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“The relationship between the growth of 
science, technological development, and 
social change has always been a core 
concern in studies of the long-term 
transformation of Western societies … In 
the past two decades especially, some of 
the focus on the relations between 
science, technology, and society has 
turned in more policy-oriented 
directions.  Controversy has arisen over 
the quality and the dissemination of 
knowledge … and over the nature of 
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public control and regulation intended 
to provide benefits of scientific and 
technological progress while minimizing 
the hazards.”  (Gerstein et al. 1988: 
144). 
 

 
I.  The Challenge 

 
 The preceding quote sketches an 
ongoing challenge for establishing a 
science of science policy.  We describe 
the science of science policy as the use 
of scientific methods for assessing 
investments in research and 
development.   
   
  For obvious reasons the challenge to 
improve the science of science policy 
occupies an important place in academia 
and government.  In fact, a recent 
statement from the Office of  Science 
and Technology Policy, as part of the 
American Competitiveness Initiative 
(ACI), includes this challenge as 
fundamental to the  long-term 
objectives of the ACI.  The ACI 
document asserts that it is essential to 
have:  
 
“Federal investment in cutting-edge 
basic research whose quality is 
bolstered by merit review and that 
focuses on fundamental discoveries to 
produce valuable and marketable 
technologies, processes, and 
techniques.”  (Domestic Policy Council 
2006: 1). 
 
  The science of science policy is a 
complex endeavor primarily because the 
policy analyst is rarely able to analyze 
systematically a complex policy 
question; especially if there are several 
options available for achieving a 
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particular set of objectives.1  What can 
add to the complexity is that in many 
cases the science of science policy 
involves the incorporation of social, 
behavioral, and economic processes into 
a policy model.  Under these 
circumstances, the tools/metrics of social 
science are necessary if the policy 
analyst (as evaluator) wants to be able to 
assess the effects of a specific policy on 
achieving its intended objectives.2   
 
  To be sure, policy maker discretion, for 
example, --- in economic policy --- has 
been influenced by evolving social 
scientific research practices (and their 
attendant metrics), particularly when 
these practices are cumulative.  In these 
instances, policy maker goals or targets 
can receive greater or lesser weight 
based not only on current conditions 
(that policy makers tend to be most 
familiar with) but also on what policy 
analysts may predict is the optimal 
course of action.  Yet, it is not always 
clear that cumulative practices are being 
followed.  When noncumulative 
practices are used policy makers are 
better off relying on using their 
experience and “common sense” because 
the policy analyst’s research will be so 
flawed as to only confuse things.    
 
  Against this background, this paper 
speaks to both academic and government 
communities.  For academics, our 
objective is to encourage scientific 
examination (via cumulative scientific 
practices) of the most accurate 
representation of phenomena of interest 

                                                 
1 See Feldman et al.  (2003). 
 
2 Metrics can be defined as measures as 
well as statistical and mathematical 
analysis. 

and how policy can influence such 
phenomena.  It is critical, in this regard, 
that students of public policy utilize their  
academic training and knowledge in 
order to possess the requisite 
methodological tools for careful analysis 
of substantive science policy.  On the 
other hand, we also recognize that policy 
makers --- which include policy advisors 
to the executive administration --- are 
focused on the development of public 
policy that is effective in meeting the 
needs of society.  They are entrusted 
with taking the right policy action at the 
right time.  But, it is also in a policy 
makers interest to make use of valid 
science policy in order to augment their 
experience and common sense.        
 
  In short, both communities have much 
to gain from the effort to improve upon 
existing social science research practices 
and metrics.  Along these lines, John 
Marburger commented in the 2002 
AAAS Colloquium on Science and 
Technology Policy that:  
 
“Scientists do, of course, make 
judgments all the time about promising 
lines of research . . . it makes sense for 
the world's largest sponsor of 
research, the U.S. government, to want 
to make such choices as wisely as the 
most productive scientists do…But is it 
possible to decide rationally  
when to enhance or to terminate a 
project if we do not possess a way of 
measuring its success?”   
 
  While the science of science policy is a 
very broad topic, we will narrow our 
focus to a framework for model building 
and model testing that can assist in 
furthering the development of a 
cumulative science of science policy.  
We first discuss how model building and 
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testing practices --- the development of 
metrics --- can benefit from closer 
collaboration between academics and 
policymakers. Next, since modeling and 
testing practices can involve many 
things, we narrow the discussion to 
applied statistical practices as they relate 
to criteria for scientific cumulation.3  
From the discussion of various applied 
statistical practices, and taking into 
account the needs and expertise of these 
two communities, we provide a 
framework for the establishment of 
procedures where the science of science 
policy (across disciplines and policy 
arenas) can be strengthened.  In this 
section we also outline current applied 
statistical practices that discourage 
scientific cumulation.  The fifth section 
describes how this framework 
encourages a shift in statistical 
indicator(s)  emphasis.  The next section 
then explores the societal consequences 
of our framework.  The paper concludes 
with a discussion of short-term and long-
term implementation strategies of the 
framework.     
 
 

                                                 
3 While (applied) statistical/econometric  
analysis is the primary modeling practice 
we focus on in this paper, we will 
include formal analysis (formal 
modeling).  Formal analysis refers to 
deductive modeling in a theorem and 
proof presentation or computational 
modeling that requires the assistance of 
simulation.  Applied statistical analysis 
involves data analysis using statistical 
tools.  Throughout this paper we will use 
the words analysis and modeling 
interchangeably. 
 

II.  The Case for Blurring the 
Distinction Between Academics and 

Policymakers 
 
  Although the academic and 
policymaking communities have 
different ways of looking at the world, 
we contend that it would be a mistake to 
treat these two groups separately.  
Academics in the social sciences 
establish research strategies for 
differentiating between the effectiveness 
of  various policy alternatives.  On the 
other hand, policy makers do the same 
thing except that their “data” are their 
experiences and day-to-day expertise.   
 
  Because of this unity of purpose, both 
groups are fundamentally interested in 
developing research models that allow a 
clear identification of policy objectives 
and then providing a set of metrics for 
assessing whether the policy objectives 
are, in fact, linked to specific policy 
outcomes.  This is classic program 
evaluation methodology (relating policy 
formulation and policy implementation 
to policy outcomes) and is an entire 
academic field in and of itself (Patton 
(2002)), Rossi, Lipsey, and Freeman 
(2004)).   
 
   In some policy areas this is less 
difficult to do than others.   For example, 
it may be possible to develop research 
metrics for assessing whether clean air 
policy results in a reduction of 
particulate matter in the atmosphere.  
Likewise, it is possible to assess whether 
fatalities from certain diseases can be 
lowered in patients undergoing 
treatments in specific clinical trials.    
Although we acknowledge that these 
judgments are not easy to establish 
unless rigorous experimental conditions 
are imposed nonetheless, the 
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development of specific metrics linking 
policies and outcomes is still feasible.  
 
  For policy areas, not subject to  
experimental design and experimental 
control, it is far less easy to develop the 
metrics.4  This is due to the difficulty of 
establishing quantifiable outcomes.  
Academics address this by attempting 
analysis of both formulation and 
implementation of policy and then 
attempting to establish measures which 
quantify the “outcomes” of specific 
policies.  Policymakers may, or may not, 
use this analysis when choosing among 
policy alternatives.  For example, 
calculating return on dollar investment, 
independent of social effects, is one 
common research strategy.  However, 
because we argue for an integration of 
policy formulation, implementation, and 
evaluation strategies (within a social 
scientific framework), we think policy 
makers are more likely to make 
systematic policy choices if they are 
provided with evaluations that are 
broader than simply looking at data 
based on return on dollar investment.  
This is particularly important for the 
budget formulator when choosing among 
policy alternatives so that budget dollars 
are spent on effective policies.      
 

                                                 
4 In work supported by the National 
Science Foundation to construct datasets 
to study the policy-making process, the 
Principal Investigators note that extant  
datasets suffer from major reliability 
problems:   Frank Baumgartner, Bryan 
Jones, and John Wilkerson,  
Collaborative Research:  Database 
Development for the Study of Public 
Policy,  National Science Foundation 
#0111443, Policy Agendas Project:   
http://www.policyagendas.org. 

    Along with encouraging alternative 
criteria for evaluation, the integration of 
academic and policymaker expertise is 
especially important for avoiding policy 
errors.  Economic policy in the United 
States provides a useful case study in 
this regard.  During the 1930s, 
policymakers failed to engage in 
stimulative monetary policy when extant 
economic theory, the province of  policy 
analysts, dictated that course of action 
(Friedman and Schwartz (1963)).  The 
Great Depression was sustained as a 
result.  At the other extreme, the 
stagflation of the 1970s occurred 
because academic policy analysts 
predicted that policymakers could 
“control” unemployment and inflation 
simultaneously through stabilization 
policy.  However, real-time experiences 
indicated that repeated attempts to lower 
unemployment lead to both higher 
inflation and higher unemployment 
(Granato and Wong (2006)).5 
 
  With the establishment, and integration, 
of reliable and valid social science 
metrics, policy makers will have the 
confidence to accept recommendations 
from policy analysts.  Nevertheless, we 
                                                 
5 Examples of the interplay between 
social scientific research and 
policymaker experience are found in 
Meyer (2004).  For example, on the 
relation between productivity, wages, 
and inflation he states: 
 
“Economic theory tells us that a leap in 
productivity will raise wages in the long 
run.  But experience tells us that wages 
are not initially much affected.  As a 
result, in the short term, an increase in 
productivity tends to lower the cost per 
unit of output.  This, in turn, will 
generally push prices down.”  (p. 126). 
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hasten to add that the fusion of scientific 
policy research with practical day-to-day 
policy activity cannot totally eliminate 
harmful policy choices, given the 
uncertainties of certain scientific 
relations and the pressure of making real 
time decisions.  The point is that there 
has to be a dialogue between policy 
analysts and policy makers, while 
maintaining an appreciation of the 
difference between what the models 
predict and reality. 
   
  Alan Greenspan (2004) suggests that 
peaceful coexistence is possible in the 
conduct of policy: 
 
“In designing strategies to meet our 
policy objectives, we have drawn on the 
work of analysts...A critical result has 
been the identification of a relatively 
small set of key relationships that, taken 
together, provide a useful approximation 
of the economy's dynamics... 
However,...our knowledge of the 
important linkages is far from complete 
and, in all likelihood, will always remain 
so (p. 5)...For such judgment, 
policymakers have needed to reach 
beyond models to broader --- though less 
mathematically precise --- hypotheses 
about how the world works.” (p. 7). 

 
 

III.  Modeling Practices that Lead to 
Scientific Cumulation 

 
“We need econometric models that 
encompass enough variables in a 
sufficient number of countries to 
produce reasonable simulations of the 
effect of specific policy choices.”  
(Marburger 2005: 1087). 
  
  The science of science policy will need 
some fundamentally new modeling 

practices that will not only build upon  
existing metrics but, when possible,  
create new ones.  But, what scientific 
criteria should guide this endeavor?  
Replacing old statistical techniques with 
new statistical techniques that 
supposedly have more statistical 
“power” is not enough to uncover causal 
mechanisms.   
 
  Nor is it enough to use predictive 
accuracy as the primary basis for 
building a cumulative science.  
Predictive accuracy is very useful in that 
it provides model reassessment and also 
can promote a dialogue between policy 
makers and policy analysts.  However, in 
order to ascribe responsibility for 
predictive (in)accuracies we need more 
than guesses about what is in a “black 
box.”  Specifically, metrics for 
predictive accuracy need to be part of an 
overall modeling strategy that makes a 
transparent link between models and 
tests through valid hypothesis testing.  
This transparency and testing is essential 
to the process of model reassessment.       
 
  To guide in the development of 
transparent linkages between models and 
tests, we look to the basics of scientific 
inquiry. One distinguishing feature of 
scientific practice is that hypotheses 
must be refutable.  Refutation, or 
falsifiability, is essential for building a 
cumulative science since hypothesis 
testing can provide feedback on the 
internal consistency of a model  
(illuminating internal workings of a 
model) before predictive assessments 
can proceed.  Further, there are already 
useful metrics and standards in place for 
hypothesis support or refutation (i.e., 
Type I and Type II errors). 
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  While valid predictive assessments are 
best assured when linked with valid 
hypothesis tests, there also must be some 
basis for determining hypothesis test 
validity.  Among other things valid 
hypothesis tests rely on the ability of the 
policy analyst to derive cause and effect 
mechanism(s) that are identified and 
invariant.  The terms identification or 
identifiability, when applied to the 
science of science policy, means the 
development of a model that possesses 
sufficient information so that a unique 
and valid inference can be drawn from a 
parameter of interest.  The terms 
invariant or invariance, when applied to 
econometric models, centers on whether 
a relation (signified by a parameter) 
remains constant in the face of a 
treatment (or policy) shift.   
 
  Since it cannot be assumed that the 
science of science policy can always be 
studied in a rigorously controlled 
environment, models can only be 
supported or falsified probabilistically 
(i.e., chance).  This is not the ideal way 
to establish effects.  As was noted 
earlier, the most effective strategy would 
be to conduct true experiments, but it 
may not be feasible to do so.  Thus, what 
is needed is a quantitative indicator,  
which over time will become an 
important point of valid hypothesis 
testing (avoiding Type I and Type II 
errors), and also will provide 
information on identification and 
invariance.   
 
  In this regard, few indicators exceed 
the application and importance of a t-
statistic.  A t-statistic is defined as the 
ratio, (b/(s.e.(b))).  The t-statistic allows 
probabilistic statements (i.e., statistical 
significance) and its numerator (b) 
contains the information pertaining to 

identification and invariance.  In sum, 
this identity contains the attributes for 
exploring valid policy simulations.6    
  
  The use and attributes of the t-statistic 
are enhanced when both formal and 
applied statistical modeling techniques 
are linked to each other.  In other words, 
identified and invariant relations (as seen 
in the (b)) can be derived and tested for 
when there is a transparent linkage 
between formal and empirical analysis.     
 
  There is good reason for this linkage 
since formal models force clarity about 
assumptions and concepts; they ensure 
logical consistency, and they describe 
the underlying mechanisms that lead to 
outcomes.  Likewise, applied statistical 
models provide generalizations and rule 
out alternative explanations through 
multivariate analysis.  Applied statistics 
assist in distinguishing between causes 
and effects, allow for reciprocal 
causation, and also assist in 
understanding the relative size of the 
effects.   
 
  To recap briefly, we are arguing that 
the components of the metrics for a new 
science of science can include (but are 
not limited to) the following: 
 
1) Predictive accuracy that is closely 

tied to rigorous hypothesis testing 

                                                 
6 In addition to the concept of statistical 
significance is the concept of substantive 
significance (the size of the numerator 
(b)).  Substantive significance is of great 
importance since it demonstrates how 
borderline (highly) significant t-statistics 
can be associated with big (small) effects 
of the independent variable on the 
dependent variable.  
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and therefore allows for valid model 
reassessment. 

 
2) Hypothesis testing that makes use of 

a t-statistic and is based on identified 
and invariant parameters. 

 
3) Linking formal models to applied 

statistics so that their mutually 
reinforcing features can illuminate 
identified and invariant parameters 
and provide a transparent linkage 
between model and test.  

 
    

IV.  A Proposed Framework   
 
  With these components in place, the 
basic idea of this framework is to take 
what social scientists know about 
theoretical and applied statistical 
concepts, provide a rigorous basis for 
these concepts through the use of their 
respective analogues, and then merge 
these theoretical analogues with the 
applied statistical analogues.7 

                                                 
7 A concept can be thought of as an 
abstract or general idea inferred or 
derived from specific instances.  An 
analogue can be thought of as a device 
in which a concept is represented by 
continuously variable --- and measurable 
--- quantities.   
 
   Behavioral concepts include but are not 
limited to expectations, learning, and 
social interaction.  Behavioral analogues 
include but are not limited to the use of 
conditional expectations, and adaptive 
learning, and the use of system level 
analysis.  Statistical concepts include but 
are not limited to  persistence, 
measurement error, or simultaneity.  
Statistical analogues include but are not 
limited to autoregressive processes, 

  What would emerge is a road map for 
others to modify, correct, or follow.  
More importantly, one could provide a 
transparent linkage between a theory and 
test.  This is not to say the model is 
correct.  Instead, it involves meeting a 
minimal requirement that the theory and 
test are related and, therefore, refutable. 
   
  Our approach/framework in some 
respects is not new since it relies (in 
part) on the work of the Cowles 
Commission --- as presented in the 
1930s and 1940s.8  The Cowles 
Commission was a group known for 
establishing conditions in which 
structural parameters could be 
determined, and causal mechanisms 
could then be identified by using these 
structural parameters.9  But, unlike the 

                                                                   
error-in-variables regression, and 
simultaneous equation estimation.   
   
8 For further background on the Cowles 
Commission consult:  
http://cowles.econ.yale.edu/. 
 
9 We adopt Heckman's (2000: 59) 
terminology below: 
 
“Structural causal effects are defined as 
the direct effects of the variables in the 
behavioral equations...When these 
equations are linear, the coefficients on 
the causal variables are called 
structural parameters (emphasis added), 
and they fully characterize the structural 
effects.”   
 
  Heckman also notes there is some 
disagreement about what constitutes a 
structural parameter.  The disagreement 
centers on whether one uses a linear 
model, a non-linear model or, more, 
recently a fully parameterized model.  In 
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Cowles Commission, our framework 
also links formal and applied statistical 
analogues to assist in this identification 
process.  We will discuss the Cowles 
Commission at greater length later in 
this paper. 
   
  While scientific cumulation is based on 
many things, we maintain our theme of 
requiring that the science of science 
policy (and policy simulation) be based 
on the search for identifying invariant 
causal mechanisms.  Since we accept the 
Cowles Commission's focus on 
structural parameters as an important 
way to demonstrate specific cause and 
effect, we place particular emphasis 
(when using the t-statistic) on the 
numerator (b) as opposed to practices 
that emphasize the denominator (s.e.(b)).   
 
  We can summarize these issues (and 
some others) in Figure 1.  For purposes 
of contrasting what can be done to 
improve upon In this figure we 
incorporate what we believe are 
nonfalsifiable practices that provide no 
useful metrics and can harm science 
policy development.    

 
(Figure 1 About Here) 

 
A1.  Scientific Accumulation: On the 
Y-axis is the criterion of scientific 
cumulation.  We assert that one way to 
determine scientific cumulation is a 
significant t-statistic, which (to repeat) is 
defined as the ratio, (b/(s.e.(b))).  

                                                                   
the latter case, structural parameters can 
also be called “deep” to distinguish 
between “the derivatives of a behavioral 
relationship used to define causal effects 
and the parameters that generate the 
behavioral relationship.” (p. 60). 
 

Avoiding false rejection of the null 
hypothesis (Type I error) or false 
acceptance of the null hypothesis (Type 
II error) is imperative. While the concern 
with Type I and Type II errors should be 
of prime importance, that is not usually 
the case. Instead, the focus of current 
policy research is usually on the size of 
the t-statistic and whether one can get 
significant results. 
 
A2.  Identification/Invariance: On the 
X-axis is the “identification/invariance” 
criterion.10  Recall we have asserted that 
cumulative science cannot progress 
when research practices are non-
falsifiable and where some assurance is 
given that the parameter(s) --- the b’s --- 
reflect the effect of the independent 
variable(s) in question.  This provides 
guidance as to whether either type of 
error noted above is avoided.11 
 
A3. Predictive Accuracy:  A final issue 
in the process of linking model to test is 
how accurate the model predicts.  There 
are numerous measures for predictive 
accuracy, but no less important is that 
the use of these measures fosters model 
reassessment, promotes a dialogue 
between policy makers and policy 
analysts on ways to improve a model, 
and ultimately contributes to scientific 
cumulation. 
 
                                                 
10 The two criteria can be listed on 
separate dimensions, but for simplicity 
we combine them since they both are 
necessary for valid policy analysis.   
 
11 Kuhn (1969) has noted that scientific 
revolutions are noncumulative 
developmental episodes.  We agree, but 
also add that developmental episodes 
also need to have falsifiable properties. 
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  Despite these useful scientific 
properties, it is important to identify 
current methodological practices that use 
the t-statistic, but do not make proper 
use of the information in the (b).  
Through the manipulation of standard 
errors, (s.e.(b)), instead of  isolating and 
identifying structural parameters, the t-
statistic loses its scientific merit.  These 
practices contribute to noncumulation 
and spurious conclusions.   
 
  The risk for policy errors is heightened 
when  metrics and  criteria, unrelated to 
identifying invariant mechanisms, 
dominate.    Recognition of the non-
scientific threat posed by this 
methodological practice originates with 
the econometric approach (and criteria) 
used by the Cowles Commission, 
described earlier.  It was the Cowles 
Commission that explored the 
differences between structural and 
reduced-form parameters.  Conditions 
for identifiability were introduced to aid 
in this differentiation and today this 
method is part of standard texts in 
econometrics.12 
 
  The Cowles Commission’s 
contributions rested, in part, on a 
scientific vision that involved merging 
formal and applied statistical analysis.  
The basis for this linkage was the idea 
that random samples were governed by 
some latent and probabilistic law of 
motion (Haavelmo (1944), Morgan 
(1990)).   Then using this “law”, formal 
models, when related to an applied 

                                                 
12 Along with their work on structural 
parameters, the Cowles Commission 
also gave formal and empirical 
specificity to issues such as exogeneity 
and policy invariance (Morgan (1990), 
Heckman (2000: 46)). 

statistical model, may be interpreted as 
creating a sample. Within this 
framework, a well-grounded test of a 
theory could be accomplished by 
relating a formal model to an applied 
statistical model and testing the applied 
statistical model.  This methodological 
approach was seen, then, as a valid 
representation and examination of 
underlying processes in existence.   
 
  Although the Cowles Commission 
contributed to the development of 
scientific practices, today there are some 
who still employ a so-called technical 
method that is only loosely connected to 
valid hypothesis testing --- and Cowles 
Commission practice.  In these cases, 
there is a strong reliance on statistically 
significant results  with only little 
attempt to identify the precise origin of 
the parameters in question.  Absent this 
identification effort, it is not evident 
where the model is wrong.  In a different 
sense, these current practices are getting 
ahead of themselves by failing to 
establish ways to falsify the models.  
 
  Three harmful but common applied 
statistical practices exist: data mining, 
garbage cans, and the use of statistical 
weighting and patching (i.e, the use of 
Omega Matrices).  These three practices 
are incompatible with falsification.  
Consequently, scientific cumulation is 
an unattainable goal.  Why?  These 
applied statistical practices lack overall 
robustness.  Worse, they can be used to 
obscure some fundamental specification 
error.  Again, referring to Figure 1 
(below the X-axis),  we summarize these 
practices.  These practices are situated 
closest to the origin of the figure since 
they fail to identify invariant parameters 
and assist in valid hypothesis testing.     
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 B1.  Data Mining: One practice that 
can achieve statistically significant 
results involves putting data into a 
statistical package with minimal theory.  
Regressions (likelihoods) are then 
estimated until either statistically 
significant coefficients, or coefficients 
the researcher thinks are important, are 
attained.  This step-wise search has little 
relation to identifying causal 
mechanisms.  
 
B2.  Garbage Cans: A second practice, 
related to data mining, involves 
researchers, including, in a haphazard 
fashion, a plethora of independent 
variables into a statistical package and 
then obtaining significant results. 
Researchers using garbage can models 
rarely pay attention to potential 
confounding factors that could corrupt 
statistical inferences.  Efforts to identify 
an underlying causal mechanism are also 
few and far between.  
 
B3.  Omega Matrices: Data mining and 
garbage-can approaches virtually are 
guaranteed to break down statistically 
through both inaccurate predictions and 
the existence of nonrandom error.  The 
question is what to do when these 
failures occur.  There are elaborate ways 
of using (error) weighting techniques to 
correct model misspecifications or to use 
other statistical patches that influence 
s.e.(b).  In almost any intermediate 
econometrics textbook one finds a 
section (chapter) that has the Greek 
symbol: Omega (Ω). This symbol is 
representative of the procedure whereby 
a researcher weights the data that are 
arrayed (in matrix form) so that the 
statistical errors, ultimately the standard 
error noted above, is altered and the t-
statistic is manipulated.  In principle, 
there is nothing wrong with knowing the 

Omega matrix for a particular statistical 
model. The standard error(s) produced 
by an Omega matrix should only serve 
as a check on whether inferences have 
been confounded to such an extent that a 
Type I or Type II error has been 
committed.  Far too often, however, 
researchers treat the Omega weights (or 
alternative statistical patches) as the 
result of a true model. This practice 
hampers scientific progress because it 
uses a model's mistakes to obscure 
flaws.  
 
  In addition to these flawed applied 
statistical practices, it should also be 
pointed out that some formal practices 
threaten the science of science policy.   
 
B4.  Formal Models that Fail to 
Respect Facts: Formal models can fail 
to incorporate empirical findings that 
would assist in providing a more 
accurate depiction of the relations that 
are specified.  This results in modeling 
efforts that yield inaccurate predictions 
or do not fit findings. In fact, data may 
contradict not just a model's results but 
also its foundational assumptions.   
 
  Taken as a whole, these research 
practices, all too common today, are 
inadequate for the task of scientific 
cumulation --- and building a science of 
science policy.  Recall that we accept the 
Cowles Commission's focus on 
parameters and identification.  An 
emphasis on parameters --- structural 
parameters --- provides transparent 
interpretation and valid hypothesis 
testing (minimizing Type I and Type II 
errors).   
 
  However, structural parameters are 
only part of what is necessary for valid 
hypothesis testing.  It is equally 
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important to include the behavioral traits 
such as public tastes, attitudes, 
expectations, learning, and the like.  
Absent these added behavioral concepts 
and analogues, formal and applied 
statistical modeling can be misleading 
because the shifts of variables in the 
system failed to be linked with the other 
variables and parameters that are 
specified.  Invariance can be  
compromised in this situation.   
 
    The framework we propose is 
summarized inside the upper right 
quadrant of Figure 1.  We start with a 
structural description of the system by 
adding behavioral concepts, their formal 
and applied statistical analogues, and 
then how to link them.  This framework 
provides information to assist in 
identifying causal linkages.  By 
identifying behavioral concepts and 
analogues, their shifts can now be 
modeled and linked to a test with the 
parameters reflecting changes in causal 
influences.13 
 
C1.  Relating Behavioral and Applied 
Statistical Concepts:  We begin by 
showing how well known social, 
behavioral, political, and economic 
concepts can be related to well known 
applied statistical concepts.  An 
important way to  enhance the linkage is 
through one kind of qualitative analysis, 
the case study method (as well as policy 
maker experience).  Case studies provide 
detailed information about the steps by 
which events occur and allow 
researchers to identify mechanisms that 
can be incorporated into a formal model.  
In fact, as we noted elsewhere14, 

                                                 
 
14 See Granato and Scioli (2003). 
 

qualitative analysis and quantitative 
analysis contribute to cumulative 
knowledge when thought of, and used 
as, mutually reinforcing methods.  Thus, 
the approach we advocate is to 
encourage and accelerate shared 
standards and multi-method approaches. 
   
C2. Behavioral and Applied Statistical 
Analogues:  To link concepts with tests, 
we need analogues.  The use of 
analogues is probably the most 
important advance over and above the 
Cowles Commission research program.  
Analogues serve as analytical devices 
for modeling and predicting behavior 
and, therefore, provide a richer and more 
identifiable interpretation of the formal 
and applied statistical model.   
 
C3. Link the Formal and Applied 
Statistical Analogues:  We then link 
these formal and applied statistical 
analogues for the purposes of identifying 
parameters of interest (b's).  The 
attributes of this linkage means shifts in 
behavior and predictive accuracy are 
intertwined.  Examples of this type of 
mutually reinforcing linkage include, but 
are not limited to, linking the analogue 
for expectations (conditional 
expectations) with the analogue for 
persistence (autoregressive process) or 
measurement error (error-in-variables 
regression).     
 
 

V.    How Cumulative Practices 
Influence the Science of Science 
Policy: A Focus on Parameters 

 
  When we make use of analogues and 
focus on the relation between our 
formal-theoretical parameter(s) and the 
applied statistical parameter(s) valid 
hypothesis testing, improved predictive 
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accuracy (via model reassessment),  and 
cumulation are possible.  Explicit 
emphasis on the parameters allows for 
greater likelihood of knowing what is 
being falsified.  This approach accounts 
for several methodological problems and 
is a more robust metric than the current 
practices of data mining, garbage cans, 
and Omega matrices.    
  
  Having said this, it is also clear that the 
models can still be over parameterized.  
While this framework can work out the 
mechanism between the policy-treatment 
(parameter(s)) and the outcome(s) of 
interest, we recognize that over 
parameterization (“free” parameters) can 
have unaccounted for consequences for 
causal linkages.  The concern here is that 
the potential shifts in the free parameters 
may undermine invariance.  Lucas 
(1980) poses the problem and suggests a 
possible accommodation when he states:   
 
“If this [free] parameter changes in 
reaction to changes elsewhere in the 
system..., there is no way to predict the 
nature of these responses short of 
experimenting with the system as a 
whole” (p. 712). 
 
   To account for this possibility, our  
framework must be extended to include 
ways “to fix” as many parameters in the 
system as possible.  By “fix” we mean 
metrics must be developed or adopted 
that provide greater specificity on the 
range (i.e., magnitudes) of free 
parameters.  This effort would also 
include whether all free parameters must  
be subject to some restriction.   
 
  The framework we propose links 
formal models and empirical data and is  
flexible enough to accomplish this task.  
The issue is to make appropriate use of 

additional formalization --- informed by 
empirical and contextual evidence.   
   
 

VI.  The Payoff: Societal 
Consequences 

 
  We argue that the framework outlined 
above, when adhered to, can yield 
significant and positive societal benefits.   
If policy makers can accept the analyses 
presented to them by policy analysts 
(who use metrics with identifiable and 
invariant attributes), then they --- the 
policy makers --- will be able to make 
informed judgments about the best 
way(s) to assess policy effectiveness.  
They will also be able to make tough 
budgetary choices concerning what 
expenditures have the potential for the 
greatest payoffs.  
 
  By way of example, the effect of this 
interaction between empirical (and 
contextual) evidence and formal 
theorizing can be seen in the way that  
policy makers formulate decisions about 
how to stabilize the business cycle.  
Over the past 50 years the volatility of 
business cycles has been reduced and the 
duration of economic expansions has 
increased in the United States (Granato 
and Wong (2006)).15  These salutary 
economic events occurred at 
approximately the same time that 
quantitative methodologies (inspired in 
part by the Cowles Commission) 
emphasized and were judged on their 
ability to produce identifiable and 
invariant predictions.   
 
                                                 
15 Since 1854 the three longest 
peacetime (or otherwise) economic 
expansions in the United States occurred 
after World War II.   
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  Is this relation between quantification 
and prosperity a correlation?  A very 
strong case can be made that this 
important benefit to society is in part a 
function of the systematic use of 
quantifiable models.  These models, 
while having seen their share of 
criticism, have assisted policymakers by 
providing useful knowledge and creating 
a systematic scientific justification for 
policymaker actions. 
 
 

VII.  Conclusion: Short-term and 
Long-term Solutions 

 
  If policymakers and policy analysts are 
to improve upon current practices, then 
the challenge is to make better use of 
both experimental and non-experimental 
data to make more accurate predictions.  
To do this science policy must, for 
example, be based on models that fit the 
past but also can be simulated to give 
valid (and reliable) estimates of the 
effects of various policies.  To meet this 
challenge we have discussed how 
modeling practices must emphasize 
identifying causal mechanisms that are 
invariant to outside shocks.  
 
  We think immediate changes in model 
assessment (consistent with the issues of 
identification and invariance) can be 
instituted with little cost in terms of re-
tooling or adding further complications 
to presentation criteria.  The benefits 
would be two-fold.  First, the added 
retooling would allow consumers of 
such information (i.e., policymakers) to 
focus directly on the validity of any 
model result.  Second,  the changes in 
criteria will create a more demanding 
standard for policy analysts to meet.  
Any models that fail to meet these 
criteria will be disregarded for the 

inherent vagueness and lack of assurance 
in the validity of the results.   
 
  The criteria for existing models can 
include the following questions16: 
 
1) What assurances are given in the 

analysis that the parameters are 
invariant? 

 
2) What alternative arguments 

(variables) were considered and 
what selection criteria were used to 
reach the final model formulation? 

  
  In the long-term, however, more 
ambitious changes will be needed.  The 
transformation of current science policy 
modeling practices will not occur 
quickly.  Fundamental changes are 
needed in how and what modeling skills 
are taught.  We have outlined a 
framework that seeks to merge both 
formal and empirical models.  It is this 
transparency between model and test 
that will ultimately transform the science 
of science policy.       

                                                 
16 The criteria would require some 
policymakers to re-tool but our 
collective experience in teaching these 
tools demonstrates that this can be 
accomplished with  little more than a 
one-day workshop. 
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