

September 30 - October 1, 2021 Sugar Land Marriott Town Square, Texas

Houston as the Low Carbon Capital of the World Charles McConnell, University of Houston

What is Real Sustainability ??

• More renewables

- More renewables
- Battery storage

- More renewables
- Battery storage
- Technology Transformation

- More renewables
- Battery storage
- Technology Transformation
- Eliminate Fossil Fuels

- More renewables
- Battery storage
- Technology Transformation
- Eliminate Fossil Fuels
- Change Consumer Behaviors

- More renewables
- Battery storage
- Technology Transformation
- Eliminate Fossil Fuels
- Change Consumer Behaviors
- Political Leadership

- More renewables
- Battery storage
- Technology Transformation
- Eliminate Fossil Fuels
- Change Consumer Behaviors
- Political Leadership

ALL OF THESE ARE TACTICS – The Mission is Emissions Reduction

Source Information

https://uh.edu/uh-energy/energy-symposium-series/lowcarbon-energy-capital/content/uh-energy-houston-lowcarbon-energy-capital-four-ways-forward.pdf

https://uh.edu/uh-energy/research/whitepapers/ccus-entry-form

Low Carbon Energy Capital Project

Carbon, Capture, Use, and Storage (CCUS) Team – Initiative 1

Makpal Sariyeva, Paty Hernandez, Brad Peurifoy Faculty Mentor: Charles McConnell

October 9th, 2020

Objectives and Findings

Objectives

- Develop a staged 3x10yr CCUS deployment analysis roadmap
- Utilize the NPC national analysis construct and regionalize for local impacts.
- Analyze the emissions AND economic investment impact in the Houston Area
- Assess and position CCUS "optionality" to alternative geologic formations for both storage and EOR – as well as -for the extended energy producing network in the greater US Gulf Coast in all directions from Houston.

Objectives and Findings

Objectives

- Develop a staged 3x10yr CCUS deployment analysis roadmap
- Utilize the NPC national analysis construct and regionalize for local impacts.
- Analyze the emissions AND economic investment impact in the Houston Area
- Assess and position CCUS "optionality" to alternative geologic formations for both storage and EOR – as well as -for the extended energy producing network in the greater US Gulf Coast in all directions from Houston.

FINDINGS

- Investment and risk hurdles will require "strategic investment"
- A mix of EOR and pure storage provides an investment portfolio approach for CCUS
- Current base of target geologies and infrastructure options are far greater than the stationary emissions in the 9 county Houston region long term expansion impact
- Federal, State and local government policies must support/accelerate this transition.

Key Challenges to Address in Project

Carbon Capture

Transportation

Storage

- Technology maturity
- Capture Cost of CO₂ (3/4 of total CCUS cost)
- Electricity cost for compression
- Separation cost to purify CO₂

UNIVERSITY of HOUSTON UHENERGY

- Permits & Regulations
- Public acceptance
- Eminent Domain
- Cost of pipeline design and operating expense
- Infrastructure improvements
- CENTER FOR HOUSTON'S FUTURE

- Primacy
- Class 6 wells
- Low cost of oil
- Cost of surveillance (Liability for releases)
- Induced seismicity

UNIVERSITY of HOUSTON

- Phase I (present to 2030):
 - Focus on Low cost strategic CO2 Houston emissions: 5.7million tons/yr from Hydrogen SMR
 7 million tons/yr from Natural Gas Power
 - Transport on existing/available Denbury pipeline: 13 million ton/yr available capacity
 - Gulf coast accessible geologic storage: 1.4 Billion tons for EOR and 1.5 Trillion tons of saline
 - EOR most economically attractive with current tax credits BUT with Highest Risk
 - Parameters needed for overall positive system NPV: (with 12% all equity hurdle)
 - 100% EOR storage requires \$40/bbl oil price PLUS 45Q credit of \$35/ton
 - 100% saline storage only requires 45Q Tax credit significantly above current \$50/ton

- Phase I (present to 2030):
 - Focus on Low cost strategic CO2 Houston emissions: 5.7million tons/yr from Hydrogen SMR 7 million tons/yr from Natural Gas Power
 - Transport on existing/available Denbury pipeline: 13 million ton/yr available capacity
 - Gulf coast accessible geologic storage: 1.4 Billion tons for EOR and 1.5 Trillion tons of saline
 - EOR most economically attractive with current tax credits BUT with Highest Risk
 - Parameters needed for overall positive system NPV: (with 12% all equity hurdle)
 - 100% EOR storage requires \$40/bbl oil price PLUS 45Q credit of \$35/ton
 - 100% saline storage only requires 45Q Tax credit significantly above current \$50/ton
- Phase II (2040):
 - Expand capture to include: 6.4 million tons/yr from Natural Gas Power Plant 13.5 million tons/yr from Industrial Processes – Refining and Pet Chem
 - **Build pipelines to the East/Central Texas:** 20-30 million tons/yr available capacity at \$500 million cost (250 miles X US\$2 million/mile). On and offshore geologic target zones
 - East/Central Texas available storage: 3.6 billion tons for EOR and 500 billion tons of saline

- Phase I (present to 2030):
 - Focus on Low cost strategic CO2 Houston emissions: 5.7million tons/yr from Hydrogen SMR 7 million tons/yr from Natural Gas Power
 - Transport on existing/available Denbury pipeline: 13 million ton/yr available capacity
 - Gulf coast accessible geologic storage: 1.4 Billion tons for EOR and 1.5 Trillion tons of saline
 - EOR most economically attractive with current tax credits BUT with Highest Risk
 - Parameters needed for overall positive system NPV: (with 12% all equity hurdle)
 - 100% EOR storage requires \$40/bbl oil price PLUS 45Q credit of \$35/ton
 - 100% saline storage only requires 45Q Tax credit significantly above current \$50/ton
- Phase II (2040):
 - **Expand capture to include: 6.4 million tons/yr** from Natural Gas Power Plant 13.5 million tons/yr from Industrial Processes Refining and Pet Chem
 - **Build pipelines to the East/Central Texas:** 20-30 million tons/yr available capacity at \$500 million cost (250 miles X US\$2 million/mile). On and offshore geologic target zones
 - East/Central Texas available storage: 3.6 billion tons for EOR and 500 billion tons of saline
- Phase III (2050):
 - **Expand capture to include: 11.4 million** tons/yr from Industrial Furnaces **7.8 million** tons/yr from Refinery Catalytic Cracker
 - **Build pipeline to the Permian:** 20 million tons/yr available capacity at US\$1 billion cost (500 miles X US\$2 million/mile)
 - Permian available geologic storage: 4.8 billion tons of EOR and 1 trillion tons of saline

Phase I: Activation – Gulf Coast

Phase I: Activation – Gulf Coast

Phase I: Activation (2030)

\$0.12

HOUSTON'S

FUTURE

Capture

Denbury

Facility type	Captured emissions (MM tons/yr)	Total investment (bil US\$)				
Hydrogen	5.7	\$1.1				
Natural gas power plants	7	\$2.5				
<u>Transport</u>						
Pipeline	Available capacity (MM tons/yr)	Total investment (bil US\$/yr)				

• Hydrogen emissions prioritized due to cheaper capture cost.

12.9

- Natural gas power plants second due to increasing pressure from investors.
- Denbury currently utilized at 1/3 capacity.

Phase I: Activation (2030)

Storage

Location	Available storage (bil tons)	Total investment		
Gulf Coast EOR	1.4	(bil US\$/yr)		
Gulf Coast saline	1,500	\$0.12		

- Significant EOR storage is available along Gulf Coast in the form of disparate oil fields.
- Denbury has identified multiple
 EOR fields along the pipeline's path.
- Saline storage is sufficient to handle Denbury capacity for 75 years.

Phase I: Economic Model

Discounted cash flow model

- Phase I only
- Combined hydrogen/natural gas
- Denbury pipeline
- Toggle ratio of saline storage to EOR
- Outputs NPV and IRR

Assumptions

- NPC capture facility reference costs
- Gaffney Cline estimates for regional gas and electricity costs
- Discount rate: 12%
- Inflated oil, gas, and electricity annually

Scenarios

- 100% EOR scenario and varied key inputs by +/-25%
- 100% saline scenario and varied key inputs by +/-25%
- Oil price/45Q rate required for positive NPV

_																		
	Inputs		units	A	nptions	Hydrogen Ca Junits	apture Capex		units	Opex		units		Input	-	units	Car	Natura
	inputs		units	bbls produced per metric ton of CO2	nptions	units	Capex		units	Орех		units		Input	<u>, </u>	units	Cap	ex
	Captured emissions		tons/year	injected		2 barrels	Multiplier	13.54	x	Electricity usage		MWh/ton		Captured emissions	7,040,654	tons/year	Multiplier	4.68
	Capacity per capture unit installed		tons/year	Project life			Capture capex (total)	1,063,289,854		Electricity price		\$/MWhr		Capacity per capture	1,504,290		Capture capex (tota	
	Online percentage	100%		45Q rate (EOR)			1st year capex	20%		Gas usage		MMBtu/ton		Online percentage	100%		1st year capex	20%
	% saline storage	0%	%	45Q rate (saline)			2nd year capex	50%		Gas price		\$/MMBtu		% saline storage	0%		2nd year capex	50%
				WTI oil price		0 \$/bbl	3rd year capex	30%	%	Opex, non-energy, annua	2%	% of capex \$/ton					3rd year capex	30%
				Inflation Tax rate		6 % 6 %	Avg Hydrogen capex Tie-in pipeline cost per n	78,545,000 \$ 2,000,000,00	A local la	Midstream tariff Storage cost		\$/ton \$/ton					Avg Nat Gas Power	527,505,000
				Discount rate			Length of tie-in line	\$ 2,000,000.00		storage cost	10	\$/ton						
				Depreciation			Total cost of tie-in line											
	Oil Price (infated annually)	\$40.00			\$43.0		\$45.26	\$46.39	\$47.55	\$48.74			\$52.48	\$53.80	\$55.14	\$56.52		
	Gas price (inflated annually)	\$2.00) \$2.0 \$10.2	15 \$2.10 5 \$10.51	\$2.1		\$2.26	\$2.32	\$2.38	\$2.44			\$2.62	\$2.69	\$2.76	\$2.83		
	Electricity price (inflated annually)	\$10.00	\$10.3	\$10.51	\$10.7	7 \$11.04	\$11.31	\$11.60	\$11.89	\$12.18	\$12.49	\$12.80	\$13.12	\$13.45	\$13.79	\$14.13	\$14.48	\$14.85
	Years		1	2 3		4 5	6	7	8	9	10	11	12	13	14	15	16	17
	45Q Revenue (saline storage)	\$0.00	\$0.0	0 \$0.00	\$0.0	0 \$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Revenue	45Q Revenue (EOR storage)	\$0.00	\$0.0	0 \$0.00	\$435,945,548.8	5 \$435,945,548.85	\$435,945,548.85	\$435,945,548.85	\$435,945,548.85	\$435,945,548.85	\$435,945,548.85	\$435,945,548.85	\$435,945,548.85	\$435,945,548.85	\$435,945,548.85	\$435,945,548.85	\$435,945,548.85	\$435,945,548.85
Revenue	Petroleum revenue	\$0.00	\$0.0	0 \$0.00		1 \$1,099,891,008.99	\$1,127,388,284.21		\$1,184,462,316.10		\$1,244,425,720.85		\$1,307,424,772.97	\$1,340,110,392.29				
	Total Revenue	\$0.00	\$0.0	10 \$0.00	\$1,509,009,947.8	6 \$1,535,836,557.84	\$1,563,333,833.06	\$1,591,518,540.17	\$1,620,407,864.95	\$1,650,019,422.85	\$1,680,371,269.70	\$1,711,481,912.72	\$1,743,370,321.82	\$1,776,055,941.14	\$1,809,558,700.95	\$1,843,899,029.75	\$1,879,097,866.78	\$1,915,176,674.72
	Hydrogen capture capex	\$242 857 070 7	\$531 644 926 9	3 \$318 986 956 16	\$0.0	0 \$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Caney	Nat gas power plant capex		\$1,044,920.3		\$0.0		\$0.00	\$0.00	\$0.00			\$0.00	\$0.00	\$0.00	\$0.00	\$0.00		
ouper	Tie-in line capex		\$100,666,666.		\$0.0		\$0.00	\$0.00	\$0.00				\$0.00	\$0.00	\$0.00			
	Electricity (Hydrogen)	\$0.00	\$0.0	10 \$0.00	\$10,496,323,7	7 \$10,758,731.86	\$11,027,700,16	\$11 303 392 66	\$11,585,977,48	\$11,875,626,91	\$12,172,517,59	\$12 476 830 53	\$12,788,751,29	\$13,108,470,07	\$13,436,181,82	\$13,772,086,37	\$14,116,388,53	\$14 469 298 24
	Gas (Hydrogen)	\$0.00		0 \$0.00	\$29,739,584.0		\$31,245,150,44	\$32 026 279 21	\$32,826,936,19	\$33,647,609,59		\$35,351,019,83	\$36,234,795,32	\$37,140,665,20				\$40,996,345,02
	Opex, non-energy (Hydrogen)	\$0.00			\$21,265,797.0		\$21,265,797,08	\$21,265,797.08	\$21,265,797.08	\$21,265,797,08		\$21,265,797,08	\$21,265,797.08	\$21,265,797,08	\$21,265,797,08			
	Electricity (Natural gas)	\$0.00			\$11,265,045,9		\$11,265,045,98	\$11,265,045,98	\$11,265,045,98	\$11,265,045,98		\$11,265,045,98	\$11,265,045,98	\$11,265,045,98	\$11,265,045,98	\$11,265,045,98		\$11,265,045,98
Opex	Gas (Natural gas)	\$0.00			\$39,427,660,9	4 \$39,427,660,94	\$39,427,660,94	\$39,427,660,94	\$39,427,660,94	\$39,427,660,94	\$39,427,660,94	\$39,427,660,94	\$39,427,660,94	\$39,427,660,94	\$39,427,660,94	\$39,427,660,94	\$39,427,660,94	\$39,427,660,94
	Opex, non-energy (Natural gas)	\$0.00		0 \$0.00	\$49,378,511.4	7 \$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47
	Transport tariff	\$0.00			\$124,555,871.1		\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10		\$124,555,871.10	\$124,555,871.10	\$124,555,871.10				
	Storage cost	\$0.00	\$0.0	\$0.00	\$124,555,871.1	0 \$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10
	EBITDA (Rev-capex-opex)	-\$807,109,752.16	\$1,866,774,380.4	0 -\$1,160,331,294.91	\$1,098,325,282.4	1 \$1,124,145,994.69	\$1,150,612,224.78	\$1,177,740,110.62	\$1,205,546,193.61	\$1,234,047,428.67	\$1,263,261,194.61	\$1,293,205,304.69	\$1,323,898,017.53	\$1,355,358,048.19	\$1,387,604,579.62	\$1,420,657,274.33	\$1,454,536,286.40	\$1,489,262,273.79
	Depreciation	\$547,745,061.07	\$547,745,061.0	\$547,745,061.07	\$547,745,061.0	7 \$547,745,061.07	\$547,745,061.07	\$547,745,061.07										
	EBIT (Rev-OPEX-Depreciation)	-\$1.354.854.813.23	0 00 444 540 444	-\$1.708.076.355.98	\$550.580.221.3	5 \$576.400.933.63	\$602.867.163.71	\$629,995,049,55	\$1,205,546,193,61	£1 004 047 400 07	\$1,263,261,194,61	\$1,293,205,304,69	\$1.323.898.017.53	R4 355 350 040 40	\$4 007 CO4 570 CO	R4 400 057 074 00	\$1.454.536.286.40	et 400 000 070 70
	NOPLAT (EBIT*(1-Tax Rate))	-\$1,354,854,813.2. -\$1.070.335.302.45			\$550,580,221.3 \$434,958,374,8		\$476,265,059,33	\$629,995,049.55	\$1,205,546,193.61 \$952.381.492.95	\$1,234,047,428.67 \$974 897 468 65			\$1,323,898,017.53 \$1.045.879,433.85				\$1,454,536,286.40 \$1,149.083.666.26	
	ECE	-\$1,070,335,302.45 -\$1,329,699,993.54				5455,356,737.57 3 \$1.003.101.798.63	\$1,024,010,120,40		\$952,381,492.95	\$974,897,468.65			\$1,045,879,433.85	\$1,070,732,858.07				
	PV of FCF	-\$1,329,699,993.5			\$624,525,799,2		\$518,795,395,40		\$384.650.911.64	\$351,557,800.52			\$268.451.200.89				\$1,149,083,666.26 \$187,440,437.24	
	Project NPV	\$113,543,909.91		\$1,000,408,040.10	4024,020,188.2	4000,100,000.00	0010,100,000.40	0112,004,403.00	0001,000,011.04	4551,557,600.52	4021,021,010.40	0200,004,042.01	0200,401,200.00	92.10,004,000.00		4200,010,000.02	\$107,140,407.24	en 1,333,071,03
	IRR	12%	5															
								-D										

UNIVERSITY of HOUSTON

UNIVERSITY of

Phase I: Economic Model Results

Combined hydrogen and natural gas power plant model – 100% storage

Sen	sitivity 2					
Base Case Assumptions (100% Saline)						
Online %	100					
bbls produced per metric ton of CO2	i 2	barrels				
45Q rate (EOR)	\$35	\$/metric ton				
45Q rate (saline)	\$50	\$/metric ton				
WTI oil price	\$40	\$/bbl				
Avg Hydrogen capex	\$78,545,000	\$/unit				
Avg Nat Gas Power Plant capex	\$527,505,000	\$/unit				
Tie-in pipeline cost per mile	\$2,000,000	\$/mile				
Length of tie-in line		miles				
Electricity usage (Hydrogen)	0.18	MWh/ton				
Electricity usage (Nat gas)	0.16	MWh/ton				
Electricity price	\$10	\$/MWhr				
Gas usage (Hydrogen)	2.55	MMBtu/ton				
Gas usage (Nat Gas)	2.8	MMBtu/ton				
Gas price	\$2	\$/MMBtu				
Opex, non-energy, annual	0.02	% of capex				
Midstream tariff	\$10	\$/ton				
Storage cost	\$10	\$/ton				
NPV	\$ (3,583,733,634.47)					
IRR	-3%					

- Project is grounded in 12% all equity return criteria....and....
- US\$+100/Ton 45Q price needed today for positive project @12% all equity
- Most influential parameters include: capex, online %, 45Q rate, hydrogen and NGCC capex

Phase I: Economic Model Results <u>Combined hydrogen and natural gas power plant model – 100% EOR</u>

Sensitivity 1				
Base Case Assu	mptions (100% EOF	R)		
Online %	100			
bbls produced per metric ton of CO2	2	barrels		
45Q rate (EOR)	\$35	\$/metric ton		
45Q rate (saline)	\$50	\$/metric ton		
WTI oil price	\$40	\$/bbl		
Avg Hydrogen capex	\$78,545,000.00	\$/unit		
Avg Nat Gas Power Plant capex	\$527,505,000.00	\$/unit		
Tie-in pipeline cost per mile	\$2,000,000.00	\$/mile		
Length of tie-in line	151	miles		
Electricity usage (Hydrogen)	0.18	MWh/ton		
Electricity usage (Nat gas)	0.16	MWh/ton		
Electricity price	\$10	\$/MWhr		
Gas usage (Hydrogen)	\$2.55	MMBtu/ton		
Gas usage (Nat Gas)	\$2.80	MMBtu/ton		
Gas price	\$2	\$/MMBtu		
Opex, non-energy, annual	0.02	% of capex		
Midstream tariff	\$10.00	\$/ton		
Storage cost	\$10.00	\$/ton		
NPV	\$ 113,543,909.91			
IRR	12%			

- Project can be NPV positive with 12% IRR today.....however
- US40/bbl price required for 20 years for project with high risk potential
- Most influential parameters include: oil price, recovery factor, nat gas
 capex, and 45Q rate

Phase II: Expansion – FW Basin and Offshore

Phase II: Expansion – FW Basin and Offshore

Phase II: Expansion (2040)

Capture

Facility Type	Captured emissions (MM tons/yr)	Total Investment (bil US\$)
Natural Gas Power Plant	6.4	2.2
Industrial Furnaces	13.5	6.4

Transport

Pipeline	Available capacity (MM tons/yr)	Total Investment (bil US\$)
East/Central Texas	20	\$0.5

- Build 250-Mile Houston -to-East/Central Texas Pipeline
- Industrial Furnaces are included to expand annual capture of CO2
- Additional Natural Gas Power Plants are involved in the expansion of capacity transportation

C. T. BAUER COLLEGE of BUSINESS Gutierrez Energy Management Institute

HOUSTON

UNIVERSITY

Phase II: Expansion (2040)

Storage

Location	Available storage (bil tons)	Total Investment (bil US\$/yr)
East/Central Texas EOR	3.6	
East/Central Texas saline	501	TBD

- EOR and Saline storage is available in East/Central Texas
- Leveraging the demand for CO₂ EOR, offering a relatively larger economic benefit

Phase III: At-Scale – Taking Houston to Net Zero

Phase III: At-Scale – Taking Houston to Net Zero

Phase III: At-Scale (2050)

Capture

Facility Type	Captured emissions (MM tons/yr)	Total Investment (bil US\$)
Industrial Furnaces	11.4	2.8
Refinery Catalytic Cracker	7.8	1.4

Transport

Pipeline	Available capacity (MM tons/yr)	Total Investment (bil US\$)
Permian	20	\$1

- Build 500-Mile Houston -to- Permian Pipeline
- **Refinery Catalytic Cracker** are included to expand annual capture of CO2
- Projected pipeline from Houston to the Permian Basin will help with the economic feasibility of both carbon
 capture and pipeline projects

HOUSTON'S

FUTURE

Phase III: At-Scale (2050)

Storage

Location	Available storage (bil tons)	Total Investment (bil US\$/yr)
Permian EOR	4.8	TDD
Permian saline	1000	TBD

- Large-scale of EOR and saline storage available in the Permian Basin
- Storage capacity in the Permian will permit to achieve net zero in carbon goal

Gutierrez Energy Management Institute

• Phase I (present to 2030):

- Focus on Low cost strategic CO2 Houston emissions: 5.7million tons/yr from Hydrogen 7 million tons/yr from Natural Gas Power
- Transport on existing/available Denbury pipeline: 13 million ton/yr available capacity
- **Gulf coast accessible geologic storage:** 1.4 Billion tons for EOR and 1.5 Trillion tons of saline
- EOR most economically attractive with current tax credits BUT with Highest Risk
- Parameters needed for overall positive system NPV: (with 12% all equity hurdle)
 - 100% EOR storage requires \$40/bbl oil price PLUS 45Q credit of \$35/ton
 - 100% saline storage only requires 45Q Tax credit significantly above current \$50/ton

Phase I (present to 2030):

- Focus on Low cost strategic CO2 Houston emissions: 5.7million tons/yr from Hydrogen 7 million tons/yr from Natural Gas Power
- Transport on existing/available Denbury pipeline: 13 million ton/yr available capacity
- **Gulf coast accessible geologic storage:** 1.4 Billion tons for EOR and 1.5 Trillion tons of saline
- EOR most economically attractive with current tax credits BUT with Highest Risk
- Parameters needed for overall positive system NPV: (with 12% all equity hurdle)
 - 100% EOR storage requires \$40/bbl oil price PLUS 45Q credit of \$35/ton
 - 100% saline storage only requires 45Q Tax credit significantly above current \$50/ton
- Phase II (2040):
 - Expand capture to include: 6.4 million tons/yr from Natural Gas Power Plant 13.5 million tons/yr from Industrial Processes – Refining and Pet Chem
 - **Build pipelines to the East/Central Texas:** 20-30 million tons/yr available capacity at \$500 million cost (250 miles X US\$2 million/mile). On and offshore geologic target zones
 - East/Central Texas available storage: 3.6 billion tons for EOR and 500 billion tons of saline

Phase I (present to 2030):

- Focus on Low cost strategic CO2 Houston emissions: 5.7million tons/yr from Hydrogen 7 million tons/yr from Natural Gas Power
- Transport on existing/available Denbury pipeline: 13 million ton/yr available capacity
- **Gulf coast accessible geologic storage:** 1.4 Billion tons for EOR and 1.5 Trillion tons of saline
- EOR most economically attractive with current tax credits BUT with Highest Risk
- Parameters needed for overall positive system NPV: (with 12% all equity hurdle)
 - 100% EOR storage requires \$40/bbl oil price PLUS 45Q credit of \$35/ton
 - 100% saline storage only requires 45Q Tax credit significantly above current \$50/ton
- Phase II (2040):
 - **Expand capture to include: 6.4 million tons/yr** from Natural Gas Power Plant 13.5 million tons/yr from Industrial Processes Refining and Pet Chem
 - **Build pipelines to the East/Central Texas:** 20-30 million tons/yr available capacity at \$500 million cost (250 miles X US\$2 million/mile). On and offshore geologic target zones
 - East/Central Texas available storage: 3.6 billion tons for EOR and 500 billion tons of saline
- Phase III (2050):
 - **Expand capture to include: 11.4 million** tons/yr from Industrial Furnaces **7.8 million** tons/yr from Refinery Catalytic Cracker
 - **Build pipeline to the Permian:** 20 million tons/yr available capacity at US\$1 billion cost (500 miles X US\$2 million/mile)
 - Permian available geologic storage: 4.8 billion tons of EOR and 1 trillion tons of saline

Pathway to a Low Carbon Electricity Grid

Current Assets & Issues

- TX Wind: 30 GW highest in US
- TX Solar: 4 GW 5^{th} in US
- Mismatch with load profile
- Daily and seasonal variations
- "Must-run" CO₂ emitting resources (online coal units, cogeneration units) for capacity and load balancing.

Future Potential

- 80% zero carbon (55% wind, 19% solar, 6% nuclear) by 2050 without energy storage.
- CO₂ intensity declines 78%, from 850 lb/MWh to 191 lb/MWh.
- Energy storage needed for further decarbonization.
- Green H₂ storage most likely to be cost-effective.

The Houston Region as a Global Hydrogen Hub

Current Assets & Issues

- Produces ~⅓ of US hydrogen
- 900 miles of hydrogen pipelines (½ of US and ¼ of world totals)
- Substantial geologically unique salt cavern storage capacity
- Serves Gulf Coast refining and petrochemical operations

Future Potential

- Add CCUS to SMR (Blue Hydrogen). Reduces CO₂ emissions by 15 Mton/y.
- Develop electrolytic (green) hydrogen with renewable electricity from TX grid.
- Develop H₂ trucking, other apps.
- Develop storage
- Export hydrogen

Houston and the Circular Plastic Economy

Current Assets & Issues

- Major producer e.g., 80% of US PVC manufactured in Texas and Louisiana
- CO₂eq emissions for Houston area
 30 million metric tons (2015)
- Unmanaged waste 5% of plastics worlwide

Future Potential

- Advanced recovery, reclamation and recycling.
- Initial focus: single-use plastics; expand to other applications, supported by policies & incentives.
- Deploy chemical recycling (solvolysis and pyrolysis).
- By 2030: Recycle 2.5 Mton/y; eliminate 10 MMt CO₂eq/y; Create 15,000 jobs.

UNIVERSITY of HOUSTON C. T. BAUER COLLEGE of BUSINESS Gutierrez Energy Management Institute

• By 2050: Increase benefits 3x

Acknowledgements

UNIVERSITY of **HOUSTON**

C. T. BAUER COLLEGE of BUSINESS Gutierrez Energy Management Institute

Thank you!