PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

B. Specification Section 23 05 93

C. Although Specifications throughout the Mechanical, Electrical, Communications, Electronic Safety and Security divisions of the Project Manual are directly applicable to this Section, and this Section is directly applicable to them; additional Divisions also may be reciprocally applicable to this Section.

1.02 SUMMARY

A. Section includes:
 1. BAS and equipment testing and Start-up.
 2. Validation of proper and thorough installation of BAS and equipment.
 3. Functional testing of control systems.
 4. Documentation of tests, procedures, and installations.
 5. Coordination of BAS training.

B. This Section defines responsibilities of the Contractor to commission the BAS in situations where controls are being replaced on existing equipment but not where core equipment is being replaced.

C. The term “Owner” shall include a representative from UNIVERSITY OF HOUSTON Building Automation Services but is not limited to represent the Owner exclusively. MEP Design consultant may also be authorized to act as Owner’s Designated Representative ODR). Coordinate all activities to include all of the Owner’s representatives.

D. Commissioning is the process of ensuring that all building systems are installed and perform interactively according to the design intent, the systems are efficient and cost effective and meet the Owner’s operational needs, the installation is adequately documented, and that the Operators are adequately trained. It serves as a tool to minimize post-occupancy operational problems. It establishes testing and communication protocols in an effort to advance the building systems from installation to full dynamic operation and optimization.

E. The Contractor shall direct, coordinate, and oversee the Commissioning process and witness functional performance tests.
F. The Owner’s TAB Firm may write the Owner approved control sequence verification sheets for functional performance tests and develop forms using the BAS Provider’s point log to test each point back to the graphical interface. The BAS Provider shall furnish the Contractor with an estimated time to complete this task, which Contractor will incorporate in the Project Schedule. In the event Owner’s TAB Firm is not under contract for the Project, the Contractor shall write the Owner approved sequence verification sheets for functional performance tests.

1.03 REFERENCE STANDARDS

A. The latest published edition of a reference shall be applicable to this Project unless identified by a specific edition date.

B. All reference amendments adopted prior to the effective date of this Contract shall be applicable to this Project.

C. All materials, installation and workmanship shall comply with the applicable requirements and standards addressed within all references.

1.04 CONTRACTOR RESPONSIBILITIES

A. Completely install and thoroughly inspect, startup, preliminarily test, adjust, balance, and document all systems and equipment.

B. Assist Owner and/or TAB firm in verification and functional performance testing. This will generally include the following:
 1. Attend Commissioning progress and coordination meetings.
 2. Prepare and submit required draft forms and systems information.
 3. Establish trend logs of system operation as specified herein.
 4. Demonstrate system operation.
 5. Manipulate systems and equipment to facilitate testing.
 6. Provide instrumentation necessary for verification and performance testing.
 7. Manipulate control systems to facilitate verification and performance testing.
 8. Train Owner as specified in this Section.

C. Compensation for Retesting: Contractor shall compensate Owner for Site time necessitated by incompleteness of systems or equipment at time of functional performance testing. All testing failures, which require on-Site time for retesting, will be considered actual damages to the Owner. Owner shall charge Contractor $100 for each repeat site visit due to testing failure. Reimbursement to all parties under Contract with the Owner who are affected by the retesting shall be included in the Contract modification.

1.05 SUBMITTALS

A. The following list outlines the general sequence of events for submittals and commissioning:
 1. Submit product data and Shop Drawings, and receive approval.
 2. Submit BAS logic documentation, and receive approval.
3. Submit background graphic screens, and receive approval.

4. Submit Start-Up Checklists and manufacturer’s start-up procedures for all equipment provided by the Contractor.

5. Install BAS.

6. Submit BAS Start-Up Test Agenda and Schedule for review.

7. Receive BAS Startup Test Agenda and Schedule approval.

9. Simulate sequencing and debug program off-line to the extent practical.

10. Place systems under BAS control where applicable during a scheduled outage.

11. Perform BAS Startup during a scheduled outage.

12. Prepare and initiate trend log data storage and format trend graphs.

13. Submit completed BAS Start-Up Reports and initial draft of the Operating and Maintenance (O&M) Manuals.

14. Receive BAS Startup Report approval and approval to schedule Demonstrations and Commissioning.

15. Demonstrate systems to Owner.

17. Receive demonstration approval and approval to schedule an Acceptance Period per paragraph 3.07.

18. Train Owner on BAS operation and maintenance.

19. Substantial Completion.

21. Two-week Operational Test.

22. Perform Functional Performance Testing including point to point verification to graphical interface.

23. Receive Acceptance Period approval, which is Functional Completion for the BAS.

24. Train Owner on final sequences and modes of operation.

25. Install framed control Drawings.

26. Provide Level 1 (view only) password access to the Owner.

27. Revise and re-submit Record Drawings and O&M Manuals.

28. Manager of Building Management Services sign-off required.

29. Provide Admin level access to Owner.
30. Final Acceptance.
31. Begin Warranty Phase.
32. Schedule and begin Opposite Season acceptance period as scheduled.
33. Receive Opposite Season acceptance period approval.
34. Submit Record Drawings and O&M Manuals.
35. Update framed control Drawings.
36. Complete Owner (AHJ) Training.
37. End-of-Warranty date/period.

PART 2 - PRODUCTS

2.01 GENERAL

A. All materials shall meet or exceed all applicable referenced standards, federal, state and local requirements, and conform to codes and ordinances of authorities having jurisdiction.

2.02 INSTRUMENTATION

A. Instrumentation required to verify readings and to test the system and equipment performance shall be provided by Contractor and made available to Owner. Generally, no testing equipment will be required beyond that required to perform Contractor's Work under these Contract Documents. All equipment used for testing and calibration shall be NIST/NBS traceable and calibrated within the preceding 6-month period. Certificates of calibration shall be submitted.

2.03 TAB AND COMMISSIONING PORTABLE OPERATORS TERMINAL

A. Contractor shall provide portable operators terminal or hand held device to facilitate Testing, Adjusting, and Balancing (TAB) and calibration. This software or device shall support all functions and allow querying and editing of all parameters required for proper calibration and Start-up.

B. Connections shall be provided local to the device being calibrated. For instance, for terminal units, connection of the operator's terminal shall be either at the sensor or at the terminal unit. Otherwise a wireless system shall be provided to facilitate this local functionality.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Installation shall meet or exceed all applicable federal, state and local requirements, referenced standards and conform to codes and ordinances of authorities having jurisdiction.

B. All installation shall be in accordance with manufacturer’s published recommendations.
3.02 BAS START-UP TESTING, ADJUSTING, CALIBRATION

A. Work and/or systems installed under this Division shall be fully functioning prior to Demonstration and Acceptance Phase. Contractor shall start, test, adjust, and calibrate all work and/or systems under this Contract, as described below:

1. Inspect the installation of all devices. Review the manufacturer’s installation instructions and validate that the device is installed in accordance with them.

2. Verify proper electrical voltages and amperages, and verify that all circuits are free from faults.

3. Verify integrity/safety of all electrical connections.

4. Before any testing, adjusting, or balancing work commences, vendor must submit a graphics screens package to BMS for approval.

5. Coordinate with Owner’s TAB Firm to obtain control settings that are determined from balancing procedures. Record the following control settings as obtained from Owner’s TAB Firm, and note any TAB deficiencies in the BAS Start-Up Report:
 a. Optimum duct static pressure setpoints for VAV air handling units.
 b. Minimum outside air damper settings for air handling units.
 c. Optimum differential pressure setpoints for variable speed pumping systems.
 d. Calibration parameters for flow control devices such as VAV terminal units and flow measuring stations.
 1) Contractor shall provide hand-held device as a minimum to the TAB Firm to facilitate calibration. Connection for any given device shall be local to it (i.e. at the VAV terminal unit or at the thermostat). Hand-held device or portable operator’s terminal shall allow querying and editing of parameters required for proper calibration and start-up.

6. Test, calibrate, and set all digital and analog sensing and actuating devices. Calibrate each instrumentation device by making a comparison between the BAS display and the reading at the device, using an instrument traceable to the National Bureau of Standards, which shall be at least twice as accurate as the device to be calibrated (e.g., if field device is +/-0.5 percent accurate, test equipment shall be +/-0.25 percent accurate over same range). Record the measured value and displayed value for each device in the BAS Start-up Report.

7. Check and set zero and span adjustments for all transducers and transmitters.

8. For dampers and valves:
 a. Check for adequate installation including free travel throughout range and adequate seal.
 b. Where loops are sequenced, check for proper control without overlap.

9. For actuators:
a. Check to insure that device seals tightly when the appropriate signal is applied to the operator.

b. Check for appropriate fail position, and that the stroke and range is as required.

c. For existing pneumatic operators, adjust the operator spring compression as required to achieve close-off. If positioner or volume booster is installed on the operator, calibrate per manufacturer’s procedure to achieve spring range indicated. Check split-range positioners to verify proper operation. Record settings for each device in the BAS Pre-Commissioning Report.

d. For sequenced electronic actuators, calibrate per manufacturer’s instructions to required ranges.

10. Check each digital control point by making a comparison between the control command at the CU and the status of the controlled device. Check each digital input point by making a comparison of the state of the sensing device and the Operator Interface display. Record the results for each device in the BAS Start-Up Report.

11. For outputs to reset other manufacturer’s devices (for example, VSDs) and for feedback from them, calibrate ranges to establish proper parameters. Coordinate with representative of the respective manufacturer and obtain their approval of the installation.

12. Verify proper sequences by using the approved checklists to record results and submit with BAS Start-Up Report. Verify proper sequence and operation of all specified functions.

13. Verify that all safety devices trip at appropriate conditions. Adjust setpoints accordingly.

Engineer shall provide the tolerances for the type and criticality of the area or zone being served by the equipment. Engineer may have to specify two or more sets of tolerances for a specific Project. Edit accordingly.

14. Tune all control loops to obtain the fastest stable response without hunting, offset or overshoot. Record tuning parameters and response test results for each control loop in the BAS Start-up Report. Except from a startup, maximum allowable variance from set point for controlled variables under normal load fluctuations shall be as follows. Within 3 minutes of any upset (for which the system has the capability to respond) in the control loop, tolerances shall be maintained (exceptions noted):

 a. Duct air temperature: [±1 degrees F].
 b. Space Temperature: [±1 degrees F within 30 minutes].
 c. Chilled Water: [±1 degrees F].
 d. Hot water temperature: [±3 degrees F].
 e. Duct pressure: [± 0.25 inches wg].
 f. Water pressure: [±1 psid].
 g. Duct or space Humidity: [±5 percent within 30 minutes].
i. Space Pressurization (on active control systems): \([\pm 0.05 \text{ inches wg}]\) with no door or window movements.

15. For interface and DDC control panels:

a. Ensure devices are properly installed with adequate clearance for maintenance and with clear labels in accordance with the Record Drawings.

b. Ensure that terminations are safe, secure and labeled in accordance with the Record Drawings.

c. Check power supplies for proper voltage ranges and loading.

d. Ensure that wiring and tubing are run in a neat and workman-like manner, either bound or enclosed in trough.

e. Check for adequate signal strength on communication networks.

f. Check for standalone performance of controllers by disconnecting the controller from the LAN. Verify the event is annunciated at Operator Interfaces. Verify that the controlling LAN reconfigures as specified in the event of a LAN disconnection.

g. Ensure that all outputs and devices fail to their proper positions/states.

h. Ensure that buffered and/or volatile information is held through power outage.

i. With all system and communications operating normally, sample and record update/annunciation times for critical alarms fed from the panel to the Operator Interface.

j. Check for proper grounding of all DDC panels and devices.

k. Low voltage and High voltage wiring must not be housed in the same conduit. BAS wiring and fire alarm wiring must not be housed in the same conduit.

16. For Operator Interfaces:

a. Verify that all elements on the graphics are functional and are properly bound to physical devices and/or virtual points, and that hot links or page jumps are functional and logical.

b. Output all specified BAS reports for review and approval.

b. Output all specified BAS reports for review and approval.

c. Verify that the alarm printing and logging is functional and per requirements.

d. Verify that trends are archiving to disk and provide a sample to the Owner for review. Analog trends are not acceptable.

e. Verify that paging/dial-out alarm annunciation is functional and issues email notification. IP address will be provided by UH BMS.

f. Start-up and check out control air compressors, air drying, and filtering systems in accordance with the appropriate section and with manufacturer's instructions.

g. Verify proper interface with fire alarm system.
B. Submit Start-Up Test Report: Report shall be completed, submitted, and approved prior to Substantial Completion.

3.03 SENSOR CHECKOUT AND CALIBRATION

A. General Checkout: Verify that all sensor locations are appropriate and are away from causes of erratic operation. Verify that sensors with shielded cable are grounded only at one end. For sensor pairs that are used to determine a temperature or pressure difference, make sure they are reading within 0.2 degrees F of each other for temperature and within a tolerance equal to 2 percent of the reading of each other for pressure. Tolerances for critical applications may be tighter.

B. Calibration: Calibrate all sensors using one of the following procedures:

1. Sensors without Transmitters - Standard Application: Make a reading with a calibrated test instrument within 6 inches of the site sensor at various points across the range. Verify that the sensor reading (via the permanent thermostat, gauge or BAS) is within the tolerances specified for the sensor. If not, adjust offset and range, or replace sensor. Where sensors are subject to wide variations in the sensed variable, calibrate sensor within the highest and lowest 20 percentage of the expected range.

2. Sensors with Transmitters - Standard Application: Disconnect sensor. Connect a signal generator in place of sensor. Connect ammeter in series between transmitter and BAS control panel. Using manufacturer's resistance-temperature data, simulate minimum desired temperature. Adjust transmitter potentiometer zero until the ammeter reads 4 mA. Repeat for the maximum temperature matching 20 mA to the potentiometer span or maximum and verify at the OI. Record all values and recalibrate controller as necessary to conform to tolerances. Reconnect sensor. Make a reading with a calibrated test instrument within 6 inches of the site sensor. Verify that the sensor reading (via the permanent thermostat, gauge or BAS) is within the tolerances specified. If not, replace sensor and repeat. For pressure sensors, perform a similar process with a suitable signal generator. NOTE: when a sensor is disconnected, it shall not display old data (no “frozen in time” data).

C. Sensor Tolerance: Sensors shall be within the tolerances specified for the device. Refer to Section 25 11 10.

3.04 COIL VALVE LEAK CHECK

A. Verify proper close-off of the valves. Ensure the valve seats properly seat by simulating the maximum anticipated pressure difference across the circuit. Demonstrate to the Owner the verification of zero flow by measuring the coil differential pressure. If there is pressure differential, close the isolation valves to the coil to ensure the conditions change. If they do, this validates the valve is not closing. Remedy the condition by adjusting the stroke and range, increasing the actuator size/torque, replacing the seat, or replacing the valve as applicable.

3.05 VALVE STROKE SETUP AND CHECK

A. For all valve and actuator positions checked, verify the actual position against the Operator Interface readout.
B. Set pumps to normal operating mode. Command valve closed, verify that valve is closed, and adjust output zero signal as required. Command valve open, verify position is full open and adjust output signal as required. Command the valve to a few various intermediate positions. If actual valve position doesn’t reasonably correspond, replace actuator or add pilot positioner (for pneumatics).

3.06 BAS DEMONSTRATION

A. All BAS Demonstrations shall take place on the main Control Systems Server and UNIVERSITY OF HOUSTON WAN. At least two (2) weeks in advance to the demonstration, schedule with Owner to add system to main Control Systems Server and UNIVERSITY OF HOUSTON WAN. At the time of request, provide all documentation that the following criterions are met:

1. Updated BAS submittals in electronic and hard copy to Owner including the updated riser diagram for the system.

2. Reports on verification of Network Layout Verification including but not limited to Building Controller locations, cable routes with length of cable between controllers and any trunk extenders or trunk isolators.

3. Reports on verification of electrical characteristics of BAS network, communications and electrical integrity of Building Controllers.

4. Reports on verification of traffic on BAS Network including but not limited to COVs between Building Controllers, point commands by the operator, point commands by program across the network, alarm reporting on the network, any unresolved points in the system, integrity of the ports on any Building Controller isolator/extender and results of Building Controller tests running at selected baud rate.

5. Demonstrate to Owner the updates of databases without errors or faults between the temporary Control Systems Server and Building Controllers. If there is no temporary server, demonstrate to Owner after system is added to main Control Systems Server.

6. Reports on verification of system log files, interruption of log files of system traffic and overall acceptable operation of the system where a temporary Control Systems Server is utilized.

B. Demonstrate the operation of the BAS hardware, software, and all related components and systems to the satisfaction of the Owner. Schedule the demonstration with the Owner seven (7) calendar days in advance. Demonstration shall not be scheduled until all hardware and software submittals, and the Start-Up Test Report are approved. If the Work fails to conform to the Contract Documents, resulting inscheduling of additional Site visits by the Owner for re-demonstration, Contractor shall reimburse Owner for costs of subsequent Site visits (not less than $100 per visit).

C. The Contractor shall supply all personnel and equipment for the demonstration, including, but not limited to, instruments, ladders, etc. Contractor-supplied personnel must be competent with and knowledgeable of all project-specific hardware, software, and the HVAC systems. Either qualified or certified technician acting as the company’s SME are required to facilitate the operations of the system’s performance. All training documentation and submittals shall be maintained at the Project Site. Demonstration shall typically involve small representative samples of systems/equipment randomly selected by the Owner.
D. The system shall be demonstrated following the same procedures used in the Start-Up Test by using the approved Commissioning Checklists. Demonstration shall include, but not necessarily be limited to, the following:

1. Demonstrate that required software is installed on BAS workstations. Demonstrate that graphic screens, alarms, trends, and reports are installed as submitted and approved.

2. Demonstrate that points specified and shown can be interrogated and/or commanded (as applicable) from all workstations, as specified.

3. Demonstrate that remote dial-up communication abilities are in accordance with these Specifications.

4. Demonstrate correct calibration of input/output devices using the same methods specified for the Start-Up Tests. A maximum of 10 percent of I/O points shall be selected at random by the Owner for demonstration. Upon failure of any device to meet the specified end-to-end accuracy, an additional 10 percent of I/O points shall be selected at random by Owner for demonstration. This process shall be repeated until 100 percent of randomly selected I/O points have been demonstrated to meet specified end-to-end accuracy.

5. Demonstrate that all DDC and other software programs exist at respective field panels. The Direct Digital Control (DDC) programming and point database shall be as submitted and approved.

6. Demonstrate that all DDC programs accomplish the specified sequence of operation.

7. Demonstrate that the panels and DDC network of panels automatically recover from power failures within five (5) minutes after power is restored.

8. Demonstrate that the stand-alone operation of panels meets the requirements of these Specifications. Demonstrate that the panels’ response to LAN communication failures meets the requirements of these Specifications.

9. Identify access to equipment selected by the Owner. Demonstrate that access is sufficient to perform required maintenance.

10. Demonstrate that required trend graphs and trend logs are set up per the requirements. Provide a sample of the data archive. Indicate the file names and locations.

E. BAS Demonstration shall be completed and approved prior to Substantial Completion.

F. Any tests successfully completed during the demonstration will be recorded as passed for the functional performance testing and will not have to be retested.

3.07 BAS ACCEPTANCE PERIOD

A. After approval of the BAS Demonstration and prior to Contract Close Out Acceptance Phase shall commence. Acceptance Period shall not be scheduled until all HVAC systems are in operation and have been accepted, all required cleaning and lubrication has been
B. Operational Test: At the beginning of the Acceptance Phase, the system shall operate properly for two (2) weeks without malfunction, without alarm caused by control action or device failure, and with smooth and stable control of systems and equipment in conformance with these Specifications. At the end of the two weeks, Contractor shall forward the trend logs to the Owner for review. Owner shall determine if the system is ready for functional performance testing and document any problems requiring Contractor’s attention.

1. If the systems are not ready for functional performance testing, Contractor shall correct problems and provide notification to the Owner that all problems have been corrected. The Acceptance Period shall be restarted at a mutually scheduled time for an additional one-week period.

2. This process shall be repeated until Owner issues notice that the BAS is ready for functional performance testing.

C. During the Acceptance Period, the Contractor shall maintain a hard copy log of all alarms generated by the BAS. For each alarm received, Contractor shall diagnose the cause of the alarm, and shall list on the log for each alarm, the diagnosed cause of the alarm, and the corrective action taken. If in the Contractor’s opinion, the cause of the alarm is not the responsibility of the Contractor, Contractor shall immediately notify the Owner.

3.08 BAS OPERATOR TRAINING AND O&M MANUALS

A. Provide up to four (4) complete sets of the approved Operations and Maintenance (O&M) Manuals (hard copy and one electronic copy) to be used for training.

B. Contractor shall submit a Training Plan for the scope of training for which BAS Provider is responsible. Training Plan shall be forwarded to the Contractor who will compile, organize, format, and forward to the Engineer for review.

1. Coordinate requirements of Training with the UNIVERSITY OF HOUSTON Monitoring Services Department.

C. On-Site Training: On-Site Training: Provide services of BAS Provider’s qualified technical personnel for (5) 8-hour days to instruct Owner’s personnel in operation and maintenance of BAS. Instruction shall be in classroom setting at the Project Site for appropriate portions of the training. Training may be in non-contiguous days throughout the warranty period at the request of the Owner. The Owner shall notify Contractor seven (7) calendar days in advance of each day of requested training. The Contractor’s designated certified trainer proficient in system being installed shall meet with the Engineer and Owner for the purpose of discussing and fine-tuning the training agenda prior to the first training session. Training shall be recorded in replayable electronic format. Training agenda shall generally be as follows:

1. Basic Operator Workstation (OWS) Training – For all potential users of the OWS:
 a. Brief walk-through of building, including identification of all controlled equipment and condensed demonstration of controller portable and built-in operator interface device display capabilities.
 b. Brief overview of the various parts of the O&M Manuals, including hardware and software programming and operating publications, catalog data, controls installation Drawings, and DDC programming documentation.
 c. Demonstration of workstation login/logout procedures, password setup, and exception reporting.
d. Demonstration of workstation menu penetration and broad overview of the various workstation features.

e. Overview of systems installed.

f. Present all Site-specific point naming conventions and points lists, open protocol information, configuration databases, back-up sequences, upload/download procedures, and other information as necessary to maintain the integrity of the BAS.

g. Overview of alarm features.

h. Overview of trend features.

i. Overview of workstation reports.

2. BAS Hardware Training – For Maintenance and Control Technicians:

a. Review of installed components and how to install/replace, maintain, commission, and diagnose them.

3. BAS Technician Training:

a. Introduction to controller programming and overview of the programming application interface.

b. General review of sequence of operation and control logic for the Project Site, including standalone and fail-safe modes of operation.

c. Uploading/downloading and backing up programs.

d. Network administration.

e. Review of setpoint optimization and fine-tuning concepts.

Coordinate requirements of Training with the UNIVERSITY OF HOUSTON Monitoring Services Department to determine if Off-Site Training is required for the Project. Edit accordingly.

D. Off-Site Advanced Training:

1. Advanced Training shall be provided at any time during the Warranty Period for individuals in Owner’s employ and shall be provided at the manufacturer’s off-Site training facility containing installations of the specified system. Contractor shall pay training registration, materials, and miscellaneous fees. The Owner shall pay for all expenses for travel (transportation, meals, lodging, etc.

a. Advanced training shall include the standard, advanced training offering on all Control Programming Applications for the system installed.

b. Advanced training shall include the standard, advanced training offering on Advanced Installation, Configuration, Maintenance, and Network Administration.

c.
3.09 WARRANTY PHASE BAS OPPOSITE SEASON TRENDING AND TESTING

A. Trending: Throughout the Warranty Phase, trend logs shall be maintained. Contractor shall forward archive trend logs to the Owner for review upon Owner request. Owner will review these and notify Contractor of any warranty work required.

B. Opposite Season Testing: Within twelve (12) months of Substantial Completion, Contractor shall schedule and conduct with Owner, Opposite Season functional performance testing. BAS Provider shall participate in this testing and remedy any deficiencies identified.

END OF SECTION 25 08 10
SECTION 25 0910 - LABORATORY AIRFLOW CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS:

A. The Conditions of the Contract and applicable requirements of Division 1, "General Requirements", and this Section govern the work of this Division.

B. Although Specifications throughout the Mechanical, Electrical, Communications, Electronic Safety and Security divisions of the Project Manual are directly applicable to this Section, and this Section is directly applicable to them; additional Divisions also may be reciprocally applicable to this Section.

1.2 DESCRIPTION OF WORK:

A. System Description: Provide a Laboratory Airflow Control System (LACS) to control the airflow into and out of laboratory rooms. The exhaust flow rate of a laboratory fume hood shall be precisely controlled to maintain a constant average face velocity into the fume hood. The laboratory control system shall vary the amount of makeup/supply air into the room to operate the rooms at the lowest possible airflow rates necessary to maintain temperature control, achieve minimum ventilation rates, and maintain laboratory pressurization in relation to adjacent spaces (positive or negative). The laboratory airflow control system shall be capable of operating as a stand-alone system and as a system integrated with the existing Campus Building Automation System (BAS).

B. Control Protocol: Each room in the suite shall be operated as a constant volume occupied/unoccupied mode system with room pressurization via supply/exhaust offset as shown on the drawings. Unoccupied mode shall reduce the room supply air volume by 50% while maintaining pressure control offsets. The unoccupied mode shall be implemented based on time program inputs through the BAS system. The system design shall allow for future conversion to VAV operation with a supply air minimum in the future without any hardware changes.

C. Airflow Device Actuation: Airflow device actuation shall be DDC modulated electric actuation. Electrical power shall be supplied from the building 120 volt power supply.

D. Airflow Device: Airflow device is to be a VENTURI AIR Valve, blade dampers type control are NOT ACCEPTABLE. Venturi valves shall be installed per ASHRAE 90.1 to allow maintenance and serviceability.

1.3 QUALITY ASSURANCE:

A. Manufacturer: Laboratory airflow control shall be manufactured and installed by a certified Laboratory air flow vendor lab system controls and their local representative. All Valves shall be VENTURI without the use of flow measurement for accuracy, speed of response, and reliability of accurate air flow. Blade Damper style control IS NOT ACCEPTABLE. Any Valves using airflow sensors, of ANY kind, are REQUIRED to have straight duct runs as required per ASHRAE Fundamentals, “Measuring Flow in Ducts”, 7.5 Duct diameters downstream and 3 Duct diameters upstream, to help ensure no turbulence in air flow readings.

B. REQUIRED Certifications for Quality Assurance Purposes:

1. Provide manufacturers and independent test lab certification of test results, signed by an authorized officer of the company. The laboratory airflow system provider shall be an entity that designs, develops, manufacturers, and sells products and services to
3.09 WARRANTY PHASE BAS OPPOSITE SEASON TRENDING AND TESTING

A. Trending: Throughout the Warranty Phase, trend logs shall be maintained. Contractor shall forward archive trend logs to the Owner for review upon Owner request. Owner will review these and notify Contractor of any warranty work required.

B. Opposite Season Testing: Within twelve (12) months of Substantial Completion, Contractor shall schedule and conduct with Owner, Opposite Season functional performance testing. BAS Provider shall participate in this testing and remedy any deficiencies identified.

END OF SECTION 25 08 10