
July 10, 2017

How Tight are Malthusian Constraints?

T. Ryan Johnson

University of Houston

Dietrich Vollrath

University of Houston

Abstract

We provide a methodology to estimate the elasticity of agricultural output with respect to land
- the Malthusian constraint - using variation in rural densities across different locations. We use
district-level data from around the globe on rural densities and inherent agricultural productivity
to estimate the elasticity for various sub-samples. We find the elasticity is highest in areas that are
suitable for temperate crops such as wheat or rye, and loosest in areas suitable for (sub)-tropical
crops such as cassava or rice. We show theoretically that a higher elasticity results in greater
sensitivity of non-agricultural employment and real income per capita to shocks in population size
and productivity, and confirm this with evidence from the post-war mortality transition.
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Nathan Nunn, Ömer Özak, Enrico Spolaore, Joachim Voth, and David Weil, as well as seminar participants

at the London School of Economics and the Brown Conference on Deep-rooted Determinants of Development

for their comments. All errors remain our own.



1 Introduction

A common assumption in studying historical or contemporary development is that a finite (or inelas-

tic) resource, namely agricultural land, is necessary for production. This “Malthusian constraint”

implies that living standards are declining with the absolute size of the population. Combining

this constraint with a positive relationship of living standards and population growth yields the

canonical Malthusian model of stagnation (Ashraf and Galor, 2011), and forms the basis for mod-

els of the transition from stagnation to sustained growth.1 The Malthusian constraint features in

quantitative work on contemporary developing countries that rely on agriculture (Gollin, Parente

and Rogerson, 2007; Restuccia, Yang and Zhu, 2008; Weil and Wilde, 2009; Gollin, 2010; Eberhardt

and Vollrath, 2016), and is relevant for long-run growth in relatively rich countries due to possible

limits to resources (Peretto and Valente, 2015).

The tightness of this Malthusian constraint is determined by the elasticity of agricultural out-

put with respect to agricultural land. This elasticity, in turn, dictates the sensitivity of living

standards (i.e. the average product of labor) to the size of the population. A “tight” Malthusian

constraint occurs when the elasticity is large, and living standards are very sensitive to the size of

the population. In contrast, a “loose” Malthusian constraint occurs when the elasticity is small,

and living standards are insensitive to population size. Knowing the elasticity of agricultural out-

put with respect to land thus lets us quantify the effects of population or productivity changes on

living standards. Moreover, variation in this elasticity creates variation in the sensitivity of living

standards to shocks in population or technology, with consequences for the study of growth and

development.

In this paper we propose a methodology to estimate the elasticity of agricultural output with

respect to land, and thus quantify the tightness of the Malthusian constraint. To derive an empirical

specification for estimating the elasticity, we develop a model of production with agricultural land

that expands on the standard one-sector version. First, we consider an economy that is made up

of many locations, each with its own stock of agricultural land, but where labor and other inputs

move freely between those locations. This reveals a simple cross-sectional relationship between

the density of agricultural workers in a location and agricultural total factor productivity (TFP),

and we can recover a direct estimate of the elasticity from this relationship. Second, we allow for

the presence of factors beyond just land and labor, showing that our estimation strategy does not

rely on data on these other inputs. Third, we allow for a non-agricultural sector that employs

labor. This shows that the spatial relationship of agricultural workers and agricultural TFP holds

1The literature on the transition has grown large enough that it is difficult to provide a reasonable summary
in a footnote. An overview of this unified growth literature can be found in Galor (2011), who cites several key
contributions (Galor and Weil, 2000; Galor and Moav, 2002; Hansen and Prescott, 2002; Doepke, 2004; Cervellati
and Sunde, 2005; Lagerlöf, 2006; Crafts and Mills, 2009; Strulik and Weisdorf, 2008). Explanations for the Great
Divergence in income per capita are often framed in terms of these unified growth models (Kogel and Prskawetz,
2001; Galor and Mountford, 2008; Vollrath, 2011; Voigtländer and Voth, 2013b,a; Cervellati and Sunde, 2015).
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regardless of the aggregate level of agricultural employment or overall development. The spatial

distribution of agricultural workers across districts within provinces or states is informative about

the elasticity of agricultural output with respect to land. By looking at districts within provinces

or states to make our estimates, we do not need to rely on cross-country comparisons, and we do

not have to assume that the elasticity is homogenous within countries.

We assemble our data at the district level (i.e. 2nd level administrative units within countries)

for rural population density in the year 2000 from Goldewijk et al. (2011), and combine that with

an measure of the caloric yield of districts built on the data from Galor and Özak (2016) to capture

an exogenous measure of inherent agricultural TFP. As in their work, our measure is built on agro-

climatic constraints plausibly unaffected by human activity (e.g. soil quality and length of growing

season) from the Food and Agriculture Organization (2012), combined with information on the

calorie content of various crops. We evaluate the calorie-maximizing crop choice for each grid cell

within a district, and aggregate up to an overall caloric yield for the district as our measure of

inherent agricultural TFP.

In the end, we have a dataset of 32,862 districts, coming from 2,471 provinces in 154 countries.

Using this data, we provide estimates of the elasticity of agricultural output with respect to land.

We find that there is substantial variation in this Malthusian constraint across different samples.

For districts that are suitable for growing temperate crops such as barley, oats, and wheat, we

estimate an elasticity of 0.240 in our preferred specification. In contrast, in districts suitable for

tropical and sub-tropical crops like cassava and rice, the estimated elasticity is only 0.143, and

is significantly different from the temperate value. The finding that the Malthusian constraint is

tighter in the temperate areas holds up across different definitions of crop suitability, and holds

whether we exclude heavily urbanized districts, exclude districts from the developed world, or

exclude districts within the lower tail of rural density.

This variation appears to be related to climate types associated with those crops. We esti-

mate the elasticities for samples of districts chosen by their climate characteristics and find that

equatorial areas, and those with dry winters and/or monsoonal precipitation, tend to have loose

land constraints (i.e. low elasticities), while temperate and cold areas, and those with regular year-

round rainfall, have tighter constraints (i.e. high elasticities). This results in variation in elasticities

across regions of the world. Among the tightest constraints we find are those for Europe (estimated

elasticities between 0.264 and 0.292), the U.S. and Canada (0.203), and Northern Africa (0.282).

In comparison, South and Southeast Asia (0.148), tropical Africa (0.100), and the tropical Ameri-

cas (0.119) have the loosest land constraints. Within China, the temperate areas have among the

tightest constraints estimated (0.518), while the sub-tropical areas of China have a loose constraint

(0.107).

The estimated size of the elasticities, and their patterns across crop suitability, climate zone,

and region are robust across a variety of specifications. All regressions include controls for the
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percent of a district that is urban, as well as the density of nighttime lights, to control for variation

in development within provinces. The results hold using rural population data from 1950 or 1900

from Goldewijk et al. (2011), and also if estimated using province-level variation in rural density and

productivity with country fixed effects. We use alternative measures of the land area to build our

rural density measure, finding similar results, and discuss how measurement error in this variable is

unlikely to be driving our results. Finally, our baseline specification is built on several assumptions

regarding the mobility of factors and output across districts. Changing those assumptions suggests

different specifications with alternate control variables, but these deliver similar results in terms of

the estimated elasticity of agricultural output with respect to land.

In the last part of the paper, we show why the elasticity of agricultural output with respect to

land is of particular importance to studying structural change and development. Expanding the

model we used to drive the empirical work to include an explicit non-agricultural sector, we show

that the tighter the Malthusian constraint, the more sensitive the agricultural labor allocation and

real income per capita are to population and technological shocks. The intuition is straightforward.

Agricultural land implies there are decreasing returns to scale in the other factors of production

(i.e. labor and capital). With a low income elasticity for agricultural goods, productivity (or

negative population) shocks in either sector shift inputs into non-agriculture. The movement of

inputs out of agriculture raises the average product of labor more in an economy with a tight land

constraint because it has more severe decreasing returns. The logic runs in reverse, and economies

with tight land constraints will also see greater declines in living standards in response to negative

productivity (or positive population) shocks.

We confirm the predictions of this model by using data on the epidemiological transition from

Acemoglu and Johnson (2007) to estimate the effect of population shocks due to the decline in

mortality from a set of infectious diseases on GDP per capita and GDP per worker. The shock

to mortality had a negative effect on living standards that was three times larger for developing

countries with tight land constraints when compared to developing countries with loose land con-

straints. The difference in effect size is statistically significant, and holds whether we measure the

shock in terms of mortality, life expectancy, or population size.

The results suggest that the variation in the tightness of the land constraint is relevant for both

historical and contemporary development. Areas with tight land constraints would have experienced

faster urbanization and more rapid growth in living standards as productivity grew and population

growth slowed, whatever the ultimate source of changes in productivity and population growth:

institutions, geography, culture, or some other deep force.2 This may help explain why it was that

Europe, with the tightest land constraints in the old world, developed earlier than other regions.

It may also help explain why the tropical areas of Central America and Sub-Saharan Africa, with

2It would be hopeless to summarize or cite all the research on comparative development. Several useful reviews
of this literature can be found in Acemoglu, Johnson and Robinson (2005); Nunn (2009); Galor (2011); Spolaore and
Wacziarg (2013); Vries (2013).
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the loosest land constraints, lagged behind other areas following decolonization.

Relative to the existing literature, our approach to estimating the land elasticity has several

advantages. The standard approach has been to use country-level panel data (Hayami and Ruttan,

1970, 1985; Craig, Pardey and Roseboom, 1997; Martin and Mitra, 2001; Mundlak, 2000; Mundlak,

Butzer and Larson, 2012; Eberhardt and Teal, 2013) to estimate agricultural production functions,

with a common set of coefficients across countries for each input, including land. Issues arise with

unobserved productivity, the measurement of non-land inputs, and the assumption that coefficients

are common to all countries. Some have examined heterogeneity in these coefficients (Gutierrez and

Gutierrez, 2003; Wiebe et al., 2003) by region, while others have attempted to estimate country-

level coefficients using factor analysis to address unobserved productivity (Eberhardt and Teal,

2013; Eberhardt and Vollrath, 2016). Relative to this work, our district-level data allows us to

control for unobserved country and province-level effects, and we use a direct measure of inherent

productivity. Our specifications do not require data on non-land inputs, avoiding measurement

error of those, or even the need to define them precisely. The main benefit is that the district-level

data allows us to examine heterogeneity in the estimated elasticity for land at a much finer level

than prior work, including heterogeneity of the land constraint within countries.

More broadly, our work is related to several recent studies on the the role of geography and/or

inherent agricultural productivity in development (Olsson and Hibbs, 2005; Ashraf and Galor,

2011; Nunn and Qian, 2011; Nunn and Puga, 2012; Michalopoulos, 2012; Alesina, Giuliano and

Nunn, 2013; Cook, 2014b,a; Fenske, 2014; Alsan, 2015; Ashraf and Michalopoulos, 2015; Dalgaard,

Knudsen and Selaya, 2015; Galor and Özak, 2016; Litina, 2016; Andersen, Dalgaard and Selaya,

2016; Frankema and Papaioannou, 2017). Unlike those papers, ours does not propose a direct causal

relationship between geography and development, but rather suggests that any proposed causal

impact has differential effects based on the size of the Malthusian constraint. By itself the constraint

does not dictate whether a country is rich or poor, but translates changes in productivity and

population into changes the agricultural labor share, real income per capita, and the distribution

of population across locations.

There are two studies that share a focus on the distribution of labor and economic activity. The

first is Motamed, Florax and Masters (2014). Those authors examine the growth of urbanization

at the grid-cell level, specifically the timing of when grid-cells pass certain thresholds of urban

population density, or the percent of urban population in the cell. They estimate a homogenous

relationship, while we focus on heterogeneity in the relationship of (rural) population density and

agricultural productivity, and use the more nuanced measure of agricultural caloric productivity

than the index from Ramankutty et al. (2002) that they rely on. The second related study is Hen-

derson et al. (2016), who examine the spatial distribution of economic activity (closely associated

with urbanization) at the grid-cell level using night lights, relating it to geographic characteristics

associated with either agriculture or trade. While our work uses the geographic distribution of
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rural population to estimate Malthusian land constraints, it has no implications for the spatial

distribution of urban activity, and our results are complementary to theirs.

To continue, we derive a relationship of rural density and agricultural productivity that incor-

porates non-labor inputs as well as a fixed factor of production, allows for multiple locations, and

incorporates a non-agricultural sector. Using the relationship developed in the model, we turn to

estimating the Malthusian land constraint. We describe the data we use, and perform the estima-

tions on different sub-samples distinguished by crop suitability, climate zones, and regions. Given

those results, we then discuss the implications of the heterogeneity in land constraints for explaining

development, and the final section of the paper concludes.

2 Productivity, Rural Density, and the Malthusian Constraint

To derive our empirical specification, we present a simple model of agricultural production that

incorporates multiple locations, non-labor inputs aside from the fixed factor, and an outside non-

agricultural sector. The model shows us how to control for those elements in our empirical work,

and delivers a simple estimation equation we can take to the data.

Consider a region (e.g. province or state) I that contains a set of districts, each denoted by i.

The aggregate agricultural production function for district i is given by

Yi = AiX
β
i

(
Kα
AiL

1−α
Ai

)1−β
(1)

where Ai is total factor productivity, Xi is land, KAi is capital (or any other inputs aside from

land and labor), and LAi is the number of agricultural workers. The tightness of the Malthusian

land constraint is captured by β. Note that we presume β is not specific to the distict i, but rather

common to the region I in which this district lies.

The amount of labor employed in district i will depend on its productivity relative to other

districts in the same region. We assume that both labor and capital are mobile across districts

within region I, and hence the wage, w, and return on capital, r, are the same for each district i.

In each district those wages and returns are determined by the following equations

w = φL
Yi
Li

(2)

r = φK
Yi
Ki

where φL and φK are the fraction of output paid to labor and capital, respectively. These fractions

may or may not be equal to the respective elasticities in the production function of these inputs,

meaning that the wage and rate of return may or may not be equal to the marginal product of

these factors. We set the model up this way to make two things clear. First, that we are not going
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to identify the value of β by using information on shares of output, and second that our empirical

work only depends on these factors being mobile across districts, not on them being paid their

marginal product.

Given that all districts face the same wage and rate of return, in each district the capital/labor

ratio will be the same at
Ki

LAi
=
w

r

φK
φL

.

Using this ratio, we can write production in each district i as

Yi = AiX
β
i

(
w

r

φK
φL

)α(1−β)

L1−β
Ai (3)

which relates production in district i to district level productivity, Ai, land, Xi, and labor, LAi,

but also the region-specific w/r ratio.

Combine the wage definition from (3) and the production function in (3) with an adding-up

condition for agricultural labor ∑
i∈I

LAi = LA,

where LA is the total amount of agricultural labor in region I. These can be solved for the density

of agricultural workers in sub-unit i,

LAi
Xi

= A
1/β
i

LA∑
j∈I A

1/β
j Xj

. (4)

Intuitively, a district that is more productive should have a greater share of the agricultural labor

force employed in it. In addition, the larger is the region-wide agricultural labor force, LA, the

more dense is agricultural labor in any given district.

Note that the fraction on the right is common to every district in the region. Take logs of (4)

lnLAi/Xi =
1

β
lnAi + ln Γ, (5)

where

Γ =
LA∑

j∈I A
1/β
j Xj

.

This equation shows that the elasticity of agricultural population density with respect to the level of

produtivity is 1/β, and is thus captures the (inverse of) the tightness of the Malthusian constraint.

A version of the linear expression in (5) is what we will take to the data in the empirical section.

Note that Γ is common to all districts within the region, and is not i-specific. We will thus be able

to use fixed effects to capture this term, and we do not need to know the economics of how LA is

set in order to recover estimates of β. Our approach does not us require any sort of assumptions
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about how the demand for agricultural goods is determined (which would dictate the region-wide

level of LA). However, we will return to the determination of LA later in section 4.1, when we

discuss the implications of β for labor allocations and real incomes.

If we observe agricultutral labor spread evenly across districts regardless of their productivity

(1/β approaches zero), then this implies a tight Malthusian constraint. Agricultural workers cannot

crowd into the highest productivity district because this would drive down their average product.

On the other hand, observing agricultural labor concentrated into the most highly productive

districts (1/β is large) will imply that Malthusian constraints are loose. Workers are able to crowd

into the productive districts as this would have little effect on their average product. By looking

at data on the density of agricultural workers and the inherent productivity of agricultural land,

we will thus be able to infer values of β.

3 District level estimates

The basis of our estimations is equation (5). We rewrite that here as a regression specification,

lnAisc = α+ β lnLAisc/Xisc + γsc + δ′Zisc + εisc. (6)

On the left is agricultural productivity in district/prefecture/county i (e.g. Shaoguan) of province/state

s (e.g. Guangdong) in country c (e.g. China). This is regressed on agricultural population density.

As is obvious, we have rearranged the relationship to have agricultural productivity as the

dependent variable, and regress that on agricultural population density. This allows us to recover

an estimate of β directly. Leaving the regression equation as in (5), we would be estimating 1/β, and

as an inverse this would be highly sensitive to small differences in β. Note that by using equation

(6) as our specification, we are not making any statement about causality. This represents an

equilibrium relationship, and we are trying to recover a structural parameter, β.3

γsc are province fixed effects, and they capture all of the information found in the Γ term defined

in the prior theoretical section. In particular, this will capture the overall level of agricultural

productivity in the entire province. Our estimates of β will thus be based off of the variation in

density and productivity across districts within provinces.

The term Zisc represents additional control variables at the district level included in the regres-

sion, and δ is a vector of coefficients on those controls. The two controls we use are the urbanization

3The relationship in equation (6) holds assuming that productivity is Hicks neutral. Empirically, the question will
be whether our measure of inherent productivity, Aisc, is also Hicks neutral. If our empirical measure were capturing
land-enhancing productivity, which we might call Malthus neutral, then the expected elasticity of rural density and
the productivity would be equal to one in all areas. Our results are consistent in rejecting an elasticity of one in all
sub-samples, and hence we feel we can reject that Aisc is a purely land-enhancing productivity term. On the other
hand, if our measure of productivity is Harrod neutral, the our regression will actually be estimating β/(1 − β). In
this case, the implied values of β would be lower in all samples, but the pattern of heterogeneity would be unaffected.
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rate in the district, and the (log) density of nighttime lights to measure economic activity. The

primary bias we are trying to control for with these variables is that urban areas may be located in

places in poor agricultural regions. These districts would thus have a low rural population density

due to urbanization, but would also tend to have poor agricultural productivity, and β would then

be overstated. From Henderson et al. (2016) we know that this is most likely to be a problem

in areas that have recently developed, and where urban areas and economic activity tends to be

driven by trade, as opposed to relatively rich areas where urban areas tend to be clustered in high

productivity agricultural areas. The province-level fixed effects in γsc will account for these regional

differences, and Z will control for this bias within a province.

Standard errors: εisc is an error term, and we assume that it may be spatially auto-correlated.

To account for this in our standard errors, we use Conley standard errors. For any given district

i, the error term of any other district that has a centroid (lat/lon) within 500km of the centroid

(lat/lon) of district i is allowed to have a non-zero covariance with εisc. The covariance of all other

districts outside that 500km window is presumed to be zero. Allowing the weight on the covariance

to decay with distance from the centroid of i does not change the results in a material way. We also

experimented with other windows (1000km, 2000km), but we obtain the largest standard errors

using 500km and hence report those.

Hypothesis testing: We will be estimating (6) separately for various sub-samples based on

regions (e.g. Asia vs. Europe) and major crops grown (e.g. rice vs. wheat). We will thus be

getting different values for β and comparing them to see if tightness of the land constraint varies

across these sub-samples.

The typical significance test of estimated coefficients, with a null hypotheis that β = 0, is thus

a test of whether there is a Malthusian land constraint at all. As will be seen in the results, we can

reject this null hypothesis in all sub-samples, save one with a small sample size.

In addition to this test, what is more relevant is whether the β we estimate using one sample is

statistically different from the β we estimate using a different sample. To test this, we choose one

sample to be the reference sample, and then test the estimated β̂ for all other samples against the β̂

from the reference sample. To implement the test, we run a separate regression that includes both

the reference sample and the given sample, but interacts rural population density with an indicator

variable for being in the reference sample, I(Ref). The coefficient on this indicator variable will be

the difference between the β in the given sample and the β from the reference sample, βRef . The

specification is

lnAisc = β lnLAisc/Xisc + (βRef − β) lnLAisc/Xisc × I(Ref) + γsc + δ′Zisc + εisc. (7)

We then perform a statistical test with the null of H0 : (βRef − β) = 0 using the results of this
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interaction regression. Rejecting this null indicates that βRef and β are statistically different, and

for our purposes this is the hypothesis of interest.4

We choose what we believe is a reference sample of interest, but there is no reason one could

not implement the tests using a different reference sample. In practical terms, the differences in β

we find across samples will be large enough, and the standard errors small enough, that the choice

of reference sample turns out to not be important to our results.

3.1 District Population and Produtivity Data

Population: The underlying population data comes from HYDE 3.1 (Goldewijk et al., 2011), and

is provided at a 5 degree grid-cell resolution. The authors provide counts of total population as well

as urban and rural population for each cell. These counts are derived from political administrative

data at varying levels (e.g. districts, states) which are then used to assign counts to the grid-cells

within the given political unit. By accessing administrative population data (e.g. censuses) at

various points in time, the HYDE database provides estimates of population counts for each grid

cell going back several centuries.

Because of the nature of their estimates, the grid-cell level counts are inappropriate for our

purposes. The authors explain in the associated paper that they use several algorithms to smooth

the population counts across grid cells based on land productivity and assumptions about the

gradient of population density with respect to distance from urban centers. If we use their grid-cell

population data, we will be etimating their algorithm, and not the relationship of density and

productivity.

Therefore, we only use their data at the level of political units. We overlay political boundary

data from the Global Administrative Areas project (GADM) on top of the HYDE grid-cell data,

and use this to rebuild the population count data for each political boundary. Our primary level

of analysis is the GADM second level, equivalent to districts, prefectures, or counties, but we also

examine results using the first level (e.g. states or provinces) as the units of analysis. To economize

on wording, from here on we use the terms provinces (1st sub-national level) and districts (2nd

sub-national level) only.

The estimation in (6) requires data on agricultural population, and HYDE provides a measure

of rural population. There is not a perfect overlap of these two sets, but in the absence of any way

of measuring the spatial distribution of agricultural workers, we use the rural data as a proxy. We

also require data on the urbanization rate within provinces and districts. This can be recovered

directly from HYDE using their counts of total population (rural plus urban) and urban population.

Using the data from HYDE from 2000CE, we calculate the rural density for each district. We

then discard all observations above the 99th percentile and below the 1st from that overall sample,

4The individual tests we run this way are identical to what we would obtain if we included all observations in a
single regression, and interacted rural population density with a series of dummies indicating the sample.
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to avoid outliers that may drive results. We also excluded all districts with fewer than 100 total

rural residents, again to avoid outliers. Regressions including these observations do not appear to

change the results. Summary statistics for the remaining data on rural density can be round in

Table 1. For our entire sample, which covers 32,862 districts for the year 2000CE, there are 0.57

rural residents per hectare. The percentile distribution of this is shown as well, ranging from only

0.03 per hectare at the 10th percentile to 1.53 at the 90th. Figure 1 plots the (log) rural density

by major region of the world, for comparison. South and southeast Asia tends to have the highest

density, with a mode at around one rural person per hectare, while North America has the lowest,

with a mode at around one-tenth of a rural person per hectare. Despite these gross differences,

there is substantial variation within each major region, and all regions have districts with more

than one rural person per hectare.

Despite our focus on Malthusian constraints, using relatively modern population data can still

be informative, and is the reason we derived an explicit expression for agricultural, rather than total,

population density. Agricultural density should be related to the tightness of the land constraint

regardless of development level. But this does raise a caveat, which is that the nature of the

agricultural production function may have changed after 1900 relative to the past, and hence our

estimates of Malthusian tightness using the modern data may not be informative about historical

experience. One assurance on this point is that our results are not contingent on comparing highly

developed nations with modernized agriculture to relatively poor countries. Our results are also

robust to using 1900CE or 1950CE era population data from HYDE, as discussed below.

Inherent agricultural productivity: We rely mainly on the work of Galor and Özak (2016) to

provide our measure of agricultural productivity, Aisc. The authors form a measure of the potential

caloric yield at a grid-cell level, combining crop yield information from the GAEZ with nutritional

information on those crops. As argued by Galor and Özak (2016), the caloric suitability index is

more informative for analysis of agricultural productivity than raw tonnes of output, as it relates

to the nutritional needs of humans. Further, it is based on underlying agro-climatic conditions,

not endogenous to choices made regarding techniques or technology. Given our specification in (6),

this is important. We do not want our estimated β to pick up an endogenous effect of rural density

on agricultural techniques that would show up in broader measures of total factor productivity

(Boserup, 1965).

For our purposes, we use have accessed the crop-specific data underlying the Galor and Özak

(2016) index, so that we can measure both the total potential calories produced within a given

district, as well as identifying which crops are assumed to provide those calories.5 We have also

used a subset of the crops in the original Galor and Özak (2016) dataset, so that we focus on crops

5We use the low-input, rain-fed indices of caloric yield provided by Galor and Özak (2016).

10



that are primary staples.6

A simple example will make the construction of Aisc clear. Imagine a district that has only two

grid-cells within it. Cell A is 1000 hectares, and Cell B is 500 hectares. For cell A, wheat is found

to yield 100 calories per hectare, maize 50 calories, and rice zero calories. For cell B, wheat yields

50 calories, maize 100 calories, and rice 50 calories. Cell A thus has a maximum caloric total of

1000*100 = 100,000 calories (which come from wheat), and Cell B has a caloric total of 500*100 =

50,000 calories (which come from maize). All together, the district has a maximum caloric yield of

150,000/1500 = 100 calories per hectare. This basic logic is easy to extend to an arbitrary numbers

of grid cells and crops.

After we calculate Aisc for each district, we discard values above the 99th and below the 1st

percentile from that total available sample. Summary statistics for Aisc in the remaining districts

can be found in Table 1 in the second row, reported in millions of calories per hectare. The mean

is 10.57 million calories per hectare. At the 10th percentile of the trimmed distribution, the caloric

yield is only 4.84 million calories per hectare, while it is four times higher at 16.54 at the 90th

percentile. The maximum caloric yield in our sample is 32.64 millions calories, while the lowest is

only 0.48 million calories.

The variation in Aisc can be seen more clearly in Figure 2, which plots kernel densities across

major regions. Both Europe and North Africa/West Asia have caloric yields that cluster around

6-7 million calories per hectare, although with long tails extending up to 25-30 million calories

per hectare in some districts. These two regions both tend to have lower yields than South and

Southeast Asia, Sub-Saharan Africa, and South and Central America, where the distributions

overlap strongly, and are all centered around 12-15 million calories per hectare. North America

has a distribution that peaks around 18 million calories per hectare, but which also has significant

weight on yields from about 7-15 million calories.

It may seem surprising that Europe, in particular, is found to have such low caloric yields. There

are two points to note. First, the distribution for Europe does include districts with productivity

as high as any districts in the more equatorial regions, but Europe also includes a large number

of districts with inherently low productivity (northern Norway and Sweden, for example). Second,

and more important, is that these are caloric yields, not raw tonnages of organic matter. Crops

that can be grown in equatorial regions, such as rice and sweet potatoes, are calorie dense compared

to more temperate crops like wheat or barley. As such, equatorial regions have an advantage in

their caloric yield.

The measure of Aisc is the primary measure of agricultural productivity we will use in all

regressions. In addition, the information used to build this measure will be used to create sub-

6The specific crops included in our calculation are: alfalfa, banana, barley, buckwheat, cassava, chickpea, cowpea,
drypea, flax, foxtail millet, greengram, groundnut, indica rice, maize, oat, pearl millet, phaselous bean, pigeon pea,
rye, sorghum, soybean, spring wheat, sweetpotato, rape, wet/paddy rice, wheat, winter wheat, white potato, and
yams.
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samples of districts based on the crops that deliver the maximum calories. For example, we will

create sub-samples where wheat, barley, or rye are the crops that are maximum calorie yielding, or

samples where rice and cassava are the calorie-maximizing crops.

Crop suitability: As an alternative way of creating sub-samples of districts based on crop types,

we will also use “crop suitability indices” from the Global Agro-ecological Zones (GAEZ) project

(Food and Agriculture Organization, 2012), which are provided for each grid-cell on a scale of 0

to 100. Using this to identify which districts are suitable for wheat or rice (for example) avoids

errors we may have introduced by introducing calorie counts to our measure of Aisc, and serves as a

validation check. The GAEZ crop suitability indices are used to divide districts based on the types

of crops they produce, but we continue to use our Aisc to measure productivity, as the suitability

indices are not a measure of potential output.

The GAEZ suitability index depends on climate conditions (precipitation, temperature, evap-

otranspiration), soil (acidity, nutrient availability), and terrain (slope). For districts of a country,

we construct an overall suitability index as a weighted (by area) sum of the grid-cell suitability

indices. Given that the grid-cell suitability measures run from 0 to 100, our aggregated index for

each district also runs from 0 to 100.

Land area: Our measure of land area, Xisc, is the total land area of a district, without adjusting

for cultivated area. We will thus be estimating the elasticity of output with respect to the possible

stock of land. Choosing to not crop certain plots is akin to choosing to apply zero labor or capital to

those plots. We discuss after the main results that our estimates do not differ if we use information

on cultivated area in place of total land.

Nighttime lights: We follow Henderson et al. (2016) and use the Global Radiance Calibrated

Nightime Lights data provided by NOAA/NGDC, described in Elvidge et al. (1999), and reported

at 1/120 degree resolution. This dataset contains more detail on low levels of light emissions (thus

capturing detail of relatively undeveloped areas), and avoids most top-coding of areas saturated

by light (thus capturing more detail in relatively developed areas). To match the data we use

on population, we use the dataset from 2000, and create district-level measures of nighttime light

density by averaging across the pixels contained within each district.

We adjust for the fact that the lights data are reported with zero values, which is part of

an adjustment from NOAA/NGDC to account for possible noise in pixels that report very small

amounts of light. Similar to Henderson et al. (2016), for any district that has a raw value of zero

for night lights, we replace that with the minimum positive value found in the rest of the sample

of districts. This prevents us from falsely understating light density in those districts. Once this

adjustment is made, we take logs of the average lights in a district. Summary statistics for the final
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night lights data can be found in Table 1.

3.2 Results by Crop Type

To illustrate the essence of our results, Figure 3 plots the raw data on (log) caloric yield, Aisc

against (log) rural density, Lisc/Xisc for two sets of districts. The first are those districts that have

a suitability index for wheat that is greater than zero, but for which their suitability for rice is

zero. In the figure, these data points are plotted in black, with the simple bivariate OLS fitted

line plotted. As one can see, there is a positive slope between density and productivity, and as per

our equation (6), this provides an estimate of β for these wheat-capable districts. In comparison,

the data points plotted in gray (green if viewed in color) are those districts that have a suitability

for rice production that is positive, but have zero suitability for wheat. Again, the bivariate OLS

fitted line is plotted, and as can be seen it has a much shallower slope than in the wheat case.

This simple comparison illustrates the difference between these kinds of districts. Wheat-

growing districts display a much tighter Malthusian constraint. Note that rice districts have, on

average, much higher caloric yields than wheat areas, in part due to rice’s superior number of

calories for a given dry weight. But notice that rural densities are very low in rice-capable districts

that are only slightly less productive than those with the maximum. This is the effect we would

expect if the land constraint was loose in rice-capable areas. Wheat districts retain dense rural

populations, even though their inherent productivity is quite low, consistent with a tight land

constraint.

To make the relationships in Figure 3 more concrete, we examine those same relationships in

regressions that include province fixed effects, and for varying sub-samples, as in equation (6). We

create the sub-samples of districts based on the crop suitability and/or production data. We will

thus be selecting some, but not necessarily all, of the districts of a country into each sample. For

example, when we examine a sample that is capable of growing wheat (and other temperate crops),

but not rice (or other sub-tropical crops), we will be selecting districts from northern China, but

not southern China. Note that this procedure alleviates the issue of assigning a country like the

U.S. or Brazil a single biogeographic type, as we are using the variation within those countries.

Table 2 shows the results of these regressions, split into two panels. Panel A selects samples

based on the predominant crops that are capable of being grown. A classic comparison is “wheat

vs. rice” agricultural systems, but each system encompasses a variety of other crops that thrive in

similar agro-climatic conditions. We thus define the Wheat Family to include barley, buckwheat,

rye, oats, white potatoes, along with wheat. We define the Rice Family to include cassava, cow-

peas, pearl millet, sweet potatoes, yams, as well as paddy rice. The GAEZ measures of suitability

for the crops within a family are all highly correlated. We have experimented with alternative sets

of crops in each family, without changing our main results.

The use of the terms Wheat Family and Rice Family are for convenience, and do not imply that
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we are estimating the production function for wheat or for rice, or any of the other crops listed in

each family. We are using the crop suitability and production data to identify samples of districts

that share common agro-climatic constraints, and estimating the aggregate value of β for those

agro-climatic zones.

In column (1) of Panel A, we show the estimated β for a sample of districts that have positive

GAEZ suitability for any of the crops in the wheat family, and which have zero suitability for all of

the crops in the rice family. Column (2) shows the estimated β for the opposite set of conditions:

districts with any suitability for the crops in the rice family, and zero suitability for all of the crops

in the wheat family. As can be seen, there is a distinct difference in the estimated β. For districts

that are capable of growing wheat and similar crops, β is estimated to be 0.240, while for districts

capable of growing rice and similar crops the estimate is only 0.143, a looser land constraint.

Below these estimates are two hypothesis tests. The first row tests the hypothesis that the true

β is equal to zero, and in both cases we reject this at below 0.1% significance. The second row

tests the hypothesis that the β from the rice family sample is equal to the β from the wheat family

sample. We can reject that null hypothesis at 0.1%. The difference in β is statistically significant

in the two samples.

In columns (3) and (4), we repeat the comparison of the wheat family and rice family, but now

we use information from our index of maximum caloric suitability to divide the samples. For column

(3), we include districts where more than one-third of the maximum calories in a district come from

crops in the wheat family. In column (4) we reverse the definition, including only districts where

at least one-third of their maximum calories come from the rice family. The estimated value of β

is lower in both samples than in columns (1) and (2), but the districts with significant rice calories

again have a looser estimated land constraint, at 0.114, compared to districts with significant wheat

calories, at 0.200. The difference in these is statistically significant at 0.2%.7

Completing Panel A, columns (5) and (6) define samples based on their observed harvested

area, using data from GAEZ. Column (5) uses districts in which more than half of their harvested

area comes from the wheat family, while column (6) uses districts where more than half of their

harvested area is from the rice family. The pattern repeats, with the wheat districts having a larger

estimated β value of 0.220, compared to rice districts at 0.126. The difference is significant at less

than 0.1%.

Panel B provides a set of robustness checks on the results from Panel A. Columns (1) and (2)

again look at samples of districts based on their wheat family suitability versus rice family suit-

ability, but excludes any district with a reported urban population greater than 25,000. The worry

is that highly urbanized districts may operate a different type of agricultural technology and/or

may skew the density of rural population near them (perhaps due to definitions of urban areas),

7While it is possible for a district to be in both categories, receiving more than one-third of its calories from both
the wheat and rice family, in practice the crop types are so distinct that only 9 districts have this feature.
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and that our original results were simply picking up differences in heavily urbanized wheat districts

versus lightly urbanized rice districts. As can be seen from the table, however, the distinction in

β estimates remains, 0.279 for wheat districts and 0.156 for rice districts, which is an absolute

difference larger than in Panel A. This difference is again significant.

Columns (3) and (4) of Panel B exclude both Europe (including Russia west of the Urals) and

North America from the samples, to address the worry that these areas may use different types of

agricultural technologies than other places at lower development levels. The finding that districts

suitable for rice family crops have a looser land constraint still holds, with an estimated β of 0.143

compared to 0.253 for wheat family districts. The difference is significant at 1.9%, with the slightly

higher p-value a result of the smaller sample size (785) of wheat-only districts in this restricted

sample.

Finally, columns (5) and (6) exclude districts below the 25th percentile of rural density in the

whole sample. The estimated values of β are based on variation in rural densities within provinces,

and the worry is that districts with very low densities may represent a different type of agricultural

technology (i.e. pastoralism) than crop-based agriculture. Provinces in the rice family areas could

include both pastoral districts and crop-growing districts, and this would lead us to estimate a very

low value of β, even though it may not represent the technology used in either kind of district. By

eliminating low-density districts, we are making it more difficult to find low β estimates. However,

as we see in columns (5) and (6) the pattern of looser land constraints in rice suitable districts

holds up. Both the wheat and rice estimates are larger (0.289 and 0.188, respectively), but the

difference remains similar to prior results, and significant at 1.8%.

3.3 Results by Climate Zone

Table 2 showed significant differences in β between districts suitable for wheat family crops versus

rice family crops. That suitability depends in large part on the climatic characteristics of districts,

and in this section we look at how the tightness of the land constraint is related to specific climate

types. For this, we use the Köppen-Geiger scheme, which classifies each grid cell on the planet on

three dimensions (Kottek et al., 2006). First are the main climate zones: equatorial (denoted with

an “A”), arid (B), warm temperate (C), and snow (D).8 Second, each grid-cell has a precipitation

classification: fully humid (f), dry summers (s), dry winters (w), monsoonal (m), desert (D), and

steppe (S). Finally, there is the temperature dimension: hot summers (a), warm summers (b), cool

summers (c), hot arid (h), and dry arid (k).9 Each grid cell thus receives either a three or two-part

code. The area around Paris, for example, is “Cfb”, meaning it is a warm temperate area, fully

humid (rain throughout the year), with warm summers. The area near Saigon is “Aw”, meaning it

8There is another classification of climate, polar (E), but that covers only areas that are effectively uninhabited.
9There are three other temperature classifications - extreme continental, polar frost, and polar tundra - that also

cover only uninhabited areas.
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is equatorial, with dry winters. There is no separate temperature dimension assigned to equatorial

zones, as it tends to be redundant.

What we do in table 3 is divide districts into sub-samples based on their Köppen-Geiger clas-

sifications, as opposed to crop suitability or production data. We do this along each individual

dimension (climate, precipitation, and temperature), including a district in the sub-sample if more

than 50% of its land area falls in the given zone. For example, for the equatorial sub-sample, we

include all districts in which 50% (or more) of their land area is classified as being in “A” in the

Köppen-Geiger system, regardless of their precipitation or temperature codes. Narrowing down

to very specific classifications (“Cfb”, for example) is impractical because the number of districts

becomes very small. Similar to the crop regressions, an advantage of the climate zone classifica-

tions is that they do not force heterogenous countries to be lumped into single regions, with the

assumption of a common β.

In Panel A of table 3 we show the results for the different climate zones. The Malthusian

constraint in equatorial zones is estimated to be 0.120, similar in size to what we saw for areas

suitable for the rice family of crops. The arid zone has an estimate of 0.156, and then the estimated

constraints become tighter. The warm temperate zone has an estimated constraint of 0.172, while

the snow zone has a coefficient of 0.236. On this dimension, the Malthusian constraint becomes

tighter as climates become cooler. This is consistent with the crop results, as the wheat family is

suitable in temperate and cooler climates. Both temperate and snow climate estimates of β are

significantly different from the equatorial value, with p-values of 3.3% and 0.1%, respectively.

Panel B shows the estimates when we create sub-samples based on their precipitation regime.

Here, we can see that the first two types - fully humid and dry summers - both indicate a Malthusian

constraint of about 0.185, and we cannot reject that these values are identical (p-value of 0.947).

Fully humid areas are those with year-round rain, and dominate the eastern U.S., Western Europe,

the River Plate basin, the east coast of Australia, Indonesia, and the sub-tropical areas of China.

The dry summer areas are associated with Mediterranean climates, as well as with the west coast

of the United States, Chile, and some central areas of India. These types of precipitation regimes

have tighter Malthusian contraints than the others, as can be seen in the remaining columns.

Places with dry winters (columm 3), or which rely on monsoons (column 4) have estimated

constraints of 0.127 and 0.139, respectively. These areas cover the majority of the equatorial

regions of the world, from the Amazon basin, across central Africa, and then enveloping nearly

all of south and south-east Asia. The difference of the dry winter constraint from the fully humid

constraint is only marginally significant (7.3%), while the monsoon value is not significantly different

at standard levels (19.0%). The final two precipitation regimes are deserts and steppe areas, which

are estimated to have even looser land constraints than the others, at 0.094 and 0.115, but again

the difference in these from the fully humid value is only significant at more than 5% (7.8 and 7.2%,

respectively).
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The final panel of Table 3 shows the results from sub-samples based on temperature zones.

Districts with hot summers, in column (1), have an estimated constraint of 0.142. In columns (2)

and (3), places with warm or cool summers have much tighter land constraints, estimated at 0.225

and 0.264, respectively. These are both significantly different from the value for districts with hot

summers (0.6% and 1.0%). In comparison, the arid areas, whether hot or cold, in columns (4) and

(5), show lower estimated constraints at around 0.135, and the difference with hot summer areas

cannot be rejected (83.1 and 84.8% p-values).

While we have separated the districts according to single dimensions, each area is composed

of a set of these characteristics. The individual estimates in 3 would interact to create the exact

Malthusian constraint in each individual district or province. While there may be non-linear effects

at work, one can see some logic in simple averages across the different types of climate zone. For

example, places that are in the “snow” climate zone (.236), with “fully humid” precipitation (.187),

and with “warm summers” (0.227), should tend to have tight Malthusian constraints. Places like

this include southern Canada and the upper Midwest in the United States, and much of eastern

Europe and western Russia. These are also places that grow significant amounts of crops in the

wheat family.

In constrast, districts in equatorial areas (0.118), with dry winters or monsoons (0.135), regard-

less of temperature regime, should have relatively loose Malthusian constraints. And this is what

we find when we look at sub-regions like tropical Africa and Central America, which tend to be

suitable for growing crops in the rice family, but not in the wheat family. The climate characteris-

tics of tropical areas appear to lend themselves to loose Malthusian constraints compared to colder

areas with more regular rainfall.

We should reiterate here that the tightness of the land constraint is not an indicator of the

productivity of the land, as desert and steppe areas are among the least productivite agricultural

areas on the planet, but also are estimated to have the loosest Malthusian constraints. Similarly,

tropical areas have loose Malthusian constraints, but may not be as productive as more temperate

climates. The Malthusian constraint captures how sensitive the average product of labor is to

changes in labor, but does not indicate how productive an area will be.

3.4 Results by Regions

Based on the patterns of land constraints seen by crop suitability and climate zone, we would

expect that land constraints vary across groups of countries within specific regions (e.g. Northwest

Europe or Southeast Asia). Here we show significant differences in the estimated β when we limit

samples to specific regions. The samples we choose will be all the districts within countries that are

part of a given region, and we will be assuming that the value of β is identical across all of those

districts. This obscures variation in agro-climatic conditions within regions, which would otherwise

generate different values of β based on our prior results. Nevertheless, it is interesting to see how

17



the values of β vary across regions, as so much other research on economic development is based

on these kinds of distinctions, rather than at the agro-climatic level.

Table 4 shows the estimates for fifteen separate regions, the exact definitions of which can be

found in the appendix. We start in Panel A, column (1) with North and Western Europe. The

estimated value is 0.264, consistent with column (2), where the estimated value for Eastern Europe

is 0.292, and column (3) where the estimated value for Southern Europe is 0.271. We test both

of the latter regions against the estimate for Northwest Europe, and cannot reject the hypothesis

that they are equal in either case (p-values of 56.9 and 88.4%).

Moving to Asia in columns (4) and (5), we have separated the continent into South and South-

eastern Asia (which includes India and Indonesia) and Central and West Asia (which includes the

Mideast). Neither sub-region includes China, Korea, or Japan, which we will address separately in

Panel C. For South and Southeast Asia, the estimated value of β is 0.148, lower than in Northwest

Europe. Statistically, we can reject equality with the β from Northwest Europe (p-value of 1.6%).

For Central and Western Asia the estimated value is 0.184, and this is statistically different from

the value in Northwest Europe at 10% (p-value 9.9%). The Malthusian constraint appears to be

tighter in Europe as a whole when compared to both Asian sub-regions, consistent with the climate

and crop regressions presented earlier.

Panel B begins in columns (1) and (2) by showing the result for temperate and tropical countries

in the Americas. For temperate countries, the estimated value of β is 0.187, and given more noise

in the estimate we cannot reject equality with the Northwest Europe value, as the p-value is 17.0%.

For the tropical countries of the Americas, the estimated value of β is only 0.119, and this is

different from the Northwest Europe value at 0.1%.

In the remainder of Panel B, we display results for various sub-regions of Africa. In column (3)

we have the tropical region spreading across the center of the continent. For this sub-region, the

estimated value is 0.100, and significantly lower (at less than 0.1%) than the Northwest European

value. Tropical Africa has the loosest Malthusian constraint of any sub-region, even though this

area is amongst the poorest and most dependent on agriculture, and is a reminder that the tightness

of the land constraint does not tell us whether the level of productivity is high or low.

In southern Africa, reported in column (4), the estimated β is 0.130, similar to the Asian and

tropical African values. Given the small sample size, we can barely reject the hypothesis that β = 0

(6.6% p-value) at standard levels, and we can just reject equality with Northwest Europe at 10%.

For North Africa, in column (5), however, we have a similar estimate to the European ones, at

0.282. We cannot reject equality with the Northwest European value.

The final panel of Table 4 shows results for China, Japan, and the Koreas. We explore the

breakdown within China in columns (1) through (3) to demonstrate how significant the differences

can be in β even within regions and/or countries. Column (1) shows the estimate for China

as a whole, yielding an estimate of 0.414, quite high compared to other regions. When we split
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provinces into temperate and sub-tropical regions (see appendix for the split by province), however,

there appears to be substantial heterogeneity. Column (2) shows that for the temperate provinces,

the Malthusian constraint is very tight, with β estimated to be 0.518. In sub-tropical China the

estimated value is only 0.107, similar to the other tropical areas examined in 4. We implement a

similar test to compare the β estimates of temperate and sub-tropical China, and we can reject

that they are the same.

Columns (4) and (5) provide estimates for Japan and the Koreas. The estimated values, 0.155

and 0.190 respectively, and tend to be closer to the value for sub-tropical China than to temperate

China. Compared to other regions explored earlier, these are low compared to areas like Northwest

Europe, but equivalent to other tropical areas. These results are consistent with what we found

using the crop suitability and production samples in Table 2, but appear to run counter to the

climate results from Table 3, as neither Japan nor the Koreas fall into equatorial zones with hot

summer months. This may suggest that it is the type of crop, rather than the climate conditions

themselves, that dictate the size of β. Testing this further is difficult because crop types and climate

zones are highly correlated, and there are not other areas that show as notable deviation in crop

and climate as in Japan and the Koreas.

Regardless, Table 4 shows that there are significant differences in the tightness of land con-

straints across regions of the world, whether that is driven specifically by crops or climate. It is

notable that some of the poorest areas of the world today, such as tropical Africa, the tropical

Americas, and South Asia, exhibit the loosest land constraints. After discussing the robustness of

our empirical results, we will return to why this loose land constraint may be part of an explanation

for their slow development. It is worth pointing out, though, that our results here are not driven by

comparing rich regions to poor regions, or even rich provinces to poor provinces within countries.

With the province level fixed effects, we are using variation in rural density across districts within

provinces, and information about differences in rural densities across provinces or countries is not

used. These results are not a proxy for income per capita.

3.5 Comparison to Factor Shares

An obvious point of comparison for our estimates of β is the factor share of land in agricultural

output. With competitive markets for all inputs to agriculture, the factor share of land should

be equal to β. There are limited estimates available of this share, and they are inconsistent with

our estimates in many cases. Fuglie (2010) reports factor share estimates for a set of countries,

finding shares between 0.17 and 0.30 for land and structures. The inclusion of structures muddies

the comparison with our estimate of β. Nevertheless, he reports land shares between 0.22 and 0.25

for India, Brazil, and Indonesia. There is substantial heterogeneity within each of these countries

(save Indonesia) in climate and crop type, but our estimates would suggest values of β between

0.10 and 0.15 for most of these. The factor share of land and structures for China is 0.22, which is
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difficult to compare to our results given the heterogeneity in crop types. For what it is worth, the

value of 0.22 lies between the elasticities of 0.518 and 0.107 we estimate.

Reported factor shares for land and structures in the US (0.19) and former Soviet Union (0.21

- 0.26) are in line with our β estimates for those areas. Similarly, a study by Jorgenson and Gollop

(1992) reported a land share of 0.21, close to our estimates for β in the temperate Americas.

Fuglie reports a factor share of 0.17 for land and structures in the UK, below the value of around

0.26 we get for β in Northwest Europe. However, Clark (2002) reports long-run factor shares of

land for England, and that share is between 0.30-0.36 for several centuries. Fuglie cites a share

of 0.23 for Japan, higher than our estimate β of 0.155 for that country. Hayami, Ruttan and

Southworth (1979) provide longer-run estimates of land shares for several east Asian economies,

finding estimates between 0.3 and 0.5 for Taiwan, Japan, Korea, and the Philippines from the late

1800’s until the middle of the 20th century.

There is no clear correlation of our estimated β values with the factor shares. Nevertheless,

we think there is information our estimates. Our estimates are built using the assumption that

non-land factors of production have returns that are equalized across districts within a province,

but our technique is robust to the presence of distortions and frictions in the province-wide market

for these factors. In contrast, for factor shares to be good estimates of the elasticities, it would

have to be that returns are equalized across districts and there are no distortions or frictions in

the province-wide factor markets. Our method is less restrictive, and as we discuss below, we can

relax the assumption on factor mobility to a great extent and receive similar estimates.

Further, we are estimating an aggregate production function parameter, and the underlying

farm-level production functions that give rise to the factor share data may not share the same

shape or elasticities. For agricultural production, this has been discussed since Hayami and Ruttan

(1970), and is an application of Houthakker (1955), where an aggregate Cobb-Douglas may represent

the envelope of a set of different techniques, each of which may have an elasticity of substitution

between factors different than one (including zero). The factor share information, assuming markets

are complete, may provide an accurate estimate of the elasticity of output with respect to land

conditional on a fixed technique, but the aggregate elasticity may differ given the possibility of

changing techniques. It is not clear that the factor share data cited should be privleged in terms

of its importance for the question at hand.

3.6 Robustness and Threats to Validity

3.6.1 Livestock and Cash Crop Production

Our baseline estimates are made using a measure of productivity, Aisc, that is built up from

information on the yields of specific staple crops. In addition, we are assuming that the value of

α is the same throughout a province. There are two concerns regarding these assumptions. First,
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there is more to agriculture than staple crops, and districts may rely heavily on livestock or cash

crops (cotton, coffee, etc.) that our productivity measure does not capture. Second, the value of

α may be different for livestock or cash crop producing districts, and hence our assumptions that

allowed us to sweep measures of capital (and other inputs) into the province fixed effect would no

longer hold. To be clear, the problem here is if districts within a province vary in their reliance on

livestock, cash crops, and staples. Variation in that reliance across provinces is not a problem, as

the fixed effect will absorb those effects.

In Table 2, we already took an indirect approach to these problems. The results when we

eliminate low density districts (Panel B), would omit districts that rely heavily on livestock, which

would involve much lower average densities than staple crop production. As a further robustness

check, we have eliminated all districts that fall below the 25th percentile in total raw tonnes of

staple crop production. This is a crude way to eliminate districts that rely on livestock or cash

crops, or do not produce staple crops at all. The results using this limited sample are almost

identical to our baseline. Using a cutoff of the 50th percentile does not alter the results either,

barring a slight decrease in the estimated size of β for the European regions (to around 0.21). The

variation in β we find does not appear to be a result of compositional effects between livestock,

cash crops, or staples across districts within provinces.

3.6.2 Population Data

There may be a concern that by using rural population data from 2000 to perform the estimation,

we are relying on an era where agricultural employment is very small in many countries, and where

rapid technological progress in that sector has changed the nature of the production function. In

particular, one may worry that the high elasticities estimated for Europe or the U.S. and Canada

do not represent the same constraints that would have held prior to the heavy mechanization of

agriculture in the 20th century. On this, note that we achieve similar results for the Malthusian

constraint in poor but temperate North Africa, and that the variation by crop type, which relies on

within-country variation, is consistent with there being distinct differences in the land constraint

by crop and climate. As well, in Table 2, Panel B, we eliminated North America and Europe from

the samples, and found similar results for wheat and rice family elasticities.

To alleviate the concern further, the results in Tables 2, 3and 4 have been re-estimated using

rural population data from Goldewijk et al. (2011) from 1950 and 1900, during and prior to the

mass mechanization of western agriculture, and in both cases the pattern of results are the same.

Our concerns about the construction of the HYDE data prevent us from going backwards in time

even farther, as the distribution of rural labor in that dataset is extrapolated backwards from the

more recent data.

A related issue would be if the HYDE database incorrectly mapped rural population data to

separate districts. While for 2000 they use published population statistics and match their results
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to other sources such as the GRUMP database (Center for International Earth Science Information

Network, 2011), HYDE may be incorrectly assigning rural population to districts based on choices

of how to treat borders. We have re-estimated all of our results at the province/state level (using

country fixed effects), where the likelihood of these errors is smaller, given the smaller number of

borders, and the smaller weight that any given grid-cell would have in a larger political unit. At

this level, the pattern of our results is identical. The only difference is that the estimated elasticities

for the temperate/wheat samples are somewhat higher, indicating even larger differences between

temperate and tropical regions.

3.6.3 Measurement Error

If there were classical measurement error in either rural population or land area then our estimated

β would be subject to attenuation bias. If one believes the variance of the measurement error

is larger in areas that grow crops in the rice family, such as South-east Asia or tropical Africa,

then the estimated elasticity will be attenuated more than in wheat family samples, and this could

explain the pattern of results we have found.

The most likely source of this on the population side would seem to be poor census-taking

procedures in the countries in the rice family samples. We cannot rule this out, but the scale of

the measurement error necessary to account for the differences appears extreme. For example, we

estimate that β is almost 0.25 for wheat family samples, and approximately 0.125 for rice family

samples. For this difference to have been driven by measurement error in rice family samples,

their true variance in (log) rural density would have to be half of the measured variance. This in

turn would imply that half of the rural densities were overstated by a factor of two or more, or

understated by a factor of one-half or less. It seems implausible that measurement error in rural

density could be this dramatic, and only this dramatic in rice family samples.

In terms of land, as discussed earlier we are using the entire area of a district to measure X, as

this represents the stock of possible agricultural land. Choosing not to cultivate land is indicated

by having no labor (or other inputs) used on that land, leading to a low rural density. As such,

that density is still informative about the value of β. Places with low β values would be more

willing to leave marginally worse land uncultivated, and pack all workers into the few plots with

high productivity.

Nevertheless, we can control for cultivated land area XC in each district, which is available

from Food and Agriculture Organization (2012). We can write our rural density as lnL/X =

lnL/XC + lnXC/X. The first term is the (log) density per unit of cultivated land, while the

second term is the (log) share of cultivated land in total land area. We can include both terms in

our regressions, and recover the estimates of β from the coefficient on lnL/XC , controlling for the

second term. The estimates of β using this alternative are in line with our baseline results, and

show a similar pattern across crops, climate zones, and regions.
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A more mundane worry about measurement error is simply that the total area of each district,

X, is mis-measured. Similar to the reasoning for population, the degree of mismeasurement in land

area would have to be both geographically specific to only rice-growing areas and improbably large

for attentuation bias to explain the variation in β across regions. It seems near impossible to think

that we have mistated X by a factor of 2 or 3 for any given district, as we are working with known

administrative boundaries.

3.6.4 Alternative Mobility Assumptions

Our baseline specifications are built off of a model that assumes agricultural output, as well as

labor and capital, are freely mobile across districts within a given province (although we do not

require them to be mobile across provinces). However, even within a given province, there may be

frictions or limits on the mobility of either output or inputs, or both. If these frictions exist, then

our regressions may not be delivering unbiased estimates of β. More formal descriptions of these

assumptions can be found in Appendix A.

If inputs cannot move between districts (but output can), the variation in rural density across

districts might reflect differences in non-agricultural productivity, and if that is related to agri-

cultural productivity, it will bias our estimates of β. We show this logic in the appendix, and in

this case specific controls for non-agricultural TFP and the capital/labor ratio are necessary to get

unbiased estimates of β. To the extent that night lights are a proxy for non-agricultural TFP and

the capital/labor ratio within a district, then our baseline regressions are robust to district-specific

non-mobile factors of production. The threat to our results here would be if there was a correla-

tion between rural density and non-agricultural productivity or the capital/labor ratio, that this

correlation varied systematically by climate zone or crop type, and night lights are a poor proxy

for productivity and the capital/labor ratio. Even if night lights are a poor proxy, though, it is

not obvious why this correlation of rural density and non-agricultural productivity would vary with

crop type or climate zone.

A stronger assumption would be that districts are in fact autarkic, and neither inputs nor

outputs can move between them. In this case variation in rural density would be driven by both

non-agricultural productivity and by idiosyncratic differences in demand for agricultural goods. As

we show in the appendix, conditional on both agriculture’s share of total labor and agricultural

consumption per capita, districts with higher agricultural productivity should have higher rural

densities, and we can recover an estimate of β. We include the share of agricultural workers in a

robustness check, and if nighttime lights capture agricultural consumption per capita, we can still

rely on our estimates. The results in this case are essentially identical to our baseline results.

If the lights are a poor proxy for the consumption term, our results for β may be biased. For

this to explain the differences in β across regions, it would have to be the case that agricultural

consumption is related to rural density only in tropical rice-growing samples, but not in temperate
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ones. The province level fixed effects will handle gross differences in development between tropical

and temperate areas, so it is not the case that this would reflect the fact that tropical areas tend to

be poorer than temperate areas. Table 2 also showed, in Panel B, that we receive similar estimates

if we eliminate North America and Europe altogether.

3.6.5 Production function specification

Our specification was built on assuming a Cobb-Douglas production function, which has the impli-

cation that the elasticity of output with respect to land is constant regardless of the endowments

of land and labor. If the elasticity of substitution between land and labor were not one then the

level of rural density, L/X, would influence the estimated elasticity β. If the elasticity of substi-

tution were more than one, then it would be the case that more densely populated areas would

have lower estimated elasticities.10 We do not feel this is driving our results on heterogeneity. We

obtain similar results for β in tropical areas of southeast Asia, with a high density, and in tropical

areas of Africa, with a very low density. If the elasticity of substitution were higher than one, then

the tropical area of Africa should have a much higher estimated elasticity. A common production

function with a high degree of substitution between land and labor does not appear to be consistent

with our results.

An alternative concern would be if the elasticity of substitution between capital and labor were

not one, indicating that provinces with different capital/labor ratios may have a different elasticity

with respect to capital or labor. For our purposes of estimating β, this should not pose a problem.

With an elasticity of substitution not equal to one between capital and labor, this implies that

the elasticity of output with respect to either of those inputs depends on the capital/labor ratio.

Within our empirical setting, this is equivalent to assuming that α depends on the size of K/L in a

province. The value of α, however, is contained within the province fixed effect in our estimations,

so even if it does vary with capital/labor ratios, this introduces no bias into our estimation of β.

4 Implications of Variation in Malthusian Constraints

Empirically, we have established that β varies by crop type and region. Here, we try to show why

that this variation matters for questions of both contemporary and historical development. We first

show theoretically that β determines the sensitivity of real income per capita and the agricultural

labor share to shocks in population and/or productivity. Following that, we present evidence from

the epidemiological transition after World War II showing that the effect of mortality changes on

GDP per capita and GDP per worker was stronger in places with tight land constraints, consistent

with the predictions of the model.

10Work by Wilde (2012) indicates that the elasticity of substitution is less than one, using historical information
from the United Kingdom.
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The intuition for that prediction and empirical regularity is straightforward. The fixed factor

of agricultural land introduces decreasing returns to scale with respect to labor and capital into

agricultural production, and by extension, into aggregate production. The size of β dictates the

severity of those decreasing returns to scale. A high value of β implies stronger decreasing returns,

meaning that in response to a common shock to population (such as in the epidemiological transi-

tion) countries with high β values will see their living standards fall by more than countries with

low β values. On the other hand, anything that leads to a shift of inputs out of agriculture (e.g.

productivity improvements in either sector) will benefit areas with tight Malthusian constraints

more, as they face more severe decreasing returns.

4.1 Two-sector Model with Land as a Fixed Factor

In the interest of space, we have relegated much of the algebra to Appendix B, and outline the key

assumptions and results here. The two sectors in the economy are agriculture and non-agriculture.

The agricultural sector operates as described in section 2. Summing agricultural production over

all districts in a province I, we can write aggregate agricultural output in a province as

YA = AA

(
KA

LA

)α(1−β)

L1−β
A , (8)

where

AA =

∑
j∈I

A
1/β
j Xj

β

is the measure of aggregate agricultural total factor productivity for the province, and KA is the

aggregate stock of capital in the agricultural sector. For non-agriculture, we can write an aggregate

production function for the province as

YN = AN

(
KN

LN

)α
LN . (9)

In both sectors, total supply must equal total demand, so YA = cAL and YN = cNL, where cA and

cN are per-capita consumption of agricultural and non-agricultural goods, respectively.

For preferences, we follow Boppart (2014), who specifies a functional form for the indirect utility

function that allows for analysis of structural change involving income effects.11 This function

results in non-linear Engel curves while still allowing for aggregation across individuals, and results

11The functional form is in the “price independent generalized linearity” (PIGL) preference family. It has a number
of attractive properties that Boppart exploits, but which are not relevant for our analysis.
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in a simple demand function for agricultural goods (cA), in log form, of

ln cA = ln θA + (1 − ε) lnM + (γ − 1) ln pA + (ε− γ) ln pN (10)

where θA is a preference parameter, M is nominal income, and pA and pN are the nominal prices

of agricultural and non-agricultural goods, respectively. With 0 < ε < 1, these preferences imply

that the income elasticity of agricultural demand is less than one, capturing Engel’s Law. Further,

assuming ε > γ means agricultural and non-agricultural goods are substitutes.12

To go further, the most important assumption we make is that the share of output paid to

land in the agricultural sector is zero, equivalent to assuming zero property rights over land. This

eliminates the effect of β acting through factor shares, but retains the effect of β acting through

the curvature of the agricultural production function. With the land share set to zero, we assume

that the share paid to capital in both sectors is φK , and to labor, φL. The combination of those

assumptions ensures that the capital/labor ratio in both sectors is equal to the aggregate capital

labor ratio, K/L. Mobility between sectors ensures that the payments to labor are equalized,

pAφL
YA
LA

= pNφL
YN
LN

. (11)

Combining the production functions in (8) and (9), the demand function in (10), and the

mobility condition in (11) we can solve for the share of labor employed in agriculture and a measure

of real income in terms of agriculutural goods (M/pA). The labor share is

LA
L

= θA

(
Lβγ

AγAA
ε−γ
N k̂α(ε−βγ)

) 1
1−βγ

(12)

while the real income is

y =

(
AAA

β(ε−γ)
N k̂Ω

Lβ

) 1
1−βγ

(13)

where k̂ = (φKK/φLL), and Ω = α(1−β)+αβ(ε−γ). From these expressions it is straightforward

to read off the elasticities of both LA/L and y to shocks to technology or population, but for clarity

we summarize those results in the following proposition.

Proposition 1 The elasticities of the agricultural labor share (LA/L) and real income (y) with

respect to various shocks,

(a) Agricultural productivity (AA): ∂ lnLA/L
∂ lnAA

= − γ
1−βγ and ∂ ln y

∂ lnAA
= 1

1−βγ

12The relative size of ε and γ is the opposite of what Boppart uses to describe the shift from manufacturing to
services, where an increasing expenditure share on services is accompanied by higher prices in that sector, indicating
complements. Here, the expenditure share of non-agriculture rises while also having lower prices.
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(b) Non-agricultural productivity (AN ): ∂ lnLA/L
∂ lnAN

= − ε−γ
1−βγ and ∂ ln y

∂ lnAN
= β(ε−γ)

1−βγ

(c) Population (L): ∂ lnLA/L
∂ lnL = βγ

1−βγ and ∂ ln y
∂ lnL = − β

1−βγ

are all increasing in absolute value with β.

Proof. This follows directly from inspection of (12) and (13).

The elasticities shown in the proposition are all consistent with standard models of structural

change (Kogel and Prskawetz, 2001; Gollin, Parente and Rogerson, 2007; Restuccia, Yang and Zhu,

2008; Gollin, 2010; Vollrath, 2011; Alvarez-Cuadrado and Poschke, 2011; Herrendorf, Rogerson and

Valentinyi, 2014; Duarte and Restuccia, 2010) in their signs. What Proposition 1 shows is that

the size of those elasticities depends on the size of the Malthusian constraint. Technological or

population shocks will have more severe effects, either positive or negative, on locations that have

tighter Malthusian constraints.

This arises because the presence of land in the agricultural production function means that

there are decreasing returns to scale with respect to the mobile factors (capital and labor). The

economy is trading off a desire for agricultural goods against the cost of putting factors to work in

a decreasing returns sector. As β dictates the degress of decreasing returns, the higher is β, the

bigger the implication for aggregate productivity of moving factors into (or out of) the agricultural

sector. Any shock that allows the economy to shift resources away from agriculture is of bigger

benefit to a high-β economy due to the more severe decreasing returns.

While the size of the land constraint dictates the response of economies to shocks, it does not

by itself explain patterns of comparative development. That is, the level of living standards, and

the agricultural labor share, are both still dependent in the end on productivity levels (AA and AN )

and population size. Proposition 1 does not claim that economies with higher β values are richer

or have lower labor shares in agriculture, only that the response to productivity and population

changes is more severe.

That said, if two economies with different Malthusian constraints experienced the same positive

shock to productivity (or negative shock to population), the economy with the tighter land con-

straint would see a larger shift of workers out of agriculture, and a greater gain in living standards.

Of course, this works in reverse as well; areas with tight land constraints will see living standards

suffer more in response to negative shocks.

This logic offers a way to understand several issues in historical and contemporary development.

In Europe, the Black Death had a substantial positive effect on living standards and urbanization,

and it has been proposed that this had persistent effects on development (Voigtländer and Voth,

2013b,a). Similar epidemics also hit regions of Asia, without appearing to have initiated such

fundamental changes (McNeill, 1976). Proposition 1 suggests that the reason for this subdued

response could be the looser land constraint found in Asia, which muted the transition of labor out
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of agriculture and the increase in living standards. Leaving aside epidemics, Asian development has

often been characterized by “involution” (Geertz, 1963; Huang, 1990, 2002), where technological

changes occurred, but led to higher density without driving up living standards or urbanization.

Proposition 1 shows that the loose land constraint may be a source of involution, by muting

the response of Asian economies to productivity shocks, and requiring them to experience greater

productivity improvements just to keep up with regions having tight land constraints (e.g. Europe).

From a contemporary perspective, areas that developed more rapidly (east Asia) tend to have

tighter land constraints than those who lagged behind (tropical Africa, central America). As with

involution, the results here suggest why that may be the case, as the loose land constraints in Africa

and Central America would restrict their gains from realized productivity gains, and require more

growth in productivity just to keep pace over time.

4.2 Evidence from the Epidemiological Transition

To confirm the predictions of the model in section 4.1 we present evidence that population shocks

have a stronger effect in countries with tight land constraints (high β) as compared to countries

with loose constraints.

The epidemiological transition that occurred following World War II provides a useful context

in which to test the effects of variation in β. Acemoglu and Johnson (2007) collect mortality rate

data from the post-war period for a set of 15 infectious diseases (e.g. tuberculosis and malaria).

They argue that this formed an exogenous shock to population health, and therefore size, in de-

veloping countries, and use it to try and identify the causal impact of health on living standards.

We can use the same empirical setting to ask whether the impact of these plausibly exogenous

health interventions differed based on whether countries had tight (high-β) or loose (low-β) land

constraints. Based on our simple model, we would expect that living standards in places with tight

constraints should be more sensitive to these mortality shocks than places with loose constraints.

To implement this, we first estimate a separate β for each country, so that we can classify

them as having either a tight or a loose constraint. We use all districts within a country, and then

estimate 6, including the province-level fixed effects. Given heterogeneity of climate types within

countries, this is not ideal, as it assumes that all provinces of the country have an identical value of

β. However, the data from the Acemoglu and Johnson paper is at the country level, so in order to

have a single observation for each country, we make the assumption that β is homogenous within

each.

We restrict ourselves to the low and middle income sample from Acemoglu and Johnson, which

gives us 34 countries. We make this restriction because rich countries, regardless of their value of β,

are not going to be affected by the decreasing returns in the agricultural sector to any meaningful

degree. For the 34 low and middle income countries, we then split them into two groups based on

whether their β is below the median in the 34 countries (“loose” constraints) or above the median

28



(“tight” constraints).13

For each group, we use the original data from Acemoglu and Johnson to run panel regressions

with the specification of

yit = α+ θxit + γi + δt + εit (14)

where yit is one of three different dependent variables (log GDP per capita, log GDP per worker,

or log population), and xit is one of three different independent variables (mortality rates, log life

expectancy, or log population). θ captures the effect of the independent variable on yit, and we will

compare the value of θ across samples that differ based on whether they have loose land constraints

or tight land constraints. γi and γt are country and decade fixed effects, while εit is the error term.

Each country has up to eight decadal observations, running from 1930 to 2000, but the panel is not

balanced.14

Table 5 presents the results. In Panel A, the explanatory xit variable is the original mortality

instrument from Acemoglu and Johnson, which measures the mortality rate from the 15 infectious

diseases that were affected by the interventions following World War II. For us, these mortality rates

are the most useful, because they directly affect population size, and as per Acemoglu and Johnson,

the variation in them across countries and time is plausibly exogenous given the epidemiological

transition.

In columns (1) and (2), we show the effect of mortality rates on (log) GDP per capita. As can

be see, the estimated coefficient for low-β countries in column (1) is much smaller than the estimate

for high-β countries in column (2). Below these estimates are two hypothesis tests. First, the test

that the effect size is zero, θ = 0. We can just reject zero for low-β countries at 10.3%, but strongly

reject zero for high-β countries. Moreover, and more relevant, the hypothesis that θ is identical for

the two samples if rejected at 8.2%. These results conform with the intuition we presented earlier.

In places where land constraints are “tight”, the effect of changes in population - here proxied by

shocks to mortality rates - are more severe than in places where land constraints are “loose”. The

coefficient estimate for high-β countries is two-and-one-half times that of the low-β countries, and

as just explained, this difference in statistically significant at standard levels.

Columns (3) and (4) of the same panel repeat this test, but now using (log) GDP per worker

as the dependent variable. The results are even stronger, with the effect of mortality estimated to

be three times larger when β is high than when it is small (0.907 vs. 0.302). Again, this difference

is statistically significant, now at 2.2%, and again show that high-β countries are more sensitive to

13We can expand the data to include up to 45 countries in some regressions where we have sufficient data. To
create comparable samples across all of our regressions, we limit ourselves to the 34 countries with full data. Our
results are not affected in a material way by including all possible countries in each regression we run.

14Rather than separating countries into two groups based on β and comparing θ between them, an alternative
specification would be to interact βi with xit, as in yit = α + θ0xit + θ1βi × xit + γi + δt + εit. In this case, the
estimated value of θ1 would indicate how the effect of xit differs with the size of β. Doing this produces results
consistent with those presented in Table 5.
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population shocks than low-β countries. These columns show that mortality shocks affected the

average output of each worker, and the effect on per capita GDP did not arise solely because of

short-run changes in the age structure of the economy. This effect of mortality on output per worker

is consistent with there being decreasing returns to production due to fixed factors, although the

regressions do not imply that it is agricultural land that necessarily created the decreasing returns.

The final columns, (5) and (6), in Panel A are also important in making our case. They show

that the effect of morality shocks on the size of (log) population was the same in the two samples of

countries. The coefficient estimates are very similar, and the p-value for a test of their equality is

69.6%. Mortality shocks did not have differential effects on high and low-β countries, which might

have explained the results in columns (1)-(4). Rather, there appear to be real differences in the

effect of those mortality shocks on living standards, depending on the size of β, consistent with our

predictions.

Panel B of Table 5 repeats the regressions, but now uses life expectancy itself as the explanatory

variable xit, matching Acemoglu and Johnson’s original work. Whether looking at GDP per capita

(columns 1 and 2) or GDP per worker (columns 3 and 4), we find that the difference in the estimated

effects is significant between low and high-β samples. And consistent with our prediction, the size

of the effect is stronger for high-β countries than for low-β countries. Tighter land constraints make

economies more sensitive to population shocks.

The positive effect of life expectancy for low-β countries (see columns 1 and 3in Panel B) is

inconsistent with our simple model, but the fact that the effect of life expectancy is less severe

for these countries is consistent with the model. Whether changes in health, as proxied by life

expectancy, are in fact positive or negative in the long run for development is beyond the scope

of this paper, and the orignal findings of Acemoglu and Johnson are debated (Bloom, Canning

and Fink, 2014). We only note that tight land constraints make the effect of life expectancy less

positive/more negative. Finally, columns (5) and (6) of Panel B show that the relationship of life

expectancy to log population size is not significantly different between the two samples, as indicated

by the p-value of 37.9% for our test of equality in the coefficients in columns (5) and (6). High-β

countries do not appear to have a different demographic relationship between population size and

life expectancy that might explain the different responses in columns (1)-(4).

Finally, Panel C looks directly at the relationship of living standards and the size of population

in the panel. Unlike the mortality shocks in Panel A, these population changes are more likely

to be subject to endogeneity due to the interaction of living standards and demographics, so we

cannot attach a firm causal interpretation to the estiamtes. Nevertheless, they confirm that the

correlation of population size and living standards (whether measured as GDP per capita or GDP

per worker) is larger when β is high, and land constraints are tight, then when β is low. The scale

of the difference is similar to the mortality results, with the coefficient size for high-β countries

about almost four times that found for low-β countries. The statistical test for equality of the
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two coefficients has a p-value less than 0.1% in all cases, and we can reject that hypothesis at any

standard confidence level.

The evidence in Table 5 shows that the variation in β we identified in the main part of the

paper has non-trivial implications for development. Consistent with the implications outlined in

the model of Section 4.1, we see that areas with tight land constraints, and large β values, have

living standards that are more sensitive to shocks in population size.

5 Conclusion

We have provided estimates of the Malthusian constraint, defined as the elasticity of agricultural

output with respect to land. Our estimation strategy was built on an extended model of agricultural

production that incorporates multiple locations, the presence of non-labor inputs besides land, and

an available non-agricultural sector. The insight from the model is that we can use variation in

rural population density, and its co-movement with inherent agricultural productivity, to back out

an estimate of the Malthusian constraint from district-level data, regardless of the overall level of

development.

Our estimates show that the Malthusian constraint is tightest (an elasticity around 0.22-0.30)

in temperate regions capable of growing crops such as barley, oats, and wheat that include most

of Europe, much of the U.S. and Canada, northern China, and northern Africa. In comparison,

tropical areas that are suitable for crops such as cassava, pearl millet, and rice, as are found

in south and southeast Asia, sub-tropical China, central and south America, and central Africa,

all have Malthusian constraints that are much looser (with elasticities around 0.10-0.18). The

difference in the elasticity between these samples are robust to excluding heavily urban areas,

excluding developed countries from the estimation, and excluding districts that do not produce any

of the major staple crops. Our results do not appear to be driven by measurement issues in rural

population or land area.

We then show that the tighter the Malthusian constraint, the more sensitive the agricultural

labor share and real income per capita are to changes in underlying productivity (i.e. agricultural

or non-agricultural TFP) and population size. Using data from the epidemiological transition, we

confirm that mortality shocks had stronger effects on countries with tighter Malthusian constraints,

consistent with our predictions. Given this, the estimated differences in the Malthusian constraint

are able to provide insight into some larger questions regarding historical and contemporary de-

velopment, such as the effect of the Black Death in Europe, the reason for involution in Asian

development, and the lagging of tropical areas in contemporary development.

We must be careful to note that the differences in tightness of land constraints do not, by

themselves, explain why some countries are rich or poor. That still depends on the actual level

of productivity in agriculture and non-agriculture, and we do not find (or claim) there is any

31



relationship between the size of the land constraint and the level of productivity. But the land

constraint amplifies (if the constraint is tight) or mutes (if it is loose) the impact of productivity

and population changes, and given the robust differences we find in those constraints, they appear

to form an important part of the story of comparative development.
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Appendix A Alternative Empirical Assumptions

Appendix A.1 Immobile Factors

The baseline model assumes capital and labor are free to move between districts within a region. If
we make factors immobile, but allow both agricultural and non-agricultural output to move between
districts, this changes the specification of the relationship between agricultural productivity and
rural density.

The agricultural production function for a district is the same as in (1), and we also need to
specify a production function for non-agriculture. We do so as YNi = ANiK

α
NiL

1−α
Ni . Capital and

labor are assumed to be mobile within the district between the two sectors, implying that the
return to capital and the return to labor are equalized across different uses. Because of this, the
capital/labor ratio in both sectors will be identical, with KAi/LAi = KNi/LNi = Ki/Li, where
Ki/Li is the district’s aggregate capital/labor ratio.

Equality of the return to labor across different sectors implies that

pA(1 − α)(1 − β)
YAi
LAi

= pN (1 − α)
YNi
LNi

.

Using the condition that the capital/labor ratio will be identical across the two sectors, and re-
arranging this relationship, we have that

pA(1 − β)AAi

(
Ki

Li

)α(1−β)( Xi

LAi

)β
= pNANi

(
Ki

Li

)α
Taking logs, are again re-arranging terms, we arrive at

lnAAi = β lnLAi/Xi + lnANi + αβ lnKi/Li + ln pN/pA.

This equation shows that the relationship between agricultural productivity, AAi, and rural density,
LAi/Xi, can still be used to recover an estimate of β. To do this, we must control for the district-
specific levels of non-agricultural productivity, ANi, and capital/labor, Ki/Li. While we do not
have direct measures of those, we believe that our control for night lights will act as a decent proxy
for these terms. Finally, the price ratio, pN/pA, is the province relative price, as goods are traded
freely, so this will be captured by the province level fixed effects.

If our night lights control is not capturing the variation in ANi or Ki/Li, then our estimates
may be biased if there is a relationship between those variables and rural density. In particular, if
rural density is negatively related to ANi and/or Ki/Li then we could be under-stating the value
of β. It is not clear why this negative relationship would hold only in tropical areas (with small
estimate β values), but not in other areas.

Appendix A.2 Autarkic Districts

If districts are entirely closed, in that neither factors of production nor output can move between
districts, then this again changes the specification of our regressions. Here, the crucial remaining
assumption is that the value of β is the same across all districts within a given province.

Within each district, let the amount of agricultural output consumed be cAi, and hence market
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clearing within the district requires cAiLi = Yi for agricultural output. Using the same production
function as in the main section, and again assuming that capital and labor move freely between
sectors (non-agriculture and agriculture) so that the capital/labor ratios are equal to the aggregate
ratio, we have

cAiLi = AiX
β
i (Ki/Li)

α(1−β) L1−β
Ai .

Taking logs and re-arranging, we have the following

lnAi = β lnLAi/Xi − lnLAi/Li − α(1 − β) lnKi/Li + ln cAi.

We can recover an estimate of β from the relationship of productivity and rural density, but
now must control for the agricultural share of labor, LAi/Li, the capital/labor ratio, and the
consumption of agricultural goods per capita. For LAi/Li, we have this data, and can include it
directly in a regression (it is implicitly included in our baseline regression when we use the percent
urban). For the capital/labor ratio and consumption of agricultural goods, we believe that the
night lights data are a decent proxy for these terms.

Including the log of LAi/Li explicitly as a control in the regressions does not materially change
the results for the regions or sub-regions, nor does the pattern of results change. These results may
still be biased, however, if the night lights proxy does not pick up the variation in consumption or
the capital/labor ratio. If the capital/labor ratio is positively related to the rural density, then we
would be under-estimating the true value of β. The small estimated values of β in tropical areas
may be because of this relationship, although it is not clear why rural density would be positively
related to capital/labor ratios only in tropical areas. Alternatively, if consumption of agricultural
goods is negatively related to rural density, and we are not controlling for it with night lights,
then we may be under-estimating β. This could possibly be true only in tropical areas if they
are relatively poor, whereas this relationship no longer holds in richer, temperate areas. This is
clearly a possibility, although recall that this would only be a problem if we believe that districts
are autarkic, which may be an extreme assumption.

Appendix B Solving for Labor Share and Real Income

In section 4 we solved for LA/L and y, the agricultural labor share and real income, respectively.
The algebra leading to equations (12) and (13) is as follows.

Based on the district-level production functions from (1) total agricultural supply in province
I can be written as

YA =
∑
i∈I

AiX
β
i

(
Kα
AiL

1−α
Ai

)1−β
. (15)

We know each LAi from (4). By a similar logic used for labor we can establish that the allocation
of capital to any individual location i is

KAi = A
1/β
i Xi

KA∑
j∈I A

1/β
j Xj

(16)

where KA is the aggregate allocation of capital to agriculture. Combine (4) and (16) with the
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expression in (15) and we can solve for

YA = AA

(
KA

LA

)α(1−β)

L1−β
A

where

AA =

∑
j∈I

A
1/β
j Xj

β

is the measure of aggregate agricultural total factor productivity for the province.
With the assumption that land earns no return, and the share earned by capital is φK is both

sectors, and for labor the share is φL in both sectors, it follows that the capital/labor ratio in both
sectors is equal to the aggregate capital labor ratio,

KA

LA
=
KN

LN
=
K

L
=
w

r

φK
φL

.

Using the equilibrium condition on wages across sectors from (11), we can solve for

pA
pN

=
YN
LN

LA
YA

. (17)

Noting that YN = cNL and YA = cAL, we can rearrange this be

pAcA
pNcN

=
LA
LN

, (18)

which shows that the relative amount of labor employed in agriculture and non-agriculture is equal
to the relative expenditures on those goods. With the adding up conditions LA + LN = L and
pAcA + pNcN = M , it follows that in log terms

lnLA/L = ln pAcA/M. (19)

Turning to the demand function from (10), we can re-arrange that to

(1 − ε) ln pAcA/M = ln θA + (ε− γ)(ln pN − ln pA) − ε ln cA.

Using the relationships in (17) and (19), as well as the fact that cA = (YA/LA)(LA/L), we can
substitute here to find

(1 − ε) lnLA/L = ln θA + (ε− γ) (lnYN/LN − lnYA/LA) − ε (lnYA/LA + lnLA/L) .

Collecting terms we have

lnLA/L = ln θA + (ε− γ) lnYN/LN − γ lnYA/LA.
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Using the production functions in (9) and (15), we can write this as

lnLA/L = ln θA + (ε− γ) ln (AN (K/L)α) − γ ln
(
AA(K/L)α(1−β)L−βA

)
− γβ lnL+ γβ lnL,

where we’ve added and subtracted the term involving L. At this point, what remains is to separate
the productivity and capital terms using the logs, and then straightforward algebra to arrive at

lnLA/L = ln θA +
βγ

1 − βγ
lnL− γ

1 − βγ
lnAA +

γ − ε

1 − βγ
lnAN +

α(βγ − ε)

1 − βγ
lnK/L.

Exponentiating this, we arrive at (12) from the main text.
For real income, in agricultural terms we have

y =
M

pA
= cA +

pN
pA
cN .

Using (18) we can write this as

y = cA +
pNcN
pAcA

cA = cA

(
1 +

LN
LA

)
= cA

L

LA
.

Noting that cA = YA/L, we have that

y =
YA
LA

= AA(K/L)α(1−β)(LA/L)−βL−β,

where the second equality follows from (15). At this point, we can use (12) to plug in for LA/L in
the above equation, and solve for

ln y =
1

1 − βγ
lnAA − β

1 − βγ
lnL+

β(ε− γ)

1 − βγ
lnAN +

α(1 − β) + αβ(ε− γ)

1 − βγ
lnK/L.

Exponentiating, we arrive at (13) in the main text.

Appendix C Definitions of groups

Regions: Countries are included as follows:.

• Central and West Asia: Afghanistan, Azerbaijan, Bhutan, Georgia, Iran, Iraq, Jordan,
Kazakhstan, Kyrgyzstan, Lebanon, Oman, Pakistan, Palestina, Russia (Asia), Syria, Tajik-
istan, Turkey, Uzbekistan

• Eastern Europe: Belarus, Bulgaria, Czech Republic, Hungary, Poland, Romania, Russia
(Europe), Slovakia, Ukraine

• North Africa: Algeria, Egypt, Morocco, Sudan, Tunisia

• Northwest Europe: Austria, Belgium, Denmark, Estonia, Finland, France, Germany, Isle
of Man, Latvia, Lithuania, Luxembourg, Netherlands, Norway, Sweden, Switzerland, United
Kingdom
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• South Africa: Botswana, Namibia, South Africa, Swaziland

• South and Southeast Asia: Bangladesh, Brunei, Cambodia, India, Indonesia, Laos, Malaysia,
Myanmar, Philippines, Sri Lanka, Thailand, Timor-Leste, Vietnam

• Southern Europe: Albania, Bosnia and Herzegovina, Croatia, Greece, Italy, Portugal,
Serbia, Slovenia, Spain

• Temperate Americas: Argentina, Canada, Chile, United States, Uruguay

• Tropical Africa: Angola, Benin, Burkina Faso, Burundi, Cameroon, Central African Re-
public, Chad, Cte d’Ivoire, Democratic Republic of the Congo, Equatorial Guinea, Er-
itrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Liberia, Mada-
gascar, Malawi, Mali, Mauritania, Mozambique, Niger, Nigeria, Republic of Congo, Reunion,
Rwanda, Senegal, Sierra Leone, Somalia, South Sudan, So Tom and Prncipe, Tanzania, Togo,
Uganda, Zambia, Zimbabwe

• Tropical Americas: Bolivia, Brazil, Colombia, Costa Rica, Cuba, Dominican Republic,
Ecuador, El Salvador, French Guiana, Guadeloupe, Guatemala, Guyana, Haiti, Honduras,
Martinique, Mexico, Nicaragua, Panama, Paraguay, Peru, Suriname, Venezuela

For China-only regressions: We exclude Tibet, Xinjiang, Gansu, and Qinghai entirely, given
that their climates do not fit well into the temperate versus sub-tropical distinction we make in the
regressions.

• Temperate provinces: Hebei, Heilongjiang, Jilin, Liaoning, Nei Mongol, Ningxia Hui,
Shaanxi, Shanxi, Tianjin, Sichuan, Shandong, Yunnan

• Sub-tropical provinces: Guangxi, Guangdong, Fujian, Jiangxi, Hunan, Guizhou, Chongqing,
Hubei, Anhui, Zhejiang, Henan, Jiangsu, Hainan

Russian provinces: We split Russia into separate Asian and European sections for inclusion in
the regions. That breakdown takes place at the province level

• Russia(Asia): Altay, Amur, Buryat, Chelyabinsk, Gorno-Altay, Irkutsk, Kemerovo, Khabarovsk,
Khakass, Khanty-Mansiy, Krasnoyarsk, Kurgan, Novosibirsk, Omsk, Primor’ye, Sakhalin,
Sverdlovsk, Tomsk, Tuva, Tyumen’, Yevrey, Zabaykal’ye

• Russia(Europe): Adygey, Arkhangel’sk, Astrakhan’, Bashkortostan, Belgorod, Bryansk,
Chechnya, Chuvash, Dagestan, Ingush, Ivanovo, Kabardin-Balkar, Kaliningrad, Kalmyk,
Kaluga, Karachay-Cherkess, Karelia, Kirov, Komi, Kostroma, Krasnodar, Kursk, Leningrad,
Lipetsk, Mariy-El, Mordovia, Moscow City, Moskva, Nizhegorod, North Ossetia, Novgorod,
Orel, Orenburg, Penza, Perm’, Pskov, Rostov, Ryazan’, Samara, Saratov, Smolensk, Stavropol’,
Tambov, Tatarstan, Tula, Tver’, Udmurt, Ul’yanovsk, Vladimir, Volgograd, Vologda, Voronezh,
Yaroslavl’
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Figure 1: Density Plot of Log Rural Density (LAisc/Xisc), by Region, 2000CE
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Notes:Kernel density plot, Epanechnikov kernel, of the (log) rural density, LAisc/Xisc, at the district level, calculated

by the authors using data from Goldewijk et al. (2011) for rural population. See text for details. See appendix for

lists of exact countries included in each region.
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Figure 2: Density Plot of Caloric Yield (Aisc), by Region
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Notes: Kernel density plot, Epanechnikov kernel, of the caloric yield, Aisc, at the district level, calculated by the

authors using data from Galor and Özak (2016). See text for details. This measure sums the maximum calories

available per grid cell within a district, then divides by total area of the district. See appendix for lists of exact

countries included in each region.
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Figure 3: Caloric Yield and Rural Density, by Major Crop, 2000CE
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Notes: This figures shows the raw correlation of (log) caloric yield and (log) rural density for districts that are (a)

suitable for wheat, but not for wet rice, and (b) suitable for wet rice but not for wheat. Rural population is from

HYDE database (Goldewijk et al., 2011), and caloric yield is the author’s calculations based on the data from Galor

and Özak (2016). The linear fits are from bivariate OLS regressions, without any fixed effects included. Based on

equation (6), the slopes of these lines are estimates of β, the elasticity of agricultural output with respect to land.
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Table 1: Summary Statistics for District Level Data, 2000CE

Percentiles:

Mean SD 10th 25th 50th 75th 90th

Rural density (persons/ha) 0.57 0.90 0.03 0.08 0.22 0.60 1.53
Caloric yield (mil cals/ha) 10.64 4.79 4.79 7.04 10.50 13.71 16.69
Urbanization rate 0.34 0.34 0.00 0.00 0.28 0.66 0.84
Log light density -2.72 3.06 -6.43 -3.81 -2.35 -0.67 0.55

Notes: A total of 32,862 observations for each variable (these come from 2,471 provinces in 154 countries). Caloric

yield, Aisc calculated by the authors using data from Galor and Özak (2016). Rural density, LAisc/Xisc calculated

by the authors using data from Goldewijk et al. (2011) for rural population. Both caloric yield and rural density were

trimmed at the 99th and 1st percentiles of their raw data prior to calculating the summary statistics in this table.

Urbanization rate taken from Goldewijk et al. (2011). Log mean light density derived from the Global Radiance

Calibrated Nightime Lights data provided by NOAA/NGDC, as in Henderson et al. (2016).
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Table 2: Estimates of Malthusian Tightness, β, by Crop Suitability, 2000CE

Dependent Variable in all panels: Log caloric yield (Aisc)

Panel A: Samples defined by crop family (wheat vs. rice):

By suitability: By max calories: By harvest area:

Wheat Rice Wheat Rice Wheat Rice
Only Only > 33% > 33% > 50% > 50%
(1) (2) (3) (4) (5) (6)

Log rural density 0.240 0.143 0.200 0.114 0.220 0.126
(0.025) (0.018) (0.021) (0.018) (0.020) (0.013)

p-value β = 0 0.000 0.000 0.000 0.000 0.000 0.000

p-value β = βWheat 0.001 0.002 0.000
Countries 91 79 82 71 74 84
Observations 9922 8396 10142 7411 9929 6810
Adjusted R-square 0.24 0.20 0.21 0.17 0.20 0.17

Panel B: Samples with other restrictions (using suitability to distinguish crop families)

Urban Pop. < 25K: Ex. Europe/N. Amer.: Rural dens. > 25th P’tile:

Wheat Only Rice Only Wheat Only Rice Only Wheat Only Rice Only
(1) (2) (3) (4) (5) (6)

Log rural density 0.279 0.156 0.253 0.143 0.289 0.188
(0.023) (0.021) (0.044) (0.019) (0.038) (0.020)

p-value β = 0 0.000 0.000 0.000 0.000 0.000 0.000

p-value β = βWheat 0.000 0.019 0.018
Countries 83 74 24 69 89 74
Observations 7046 6117 785 8168 6807 6606
Adjusted R-square 0.29 0.24 0.18 0.14 0.26 0.22

Notes: Conley standard errors, adjusted for spatial auto-correlation with a cutoff distance of 500km, are shown in

parentheses. All regressions include province fixed effects, a constant, and controls for the district urbanization rate

and log density of district nighttime lights. The coefficient estimate on rural population density indicates the value

of β, see equation (6). Rural population is from HYDE database (Goldewijk et al., 2011), and caloric yield is the

author’s calculations based on the data from Galor and Özak (2016). Inclusion of districts in the regression is based

on the listed criteria related to crop families. See text for all crops included in the wheat and rice families, and for

details of the inclusion criteria.
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Table 3: Estimates of Malthusian Tightness, β, by Köppen-Geiger Zone, 2000CE

Dependent Variable in all panels: Log caloric yield (Aisc)

Panel A: Climate Zones
Equatorial Arid Temperate Snow
(1) (2) (3) (4)

Log rural density 0.120 0.156 0.172 0.236
(0.016) (0.030) (0.020) (0.032)

p-value β = 0 0.000 0.000 0.000 0.000
p-value β = βEqua 0.276 0.033 0.001
Countries 79 55 93 40
Observations 10600 2533 12748 5936
Adjusted R-square 0.11 0.10 0.15 0.19

Panel B: Precipitation Zones
Fully Dry Dry
Humid Summer Winter Monsoon Desert Steppe
(1) (2) (3) (4) (5) (6)

Log rural density 0.186 0.184 0.127 0.139 0.094 0.115
(0.028) (0.027) (0.018) (0.023) (0.044) (0.027)

p-value β = 0 0.000 0.000 0.000 0.000 0.033 0.000

p-value β = βFully 0.947 0.073 0.190 0.078 0.072
Countries 97 44 74 42 29 53
Observations 16216 2978 8503 1655 330 2093
Adjusted R-square 0.19 0.19 0.17 0.19 0.19 0.18

Panel C: Temperature Zones
Hot Warm Cool Hot Cold
Summer Summer Summer Arid Arid
(1) (2) (3) (4) (5)

Log rural density 0.142 0.225 0.264 0.135 0.135
(0.018) (0.033) (0.044) (0.030) (0.039)

p-value β = 0 0.000 0.000 0.000 0.000 0.001
p-value β = βHot 0.006 0.010 0.831 0.848
Countries 61 84 25 42 25
Observations 8495 9452 438 1505 957
Adjusted R-square 0.15 0.21 0.15 0.12 0.14

Notes: Conley standard errors, adjusted for spatial auto-correlation with a cutoff distance of 500km, are shown in

parentheses. All regressions include province fixed effects, a constant, and controls for the district urbanization rate

and log density of district nighttime lights. The coefficient estimate on rural population density indicates the value

of β, see equation (6). Rural population is from HYDE database (Goldewijk et al., 2011), and caloric yield is the

author’s calculations based on the data from Galor and Özak (2016). Inclusion of districts is based on whether they

have more than 50% of their land area in the given Köppen-Geiger zone. See text for details.
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Table 4: Estimates of Malthusian Tightness, β, by Regions, 2000CE

Dependent Variable in all panels: Log caloric yield (Aisc)

Panel A
Excl. China, Japan, Korea

North & South & Central &
Western Eastern Southern Southeast West
Europe Europe Europe Asia Asia
(1) (2) (3) (4) (5)

Log rural density 0.264 0.292 0.271 0.148 0.184
(0.040) (0.032) (0.043) (0.027) (0.028)

p-value β = 0 0.000 0.000 0.000 0.000 0.000
p-value β = βNWEur 0.569 0.884 0.016 0.099
Countries 16 9 9 13 18
Observations 1628 4772 1114 3921 2762
Adjusted R-square 0.21 0.31 0.26 0.16 0.18

Panel B
Temperate Tropical Tropical South North
Americas Americas Africa Africa Africa

Log rural density 0.187 0.119 0.100 0.130 0.282
(0.039) (0.018) (0.013) (0.071) (0.010)

p-value β = 0 0.000 0.000 0.000 0.066 0.000
p-value β = βNWEur 0.170 0.001 0.000 0.099 0.654
Countries 5 22 39 4 5
Observations 3183 8730 3032 178 1147
Adjusted R-square 0.18 0.10 0.14 0.19 0.24

Panel C
All Temperate Sub-Tropical North &
China China China Japan South Korea
(1) (2) (3) (4) (5)

Log rural density 0.414 0.518 0.107 0.155 0.190
(0.083) (0.058) (0.026) (0.011) (0.061)

p-value β = 0 0.000 0.000 0.000 0.000 0.002
p-value β = βNWEur 0.102 0.000 0.001 0.008 0.309
Countries 1 1 1 1 2
Observations 266 130 136 1039 311
Adjusted R-square 0.25 0.26 0.21 0.21 0.21

Notes: Conley standard errors, adjusted for spatial auto-correlation with a cutoff distance of 500km, are shown in

parentheses. All regressions include province fixed effects, a constant, and controls for the district urbanization rate

and log density of district nighttime lights. See appendix for lists of exact countries included in each region. The

coefficient estimate on rural population density indicates the value of β, see equation (6). Rural population is from

HYDE database (Goldewijk et al., 2011), and caloric yield is the author’s calculations based on the data from Galor

and Özak (2016). The countries included in each region can be found in the appendix.
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Table 5: Panel Estimates of Effect of Population Change, by Tightness of Malthusian Constraint

Dependent Variable:

Log GDP per capita Log GDP per worker Log population

β <Median β >Median β <Median β >Median β <Median β >Median
(1) (2) (3) (4) (5) (6)

Panel A:

Mortality rate 0.367 0.829 0.302 0.907 -0.610 -0.521
(0.224) (0.143) (0.219) (0.144) (0.160) (0.163)

p-value θ = 0 0.103 0.000 0.170 0.000 0.000 0.002
p-value θ = θLoose . 0.082 . 0.022 . 0.696
Countries 17 17 17 17 17 17
Observations 134 136 134 136 134 136

Panel B:

Log life expectancy 0.443 -2.152 0.409 -2.134 1.682 1.949
(0.357) (0.241) (0.347) (0.244) (0.217) (0.210)

p-value θ = 0 0.217 0.000 0.241 0.000 0.000 0.000
p-value θ = θLoose . 0.000 . 0.000 . 0.379
Countries 17 17 17 17 17 17
Observations 127 129 127 129 127 129

Panel C:

Log population -0.204 -0.874 -0.223 -0.855
(0.118) (0.070) (0.117) (0.064)

p-value θ = 0 0.084 0.000 0.059 0.000
p-value θ = θLoose . 0.000 . 0.000
Countries 17 17 17 17
Observations 134 136 134 136

Notes: Robust standard errors are reported in parentheses. All regressions include both year fixed effects and country

fixed effects. The value of β for each country was found by estimating equation (6) separately for each, including

province-level fixed effects. Countries are then included in a regression here based on how their β compares to the

median from the 34 countries. The mortality rate used as an explanatory variable in Panel A is the mortality rate

from 15 infectious diseases, as documented by Acemoglu and Johnson (2007). All data on GDP per capita, GDP per

worker, population, and life expectancy is also taken directly from those authors dataset. The p-value of θ = θLoose

is from a test that the estimated coefficient in a column (with β over the median) is equal to the coefficient in the

column immediately preceding it (with β under the median).
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