypertension and cholesterol level
figures.

Machine Learning Models
In our study, we utilize multiple supervised learning mod-
els for classification of at-risk patients. In supervised
learning, the learning algorithm is provided with training
data that contains both the recorded observations and the
corresponding labels for the category of the observations.
The algorithm uses this information to build a model that,
when given new observations, can predict which output
label should be associated with each new observation. In
the following paragraphs, the models used in this project
are briefly described.

• Logistic Regression is a statistical model that finds
the coefficients of the best fitting linear model in
order to describe the relationship between the logit
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transformation of a binary dependent variable, and
one or more independent variables. This model is a
simple approach to prediction which provides
baseline accuracy scores for comparisons with other
non-parametric machine learning models [17].

• Support Vector Machines (SVM) classify data by
separating the classes with a boundary, i.e. a line or
multi-dimensional hyperplane. Optimization ensures
that the widest boundary separation of classes is
achieved. While SVM often outperforms logistic
regression, the computational complexity of the
model results in long training durations for model
development [18].

• Ensemble models synthesize the results of multiple
learning algorithms to obtain better performance
than individual algorithms. If used correctly, they
help decrease variance and bias, as well as improve
predictions. Three ensemble models used in our
study were random forests, gradient boosting, and a
weighted ensemble model.

– Random Forest Classifier (RFC) is an
ensemble model that develops multiple
random decision trees through a bagging
method [19]. Each tree is an analysis diagram
that depicts possible outcomes. The average
prediction among the trees is taken into
account for global classification. This reduces
drawback of large variance in decision trees.
Decision splits are made based on impurity
and information gain [20].

– Gradient Boosted Trees (GBT) [21] is also an
ensemble prediction model based on decision
trees. In contrast to Random Forest, this
model successively builds decision trees using
gradient descent in order to minimize a loss
function. A final prediction is made using a
weighted majority vote of all of the decision

trees. We consider an implementation of
gradient boosting, XGBoost [22], which is
optimized for speed and performance.

– AWeighted Ensemble Model (WEM) that
combines the results of all aforementioned
models was also used in our analysis. The
model allows multiple predictions from
disparate models to be averaged with weights
based on a individual model’s performance.
The intuition behind the model is the
weighted ensemble could potentially benefit
from the strengths of multiple models in order
to produce more accurate results.

Based on the prior research [12, 13] in the domain,
Logistic regression and SVM models were chosen as the
performance baseline models for our study. RFC, GBT,
andWEM based models were developed within our study
in order to take advantage of non-linear relationships
which may exist within the data for disease prediction.
The study chose to exclude neural networks from its anal-
ysis due to the “black-box” (non-transparency) nature of
the approach [23].

Methods
Figure 1 depicts the flow from raw data through the
development of predictive models, and their evaluation
pipeline towards identifying risk probabilities of diabetes
or cardiovascular disease in subjects. The pipeline con-
sists of three distinct stages of operation: 1) Data mining
and modeling, 2) Model development, and 3) Model eval-
uation.

Data Mining andModeling
Dataset Preprocessing
The first stage of the pipeline involves data mining meth-
ods and techniques for converting raw patient records
to an acceptable format for training and testing machine

Fig. 1Model Development and Evaluation Pipeline. A flow chart visualizing the data processing and model development process
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learning models. In this stage, the raw data of patients was
extracted from the NHANES database to be represented
as records in the preprocessing step. The preprocessing
stage also converted any undecipherable values (errors in
datatypes and standard formatting) from the database to
null representations.
The patient records were then represented as a data

frame of features and a class label in the feature extraction
step. The features are an array of patient information col-
lected via the laboratory, demographic, and survey meth-
ods. The class label is a categorical variable which will be
represented as a binary classification of the patients: 0 -
Non-cases, 1 - Cases. Categorical features were encoded
with numerical values for analysis. Normalization was
performed on the data using the following standardization
model: x′ = x−x̄

σ
, where x is the original feature vector,

x̄ is the mean of that feature vector, and σ is its standard
deviation.
Previous attempts to predict diabetes with machine

learning models using NHANES data, put forth a list of
important variables [12, 13]. In the work done by Yu et
al. [13], the authors identified fourteen important vari-
ables — family history, age, gender, race and ethnicity,
weight, height, waist circumference, BMI, hypertension,
physical activity, smoking, alcohol use, education, and
household income, for training their machine learning
models. The feature selection was based based on meth-
ods of combining SVMs with feature selection strategies
as described in Chen et al. [24]. Semerdjian et al. [12]
chose the same features as Yu et al. and added two more
variables — cholesterol and leg length. The features were
based on the analysis done by Langner et al. [25], where
they used genetic algorithms and tree based classification
of identification of key features for diabetes prediction.
With a goal to develop a data-driven model, all pos-

sible variables were extracted from the raw NHANES
dataset for the preliminary features. The data was then
examined for continuity and availability of each variable
across the specific categories and years. This was impor-
tant because of the underlying NHANES data structure,
where each biennial cycle was split into multiple datasets
based on the category of the variable. The analysis showed
missing data was a result of data recorded by ques-
tions conditioned on responses to prior questions (such
as age, gender, or pregnancy status). Furthermore, some
discontinuity of variables was due to inconsistent data
collection by NHANES across different cycles. Some vari-
ables were simply given different names in different cycles.
Based on the manual analysis, re-coding of some variable
names were performed. After performing the aforemen-
tioned steps on the raw dataset, only 189 variables out of
approximately 3900 variables from the NHANES database
were continuous across all cycles from 1999 to 2014. The
data was further analyzed for missing values within the

variables, and any with more than 50% of missing val-
ues were dropped from the dataset. This lead to a further
reduction in number of available variables to 123 for the
1999-2014 cycle.
For diabetes dataset, two different datasets were created

based on the variable utilization cycles. This was done
in order to maximize variable availability across different
timeframes and to study its effect on machine learning
models. The first dataset is based on the original time-
frame of 1999-2014 consisting of 123 variables, while the
second dataset had a timeframe of 2003-2014 with 168
variables.
For CVD dataset, a timeframe of 2007-2014 was used,

which maximized the number of available variables to
131. Specifically, the dataset included the physical activ-
ity variables which are considered important factors of
cardiovascular disease [26].
Each dataset, was further categorized into laboratory

(contains laboratory results) versus no laboratory (survey
data only) datasets. Laboratory results were any feature
variables within the dataset that were obtained via blood
or urine tests. Recategorization of the data into these
groups enables performance analysis of machine learning
models in cases where laboratory results are unavail-
able for patients, which facilitates the detection of at-risk
patients based only on a survey questionnaire.

Subject Exclusion and Label Assignment
In our study, all datasets were limited to non-pregnant
subjects and adults of at least twenty years of age. This
allows us to focus in on the prediction of Type II Dia-
betes, and exclude other types such as gestational dia-
betes, which is exclusive to pregnant women, and Type I
Diabetes, which usually develops in children and adoles-
cents. This exclusion is consistent with the prior research
conducted by Yu et al. [13] and Semerdjian et al. [12].
For diabetes classification, labels are assigned to the

dataset under two different schemes 1) Diabetic and 2)
Pre/ Undiagnosed Diabetic. This is similar to the classifi-
cation schemes set up by Yu et al. [13]. In the first scheme,
subjects were considered to have diabetes (label = 1) if
they answered “Yes” to the question “Have you ever been
told by a doctor that you have diabetes?” or had a blood
glucose level greater than or equal to 126mg/dl, other sub-
jects were considered not to have diabetes (label = 0).
The resulting classification scheme was named Case I.
The second classification scheme - Case II - was devel-

oped for predicting subjects with undiagnosed diabetes
or pre-diabetes. Subjects were labeled undiagnosed dia-
betics (label = 1) if they answered “No” to the question
“Have you ever been told by a doctor that you have dia-
betes?” and had a blood glucose level greater than or equal
to 126 mg/dl. Subjects were labeled pre-diabetic (label =
1) if their blood glucose level was between 100 and 125
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mg/dl. Diagnosed diabetics were excluded from Case II,
and all other subjects were considered to be non-cases
(label = 0). Subjects who had a missing value for diabetes
classification were excluded from the data for both cases.
For CVD classification, subjects were labeled as hav-

ing the disease (label = 1) if they answered “Yes” to
the cardiovascular symptoms/conditions represented by
the question: “Have you ever been told by a doctor that
you had congestive heart failure, coronary heart disease,
a heart attack, or a stroke?” If the subject answered “No”
to all four conditions, then the subject was labeled as not
having the disease (label = 0). Note that these conditions
are common indicators of cardiovascular disease [27].
Table 1 summarizes diabetes classification criteria, and

the corresponding label assignment for each case is
shown in Table 2. The classification and label assignments
for CVD are summarized in Table 3. The classification
schemes were applied to the three timeframes described
previously in Section 4. This resulted in five separate
datasets for classification: four for diabetes classification,
and one for CVD classification. The timeframe, number
of variables, observations, and number of cases (label =
1) and non-cases (label = 0) for each dataset are all
summarized in Table 4.

Model Development
The datasets resulting from the aforementioned stage of
DataMining andModeling (Section 4) were each split into
training and testing datasets. Downsampling was used to
produce a balanced 80/20 train/test split. In the training
phase of the model development, the training dataset was
used to generate learned models for prediction. In the val-
idation phase, the models were tested with the features of
the testing dataset to evaluate them on how well they pre-
dicted the corresponding class labels of the testing dataset.
For each model, a grid-search approach with parallelized
performance evaluation for model parameter tuning was
used to generate the best model parameters. Next, each
of the models underwent a 10-fold cross-validation (10
folds of training and testing with randomized data-split)

Table 1 Diabetes classification criteria

Criteria Classification

Answered “yes” to “Have you been
told by a doctor that you have dia-
betes” γ or had a Plasma Glucose
≥ 126 mg/dl δ

⇒ Diabetic

Answered “no”, but had a Plasma
Glucose ≥ 126 mg/dl

⇒ Undiagnosed diabetic

Had a Plasma Glucose between
100 − 125 mg/dl

⇒ Prediabetic

Had a Plasma Glucose ≤ 100 mg/dl ⇒ Not diabetic

γ NHANES survey questionnaire
δNHANES laboratory results

Table 2 Label assignments for Case I and Case II

Classification Case I Case II

Diabetic 1 Excluded

Undiagnosed diabetic 1 1

Prediabetic 0 1

Not diabetic 0 0

Case I - Records containing diabetic, pre / undiagnosed and non diabetic patients.
Case II - Records containing pre / undiagnosed and non diabetic patients only. 1 -
Positive record for the case; 0 - Negative record for the case (non diabetic patient)

in order to get an accurate measurement of model perfor-
mance.

TheWeighted EnsembleModel
For each individual model, the probability values of having
the disease was recorded for each subject using a 10-
fold cross-validation. Then a new probability was created
for each subject from the weighted average of the proba-
bilities from the individual models. This is the weighted
ensemble model which uses a weighted average of individ-
ual model results. The weights were based on the perfor-
mance of each model according to its AUC score. Suppose
we label the four models (logistic regression, SVM, ran-
dom forests, and gradient boosting) as models 1,2,3, and 4
respectively. The weight for the ith individual model was
determined by

wi = AUC2
i

∑4
i=1 AUC

2
i
.

The new probability for each subject was then calculated
as

pnew =
4∑

i=1
wipi.

Each subject was then classified based on the new
weighted probability.

Table 3 Cardiovascular disease classification criteria and label
Assignments

Criteria Classification Label Assignment

Answered “yes” to
having had one
of the followingγ :
congestive heart
failure, coronary
heart disease,
heart attack, or
stroke

⇒ Having heart diseases 1

If they answered
“no” to all condi-
tions

⇒ Not having heart diseases 0

γ - On the NHANES survey questionnaire. 1 - Positive record for CVD; 0 - Negative
record for CVD
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Table 4 The structure of the datasets used for diabetes and
cardiovascular classification

Year Case Observations Variables No. of 0s No. of 1s

1999-2014 Case I 21,131 123 15,599 5,532

1999-2014 Case II 16,426 123 9,944 6,482

2003-2014 Case I 16,443 168 11,977 4,466

2003-2014 Case II 12,636 168 7,503 5,133

2007-2014 Cardio 8,459 131 7,012 1,447

Case I and II datasets are for diabetes classification, Cardio dataset is for CVD
classification. 1 - Positive records for the disease; 0 - Negative records for the disease

Feature Selection
With a goal of creating an accurate model relying on
a limited set of available features, i.e. features that did
not require excessive questioning or testing of patients,
we evaluated the feature dependence of the models for
prediction of diabetes and CVD. The analysis was done
based on the ensemble classifier of XGBoost (based on the
model performance), where an error rate metric was used
to rank features. More specifically, in XGBoost models,
feature importance scores are calculated for each deci-
sion tree by how much the split-point(s) for each feature
improves the binary classification error rate — weighted
by the number of observations for which the split-point
is responsible. The error rate is calculated as the num-
ber of mis-classified observations over the total number of
observations. Finally, the importance scores are averaged
over all trees in the model to create a final importance
score for each feature [28].
The top 24 most important features were identified in

each dataset. The cutoff of the 24 features was based on
the cross-validation of the models, where lower than 24
features resulted in considerable drop in model perfor-
mance (> 2%AU-ROC score drop). The 24 features where
then used to test other models, where no substantial drop
in performance was recorded.

PerformanceMetrics
In the last stage of the pipeline illustrated in Fig. 1, the
scores of the models were compared to evaluate their
performance in predicting cases. The binary model eval-
uation (cases versus non-cases) was based on the per-
formance statistics in terms of sensitivity ( TP

TP+FP ) and
specificity ( TN

TN+FN ) where TP, FP, TN, and FN represent
the number of true positives, false positives, true neg-
atives, and false negatives, respectively. A false positive
would be an observation that is predicted to be a case,
but is not actually a case. A false negative can be defined
similarly. Area under the curve (AUC) and receiver oper-
ating characteristic (ROC) were used to understand the
relationship between the two performance variables. F1
scores were also used tomeasure amodel’s accuracy; F1 =

2 precision∗recall
precision+recall where precision = TP

TP+FP and recall =
TP

TP+FN . In other words, F1 score [29] is the harmonic aver-
age of the precision and recall allowing for comparison
of different model performance in identifying true disease
predictions when compared to false positives.

Results
Table 5 describes the comparative accuracy scores of
different models for diabetes prediction across differ-
ent 1) cases (Case I and II), 2) timeframes, and 3)
the type of feature variables (data with laboratory or
only survey variables). As described in Section 4 (and
shown in Table 4), each dataset has different number
of observations and the variables used for the machine
learning models.
Within the time-frame of 1999-2014 for Case I dia-

betes prediction (data excluding laboratory results), the
GBT based model of XGBoost (eXtreme Gradient Boost-
ing) model performed the best among all classifier with
an Area Under - Receiver Operating Characteristic (AU-
ROC) of 86.2%. Precision, recall, and F1 scores were at
0.78 for all of the metrics using 10-fold cross validation
of the model. The worst performing model in the class
was linear model of Logistic Regression with an AU-ROC
of 82.7%. Linear SVM model was close in performance
to ensemble based models with an AU-ROC at 84.9%.
Inclusion of laboratory results in Case I increased the
predictive power of the models by a large margin, with
XGBoost achieving a AU-ROC score of 95.7%. The preci-
sion, recall, and F1 scores were also recorded at 0.89 for
the model.
In the prediction of prediabetic and undiagnosed dia-

betic patients – Case II (with the time-frame of 1999-
2014), the developed Weighted Ensemble Model (WEM)
has the top performance AU-ROC score of 73.7%. The
recorded precision, recall, and F1-score were at 0.68.
The WEM model was closely followed by other models
Logistic Regression, SVM, RFC (Random Forest Classi-
fier), and XGBoost each reporting an accuracy of 73.1 −
73.4% with 10-fold cross validation. The precision, recall,
and F1-score scores were similar across the models.
Case II performance analysis with the laboratory vari-
ables also results in a large performance increase to AU-
ROC score of 80.2% in the timeframe of 1999-2014 and
83.4% in 2003-2014 timeframe, obtained by XGBoost in
both cases.
Visualizing the model performance with receiver-

operating characteristics (ROC), Figs. 2 and 3 shows the
comparison of binary predictive power at various thresh-
olds (false positive rate - FPR). The curves model the sen-
sitivity — proportion of actual diabetic patients that were
correctly identified as such, to the FPR or 1 - specificity,
where specificity — proportion of non-diabetic patients
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Table 5 Results using 10-fold cross-validation for diabetes classification

Lab Year & Case Model AUC Precision Recall F1

No lab Logistic Reg. 0.827 0.75 0.75 0.75

1999-2014 SVM 0.849 0.77 0.77 0.77

Diab. Case I Random Forest 0.855 0.78 0.78 0.78

XGBoost 0.862 0.78 0.78 0.78

Ensemble 0.859 0.78 0.78 0.78

Logistic Reg. 0.732 0.67 0.67 0.67

1999-2014 SVM 0.734 0.68 0.68 0.68

Diab. Case II Random Forest 0.731 0.67 0.67 0.67

XGBoost 0.734 0.67 0.67 0.67

Ensemble 0.737 0.68 0.68 0.68

Logistic Reg. 0.800 0.72 0.72 0.72

2003-2014 SVM 0.822 0.75 0.75 0.75

Diab. Case I Random Forest 0.841 0.77 0.76 0.76

XGBoost 0.837 0.75 0.75 0.75

Ensemble 0.834 0.75 0.75 0.75

Logistic Reg. 0.718 0.66 0.66 0.66

2003-2014 SVM 0.716 0.66 0.66 0.66

Diab. Case II Random Forest 0.719 0.67 0.67 0.66

XGBoost 0.725 0.67 0.67 0.67

Ensemble 0.725 0.66 0.66 0.66

With lab Logistic Reg. 0.866 0.79 0.79 0.79

1999-2014 SVM 0.887 0.81 0.81 0.81

Diab. Case I Random Forest 0.937 0.86 0.86 0.86

XGBoost 0.957 0.89 0.89 0.89

Ensemble 0.944 0.87 0.87 0.87

Logistic Reg. 0.724 0.67 0.67 0.67

1999-2014 SVM 0.737 0.68 0.68 0.68

Diab. Case II Random Forest 0.738 0.68 0.68 0.68

XGBoost 0.802 0.74 0.74 0.74

Ensemble 0.783 0.71 0.71 0.71

Logistic Reg. 0.877 0.80 0.80 0.80

2003-2014 SVM 0.882 0.81 0.80 0.80

Diab. Case I Random Forest 0.939 0.86 0.86 0.86

XGBoost 0.962 0.89 0.89 0.89

Ensemble 0.948 0.88 0.88 0.88

Logistic Reg. 0.738 0.68 0.68 0.68

2003-2014 SVM 0.737 0.68 0.68 0.68

Diab. Case II Random Forest 0.740 0.68 0.68 0.67

XGBoost 0.834 0.75 0.75 0.75

Ensemble 0.798 0.72 0.72 0.72

AUC - Area Under the Curve, Precision = TP
TP+FP , Recall = TP

TP+FN (where TP - True Positive, FP - False Positive, FN - False Negative), and F1 (score) = 2 precision∗recall
precision+recall . Bold face font

signifies best performing model result

that were correctly identified as such in the models. Anal-
ysis of models in Case I is shown in Fig. 2, and for Case II,
Fig. 3 compares the performance of various models.

Using feature importance scores for the XGBoost
model, Figs. 4 and 5 show the comparative importance
of 24 variables/features in non-laboratory and labora-
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Fig. 2 ROC curves from the 1999-2014 Diabetes Case I models. This graph shows the ROC curves generated from different models applied to the
1999-2014 Diabetes Case I datasets without lab

tory based datasets for diabetes detection respectively.
The results are based on the average error rate obtained
by number of mis-classification of observations calcu-
lated over all sequential trees in an XGBoost clas-
sifier. The cut off of 24 features was obtained by
developing models for each set of feature combina-
tions (ordered by importance), and using a cutoff of
≤ 2% drop in the cross validation AU-ROC scores.
The importance scores were also averaged for diabetic
(Case I) and pre-diabetics/undiagnosed diabetic (Case II)
models.
Towards CVD classification, Table 6 compares the per-

formance metrics of different models. Within the results,

WEM performs the best with an AU-ROC score of 83.1%
for non-laboratory data. Precision, recall, and F1-score
of the model were pretty consistent at 0.75. Inclusion of
laboratory based variables do not show any significant
increase in performance, with an observed AU-ROC score
of 83.9% obtained by the top performing WEM classifier.
Performance metrics (Fig. 6) of different models — Logis-
tic Regression, SVM, Random Forest, and WEM, shows
similar accuracy scores recorded by all models (within
2% of AU-ROC score). Similar results are seen in the
ROC curves for each of the models as shown in Fig. 6.
While the ROC curve shows that the tree-based mod-
els - Random Forest and XGBoost (along with WEM)

Fig. 3 ROC curves from 1999-2014 Diabetes Case II models. This graph shows the ROC curves generated from different models applied to the
1999-2014 Diabetes Case II datasets without lab
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Fig. 4 ROC curves from the cardiovascular models This graph shows the ROC curves generated from different models applied to the 1999-2007
cardiovascular disease datasets without lab

perform better than the other models, the difference
is minimal.
Figures 7 and 8, highlight the most important

variables/features observed by the models trained on the
non-laboratory and laboratory datasets respectively. As
XGBoost was the top performing model in the category,
information gain (based on error rate) was used to com-
pare values between the variables within the model.
Using similar approach to the diabetic analysis, average

feature importance was measured with a cutoff at 24
variables.
Discussion
Diabetic Prediction
Models trained on diabetic patients (Case I) generally
obtain a higher predictive power (86.2%) when compared
to the Case II models which has a highest recorded accu-
racy of 73.7%. The decrease in detection performance in
comparison to Case I is primarily due to two factors —

Fig. 5 Average feature importance for diabetes classifiers without lab results. This graphs shows the most important features not including lab
results for predicting diabetes
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Table 6 Results using 10-fold cross-validation for cardiovascular
disease classification

Lab Year Model AUC Precision Recall F1

No lab Logistic Reg. 0.822 0.74 0.74 0.74

2007-2014 SVM 0.816 0.74 0.74 0.74

Random Forest 0.829 0.75 0.74 0.74

XGBoost 0.830 0.74 0.74 0.74

Ensemble 0.831 0.75 0.75 0.75

With lab Logistic Reg. 0.827 0.75 0.75 0.75

2007-2014 SVM 0.825 0.75 0.75 0.75

Random Forest 0.836 0.76 0.76 0.76

XGBoost 0.838 0.76 0.76 0.76

Ensemble 0.839 0.76 0.76 0.76

Lab - Laboratory results, AUC - Area Under the Curve, Precision = TP
TP+FP ,

Recall = TP
TP+FN (where TP - True Positive, FP - False Positive, FN - False Negative), and

F1 (score) = 2 precision∗recall
precision+recall . Bold face font signifies best performing model result

1) smaller number of observations, and 2) boundary con-
ditions for the recorded observations. Case II only has
16,426 observations available in comparison to 21,091
observations available in Case I. The model also has
difficulty in discerning fringe cases of patients, i.e. patients
who are borderline diabetic versus normal. The accuracy
also decreases slightly (AU-ROC at 72.5% for XGBoost)
for the time-frame of 2003-2014, where there are even

lower number of observations available for a larger num-
ber of variables. The consistency of the precision, recall,
and F1 values suggests stable models with similar pre-
dictive power for diabetic (label = 1) and non-diabetic
(normal label = 0) patients.
The WEM and XGBoost models developed in the study

surpass prior research done by Yu et al. [13] where they
obtained 83.5% (Case I) and 73.2% (Case II) using non-
linear SVM models. While the number of observations
and additional feature variables play a key part in the
increased accuracy of our models, the ensemble based
model consistently out-performed SVM in the diabetic
study (especially for Case I). Comparing time-frames
within our data, we observe for the window of 2003-2014
the best performing model (RFC) had a lower AU-ROC
score was at 84.1% for Case I. While the timeframe has
a larger set of features (168 versus 123), the drop in the
number of observations (16,443 versus 21,091) leads to
the reduction in accuracy by 2% when compared to 1999-
2014. Similar results are also observed in Case II where
the AU-ROC drops by 1.2% as a result of decrease in
the number from 16,446 (in 1999-2014) to 12,636 (in
2003-2014).
Inclusion of laboratory results in Case I (1999-2014

timeframe) resulted in substantial increase the predic-
tive capabilities (AU-ROC score of XGBoost - 95.7%).
Contrary to previous observations, in the timeframe of

Fig. 6 Average feature importance for diabetes classifiers with lab results. This graphs shows the most important features including lab results for
predicting diabetes
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Fig. 7 Feature importance for cardiovascular disease classifier without lab results This graphs shows the most important features not including lab
results for predicting cardiovascular disease

2003-2014, accuracy increases to 96.2% with XGBoost
performing the best. This suggests availability of key
laboratory variables within the 2003-2014 timeframe,
leading to increased accuracy. Case II performance anal-
ysis with the laboratory variables also results in a large

performance increase to AU-ROC score of 80.2% in the
timeframe of 1999-2014 and 83.4% in 2003-2014 time-
frame. XGBoost models perform the best in laboratory
results in each of the cases, closely followed by the
WEMmodel.

Fig. 8 Feature importance for cardiovascular disease classifier with lab results This graphs shows the most important features including lab results
for predicting cardiovascular disease
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Model performance metrics for Case I shows tree
based ensemble models - Random Forest and XGBoost
along with the WEM model constantly outperform linear
models such as Logistic Regression and Support Vec-
tor Machine. This is further highlighted in the ROC
curves in Fig. 2. In Case II, the distinction is less obvi-
ous with similar performance recorded from all models
as shown in Fig. 3. In such a case, computationally less
demanding models such as Logistic Regression can be
used to achieve similar classification performance when
compared to other complex models such as SVM or
ensemble classifiers.
Analysis of feature variables in non-laboratory based

models (within the diabetes data) shows features such
as waist size, age, weight (self-reported and actual), leg-
length, blood-pressure, BMI, household income, etc. con-
tribute substantially towards the prediction of the model.
This is similar to the observations and variables used
in prior research [12, 13]. However, in our study we
observe several dietary variables such as sodium, car-
bohydrate, fiber, and calcium intake contribute heavily
towards diabetes detection in our models. Caffeine and
alcohol consumption, along with relatives with diabetes,
ethnicity, reported health condition, and high cholesterol
also play key roles. Within the laboratory based data,
the feature importance measures suggest blood osmolal-
ity, blood urea nitrogen content, triglyceride , and LDL
cholesterol are key factors in detection of diabetes. Each
of the variables have been shown in prior research [30–33]
to be key contributors or identifiers in diabetic patients.
Age, waist circumference, leg length, weight, and sodium
intake operate as common important variables for predic-
tion between laboratory and survey data.
Prior research in the domain of predicting diabetes have

reported results with high degree of accuracy. Using a
neural network based approach to predict diabetes in the
Pima Indian data set, Ayon et al. [34] observed an overall
F1-score of 0.99. The analysis was based on data collected
only from females of Pima Indian decent, and contained
plasma glucose and serum insulin (which are key indica-
tors of diabetes) as features for prediction. In comparison,
our approach is a more generalized model where the
demography of the patients is not restricted and does not
contain plasma glucose and serum insulin levels (even
in our laboratory based models). In [35] authors com-
pare J48, AdaboostM1, SMO, Bayes Net, and Naïve Bayes,
to identify diabetes based on non-invasive features. The
study reports an F1 score of 0.95, and identify age as the
most relevant feature in predicting diabetes, along with
history of diabetes, work stress, BMI, salty food prefer-
ences, physical activity, hypertension, gender, and history
of cardiovascular disease or stroke. While age, BMI, salt
intake, and gender, were also identified in our study as
pertinent variables, NHANES dataset does not contain

(or has a high percentages of missing values) features
of stress, history of cardiovascular disease, and physical
activity. As a result the overall accuracy of the two stud-
ies cannot be compared directly. Heydari et al. [36] also
compared SVM, artificial neural network (ANN), deci-
sion tree, nearest neighbors, and Bayesian networks, with
ANN reporting the highest accuracy of 98%. However,
study pre-screened for type 2 diabetes and was able to
collect features of family history of diabetes, and prior
occurrences of diabetes, gestational diabetes, high blood
pressure, intake of drugs for high blood pressure, preg-
nancy and aborted pregnancy. Within our approach we
consider both pre-diabetic and diabetic patients. There-
fore, the results of this paper should be more accurate
when applied to a diverse population which has not been
screened for any pre-existing conditions.

Cardiovascular (CVD) Prediction
Model performance towards the detection of at-risk
patients of cardiovascular disease was pretty consistent
across all models (AU-ROC difference of 1%, Fig. 6).
While the WEM performed the best (AU-ROC 83.9%),
other simplistic models such as logistic regression can
provide similar results. This is partly due to the lack
of large number of observations in the data, with total
number of samples at 8,459, and also as a result of a
high degree of imbalanced data with negative (0 label)
versus positive (1 label) samples at 7,012 and 1,447
respectively. The applicability of ensemble based models
(WEM, RFC, and XGBoost) can be further explored in
the situations where large amounts of training observa-
tions are available, but in cases with limited observations
computationally simple models like Logistic Regression
can be used.
Models developed based on laboratory based variables

do not show any significant performance gain with an
increase of only 0.7%. This suggests a predictive model
based on survey data only can provide an accurate
automated approach towards detection of cardiovascular
patients. Analyzing the features present in non-laboratory
data, the most important features include age, diastolic
and systolic blood pressure, self-reported greatest weight,
chest pain, alcohol consumption, and family history of
heart attacks among others. Incidents of chest pain, alco-
hol consumption, and family history of cardiac issues have
been identified in prior research [37–39] as high risk fac-
tors for heart disease. As shown in study conducted by
Lloyd-Jones et al. [40], age of the patients is a key risk vari-
able in patients that is also identified by our models. A
large number of feature importance variables are common
across diabetes and cardiovascular patients, such as phys-
ical characteristics, dietary intake, and demographic char-
acteristics. Similar factors (other than dietary variables)
were identified by the study conducted by Stamler et al.
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[41], where they identified diabetes, age stratum, and eth-
nic background to be key contributors for cardiovascular
disease.
The laboratory based data analysis suggests features

such as age, LDL and HDL cholesterol, chest pain,
diastolic and systolic blood-pressure, self-reported great-
est weight, calorie intake, and family history of car-
diovascular problems as important variables. LDL and
HDL cholesterol have been shown as high risk fac-
tors of cardiovascular diseases in prior research [42,
43]. Segmented neutrophils, monocyte, lymphocyte and
eosinophilis counts recorded in the laboratory variables
also have importance in this classification model. Similar
to non-laboratory results, dietary variables such as calo-
rie, carbohydrate, and calcium intake reappear in the list
of important features.

Conclusion
Our study conducts an exhaustive search on NHANES
data to develop a comparative analysis of machine-
learning models on their performance towards detect-
ing patients with cardiovascular and diabetic conditions.
Compared to the Support Vector Machine based diabetic
detection approach by Yu et al. [13], the models developed
(based on non-laboratory variables) in our study show a
small increase in accuracy (3% in Case I and 0.4% in Case
II) achieved by the ensemble models - XGBoost and the
Weighted Ensemble Model (WEM). Inclusion of labora-
tory based variables increase the accuracy of the learned
models by 13% and 14% for Case I and II respectively.
While laboratory based models do not present a realistic
model, the features identified by the models can poten-
tially be used to develop recommendation systems for
at-risk patients.
The paper also explores the utility of such models on

detection of patients with cardiovascular disease in survey
datasets. Our study shows the machine-learned mod-
els based on WEM approach are able to achieve almost
84% accuracy in identifying patients with cardiovascular
issues. We are also able to show models trained on only
survey based responses perform almost at par with the
data inclusive of laboratory results, suggesting a survey
only based model can be very effective in detection of
cardiovascular patients.
A key contribution of the study is the identification

of features which contribute to the diseases. In diabetic
patients, our models are able to identify the categories
of — physical characteristics (age, waist size, leg length,
etc.), dietary intake (sodium, fiber, and caffeine intake),
and demographics (ethnicity and income) contribute to
the disease classification. Patients with cardiovascular dis-
eases are identified by the models based largely on their
physical characteristics (age, blood pressure, weight, etc),
issues with their health (chest pain and hospitalization

incidents), and dietary (caloric, carbohydrate, fiber intake,
etc.) attributes. A large set of common attributes exist
between both diseases, suggesting that patients with dia-
betic issuesmay be also at risk of cardiovascular issues and
vice-versa.
As shown in our analysis, machine learned models show

promising results in detection of aforementioned diseases
in patients. A possible real-world applicability of such a
model can be in the form of a web-based tool, where a sur-
vey questionnaire can be used to assess the disease risk of
participants. Based on the score, the participants can opt
to conduct a more through check-up with a doctor. As a
part of our future efforts, we also plan to explore the effec-
tiveness of variables in electronic health records towards
development of more accurate models.
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