SECTION 04 2000 - UNIT MASONRY

Maintain Section format, including the UH master spec designation and version date in bold in the center columns of the header and footer. Complete the header and footer with Project information.

Edit and finalize this Section, where prompted by Editor’s notes, to suit Project specific requirements. Make selections for the Project at text identified in bold.

This Section uses the term "Architect" or “Engineer.” Change this term to match that used to identify the design professional as defined in the General and Supplementary Conditions.

Verify that Section titles referenced in this Section are correct for this Project's Specifications; Section titles may have changed.

Delete hidden text after this Section has been edited for the Project.

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. The Contractor’s attention is specifically directed, but not limited, to the following documents for additional requirements:
 1. The current version of the Uniform General Conditions for Construction Contracts, State of Texas, available on the web site of the Texas Facilities Commission.
 2. The University of Houston’s Supplemental General Conditions and Special Conditions for Construction.

1.2 SUMMARY

A. Section Includes:
 1. Concrete masonry units.
 2. Concrete building brick.
 3. Decorative concrete masonry units.
 4. Pre-faced concrete masonry units.
 5. Face brick.
 6. Building (common) brick.
 7. Stone trim units.
 8. Mortar and grout.
 9. Steel reinforcing bars.
 10. Masonry joint reinforcement.
 11. Ties and anchors.
 12. Embedded flashing.
University of Houston Master Specification

15. Cavity-wall insulation.
16. Masonry cleaner

1.3 DEFINITIONS

A. CMU(s): Concrete masonry unit(s).
B. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.

1.4 PERFORMANCE REQUIREMENTS

A. Provide structural unit masonry that develops indicated net-area compressive strengths at 28 days.

1. Determine net-area compressive strength of masonry from average net-area compressive strengths of masonry units and mortar types (unit-strength method) according to Tables 1 and 2 in ACI 530.1/ASCE 6/TMS 602.

1.5 PRECONSTRUCTION TESTING

A. Preconstruction Testing Service: Owner will engage a qualified independent testing agency that meets ASTM C1093 to perform preconstruction testing indicated below. Retesting of materials that fail to comply with specified requirements shall be done at Contractor’s expense.

1. Clay Masonry Unit Test: For each type of unit required, according to ASTM C 67 for compressive strength.
2. Concrete Masonry Unit Test: For each type of unit required, according to ASTM C 140 for compressive strength.
3. Mortar Testing: ASTM C780:
 a. At least two weeks prior to start of masonry Work, prepare batch of mortar with materials to be used for construction and allow testing agency personnel to make one set of nine cubes.
 b. Three cubes each will be tested in compression at three, seven, and 28 days.
 c. Test results will be used for comparison with field test results.
4. Grout Testing: ASTM C1019:
 a. At least two weeks prior to start of masonry Work, prepare batch of grout with materials to be used for construction and allow testing agency personnel to make one set of six cubes.
 b. Three cubes each will be tested in compression at seven and 28 days.

1.6 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

Retain paragraph and associated subparagraphs below if Project is to be LEED v4 certified.
B. LEED Submittals (Projects authorized for LEED certification only):

1. Building Product Disclosure and Optimization - Sourcing of Raw Materials:

 a. Leadership Extraction Practices

 1) Extended Producer Responsibility (EPR): Submit documentation indicating that manufacturers have a take back or recycling program for the product purchased.
 2) Recycled Content: For products having recycled content, indicate percentages by weight of post-consumer and pre-consumer recycled content.

 a) Include statement indicating costs for each product having recycled content.

 b. Sourcing of Raw Materials: For products that are required to comply with requirements for regional materials, indicating location of material manufacturer and point of extraction, harvest, or recovery for each raw material.

 1) Include statement indicating distance to Project, cost for each regional material and the fraction by weight that is considered regional
 2) Product Certificates: For materials manufactured within 100 miles of Project, indicating location of material manufacturer and point of extraction, harvest, or recovery for each raw material. Include distance to Project and cost for each raw material

 2. Laboratory Test Reports: For installation adhesives indicating compliance with requirements for low-emitting materials.

C. Shop Drawings: For the following:

1. Masonry Units: Show sizes, profiles, coursing, and locations of special shapes.
2. Stone Trim Units: Show sizes, profiles, and locations of each stone trim unit required.
3. Reinforcing Steel: Detail bending and placement of unit masonry reinforcing bars. Comply with ACI 315, "Details and Detailing of Concrete Reinforcement."
4. Fabricated Flashing: Detail corner units, end-dam units, and other special applications.

D. Samples for Verification: For each type and color of the following:

1. Exposed Decorative CMUs.
2. Pre-faced CMUs.
3. Face brick, in the form of straps of five or more bricks.
4. Special brick shapes.
5. Stone trim.
6. Pigmented and colored-aggregate mortar. Make Samples using same sand and mortar ingredients to be used on Project.
7. Weep holes and vents.
8. Accessories embedded in masonry.

1.7 INFORMATIONAL SUBMITTALS

A. List of Materials Used in Constructing Mockups: List generic product names together with manufacturers, manufacturers' product names, model numbers, lot numbers, batch numbers,
source of supply, and other information as required to identify materials used. Include mix proportions for mortar and grout and source of aggregates.

1. Submittal is for information only. Neither receipt of list nor approval of mockup constitutes approval of deviations from the Contract Documents unless such deviations are specifically brought to the attention of Architect and approved in writing.

Retain paragraph and associated subparagraphs below if Project is to be LEED v4 certified.

B. LEED Informational Submittals:

1. Building Product Disclosure and Optimization - Sourcing of Raw Materials:
 a. Raw Material Sources and Extraction Reporting: Submit Raw materials supplier corporate Sustainability Reports (CSRs); documenting responsible extraction; including extraction locations, long term ecologically responsible land use, commitment to reducing environmental harms from extraction and manufacturing processes, and a commitment to meeting applicable standards or programs that address responsible sourcing criteria.
 1) Submit manufacturers’ self-declared reports.
 2) Submit third party verified corporate sustainability reports (CSR) using one of the following frameworks:
 a) Global Reporting Initiative (GRI) Sustainability Report
 b) Organization for Economic Co-operation and Development (OECD) Guidelines for Multinational Enterprises
 c) UN Global Compact
 d) ISO 26000
 e) USGBC approved program.

2. Building Product Disclosure and Optimization - Material Ingredients
 a. Material Ingredient Optimization: Submit manufacturer’s Environmental Product Declaration (EPD) or at least one of the following:
 1) GreenScreen V1.2 Benchmark: Third party report prepared by a licensed GreenScreen List Translator, or a full GreenScreen Assessment.
 2) Cradle to Cradle: Manufacturer’s published literature for the product bearing the Cradle to Cradle logo.
 3) International Alternative Compliance Path - REACH Optimization
 4) Declare: Manufacturer’s completed Product Declaration Form
 5) Other programs approved by USGBC

 b. Product Manufacturer Supply Chain Optimization: Submit documentation from manufacturers for products that go beyond material ingredient optimization as follows:
 1) Are sourced from product manufacturers who engage in validated and robust safety, health, hazard, and risk programs which at a minimum
document at least 99 percent (by weight) of the ingredients used to make the building product or building material, and

2) Are sourced from product manufacturers with independent third party verification of their supply chain that at a minimum verifies:

a) Processes are in place to communicate and transparently prioritize chemical ingredients along the supply chain according to available hazard, exposure and use information to identify those that require more detailed evaluation

b) Processes are in place to identify, document, and communicate information on health, safety and environmental characteristics of chemical ingredients

c) Processes are in place to implement measures to manage the health, safety and environmental hazard and risk of chemical ingredients

d) Processes are in place to optimize health, safety and environmental impacts when designing and improving chemical ingredients

e) Processes are in place to communicate, receive and evaluate chemical ingredient safety and stewardship information along the supply chain

f) Safety and stewardship information about the chemical ingredients is publicly available from all points along the supply chain.

C. Qualification Data: For testing agency.

D. Material Certificates: For each type and size of the following:

1. Masonry units.
 a. Include data on material properties.
 b. For brick, include size-variation data verifying that actual range of sizes falls within specified tolerances.
 c. For exposed brick, include test report for efflorescence according to ASTM C 67.
 d. For surface-coated brick, include test report for durability of surface appearance after 50 cycles of freezing and thawing per ASTM C 67.
 e. For masonry units used in structural masonry, include data and calculations establishing average net-area compressive strength of units.

2. Cementitious materials. Include brand, type, and name of manufacturer.
3. Pre-blended, dry mortar mixes. Include description of type and proportions of ingredients.
4. Grout mixes. Include description of type and proportions of ingredients.
5. Reinforcing bars.
7. Anchors, ties, and metal accessories.

E. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.
1. Include test reports for mortar mixes required to comply with property specification. Test according to ASTM C 109/C 109M for compressive strength, ASTM C 1506 for water retention, and ASTM C 91 for air content.

2. Include test reports, according to ASTM C 1019, for grout mixes required to comply with compressive strength requirement.

F. Statement of Compressive Strength of Masonry: For each combination of masonry unit type and mortar type, provide statement of average net-area compressive strength of masonry units, mortar type, and resulting net-area compressive strength of masonry determined according to Tables 1 and 2 in ACI 530.1/ASCE 6/TMS 602.

G. Cold-Weather and Hot-Weather Procedures: Detailed description of methods, materials, and equipment to be used to comply with requirements.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM C 1093 for testing indicated.

B. Source Limitations for Masonry Units: Obtain exposed masonry units of a uniform texture and color, or a uniform blend within the ranges accepted for these characteristics, from single source from single manufacturer for each product required.

C. Source Limitations for Mortar Materials: Obtain mortar ingredients of a uniform quality, including color for exposed masonry, from single manufacturer for each cementitious component and from single source or producer for each aggregate.

D. Masonry Standard: Comply with ACI 530.1/ASCE 6/TMS 602 unless modified by requirements in the Contract Documents.

E. Sample Panels: Build sample panels to verify selections made under sample submittals and to demonstrate aesthetic effects. Comply with requirements in Section 01 4000 "Quality Requirements" for mockups.

1. Build sample panels for typical exterior and interior walls in sizes approximately 48 inches (1200 mm) long by 48 inches (1200 mm) high by full thickness.

2. Where masonry is to match existing, erect panels adjacent and parallel to existing surface.

3. Clean exposed faces of panels with approved masonry cleaner.

4. Protect approved sample panels from the elements with weather-resistant membrane.

5. Approval of sample panels is for color, texture, and blending of masonry units; relationship of mortar and sealant colors to masonry unit colors; tooling of joints; aesthetic qualities of workmanship; and other material and construction qualities specifically approved by Architect in writing.

a. Approval of sample panels does not constitute approval of deviations from the Contract Documents contained in sample panels unless such deviations are specifically approved by Architect in writing.
F. Pre-installation Conference: Conduct conference at Project site to comply with requirements Section 01 3100 "Project Management and Coordination."

1.9 DELIVERY, STORAGE, AND HANDLING

A. Store masonry units on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied. If units become wet, do not install until they are dry.

B. Deliver pre-blended, dry mortar mix in moisture-resistant containers designed for use with dispensing silos. Store pre-blended, dry mortar mix in delivery containers on elevated platforms, under cover, and in a dry location or in covered weatherproof dispensing silos.

C. Store masonry accessories, including metal items, to prevent corrosion and accumulation of dirt and oil.

D. PROJECT CONDITIONS

E. Protection of Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day's work. Cover partially completed masonry when construction is not in progress.

1. Extend cover a minimum of 24 inches (600 mm) down both sides of walls and hold cover securely in place.
2. Where one wythe of multi-wythe masonry walls is completed in advance of other wythes, secure cover a minimum of 24 inches (600 mm) down face next to unconstructed wythe and hold cover in place.

F. Do not apply uniform floor or roof loads for at least 12 hours and concentrated loads for at least three days after building masonry walls or columns.

G. Stain Prevention: Prevent grout, mortar, and soil from staining the face of masonry to be left exposed or painted. Immediately remove grout, mortar, and soil that come in contact with such masonry.

1. Protect base of walls from rain-splashed mud and from mortar splatter by spreading coverings on ground and over wall surface.
2. Protect sills, ledges, and projections from mortar droppings.
3. Protect surfaces of window and door frames, as well as similar products with painted and integral finishes, from mortar droppings.
4. Turn scaffold boards near the wall on edge at the end of each day to prevent rain from splashing mortar and dirt onto completed masonry.

H. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in ACI 530.1/ASCE 6/TMS 602.
1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 degrees F (4 deg C) and higher and will remain so until masonry has dried, but not less than seven days after completing cleaning.

PART 2 - PRODUCTS

2.1 MASONRY UNITS, GENERAL

A. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated in the standard. Do not use units where such defects will be exposed in the completed Work.

B. Fire-Resistance Ratings: Where indicated, provide units that comply with requirements for fire-resistance ratings indicated as determined by testing according to ASTM E 119, by equivalent masonry thickness, or by other means, as acceptable to authorities having jurisdiction.

2.2 CONCRETE MASONRY UNITS

A. Regional Materials: CMUs shall be manufactured within 500 miles (800 km) of Project site from aggregates and cement that have been extracted, harvested, or recovered, as well as manufactured, within 500 miles (800 km) of Project site.

B. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching exposed faces of adjacent units unless otherwise indicated.

1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.

2. Size: Standard units with nominal face dimensions of 16 x 8 inches (400 x 200 mm) and nominal depths as indicated on the drawings for specific locations.

3. Provide CMUs for elevator shafts, mechanical, pump rooms, and service dock locations.

4. Load-Bearing Units: ASTM C 90, normal weight.

 a. Hollow block, as indicated.

 b. Exposed faces: Manufacturer’s standard color and texture where indicated.

 a. Hollow block, as indicated.

 b. Lightweight.

C. Integral Water Repellent: Provide CMU and cast stone units made with integral water repellent for exposed units.

1. Integral Water Repellent: Liquid polymeric, integral water-repellent admixture that does not reduce flexural bond strength. Units made with integral water repellent, when tested according to ASTM E 514 as a wall assembly made with mortar containing integral
water-repellent manufacturer's mortar additive, with test period extended to 24 hours, shall show no visible water or leaks on the back of test specimen.

a. Products: Subject to compliance with requirements, provide one of the following:

1) ACM Chemistries; RainBloc.
2) BASF; Rheopel Plus.
3) Grace Construction Products, W. R. Grace & Co; Dry-Block.

D. CMUs: ASTM C 90.
1. Density Classification: Normal weight unless otherwise indicated.
2. Size (Width): Manufactured to dimensions 3/8 inch less than nominal dimensions.
3. Size (Width): Manufactured to the following dimensions:
 a. 16 x 8 inches (400 x 200 mm) and nominal depths as indicated on the Drawings for specific locations
4. Exposed Faces: Provide color and texture matching the range represented by Architect's sample.

E. Concrete Building Brick: ASTM C 55.
1. Density Classification: Normal weight.

2.3 CONCRETE AND MASONRY LINTELS

A. General: Provide one of the following:

B. Concrete Lintels: ASTM C 1623, matching CMUs in color, texture, and density classification; and with reinforcing bars indicated. Provide lintels with net-area compressive strength not less than CMUs.

C. Concrete Lintels: Precast or formed-in-place concrete lintels complying with requirements in Section 03 3000 "Cast-in-Place Concrete" and with reinforcing bars indicated.

D. Masonry Lintels: Prefabricated or built-in-place masonry lintels made from bond beam CMUs with reinforcing bars placed as indicated and filled with coarse grout. Cure precast lintels before handling and installing. Temporarily support built-in-place lintels until cured.

2.4 BRICK

A. General: Provide shapes indicated and as follows, with exposed surfaces matching finish and color of exposed faces of adjacent units:

1. For ends of sills and caps and for similar applications that would otherwise expose unfinished brick surfaces, provide units without cores or frogs and with exposed surfaces finished.
2. Provide special shapes for applications where stretcher units cannot accommodate special conditions, including those at corners, movement joints, bond beams, sashes, and lintels.

3. Provide special shapes for applications requiring brick of size, form, color, and texture on exposed surfaces that cannot be produced by sawing.

4. Provide special shapes for applications where shapes produced by sawing would result in sawed surfaces being exposed to view.

5. Coatings: Units shall not have coatings or clear water repellents without written approval of Architect/Engineer.

B. Face Brick: Facing brick complying with ASTM C 216,

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Acme Brick Co.
 b. Endicott Clay Products Co.
 c. Meridian Brick
 d. Substitutions: See Section 01 2500 “Substitution Procedures.”

2. Grade: SW.

3. Type: FBS or FBX.

4. Unit Compressive Strength: Indicated minimum average compressive strength based on net area.

5. Initial Rate of Absorption: Less than 25g/30 sq. in. (30 g/194 sq. cm) per minute when tested per ASTM C 67.

6. Efflorescence: Provide brick that has been tested according to ASTM C 67 and is rated "not effloresced."

7. Size (Actual Dimensions): As selected by Architect. Application: Use where brick is exposed unless otherwise indicated.

8. Where shown to "match existing," provide face brick matching color range, texture, and size of existing adjacent brickwork.

9. Color and Texture: Buff color, velour texture shall be used as the base color for new buildings on campus.

C. Building (Common) Brick: ASTM C 62, Grade SW.

1. Size: Match size of face brick.

2. Building Brick to match Face Brick strength, durability and other requirements.

3. Application: Use where brick is indicated for concealed locations. Face brick complying with requirements for grade, compressive strength, and size indicated for building brick may be substituted for building brick.

2.5 STONE TRIM UNITS

A. Limestone: ASTM C 568
a. Variety and Sources: Grade and Color: Cordova Cream Texas Limestone, according to grade and color classification established by ILI.

B. Provide stone units accurately shaped, with exposed faces dressed true, and with beds and joints at right angles to faces.

1. For limestone, comply with recommendations in ILI's "Indiana Limestone Handbook."

2.6 MORTAR AND GROUT MATERIALS

A. Regional Materials: Aggregate for mortar and grout, cement, and lime shall be extracted, harvested, or recovered, as well as manufactured, within 500 miles (800 km) of Project site.

B. Do not use masonry cement or mortar cements.

C. Portland Cement: ASTM C 150, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.

D. Hydrated Lime: ASTM C 207, Type S.

E. Portland Cement-Lime Mix: Packaged blend of Portland cement and hydrated lime containing no other ingredients.

F. Mortar Pigments: Pure, concentrated mineral pigments specifically intended for mixing into mortar and complying with ASTM C 979. Use only pigments with a record of satisfactory performance in masonry mortar.

1. Pigments shall not exceed ten percent of Portland cement by weight; pigments containing carbon black shall not exceed two percent of Portland cement by weight.

2. Products: Subject to compliance with requirements, provide one of the following:
 a. Davis Colors; True Tone Mortar Colors.
 b. Lanxess Corporation; Bayferrox Iron Oxide Pigments.
 c. Solomon Colors, Inc.; SGS Mortar Colors.
 d. Substitutions: See Section 01 2500 “Substitution Procedures.”

G. Aggregate for Mortar: ASTM C 144.

1. For mortar that is exposed to view, use washed aggregate consisting of natural sand or crushed stone.

2. For joints less than 1/4 inch (6 mm) thick, use aggregate graded with 100 percent passing the No. 16 (1.18-mm) sieve.

3. White-Mortar Aggregates: Natural white sand or crushed white stone.

4. Colored-Mortar Aggregates: Natural sand or crushed stone of color necessary to produce required mortar color.

I. Water: Potable and clean.

2.7 REINFORCEMENT

A. Uncoated Steel Reinforcing Bars: ASTM A 615/A 615M or ASTM A 996/A 996M, Grade 60 (Grade 280), deformed billet bars; galvanized.

B. Masonry Joint Reinforcement, General: ASTM A 951/A 951M.
 1. Interior Walls: Mill-galvanized, carbon steel.
 2. Exterior Walls: [Hot-dip galvanized, carbon steel.] [Stainless steel.]
 3. Wire Size for Side Rods: 0.148-inch (3.77-mm) diameter.
 4. Wire Size for Cross Rods: 0.148-inch (3.77-mm) diameter.
 5. Spacing of Cross Rods, Tabs, and Cross Ties: Not more than 16 inches (407 mm) o.c.
 6. Provide in lengths of not less than 10 feet (3 m), with prefabricated corner and tee units.

C. Masonry Joint Reinforcement for Single-Wythe Masonry: Either ladder or truss type with single pair of side rods.

D. Masonry Joint Reinforcement for Multi-Wythe Masonry:
 1. Ladder type with 1 side rod at each face shell of hollow masonry units more than 4 inches (100 mm) wide, plus 1 side rod at each wythe of masonry 4 inches (100 mm) wide or less.
 2. Tab type, either ladder or truss design, with 1 side rod at each face shell of backing wythe and with rectangular tabs sized to extend at least halfway through facing wythe but with at least 5/8-inch (16-mm) cover on outside face.
 3. Adjustable (two-piece) type, either ladder or truss design, with one side rod at each face shell of backing wythe and with separate adjustable ties with pintle-and-eye connections having a maximum adjustment of 1-1/4 inches (32 mm). Size ties to extend at least halfway through facing wythe but with at least 5/8-inch (16-mm) cover on outside face. Ties have hooks or clips to engage a continuous horizontal wire in the facing wythe.

E. Masonry Joint Reinforcement for Veneers Anchored with Seismic Masonry-Veneer Anchors: Single 0.187-inch-(4.76-mm-) diameter, hot-dip galvanized, carbon steel continuous wire.

2.8 TIES AND ANCHORS

A. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated.
 1. Stainless-Steel Sheet: ASTM A 666, Type 304.
 2. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
 3. Stainless-Steel Bars: ASTM A 276 or ASTM a 666, Type 304.
B. Corrugated Metal Ties: Metal strips not less than 7/8 inch (22 mm) wide with corrugations having a wavelength of 7.6 to 12.7 mm and an amplitude of 0.06 to 0.10 inch (1.5 to 2.5 mm) made from 0.030-inch- (0.76-mm-) thick, steel sheet, galvanized after fabrication.

C. Wire Ties, General: Unless otherwise indicated, size wire ties to extend at least halfway through veneer but with at least 5/8-inch (16-mm) cover on outside face. Outer ends of wires are bent 90 degrees and extend 2 inches (50 mm) parallel to face of veneer. Tie wire diameter: 3/16 inch wide.

D. Individual Wire Ties: Rectangular units with closed ends and not less than 4 inches (100 mm) wide.
 1. Z-shaped ties with ends bent 90 degrees to provide hooks not less than 2 inches (50 mm) long may be used for masonry constructed from solid units.
 2. Where wythes do not align, use adjustable ties with pintle-and-eye connections having a maximum adjustment of 1-1/4 inches (32 mm).
 3. Wire: Fabricate from 3/16-inch- (4.76-mm-) diameter, [hot-dip galvanized steel] [stainless steel] wire. Mill-galvanized wire ties may be used in interior walls unless wall is located in an area that exceeds 75 percent humidity.

E. Adjustable Anchors for Connecting to Structural Steel Framing: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.
 1. Anchor Section for Welding to Steel Frame: Crimped 1/4-inch- (6.35-mm-) diameter, [hot-dip galvanized steel] [stainless steel] wire. Mill-galvanized wire may be used at interior walls unless otherwise indicated.
 2. Tie Section: Triangular-shaped wire tie, sized to extend within 1 inch (25 mm) of masonry face, made from 0.187-inch- (4.76-mm-) diameter, hot-dip galvanized steel wire. Mill-galvanized wire may be used at interior walls unless wall is located in an area that exceeds 75 percent humidity.

F. Adjustable Anchors for Connecting to Concrete: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.
 1. Connector Section: Dovetail tabs for inserting into dovetail slots in concrete and attached to tie section; formed from 0.060-inch- (1.52-mm-) thick, steel sheet, galvanized after fabrication.
 a. 0.064-inch- (1.63-mm-) thick, galvanized sheet may be used at interior walls unless wall is located in an area that exceeds 75 percent humidity.
 2. Tie Section: Triangular-shaped wire tie, sized to extend within 1 inch (25 mm) of masonry face, made from 0.187-inch- (4.76-mm-) diameter, [hot-dip galvanized steel] [stainless steel] wire. Mill-galvanized wire may be used at interior walls unless wall is located in an area that exceeds 75 percent humidity.
G. Partition Top anchors: 0.105-inch- (2.66-mm-) thick metal plate with 3/8-inch- (9.5-mm-) diameter metal rod 6 inches (152 mm) long welded to plate and with closed-end plastic tube fitted over rod that allows rod to move in and out of tube. Fabricate from [steel, hot-dip galvanized after fabrication][stainless steel].

H. Rigid Anchors: Fabricate from steel bars 1-1/2 inches (38 mm) wide by 1/4 inch (6.35 mm) thick by 24 inches (610 mm) long, with ends turned up 2 inches (51 mm) or with cross pins unless otherwise indicated.

1. Corrosion Protection: [Hot-dip galvanized] [Stainless] steel to comply with ASTM A 153/A 153M Epoxy coating 0.020 inch (0.51 mm) thick.

I. Adjustable Masonry-Veneer Anchors:

1. General: Provide anchors that allow vertical adjustment but resist tension and compression forces perpendicular to plane of wall, for attachment over sheathing to wood or metal studs, and as follows:

 a. Structural Performance Characteristics: Capable of withstanding a 100-lbf (445-N) load in both tension and compression without deforming or developing play in excess of 0.05 inch (1.3 mm).

2. Contractor's Option: Unless otherwise indicated, provide any of the following types of anchors:

3. Screw-Attached, Masonry-Veneer Anchors: Units consisting of a wire tie and a metal anchor section.

 a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 1) Dayton Superior Corporation, Hohmann & Barnard ; D/A 210 with D/A 700-708.
 2) Heckmann Building Products Inc.; 315-D with 316.
 3) Hohmann & Barnard, Inc.; DW-10 DW-10HS.
 4) Wire-Bond; 1004, Type III.
 5) Substitutions: See Section 01 2500 “Substitution Procedures.”

 b. Anchor Section: Rib-stiffened, sheet metal plate with screw holes top and bottom, 2-3/4 inches (70 mm) wide by 3 inches (76 mm) high; with projecting tabs having slotted holes for inserting vertical legs of wire tie specially formed to fit anchor section.

 c. Anchor Section: Sheet metal plate, 1-1/4 inches (32 mm) wide by 6 inches (152 mm) long, with screw holes top and bottom and with raised rib-stiffened strap, 5/8 inch (16 mm) wide by 3-5/8 inches (92 mm) long, stamped into center to provide a slot between strap and plate for inserting wire tie.

 d. Anchor Section: Gasketed sheet metal plate, 1-1/4 inches (32 mm) wide by 6 inches (152 mm) long, with screw holes top and bottom; top and bottom ends bent to
form pronged legs of length to match thickness of insulation or sheathing; and raised rib-stiffened strap, 5/8 inch (16 mm) wide by 6 inches (152 mm) long, stamped into center to provide a slot between strap and plate for inserting wire tie. Provide anchor manufacturer’s standard, self-adhering, modified bituminous gaskets manufactured to fit behind anchor plate and extend beyond pronged legs.
e. Fabricate sheet metal anchor sections and other sheet metal parts from 0.075-inch-(1.90-mm-) thick, steel sheet, galvanized after fabrication.
f. Wire Ties: Triangular-, rectangular-, or T-shaped wire ties fabricated from 0.187-inch (4.76-mm-) diameter, [hot-dip galvanized steel] [stainless steel] wire.

4. Slip-in, Masonry-Veneer Anchors: Units consisting of a wire tie section and an anchor section designed to interlock with metal studs and be slipped into place as sheathing is installed.

 a. Products: Subject to compliance with requirements, provide the following:
 1) Hohmann & Barnard, Inc.
 2) Substitutions: See Section 01 2500 “Substitution Procedures.”

 b. Wire-Type Anchor: Bent wire anchor section with an eye to receive the wire tie. Wire tie has a vertical leg that slips into the eye of anchor section and allows vertical adjustment. Both sections are made from 3/16-inch (4.76-mm), [hot-dip galvanized steel] [stainless steel] wire.

c. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 1) Dayton Superior Corporation, Hohmann & Barnard; D/A 213S.
 2) Hohmann & Barnard, Inc.; DW-10-X-Seismiclip.
 3) Wire-Bond; RJ-711 with Wire-Bond clip.
 4) Substitutions: See Section 01 2500 “Substitution Procedures.”

d. Anchor Section: Rib-stiffened, sheet metal plate with screw holes top and bottom, 2-3/4 inches (70 mm) wide by 3 inches (76 mm) high; with projecting tabs having slotted holes for inserting vertical leg of connector section.

e. Connector Section: Rib-stiffened, sheet metal bent plate with down-turned leg designed to fit in anchor section slot and with integral tabs designed to engage continuous wire. Size connector to extend at least halfway through veneer but with at least 5/8-inch (16-mm) cover on outside face.

f. Anchor Section: Rib-stiffened, sheet metal plate with screw holes top and bottom, 2-3/4 inches (70 mm) wide by 3 inches (76 mm) high; with projecting tabs having slotted holes for inserting vertical legs of wire tie specially formed to fit anchor section. Size wire tie to extend at least 1-1/2 inches (38 mm) into veneer but with at least 5/8-inch (16-mm) cover on outside face.

g. Connector Section: Sheet metal clip welded to wire tie with integral tabs designed to engage continuous wire.
h. Anchor Section: Gasketed sheet metal plate, 1-1/4 inches (32 mm) wide by 6 inches (152 mm) long, with screw holes top and bottom; top and bottom ends bent to form pronged legs to bridge insulation or sheathing and contact studs; and raised rib-stiffened strap, 5/8 inch (16 mm) wide by 6 inches (152 mm) long, stamped into center to provide a slot between strap and plate for inserting wire tie. Provide anchor manufacturer's standard, self-adhering, modified bituminous gaskets manufactured to fit behind anchor plate and extend beyond pronged legs.

i. Connector Section: Triangular wire tie and rigid PVC extrusion with snap-in grooves for inserting continuous wire. Size wire tie to extend at least halfway through veneer but with at least 5/8-inch (16-mm) cover on outside face.

j. Fabricate sheet metal anchor sections and other sheet metal parts from 0.075-inch- (1.90-mm-) thick, steel sheet, galvanized after fabrication 1.05-inch- (2.66-mm-) thick, steel sheet, galvanized after fabrication 0.078-inch- (1.98-mm-) thick, stainless-steel sheet 0.109-inch- (2.78-mm-) thick, stainless-steel sheet.

k. Fabricate wire connector sections from [0.187-inch- (4.76-mm-)] [0.25-inch- (6.35-mm-)] diameter, [hot-dip galvanized steel] [stainless steel] wire.

5. Polymer-Coated, Steel Drill Screws for Steel Studs: ASTM C 954 except manufactured with hex washer head and neoprene or EPDM washer, No. 10 (4.83-mm) diameter by length required to penetrate steel stud flange with not less than three exposed threads, and with organic polymer coating with salt-spray resistance to red rust of more than 800 hours per ASTM B 117.

a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

1) Dayton Superior Corporation, Hohmann & Barnard; Stainless Steel SX Fastener.
2) ITW Buildex; Scots long life Teks.
3) Substitutions: See Section 01 2500 “Substitution Procedures.”

2.9 MISCELLANEOUS ANCHORS

A. Unit Type Inserts in Concrete: Cast-iron or malleable-iron wedge-type inserts.

B. Dovetail Slots in Concrete: Furnish dovetail slots with filler strips, of slot size indicated, fabricated from 0.034-inch (0.86-mm), [galvanized steel] [stainless steel] sheet.

C. Anchor Bolts: Headed or L-shaped steel bolts complying with ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6); with ASTM A 563 (ASTM A 563M) hex nuts and, where indicated, flat washers; hot-dip galvanized to comply with ASTM A 153/A 153M, Class C; of dimensions indicated.

1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941 (ASTM F 1941M), Class Fe/Zn 5 unless otherwise indicated.

2.10 EMBEDDED FLASHING MATERIALS

A. Metal Flashing: Provide 26 gauge stainless steel metal flashing complying with SMACNA’s "Architectural Sheet Metal Manual,” Section 07 6200 "Sheet Metal Flashing and Trim” and as follows:

a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

1) Cheney Flashing Company; Cheney Flashing (Dovetail) or Cheney 3-Way Flashing (Sawtooth).
3) Sandell Manufacturing Co., Inc.; Mechanically Keyed Flashing.
4) Substitutions: See Section 01 2500 “Substitution Procedures.”

2. Fabricate through-wall flashing with drip edge where indicated. Fabricate by extending flashing 1/2 inch (13 mm) out from wall, with outer edge bent down 30 degrees and hemmed.

3. Fabricate through-wall flashing with sealant stop where indicated. Fabricate by bending metal back on itself 3/4 inch (19 mm) at exterior face of wall and down into joint 1/4 inch (6 mm) to form a stop for retaining sealant backer rod.

4. Metal Drip Edge: Fabricate from stainless steel. Extend at least 3 inches (76 mm) into wall and 1/2 inch (13 mm) out from wall, with outer edge bent down 30 degrees and hemmed.

5. Metal Sealant Stop: Fabricate from stainless steel. Extend at least 3 inches (76 mm) into wall and out to exterior face of wall. At exterior face of wall, bend metal back on itself for 3/4 inch (19 mm) and down into joint 1/4 inch (6 mm) to form a stop for retaining sealant backer rod.

7. Solder metal items at corner or provide lapped flashing.

8. Rubberized-Asphalt Flashing: Composite flashing product consisting of a pliable, adhesive rubberized-asphalt compound, bonded to a high-density, cross-laminated polyethylene film to produce an overall thickness of not less than [40 mils] [60 mils].

a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

1) Advanced Building Products Inc.; Peel-N-Seal.
2) Carlisle Coatings & Waterproofing; CCW-705-TWF Thru-Wall Flashing.
3) Hohmann & Barnard; Textroflash Flashing.
4) Fiberweb, Clark Hammerbeam Corp.; Aquaflash 500.
University of Houston Master Specification

AE Project #: <Insert Project Number> Unit Masonry 04 2000 - 18

AE Project #: <Insert Project Number> UH Master: 08.2020

6) Heckmann Building Products Inc.; No. 82 Rubberized-Asphalt Thru-Wall Flashing.
7) Hohmann & Barnard, Inc.; Textroflash.
8) W. R. Meadows, Inc.; Air-Shield Thru-Wall Flashing.
9) Polyguard Products, Inc.; Polyguard 300 Polyguard 400.
10) Sandell Manufacturing Co., Inc.; Sando-Seal.
12) Substitutions: See Section 01 2500 “Substitution Procedures.”

b. Accessories: Provide preformed corners, end dams, other special shapes, and seaming materials produced by flashing manufacturer.

B. Application: Unless otherwise indicated, use the following:

1. Where flashing is indicated to receive counterflashing, use metal flashing.
2. Where flashing is indicated to be turned down at or beyond the wall face, use metal flashing.
3. Where flashing is partly exposed and is indicated to terminate at the wall face, use metal flashing with a drip edge or flexible flashing with a metal drip edge.
4. Where flashing is fully concealed, use metal flashing or flexible flashing.

C. Single-Wythe CMU Flashing System: System of CMU cell flashing pans and interlocking CMU web covers made from high-density polyethylene incorporating chemical stabilizers that prevent UV degradation. Cell flashing pans have integral weep spouts that are designed to be built into mortar bed joints and weep collected moisture to the exterior of CMU walls and that extend into the cell to prevent clogging with mortar.

1. Products: Subject to compliance with requirements, provide the following:
 a. Mortar Net USA, Ltd.; Blok-Flash.
 b. Substitutions: See Section 01 2500 “Substitution Procedures.”

D. Solder and Sealants for Sheet Metal Flashings: As specified in Section 07 6200 "Sheet Metal Flashing and Trim."

1. Solder for Stainless Steel: ASTM B 32, Grade Sn60, with acid flux of type recommended by stainless-steel sheet manufacturer.
2. Elastomeric Sealant: ASTM C 920, chemically curing silicone sealant; of type, grade, class, and use classifications required to seal joints in sheet metal flashing and trim and remain watertight.

E. Adhesives, Primers, and Seam Tapes for Flashings: Flashing manufacturer’s standard products or products recommended by flashing manufacturer for bonding flashing sheets to each other and to substrates.
2.11 MISCELLANEOUS MASONRY ACCESSORIES

A. Compressible Filler: Pre-molded filler strips complying with ASTM D 1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from neoprene.

B. Preformed Control-Joint Gaskets: Made from styrene-butadiene-rubber compound, complying with ASTM D 2000, Designation M2AA-805 and designed to fit standard sash block and to maintain lateral stability in masonry wall; size and configuration as indicated.

C. Bond-Breaker Strips: Asphalt-saturated, organic roofing felt complying with ASTM D 226, Type I (No. 15 asphalt felt).

D. Weep/Vent Products: Use one of the following unless otherwise indicated:
 1. Round Plastic Weep/Vent Tubing: Medium-density polyethylene, 3/8-inch (9-mm) OD by 4 inches (100 mm) long.
 2. Rectangular Plastic Weep/Vent Tubing: Clear butyrate, 3/8 by 1-1/2 by 3-1/2 inches (9 by 38 by 89 mm) long.
 3. Cellular Plastic Weep/Vent: One-piece, flexible extrusion made from UV-resistant polypropylene copolymer, full height and width of head joint and depth 1/8 inch (3 mm) less than depth of outer wythe, in color selected from manufacturer's standard.

 a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 1) Advanced Building Products Inc.; Mortar Maze weep vent.
 2) Blok-Lok Limited; Cell-Vent.
 3) Dayton Superior Corporation, Hohmann & Barnard; Cell Vents.
 4) Heckmann Building Products Inc.; No. 85 Cell Vent.
 5) Hohmann & Barnard, Inc.; Quadro-Vent.
 6) Wire-Bond; Cell Vent.
 7) Substitutions: Section 01 2500 “Substitution Procedures.”

 4. Vinyl Weep Hole/Vent: One-piece, offset, T-shaped units made from flexible PVC, designed to fit into a head joint and consisting of a louvered vertical leg, flexible wings to seal against ends of masonry units, and a top flap to keep mortar out of the head joint; in color selected by Architect.

 a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 1) Hohmann & Barnard, Inc.; #343 Louvered Weep Hole.
 2) Williams Products, Inc.; Williams-Goodco Brick Vent.
 3) Wire-Bond; Louvered Weepholes.
E. Cavity Drainage Material: Free-draining mesh, made from polymer strands that will not degrade within the wall cavity. Flat top material not acceptable. Use in locations where cavity drainage and composite flashing system is not used.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Advanced Building Products Inc.; Mortar Break Mortar Break II.
 b. Archovations, Inc.; CavClear Masonry Mat.
 c. Dayton Superior Corporation, Hohmann & Barnard; Polytite MortarStop.
 d. Mortar Net USA, Ltd.; Mortar Net.
 e. Substitutions: Section 01 2500 “Substitution Procedures.”

2. Provide one of the following configurations:
 a. Strips, full-depth of cavity and 10 inches (250 mm) high, with dovetail shaped notches 7 inches (175 mm) deep that prevent clogging with mortar droppings.
 b. Strips, not less than 3/4 inch (19 mm) thick and 10 inches (250 mm) high, with dimpled surface designed to catch mortar droppings and prevent weep holes from clogging with mortar.
 c. Sheets or strips full depth of cavity and installed to full height of cavity.
 d. Sheets or strips not less than 3/4 inch (19 mm) thick and installed to full height of cavity with additional strips 4 inches (100 mm) high at weep holes and thick enough to fill entire depth of cavity and prevent weep holes from clogging with mortar.

F. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells and hold reinforcing bars in center of cells. Units are formed from 0.148-inch (3.77-mm) steel wire, hot-dip galvanized after fabrication. Provide units designed for number of bars indicated.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Dayton Superior Corporation, Hohmann & Barnard; D/A 810, D/A 812 or D/A 817.
 c. Hohmann & Barnard, Inc.; #RB or #RB-Twin Rebar Positioner.
 d. Wire-Bond; O-Ring or Double O-Ring Rebar Positioner.
 e. Substitutions: See Section 01 2500 “Substitution Procedures.”

2.12 MASONRY-CELL INSULATION

A. Loose-Granular Fill Insulation: Perlite complying with ASTM C 549, Type II (surface treated for water repellency and limited moisture absorption) or Type IV (surface treated for water repellency and to limit dust generation).
B. Molded-Polystyrene Insulation Units: Rigid, cellular thermal insulation formed by the expansion of polystyrene-resin beads or granules in a closed mold to comply with ASTM C 578, Type I. Provide specially shaped units designed for installing in cores of masonry units.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Concrete Block Insulating Systems; Korfil.
 b. Shelter Enterprises Inc.; Omni Core.
 c. Substitutions: See Section 01 2500 “Substitution Procedures.”

2.13 MASONRY CLEANERS

A. Proprietary Acidic Cleaner: Manufacturer's standard-strength cleaner designed for removing mortar/grout stains, efflorescence, and other new construction stains from new masonry without discoloring or damaging masonry surfaces. Use product expressly approved for intended use by cleaner manufacturer and manufacturer of masonry units being cleaned.

B. Cleaning Solutions:
 1. Do not use products containing hydrochloric (muriatic) acid, hydrofluoric acid, or ammonium bi-fluoride.
 2. For removing localized ferrous staining: Use oxalic acid or phosphoric acid; mix one part acid with ten parts water by volume. Higher concentrations may be used for local application.
 3. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Diedrich Technologies, Inc.
 b. EaCo Chem, Inc.
 c. ProSoCo, Inc.: Use Enviro Klean Safety Klean by Prosoco, Inc.; mix one part cleaner with three parts water by volume; or approved equal.
 d. Substitutions: See Section 01 2500 “Substitution Procedures.”

2.14 MORTAR AND GROUT MIXES

A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures, unless otherwise indicated.

1. Do not use calcium chloride in mortar or grout.
2. Use Portland cement-lime masonry cement or mortar cement mortar unless otherwise indicated.
3. For exterior masonry, use Portland cement-lime masonry cement or mortar cement mortar.
4. For reinforced masonry, use Portland cement-lime masonry cement or mortar cement mortar.
5. Add cold-weather admixture (if used) at same rate for all mortar that will be exposed to view, regardless of weather conditions, to ensure that mortar color is consistent.

B. Pre-blended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a pre-blended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.

C. Mortar for Unit Masonry: Comply with ASTM C 270, Property Specification. Provide the following types of mortar for applications stated unless another type is indicated or needed to provide required compressive strength of masonry.

1. For masonry below grade or in contact with earth, use Type S.
2. For reinforced masonry, use Type N.
3. For exterior, above-grade, load-bearing and non-load-bearing walls and parapet walls; for interior load-bearing walls; for interior non-load-bearing partitions; and for other applications where another type is not indicated, use Type N.
4. For interior non-load-bearing partitions, Type O may be used instead of Type N.

D. Pigmented Mortar: Use colored cement product or select and proportion pigments with other ingredients to produce color required. Do not add pigments to colored cement products.

1. Pigments shall not exceed 10 percent of Portland cement by weight. If pigments containing carbon black are used, carbon black must be limited to 2 percent of Portland cement by weight.
2. Mix to match Architect's sample.
3. Application: Use pigmented mortar for exposed mortar joints with the following units:
 a. Decorative CMUs.
 b. Pre-faced CMUs.
 c. Face brick.
 d. Stone trim units.

E. Colored-Aggregate Mortar: Produce required mortar color by using colored aggregates and natural color or white cement as necessary to produce required mortar color.

1. Mix to match Architect's sample.
2. Application: Use colored aggregate mortar for exposed mortar joints with the following units:
 a. Decorative CMUs.
 b. Pre-faced CMUs.
 c. Face brick.
 d. Stone trim units.

F. Grout for Unit Masonry: Comply with ASTM C 476.
1. Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with Table 1.15.1 in ACI 530.1/ASCE 6/TMS 602 for dimensions of grout spaces and pour height.

2. Proportion grout in accordance with ASTM C 476, Table 1.

3. Provide grout with a slump of 8 to 11 inches (203 to 279 mm) as measured according to ASTM C 143/C 143M.

G. Epoxy Pointing Mortar: Mix epoxy pointing mortar to comply with mortar manufacturer’s written instructions.

1. Application: Use epoxy pointing mortar for exposed mortar joints with the following units:
 a. Pre-faced CMUs.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

 1. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of work.
 2. Verify that foundations are within tolerances specified.
 3. Verify that reinforcing dowels are properly placed.

B. Before installation, examine rough-in and built-in construction for piping systems to verify actual locations of piping connections.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

A. Thickness: Build cavity and composite walls and other masonry construction to full thickness shown. Build single-wythe walls to actual widths of masonry units, using units of widths indicated.

B. Build chases and recesses to accommodate items specified in this and other Sections.

C. Leave openings for equipment to be installed before completing masonry. After installing equipment, complete masonry to match the construction immediately adjacent to opening.

D. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.
E. Select and arrange units for exposed unit masonry to produce a uniform blend of colors and textures.

 1. Mix units from several pallets or cubes as they are placed.

F. Matching Existing Masonry: Match coursing, bonding, color, and texture of existing masonry.

G. Wetting of Brick: Wet brick before laying if initial rate of absorption exceeds 30 g/30 sq. in. (30 g/194 sq. cm) per minute when tested per ASTM C 67. Allow units to absorb water so they are saturated-surface-dry (SSD) prior to laying.

3.3 TOLERANCES

A. Dimensions and Locations of Elements:

 1. For dimensions in cross section or elevation do not vary by more than plus 1/2 inch (12 mm) or minus 1/4 inch (6 mm).
 2. For location of elements in plan do not vary from that indicated by more than plus or minus 1/2 inch (12 mm).
 3. For location of elements in elevation do not vary from that indicated by more than plus or minus 1/4 inch (6 mm) in a story height or 1/2 inch (12 mm) total.

B. Lines and Levels:

 1. For bed joints and top surfaces of bearing walls do not vary from level by more than 1/4 inch in 10 feet (6 mm in 3 m), or 1/2 inch (12 mm) maximum.
 2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2 inch (12 mm) maximum.
 3. For vertical lines and surfaces do not vary from plumb by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2 inch (12 mm) maximum.
 4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2 inch (12 mm) maximum.
 5. For lines and surfaces do not vary from straight by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2 inch (12 mm) maximum.
 6. For vertical alignment of exposed head joints, do not vary from plumb by more than 1/4 inch in 10 feet (6 mm in 3 m), or 1/2 inch (12 mm) maximum.
 7. For faces of adjacent exposed masonry units, do not vary from flush alignment by more than 1/16 inch (1.5 mm) except due to warpage of masonry units within tolerances specified for warpage of units.

C. Joints:

 1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm), with a maximum thickness limited to 1/2 inch (12 mm).
2. For exposed bed joints, do not vary from bed-joint thickness of adjacent courses by more than 1/8 inch (3 mm).
3. For head and collar joints, do not vary from thickness indicated by more than plus 3/8 inch (9 mm) or minus 1/4 inch (6 mm).
4. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm). Do not vary from adjacent bed-joint and head-joint thicknesses by more than 1/8 inch (3 mm).
5. For exposed bed joints and head joints of stacked bond, do not vary from a straight line by more than 1/16 inch (1.5 mm) from one masonry unit to the next.

3.4 LAYING MASONRY WALLS

A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.

B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in running bond; do not use units with less than nominal 4-inch (100-mm) horizontal face dimensions at corners or jambs.

C. Lay concealed masonry with all units in a wythe in running bond or bonded by lapping not less than 2 inches (50 mm). Bond and interlock each course of each wythe at corners. Do not use units with less than nominal 4-inch (100-mm) horizontal face dimensions at corners or jambs.

D. Stopping and Resuming Work: Stop work by racking back units in each course from those in course below; do not tooth. When resuming work, clean masonry surfaces that are to receive mortar, remove loose masonry units and mortar, and wet brick if required before laying fresh masonry.

E. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.

F. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.

G. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below and rod mortar or grout into core.

H. Fill cores in hollow CMUs with grout 24 inches (600 mm) under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.

I. Build non-load-bearing interior partitions full height of story to underside of solid floor or roof structure above unless otherwise indicated.

1. Install compressible filler in joint between top of partition and underside of structure above.
2. Fasten partition top anchors to structure above and build into top of partition. Grout cells of CMUs solidly around plastic tubes of anchors and push tubes down into grout to provide 1/2-inch (13-mm) clearance between end of anchor rod and end of tube. Space anchors 48 inches (1200 mm) o.c. unless otherwise indicated.

3. Wedge non-load-bearing partitions against structure above with small pieces of tile, slate, or metal. Fill joint with mortar after dead-load deflection of structure above approaches final position.

4. At fire-rated partitions, treat joint between top of partition and underside of structure above to comply with Section 07 8100 “Applied Fireproofing.”

3.5 MORTAR BEDDING AND JOINTING

A. Lay hollow CMUs as follows:

1. With face shells fully bedded in mortar and with head joints of depth equal to bed joints.
2. With webs fully bedded in mortar in all courses of piers, columns, and pilasters.
3. With webs fully bedded in mortar in grouted masonry, including starting course on footings.
4. With entire units, including areas under cells, fully bedded in mortar at starting course on footings where cells are not grouted.

B. Lay solid masonry units with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.

C. Set stone trim units in full bed of mortar with full vertical joints. Fill dowel, anchor, and similar holes.

1. Clean soiled surfaces with fiber brush and soap powder and rinse thoroughly with clear water.
2. Allow cleaned surfaces to dry before setting.
3. Wet joint surfaces thoroughly before applying mortar.

D. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.

1. For glazed masonry units, use a nonmetallic jointer 3/4 inch (19 mm) or more in width.

E. Cut joints flush for masonry walls to receive plaster or other direct-applied finishes (other than paint) unless otherwise indicated.

3.6 COMPOSITE MASONRY

A. Bond wythes of composite masonry together using one of the following methods:

1. Individual Metal Ties: Provide ties as shown installed in horizontal joints, but not less than one metal tie for [4.5 sq. ft. (0.42 sq. m)] [2.67 sq. ft. (0.25 sq. m)] [1.77 sq. ft.]}
University of Houston Master Specification

AE Project #: <Insert Project Number>
Unit Masonry 04 2000 - 27

(0.16 sq. m)] of wall area spaced not to exceed [36 inches (914 mm)] [24 inches (610 mm)] [16 inches (406 mm)] o.c. horizontally and 16 inches (406 mm) o.c. vertically. Stagger ties in alternate courses. Provide additional ties within 12 inches (305 mm) of openings and space not more than 36 inches (914 mm) apart around perimeter of openings. At intersecting and abutting walls, provide ties at no more than 24 inches (610 mm) o.c. vertically.

a. Where bed joints of wythes do not align, use adjustable (two-piece) type ties.

a. Where bed joints of both wythes align, use ladder-type reinforcement extending across both wythes.

b. Where bed joints of wythes do not align, use adjustable (two-piece) type reinforcement with continuous horizontal wire in facing wythe attached to ties.

3. Header Bonding: Provide masonry unit headers extending not less than 3 inches (76 mm) into each wythe. Space headers not over 8 inches (203 mm) clear horizontally and 16 inches (406 mm) clear vertically.

B. Bond wythes of composite masonry together using bonding system indicated on Drawings.

C. Collar Joints: Solidly fill collar joints by parging face of first wythe that is laid and shoving units of other wythe into place.

D. Corners: Provide interlocking masonry unit bond in each wythe and course at corners unless otherwise indicated.

1. Provide continuity with masonry joint reinforcement at corners by using prefabricated L-shaped units as well as masonry bonding.

E. Intersecting and Abutting Walls: Unless vertical expansion or control joints are shown at juncture, bond walls together as follows:

1. Provide individual metal ties not more than 8 inches (203 mm) o.c.

2. Provide continuity with masonry joint reinforcement by using prefabricated T-shaped units.

3. Provide rigid metal anchors not more than 24 inches (610 mm) o.c. If used with hollow masonry units, embed ends in mortar-filled cores.

3.7 CAVITY WALLS

A. Bond wythes of cavity walls together using one of the following methods:

1. Individual Metal Ties: Provide ties as shown installed in horizontal joints, but not less than one metal tie for 4.5 sq. ft. (0.42 sq. m) of wall area spaced not to exceed 36 inches (914 mm) o.c. horizontally and 16 inches (406 mm) o.c. vertically. Stagger ties in
alternate courses. Provide additional ties within 12 inches (305 mm) of openings and space not more than 36 inches (915 mm) apart around perimeter of openings. At intersecting and abutting walls, provide ties at no more than 24 inches (610 mm) o.c. vertically.

a. Where bed joints of wythes do not align, use adjustable (two-piece) type ties.
b. Where one wythe is of clay masonry and the other of concrete masonry, use adjustable (two-piece) type ties to allow for differential movement regardless of whether bed joints align.

a. Where bed joints of both wythes align, use ladder-type reinforcement extending across both wythes.
b. Where bed joints of wythes do not align, use adjustable (two-piece) type reinforcement with continuous horizontal wire in facing wythe attached to ties.
c. Where one wythe is of clay masonry and the other of concrete masonry, use adjustable (two-piece) type reinforcement with continuous horizontal wire in facing wythe attached to ties to allow for differential movement regardless of whether bed joints align.
d. Install continuous joint reinforcement every third course of brick

3. Header Bonding: Provide masonry unit headers extending not less than 3 inches (76 mm) into each wythe. Space headers not over 8 inches (203 mm) clear horizontally and 16 inches (406 mm) clear vertically.

B. Bond wythes of cavity walls together using bonding system indicated on Drawings.

C. Keep cavities clean of mortar droppings and other materials during construction. Bevel beds away from cavity, to minimize mortar protrusions into cavity. Do not attempt to trowel or remove mortar fins protruding into cavity.

D. Installing Cavity-Wall Insulation: Place small dabs of adhesive, spaced approximately 12 inches (300 mm) o.c. both ways, on inside face of insulation boards, or attach with plastic fasteners designed for this purpose. Fit courses of insulation between wall ties and other confining obstructions in cavity, with edges butted tightly both ways. Press units firmly against inside wythe of masonry or other construction as shown.

1. Fill cracks and open gaps in insulation with crack sealer compatible with insulation and masonry.

3.8 MASONRY-CELL INSULATION

A. Pour granular insulation into cavities to fill void spaces. Maintain inspection ports to show presence of insulation at extremities of each pour area. Close the ports after filling has been confirmed. Limit the fall of insulation to 1 story high, but not more than 20 feet (6 m).
B. Install molded-polystyrene insulation units into masonry unit cells before laying units.

3.9 MASONRY JOINT REINFORCEMENT

A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch (16 mm) on exterior side of walls, 1/2 inch (13 mm) elsewhere. Lap reinforcement a minimum of 6 inches (150 mm).

1. Space reinforcement not more than 16 inches (406 mm) o.c.
2. Space reinforcement not more than 8 inches (203 mm) o.c. in foundation walls and parapet walls.
3. Provide reinforcement not more than 8 inches (203 mm) above and below wall openings and extending 12 inches (305 mm) beyond openings in addition to continuous reinforcement.

B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.

C. Provide continuity at wall intersections by using prefabricated T-shaped units.

D. Provide continuity at corners by using prefabricated L-shaped units.

E. Cut and bend reinforcing units as directed by manufacturer for continuity at corners, returns, offsets, column fireproofing, pipe enclosures, and other special conditions.

3.10 ANCHORING MASONRY TO STRUCTURAL STEEL AND CONCRETE

A. Anchor masonry to structural steel and concrete where masonry abuts or faces structural steel or concrete to comply with the following:

1. Provide an open space not less than 1/2 inch (13 mm) wide between masonry and structural steel or concrete unless otherwise indicated. Keep open space free of mortar and other rigid materials.
2. Anchor masonry with anchors embedded in masonry joints and attached to structure.
3. Space anchors as indicated, but not more than 24 inches (610 mm) o.c. vertically and 36 inches (915 mm) o.c. horizontally.

3.11 ANCHORING MASONRY VENEERS

A. Anchor masonry veneers to wall framing and concrete and masonry backup with masonry-veneer anchors to comply with the following requirements:

1. Fasten screw-attached anchors through sheathing to wall framing and to concrete and masonry backup with metal fasteners of type indicated. Use two fasteners unless anchor design only uses one fastener.
2. Insert slip-in anchors in metal studs as sheathing is installed. Provide one anchor at each stud in each horizontal joint between sheathing boards.
3. Embed connector sections and continuous wire in masonry joints. Provide not less than 2 inches (50 mm) of air space between back of masonry veneer and face of sheathing.

4. Locate anchor sections to allow maximum vertical differential movement of ties up and down.

5. Space anchors as indicated, but not more than 18 inches (458 mm) o.c. vertically and 24 inches (610 mm) o.c. horizontally, with not less than 1 anchor for each 2 sq. ft. (0.2 sq. m) of wall area. Install additional anchors within 12 inches (305 mm) of openings and at intervals, not exceeding 8 inches (203 mm), around perimeter.

6. Embed anchors in mid-thickness of joint, with 3/4 inches minimum and 1 3/4 inches maximum cover from exterior face of veneer.

3.12 CONTROL AND EXPANSION JOINTS

A. General: Install control and expansion joint materials in unit masonry as masonry progresses. Do not allow materials to span control and expansion joints without provision to allow for in-plane wall or partition movement.

B. Form control joints in concrete masonry using one of the following methods:

1. Fit bond-breaker strips into hollow contour in ends of CMUs on one side of control joint. Fill resultant core with grout and rake out joints in exposed faces for application of sealant.

2. Install preformed control-joint gaskets designed to fit standard sash block.

3. Install interlocking units designed for control joints. Install bond-breaker strips at joint. Keep head joints free and clear of mortar or rake out joint for application of sealant.

4. Install temporary foam-plastic filler in head joints and remove filler when unit masonry is complete for application of sealant.

C. Form expansion joints in brick as follows:

1. Build flanges of metal expansion strips into masonry. Lap each joint 4 inches (100 mm) in direction of water flow. Seal joints below grade and at junctures with horizontal expansion joints if any.

2. Build flanges of factory-fabricated, expansion-joint units into masonry.

3. Build in compressible joint fillers where indicated.

4. Form open joint full depth of brick wythe and of width indicated, but not less than 3/8 inch (10 mm) for installation of sealant and backer rod specified in Section 07 9200 "Joint Sealants."

D. Provide horizontal, pressure-relieving joints by either leaving an air space or inserting a compressible filler of width required for installing sealant and backer rod specified in Section 07 9200 "Joint Sealants," but not less than 3/8 inch (10 mm).

1. Locate horizontal, pressure-relieving joints beneath shelf angles supporting masonry.

3.13 LINTELS

A. Install steel lintels where indicated.
B. Provide concrete or masonry lintels where shown and where openings of more than 12 inches (305 mm) for brick-size units and 24 inches (610 mm) for block-size units are shown without structural steel or other supporting lintels.

C. Provide minimum bearing of 8 inches (200 mm) at each jamb unless otherwise indicated.

3.14 FLASHING, WEEP HOLES, CAVITY DRAINAGE, AND VENTS

A. General: Install embedded flashing and weep holes in masonry at shelf angles, lintels, ledges, other obstructions to downward flow of water in wall, and where indicated. Install vents at shelf angles, ledges, and other obstructions to upward flow of air in cavities, and where indicated.

B. Install flashing as follows unless otherwise indicated:
 1. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape as recommended by flashing manufacturer.
 2. As indicated on Drawings.

C. Install single-wythe CMU flashing system in bed joints of CMU walls where indicated to comply with manufacturer’s written instructions. Install CMU cell pans with upturned edges located below face shells and webs of CMUs above and with weep spouts aligned with face of wall. Install CMU web covers so that they cover upturned edges of CMU cell pans at CMU webs and extend from face shell to face shell.

D. Install reglets and nailers for flashing and other related construction where they are shown to be built into masonry.

E. Install weep holes in head joints in exterior wythes of first course of masonry immediately above embedded flashing and as follows:
 1. Use specified weep/vent products or open head joints to form weep holes.
 2. Use wicking material to form weep holes above flashing under brick sills. Turn wicking down at lip of sill to be as inconspicuous as possible.
 3. Space weep holes 24 inches (600 mm) o.c. unless otherwise indicated.
 4. Space weep holes formed from plastic tubing or wicking material 16 inches (400 mm) o.c.
 5. Cover cavity side of weep holes with plastic insect screening at cavities insulated with loose-fill insulation.
 6. Trim wicking material flush with outside face of wall after mortar has set.

F. Place cavity drainage material in cavities to comply with configuration requirements for cavity drainage material in PART 2 above, "Miscellaneous Masonry Accessories."
3.15 REINFORCED UNIT MASONRY INSTALLATION

A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.

1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.

2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and other loads that may be placed on them during construction.

B. Placing Reinforcement: Comply with requirements in ACI 530.1/ASCE 6/TMS 602.

C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.

1. Comply with requirements in ACI 530.1/ASCE 6/TMS 602 for cleanouts and for grout placement, including minimum grout space and maximum pour height.

2. Limit height of vertical grout pours to not more than 60 inches (1520 mm).

3.16 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage special inspectors to perform tests and inspections and prepare reports. Allow inspectors access to scaffolding and work areas, as needed to perform tests and inspections. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.

B. Testing Frequency: One set of tests for each 5000 sq. ft. (464 sq. m) of wall area or portion thereof.

C. Mortar Aggregate Ratio Test (Proportion Specification): For each mix provided, according to ASTM C 780.

D. Mortar Test (Property Specification): For each mix provided, according to ASTM C 780. Test mortar for mortar air content and compressive strength.

E. Grout Test (Compressive Strength): For each mix provided, according to ASTM C 1019.

3.17 REPAIRING, POINTING, AND CLEANING

A. Remove and replace masonry units that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Install new units to match adjoining units; install in fresh mortar, pointed to eliminate evidence of replacement.
B. Pointing: During the tooling of joints, enlarge voids and holes, except weep holes, and completely fill with mortar. Point up joints, including corners, openings, and adjacent construction, to provide a neat, uniform appearance. Prepare joints for sealant application, where indicated.

C. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.

D. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:
 1. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
 2. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes.
 3. Obtain Architect's approval of sample cleaning before proceeding with cleaning of masonry.
 5. Clean concrete masonry by cleaning method indicated in NCMA TEK 8-2A applicable to type of stain on exposed surfaces.
 6. Clean stone trim to comply with stone supplier's written instructions.
 7. Clean limestone units to comply with recommendations in ILI's "Indiana Limestone Handbook."

3.18 MASONRY WASTE DISPOSAL

A. Salvageable Materials: Unless otherwise indicated, excess masonry materials are Contractor's property. At completion of unit masonry work, remove from Project site.

B. Excess Masonry Waste: Remove excess clean masonry waste and other masonry waste, and legally dispose of off Owner's property.

END OF SECTION 04 2000