Discussion: Algorithmic Fairness and Partisan Agenda Control

Yuki Atsusaka atsusaka.org

Hobby School of Public Affairs University of Houston

EITM 2025 University of Houston, TX 3/28/2025

• EITM with machine learning (Penn & Patty)

- EITM with machine learning (Penn & Patty)
 - Build on the rich history of algorithmic EITM

- EITM with machine learning (Penn & Patty)
 - Build on the rich history of algorithmic EITM
 - Agent-based model (e.g., Atsusaka & Landsman (2025) on candidate competition in RCV)

- EITM with machine learning (Penn & Patty)
 - Build on the rich history of algorithmic EITM
 - Agent-based model (e.g., Atsusaka & Landsman (2025) on candidate competition in RCV)
 - New avenue: classification algorithms (ML/AI)

- EITM with machine learning (Penn & Patty)
 - Build on the rich history of algorithmic EITM
 - Agent-based model (e.g., Atsusaka & Landsman (2025) on candidate competition in RCV)
 - New avenue: classification algorithms (ML/AI)
 - Accuracy, compliance, fairness, social welfare

- EITM with machine learning (Penn & Patty)
 - Build on the rich history of algorithmic EITM
 - Agent-based model (e.g., Atsusaka & Landsman (2025) on candidate competition in RCV)
 - New avenue: classification algorithms (ML/AI)
 - Accuracy, compliance, fairness, social welfare
 - "EI": endogeneity in data-generating process

- EITM with machine learning (Penn & Patty)
 - Build on the rich history of algorithmic EITM
 - Agent-based model (e.g., Atsusaka & Landsman (2025) on candidate competition in RCV)
 - New avenue: classification algorithms (ML/AI)
 - Accuracy, compliance, fairness, social welfare
 - "TM": Formal model of the algorithm designer and people
 - "EI": endogeneity in data-generating process

- EITM with machine learning (Penn & Patty)
 - Build on the rich history of algorithmic EITM
 - Agent-based model (e.g., Atsusaka & Landsman (2025) on candidate competition in RCV)
 - New avenue: classification algorithms (ML/AI)
 - Accuracy, compliance, fairness, social welfare
 - "TM": Formal model of the algorithm designer and people
 - "EI": endogeneity in data-generating process

- EITM with machine learning (Penn & Patty)
 - Build on the rich history of algorithmic EITM
 - Agent-based model (e.g., Atsusaka & Landsman (2025) on candidate competition in RCV)
 - New avenue: classification algorithms (ML/AI)
 - Accuracy, compliance, fairness, social welfare
 - "TM": Formal model of the algorithm designer and people
 - "EI": endogeneity in data-generating process
- EITM with causal identification (Kistner & Boris)

- EITM with machine learning (Penn & Patty)
 - Build on the rich history of algorithmic EITM
 - Agent-based model (e.g., Atsusaka & Landsman (2025) on candidate competition in RCV)
 - New avenue: classification algorithms (ML/AI)
 - Accuracy, compliance, fairness, social welfare
 - "TM": Formal model of the algorithm designer and people
 - "EI": endogeneity in data-generating process
- EITM with causal identification (Kistner & Boris)
 - Build on the rich history of EITM with theoretical predictions

- EITM with machine learning (Penn & Patty)
 - Build on the rich history of algorithmic EITM
 - Agent-based model (e.g., Atsusaka & Landsman (2025) on candidate competition in RCV)
 - New avenue: classification algorithms (ML/AI)
 - Accuracy, compliance, fairness, social welfare
 - "TM": Formal model of the algorithm designer and people
 - "EI": endogeneity in data-generating process
- EITM with causal identification (Kistner & Boris)
 - Build on the rich history of EITM with theoretical predictions
 - Logical models (e.g., Atsusaka (2021) on predicting minority representation)

- EITM with machine learning (Penn & Patty)
 - Build on the rich history of algorithmic EITM
 - Agent-based model (e.g., Atsusaka & Landsman (2025) on candidate competition in RCV)
 - New avenue: classification algorithms (ML/AI)
 - Accuracy, compliance, fairness, social welfare
 - "TM": Formal model of the algorithm designer and people
 - "EI": endogeneity in data-generating process
- EITM with causal identification (Kistner & Boris)
 - Build on the rich history of EITM with theoretical predictions
 - Logical models (e.g., Atsusaka (2021) on predicting minority representation)
 - New avenue: causal identification (statistics/AI)

- EITM with machine learning (Penn & Patty)
 - Build on the rich history of algorithmic EITM
 - Agent-based model (e.g., Atsusaka & Landsman (2025) on candidate competition in RCV)
 - New avenue: classification algorithms (ML/AI)
 - Accuracy, compliance, fairness, social welfare
 - "TM": Formal model of the algorithm designer and people
 - "EI": endogeneity in data-generating process
- EITM with causal identification (Kistner & Boris)
 - Build on the rich history of EITM with theoretical predictions
 - Logical models (e.g., Atsusaka (2021) on predicting minority representation)
 - New avenue: causal identification (statistics/AI)
 - Confounding, matching, effect modifier, fixed effects

- EITM with machine learning (Penn & Patty)
 - Build on the rich history of algorithmic EITM
 - Agent-based model (e.g., Atsusaka & Landsman (2025) on candidate competition in RCV)
 - New avenue: classification algorithms (ML/AI)
 - Accuracy, compliance, fairness, social welfare
 - "TM": Formal model of the algorithm designer and people
 - "EI": endogeneity in data-generating process
- EITM with causal identification (Kistner & Boris)
 - Build on the rich history of EITM with theoretical predictions
 - Logical models (e.g., Atsusaka (2021) on predicting minority representation)
 - New avenue: causal identification (statistics/AI)
 - Confounding, matching, effect modifier, fixed effects
 - "EI": $\beta > 0$ as ATE > 0

- EITM with machine learning (Penn & Patty)
 - Build on the rich history of algorithmic EITM
 - Agent-based model (e.g., Atsusaka & Landsman (2025) on candidate competition in RCV)
 - New avenue: classification algorithms (ML/AI)
 - Accuracy, compliance, fairness, social welfare
 - "TM": Formal model of the algorithm designer and people
 - "EI": endogeneity in data-generating process
- EITM with causal identification (Kistner & Boris)
 - Build on the rich history of EITM with theoretical predictions
 - Logical models (e.g., Atsusaka (2021) on predicting minority representation)
 - New avenue: causal identification (statistics/AI)
 - Confounding, matching, effect modifier, fixed effects
 - "TM": Game-theoretic model of Gatekeeper and Floor
 - "EI": $\beta > 0$ as ATE > 0

- Penn & Patty
 - How does the model account for **probabilistic predictions**?
 - Algorithm says $\hat{\theta} = p(Y_{success} = 1 | \text{signal}) = 0.65$
 - Human says $ilde{Y}_{sucess} = \mathbf{1}(\widehat{ heta} > \mathsf{0.5}) = 1$
 - The goal is perfect calibration?
 - Page 9 notes: the algorithm wants $\Pr(d_i = s_s | \delta) = \delta_{s_i}$
 - This differs from accuracy and compliance
 - Maybe helpful to clarify what s_i and ϕ are in the four examples

- Penn & Patty
 - How does the model account for **probabilistic predictions**?
 - Algorithm says $\hat{\theta} = p(Y_{success} = 1 | \text{signal}) = 0.65$
 - Human says $ilde{Y}_{sucess} = \mathbf{1}(\widehat{ heta} > \mathsf{0.5}) = 1$
 - The goal is perfect calibration?
 - Page 9 notes: the algorithm wants $Pr(d_i = s_s | \delta) = \delta_{s_i}$
 - This differs from accuracy and compliance
 - Maybe helpful to clarify what s_i and ϕ are in the four examples

- Penn & Patty
 - How does the model account for **probabilistic predictions**?
 - Algorithm says $\hat{\theta} = p(Y_{success} = 1 | \text{signal}) = 0.65$
 - Human says $ilde{Y}_{sucess} = \mathbf{1}(\widehat{ heta} > \mathsf{0.5}) = 1$
 - The goal is perfect calibration?
 - Page 9 notes: the algorithm wants $Pr(d_i = s_s | \delta) = \delta_{s_i}$
 - This differs from accuracy and compliance
 - Maybe helpful to clarify what s_i and ϕ are in the four examples

• Kistner & Boris

- Why not modeling with more **natural quantities**?
 - $S_M \Rightarrow$ the prop. of legislators in the majority party supporting the bill
 - $S_F \Rightarrow$ the prop. of legislators across parties supporting the bill
 - $S_{IG} \Rightarrow$ the prop. of legislators IGs can "turn"?
- The model can make predictions directly?
 - E.g., $p(Y_{gate} = 1) = \Phi_{\mu=0.5,\sigma=0.5}(S_M + S_{IG})$
 - Compare the prediction with relative frequency in the data
- Maybe helpful to formalize estimands, state assumptions, draw DAGs, model other theories