DECARBONIZATION OF INDUSTRIAL FIRED HEATERS BY USING HYDROGEN FUEL

USING OUR EXPERTISE TO

BETTER WORLD.

BUILD A

James Turner Executive Director, Process Technology & Engineering

Southwest Process Technology Conference Sugar Land, Texas September 29, 2022

JAMES TURNER

Executive Director – Energy Solutions Process Technology

- ▶ 30+ years in Fluor
- BS Chemical Engineering in Texas A&M University
- Published and presented more than 30 technical articles about process design and project execution

© 2022 Fluor Corporation. All Rights Reserved. ML20220012-022

AGENDA

- Introduction
- Combustion and Heater Basics
- H₂ and CH₄ Combustion Reactions and Impacts
- Switching Existing Gas Heaters to Hydrogen Fuel
- Economic Comparison
- Summary

SCOPE 1/2/3 EMISSIONS

FLUOR_®

GREENHOUSE GAS EMISSIONS

INCREMENTAL CO2 EMISSIONS REDUCTION OPTIONS

Energy Efficiency

- Improve energy efficiency of existing process

Electrification

- Convert existing fuel gas or steam heat to lower carbon emissions electricity

Previous Fluor Innovation Builders Webinars cover these topics! Available at: https://www.fluor.com/about-fluor/corporate-information/innovation/innovation-builders

FLUOR_®

FIRED HEATERS MAJOR CO₂ EMISSIONS REDUCTION OPTIONS

Carbon Capture

- Using air as oxygen source and adding a carbon capture, compression and treating system
- Using 100% oxygen, and adding a carbon compression and treating system

Convert to 100% Hydrogen as Fuel

- Impacts to heater and fuel gas distribution system will require some scope
- Potential increase in NO_x emissions must be mitigated

FLUOR_®

HYDROCARBON COMBUSTION CO₂ EMISSIONS

General hydrocarbon combustion formula:

Fuel + $O_2 \rightarrow CO_2 + H_2O$

For a hydrocarbon expressed as CxHy:

$$C_xH_y + (x+y/4)O_2 \rightarrow xCO_2 + (y/2)H_2O$$

Fuel gas molecules with more carbons produce more energy per volume of gas, but also produce more CO₂

When pure hydrogen is used as the fuel, the formula simplifies to:

$$2H_2 + O_2 \rightarrow 2H_2O$$

Fuel	Relative CO ₂ emissions from combustion
Hydrogen	0.00
Methane	1.00
Ethane	1.12
Propane	1.15
n-butane	1.22
n-pentane	1.24
Fuel Oil	1.50

At constant heat release, based on LHV

FUEL FLAME TEMPERATURES

Component	Formula	Flame Temperature	
Hydrogen	H ₂	2254 °C	4089 °F
Methane	CH ₄	1963 °C	3565 °F
Ethylene	C_2H_4	2343 °C	4249 °F
Ethane	C_2H_6	1955 °C	3551 °F
Propane	C ₃ H ₈	1980 °C	3596 °F
n-Butane	C_4H_{10}	1970 °C	3578 °F
n-Pentane	C ₅ H ₁₂	1977 °C	3591 °F

COMBUSTION REACTIONS

Reaction	Lower Heating Value (BTU/scf)
Hydrogen Fuel	
$2H_2 + (O_2 + 3.76N_2) \rightarrow 2H_2O + 3.76N_2$	275
Methane Fuel	
$CH_4 + 2(O_2 + 3.76N_2) \rightarrow CO_2 + 2H_2O + 7.52N_2$	910

FLUOR_®

CO₂ REDUCTION FOR HYDROGEN/METHANE BLENDS

COMBUSTION REACTIONS

Reaction	Volume Ratio, Fuel*	Volume Ratio, Flue Gas*
Hydrogen Fuel		
$3.3H_2 + 1.66(O_2 + 3.76N_2) \rightarrow 3.3H_2O + 6.25N_2$	3.32	0.91
Methane Fuel		
$CH_4 + 2(O_2 + 3.76N_2) \rightarrow CO_2 + 2H_2O + 7.52N_2$	1.0	1.0

At constant fired duty *Volume Ratio shown in in reference to Methane

FLUOR_®

FUEL GAS DISTRIBUTION SYSTEM

Comparing 100% hydrogen to 100% methane fuel, at constant fired duty:

- Hydrogen volumetric flow is 3.3 times that of methane
- Hydrogen mass flow is ~60% less

Volume ratio is much more important

- Piping pressure drop will be ~50% higher for hydrogen
- Many control valves may require revamp or replacement
- For materials/specifications, most fuel gas systems can handle 100% hydrogen

For most fuel gas distribution systems, cost for revamp will not be excessive

FLUOR_®

AIR BLOWER TYPES

Four Types of Blower Systems:

- 1. Natural Draft No blower
- 2. Induced Draft

Blower on flue gas after heater

3. Forced Draft

Blower on air before heater

4. Balanced Draft

Both forced and induced draft fans

FLUOR_®

POTENTIAL 100% HYDROGEN FUEL ISSUES

- Burners that work well with 100% hydrogen generally do not work well with other fuel gases
- Increased flame speed and flame temperature may lead to higher temperatures in the heater – some materials changes may be required to convert existing heaters
- A reduction in the flow of flue gas through the convection section may lead to reduced convection section efficiency
- Air control may require changes due to reduced airflow requirement
- Existing flame scanners may not work properly for 100% hydrogen fuel
- NOx production is increased from the higher adiabatic flame temperature

COMPARISON OF HYDROGEN AND METHANE FUEL

		Units	100% H2	100% CH4	Comment		
	Lower Heating Value	BTU/SCF	275	910			
	Lower Heating Value	MJ/kg	120	50			
	At constant heat release, assuming no flue gas recycle:						
	Volumetric flow rate Volume/time 3.3 1.0						
	Mass flow rate	Mass/time	0.42	1.0			
	Piping Pressure Drop	any	1.50	1.0	Approximate – changes based on pipe		
					operating conditions		
	Combustion O2 required	any	0.83	1.0			
	Combustion products	Volume/time	0.91	1.0			
	Combustion products	Mass/time	0.81	1.0			
	Heater efficiency		Up to 3.5 %		The increase of efficiency depends on		
			higher		process conditions.		
	Flame temperature		Higher		Depending on original design, may require		
					materials upgrades due to higher firebox		
					temp.		
	TMT (tube metal		Higher		Depending on original design, may require		
	temperature)				materials upgrades due to higher TMT.		
	Radiant Duty		Potentially		Flue gas recirculation may help manage		
			Higher		radiant and convection section duty splits		
FLUOR	NOx emissions		2.0	1.0			

\$/MT CO₂ = 150*(H₂ Cost) - 17.3*(NG Cost) + 108*(CapEx Cost)

Based on CapEx divided evenly over a 20-year operation

\$/MT CO₂ = 150*(H₂ Cost) - 58.9*(NG Cost) + 31.6*(CapEx Cost)

Based on CapEx divided evenly over a 20-year operation

EXAMPLE ECONOMIC CALCULATION

Assumptions:

- Hydrogen fuel compared to Methane
- Cost of "clean" Hydrogen: \$2/kg
- Cost of Methane: \$5/MMBTU
- Capital cost of modifications: \$0.1 MM/MMBTU/HR, spread over 20 years

Production cost of hydrogen USD/kg

Image Credit: Hydrogen Council, Hydrogen Insights 2021

FLUOR_®

EXAMPLE ECONOMIC CALCULATION

\$/MT CO₂ = 150*(H₂ Cost) - 17.3*(NG Cost) + 108*(CapEx Cost)

Assumptions:

- ▶ H₂ cost is \$2/kg
- ▶ NG Cost is \$5/MMBTU
- CapEx is \$0.1 /(BTU/hr) fired

 $\text{MT CO}_2 = 300 - 86 + 11 =$ **\$225/MT**

Relative impact for each factor in example calculation:

H ₂ Cost	75%
NG Cost	22%
СарЕх	3%

ECONOMIC CALCULATIONS - RESULTS

CAPEX = \$0.1MM/MMBTU/HR

FLUOR_®

ECONOMIC CALCULATIONS - RESULTS

CAPEX = 0

FREQUENTLY ASKED QUESTIONS (FAQs)

Do existing burners require replacement for 100% H₂?

Yes - almost always, new or modified burners will be required

Is existing metallurgy a concern in fuel gas piping?

Since fuel gas distribution systems are low pressure, typical piping line class specs for fuel gas can handle 100% $\rm H_2$

Is existing fuel gas piping too small for 100% H₂?

Pressure drop in piping is typically less than 10% of system drop, so a 50% increase is typically a small impact that can be absorbed by the gas control valve

?

Are existing fuel gas control valves too small for 100% H₂?

It depends, but often no. Without doing individual hydraulics, one can assume 50% of CVs will require replacement

FLUOR_®

FREQUENTLY ASKED QUESTIONS (FAQs)

Do fuel gas flowmeters require replacement or recalibration for 100% H₂?

All will require recalibration – some will require replacement

Will converting to 100% H₂ cause a NO_x emissions issue?

 NO_x emissions per volume of flue gas or on mass/hr basis will likely increase. It may be possible to specify burners to meet NO_x emissions per fired duty. This applies to ultra-low NO_x requirements also.

Can a heater be designed for both a 100% H₂ case and a 100% CH₄ case?

This appears to be very difficult. In theory, separate burners and fuel systems could be installed for each fuel.

FLUOR_®

FLUOR_®