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Abstract

The present study had two aims. First, we set out to evaluate the structure of processing speed in 

children by comparing five alternative models: two conceptual models (a unitary model, a 

complexity model) and three methodological models (a stimulus material model, an output 

response model, and a timing modality model). Second, we then used the resulting models to 

predict multiple types of reading, a highly important developmental outcome, using other well-

known predictors as covariates. Participants were 844 children enrolled in third through fifth grade 

in urban public elementary schools who received 16 measures of processing speed that varied in 

the above dimensions. A two-factor complexity model that differentiated between simple and 

complex processing speed was the preferred model and fit the data well. Both types of PS 

predicted reading fluency, and complex (but not simple) PS predicted single word reading and 

comprehension. Results offer insight to the structure of processing speed, its relation to closely 

related concepts (such as executive function), and provide nuance to the understanding of the way 

processing speed influences reading.
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The concept of processing speed (PS) is intuitive, though its operationalization is widely 

variable. PS in this study can refer to any task where some cognitive processing is involved 

and time is a factor. The ‘processing’ of PS can range from perceptual to cognitive/strategic, 

and the ‘speed’ of PS can be assessed over different time scales (i.e., milliseconds or 

seconds). Studying the dimensionality of PS and how it relates to functional outcomes is 

highly relevant because PS can be affected by a variety of neurological and developmental 

disorders, and because impaired PS can adversely impact the rate of learning available and 

the acquisition of new skills in school-aged children (Marchman & Fernald, 2008). A key 

functional outcome for children is reading, and PS has been implicated for reading, both as a 

predictor (e.g., operationalized as rapid naming; Araújo, Reis, Petersson, & Faísca, 2015), 

and as a shared deficit in comorbid conditions of reading and attention (e.g., attention deficit 

hyperactivity disorder; McGrath et al., 2011). The present study evaluates the latent structure 

of PS and then uses these models to predict reading skills in a large group of struggling 

readers in late elementary school.

Processing Speed Models

The structure of PS is not ubiquitously accepted, and few models focus on children. Many 

studies that invoke PS do not attempt to delineate its dimensionality, instead utilizing a 

single PS measure or a PS composite score (e.g., Borella & Ribaupierre, 2014; Shaul & 

Nevo, 2015). Where studies do evaluate the dimensionality of PS, five potential models can 

be distinguished. Two of these (unitary versus complexity) are informed by theoretical and 

empirical work that differentiates the complexity of the processing involved, and thus are 

conceptual in nature. The remaining three (stimulus material versus output modality versus 

timing modality) are more methodological, focusing on varying surface features or task 

parameters, but also have some empirical support. Comparing within and between 

conceptual and methodological models has been done in the area of executive function (EF; 

Cirino et al., 2018a; Wiebe, Espy, & Charak, 2008), but we are unaware of a similar 

evaluation for PS in children.

Unitary.

A unitary model of PS suggests that a latent variable built from any kind of timed 

measurement would provide a strong fit across populations and ages, and that growth in PS 

should be uniform across various tasks in children, independent of content or cognitive 

process (Fry & Hale, 1996; Kail, 2000). This unitary construct view of PS has gained 

support though factor analyses that identify a single latent variable of PS among other latent 

variables of cognitive function (Barth, Catts, & Anthony, 2008; Nigg, Jester, Stavro, Ip, 

Puttler, & Zucker, 2017; Pires, Moura, Geurrini, Buekenhout, Simoes, & Leitao, 2019). 

Interestingly, some of these studies also included a latent variable of EF, and found robust 

and similar latent correlations with PS (r = .62; Nigg et al., 2017, and r = .64; Pires et al., 

2019).
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Complexity.

In contrast to a unitary model, “complexity” models distinguish between the levels of 

‘processing’ required. This has found some support in the literature. For example, 

Chiaravalloti, Christodoulou, Demaree, and DeLuca (2003) found support for a simple 

versus complex distinction (along with a working memory factor) with 11 measures, though 

this study was small and with a mixed medical sample of adults that relied on principal 

components analyses rather than confirmatory techniques. Demetriou, Christou, Spanoudis, 

Platsidou, Fischer, and Dawson (2002) in a longitudinal sample of 113 children ages 8 to 16 

found a hierarchical structure; across three types of stimuli, their “incompatible/control” 

tasks (e.g., the word green written in red ink) were more complex than “compatible/speed” 

versions (e.g., the word green written in green ink), and each of these factors loaded to a 

second order factor. Also, a distinction along the lines of complexity is also apparent in 

Carroll’s (1993) taxonomy (e.g., broad speediness or Gs versus processing speed or Gt).

The present study examines three levels of complexity that differentiate between: (a) a 

simple level of PS operationalized as reaction time or latency to respond to a perceptual 

target, with no additional cognitive demands; (b) a middle level of complexity 

operationalized as speed of response on a measure with minimal goal-directed demands (i.e., 

the task is relatively easy but does require, for example, simple sequencing); and (c) a high 

level of complexity that requires goal-directed processing and efficiency (thus overlapping 

with EF).

The relationship of PS with EF is highly relevant given that EF factor analytic work often 

includes timed/speeded measures (e.g., Cirino et al., 2018a; Huizinga, Dolan, & van der 

Molen, 2006; Miyake, Friedman, Emerson, Witzki, & Howerter, 2000), and given the 

relation of these constructs (Nigg et al., 2017; Pires et al., 2019). Conceptually, such work 

suggests the necessity to demarcate where PS “ends” and EF “begins,” particularly in 

children where cognitive structures/relationships can vary across developmental stage. For 

example, a unitary factor of EF in preschool gives way to separate but related processes 

throughout development (Anderson, Anderson, Northam, Jacobs, & Catroppa, 2001; Cirino 

et al., 2018a; Miyake et al., 2000); it is unknown if a similar pattern may be evidenced for 

PS. The relation of PS to EF factors (particularly working memory; WM) may also vary 

depending on the child’s developmental stage (Demetriou et al., 2014; Kail, Lervag, & 

Hulme, 2016). The late elementary school age-range within this study is particularly relevant 

given important school transitions in reading. The complexity model of PS examined here 

can set the stage for future studies that might combine the resulting structure with a 

structural model of EF, particularly one that includes both timed/speeded and untimed EF 

tasks.

Stimulus Material (Input).

One surface task parameter that could influence performance is the nature of the stimuli. The 

distinction between alphanumeric (i.e., letters and words) and non-alphanumeric (i.e., shapes 

and colors) stimuli has overlap with, but is separable from, a verbal-auditory/visual 

distinction and has been previously examined for WM (Baddeley, 2003). Leonard et al. 

(2007) found that incorporating a general speed model with subfactors of linguistic and non-
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linguistic speed fit best when differentiating among PS and WM in children with language 

impairment. Kail and Miller (2006) though not using latent variables, did distinguish 

between language and nonlanguage measures of PS, and showed different developmental 

trajectories for those measures (with language PS faster at age 9, but nonlanguage PS 

growing more rapidly through age 14). Therefore, a stimulus-based (input) methods model 

of PS is an important alternative model to consider.

Response Type (Output).

A second surface task parameter that may vary is the nature of the motor response required 

for a given PS stimulus (e.g., oral versus manual). Such a two-factor model has been found 

in children by others. For example, Shanahan et al. (2006), with 12 measures of processing 

speed, differentiated verbal versus motor output factors (although it should be noted that in 

general the verbal tasks were alphanumeric and the motor tasks were not). Babcock, Laguna, 

and Roesch (1997) used nine PS measures and were able to differentiate three factors that 

represented alphanumeric, geometric, and motor PS, though these factors correlated highly 

with one another (r = .69 to .92). In that study and others, there was not a comparison nor 

differentiation from an input/material model such as described above. Because response type 

may or may not track with stimulus material (e.g., an alphanumeric stimulus could require 

either an oral or manual response), such a comparative model is useful to include in order to 

differentiate these possibilities.

Timing.

A third surface task parameter that may vary involves the nature of timing involved. For 

example, timing can be operationalized as the latency between a presentation of a stimulus 

and a correct response on a single task item (Deary & Der, 2005; Salthouse, 2000), which 

can itself vary in its cognitive demands (i.e., Dennis et al., 2015). Alternatively, timing can 

be invoked on tasks assessing efficiency – either accuracy within a specified time limit 

(time-dependent; naming within a 60 second trial), or through tasks that are timed through 

completion (timed; how long it takes to complete a set of items). While no known studies 

have directly examined this proposed three-factor model, Denney, Gallagher, and Lynch 

(2011) did find differences between measures that “explicitly” measure speed (e.g., where it 

is made clear that time is an important component) and those that “covertly” measure speed 

(e.g., where the capture of speed appears secondary to accuracy) in a principal components 

analysis of adults.

Reading Skills and Processing Speed

Reading outcomes are a strong external validity target for the PS models described above. 

Single word reading, reading fluency, and reading comprehension will be examined in the 

present study given their separability, as well as importance as distinct intervention targets 

for this age-range (Cirino et al., 2013). These reading components develop simultaneously 

and interactively into and beyond late elementary school (Duke & Carlisle, 2010). Reading 

proficiency is dependent on the co-occurring development (or bi-directional influence) of 

other cognitive processes. These include phonological awareness (PA; the ability to break a 

word down to its component parts; Wagner, Torgesen, & Rashotte, 1994) and rapid 
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automatized naming (RAN; the ability to quickly and efficiently name alphanumeric stimuli; 

Norton & Wolf, 2012). They also include word reading and listening comprehension (Gough 

& Tunmer, 1986); WM and other EF (Kibby, Lee, & Dyer, 2014); strategy use (Oakhill & 

Cain, 2012); and also background knowledge (Speece, Ritchey, Cooper, Roth, & 

Schatschneider, 2004).

The relation of PS with reading has most often been viewed through the lens of rapid 

automatized naming or RAN, which is consistent with the double-deficit hypothesis of Wolf 

and Bowers (1999) that attributes poor reading automaticity in reading disability (RD) to 

both a phonological deficit as well as an underlying processing speed deficit. PS has also 

been invoked with regard to how RD intersects with other neurodevelopmental disorders as a 

shared cognitive predictor (e.g., with math disability and ADHD), particularly with 

reference to the multiple deficit model of developmental disorders (Pennington, 2006).

Many studies focus on the robust RAN-reading relationship per se (e.g., see studies in the 

meta-analysis of Araújo et al., 2015; overall r = 43). However, a small group of studies 

simultaneously evaluate multiple PS with latent variables (in each case, a verbal PS latent 

variable with RAN indicators is differentiated from a more “nonverbal/perceptual” PS latent 

variable), with children and adolescents, often while also considering a number of other 

cognitive factors (Christopher et al., 2012; Georgiou, Parrila, & Papadopoulos, 2016; 

McGrath et al., 2011; Papadopoulos, Spanoudis, & Georgiou, 2016; Peterson et al., 2017; 

Shanahan et al., 2006). The Georgiou et al. (2016) and Papadopoulos et al., (2016) studies 

only examined reading fluency in elementary school, and did so in a transparent orthography 

(Greek); in both studies, there was mixed evidence of a direct effect of PS on reading 

fluency in the context of RAN, occurring moreso longitudinally than concurrently, and 

moreso for silent versus oral reading. The McGrath et al. (2011) and Peterson et al. (2017) 

studies, across a wider age range (8 to 16) both found that RAN and PS were both predictive 

of their reading outcome (single word reading). Shanahan et al. (2006) also found that both 

RAN and PS differentiated reading groups (who were defined on the basis of a reading 

composite which included single word reading and reading comprehension). Christopher et 

al. (2012) is the only one of these studies to explicitly evaluate differential contributions of 

RAN and PS to both single word reading and reading comprehension. In contrast to some 

other studies (Georgiou et al., 2016; Papadopoulos et al. 2016), Christopher et al. (2012) 

found unique effects for PS (moreso for single word reading than comprehension), but RAN 

did not have unique effects for either reading outcome.

The above studies are important and provide valuable information, but leave many questions 

unanswered. For example, none compared different models of the dimensionality of PS, and 

the measurement of PS outside of RAN was limited generally, and specifically for 

alphanumeric material and verbal output. Moreover, although as noted above there is 

empirical support to justify the relation of PS with different types of reading, none of those 

studies simultaneously evaluated single word reading, reading fluency, and reading 

comprehension. Doing so would clarify how different types of PS might differentially relate 

to each type of reading. The rationale for the role of PS for reading fluency is perhaps the 

most obvious, since at a manifest level, both involve explicit timing. However, accurate 

reading of single words is also likely facilitated by stronger underlying PS, as doing so 
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requires rapid matching of graphemes and phonemes. In addition to efficient word reading 

skill, successful reading comprehension further requires readers to make rapid connections 

between words and their meaning, which then is linked to background knowledge in order to 

facilitate the understanding of a passage of text.

Summary and Hypotheses

This study has two aims. The first considers five plausible models of PS, including two 

conceptual models and three alternative methodological models (outlined in Table 1). Doing 

so will further understanding about the structure of PS in children, as well as its relationship 

with potentially closely related constructs (e.g., EF). Of the five models, we expect the 

Complexity model to demonstrate the strongest fit to the data when compared to the rest, 

given its conceptual nature, and given that many studies do not find a unitary PS; we are 

though unaware of prior work that has directly compared all of the present options. The 

second aim is to examine the external validity of PS (presumed to be represented by the 

Complexity model) by examining how different types of PS relate to different aspects of a 

highly important outcome for children, reading (single word reading, reading fluency and 

reading comprehension). Accounting for multiple relevant demographic and language-

related covariates, we expect each of the three factors of the Complexity model (simple, 

middle, and high) to uniquely predict each reading outcome, for two reasons. First, most 

prior studies found contributions of both verbal (RAN-based) and nonverbal PS to reading 

when it has been examined, and those tasks have spanned the levels of complexity as we 

referred to them above. Second, given the age and reading level of our sample (see below), it 

is unlikely that most students in the present study are “automatic” readers, leaving more 

room for individual variability in PS to influence reading. Despite this, we do expect the PS 

model to be most related to reading fluency relative to other reading skills given the speeded 

nature of reading fluency.

Methods

Participants

Participants were 844 students (mean age 9.98, SD = 0.91) enrolled in public elementary 

schools from medium to large school districts in two cities in the southwestern US. Data was 

collected as part of a larger project that focused on reading, its cognitive and imaging 

correlates, and intervention. Students in third through fifth grade were enrolled because of 

the important developmental changes that occur during this time period (from learning-to-

read to reading-to-learn). Students who were struggling readers were oversampled given the 

focus on intervention (Vaughn et al., 2016; though the data here were designed to be 

collected pre-intervention). Table 2 provides demographic data. Prior studies from this 

project have some overlap in terms of sample (Cirino et al., 2018a, 2019; Miciak et al., 

2018b; Vaughn et al., 2016).) However, these prior works did not evaluate processing speed 

or its relations with reading.

Measures

Descriptive information for PS and reading measures appears in Table 3. Further details 

including reliability and validity, can be found on the Cirino et al., (2018a, 2019). Below, we 
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present information about task requirements of the analyzed variables, along with a brief 

rationale of how they correspond to the hypothesized levels of complexity.

Simple Level PS.—The variables chosen for this cluster have in common that perceptual 

identification is the primary cognitive demand, where individual differences derive from 

speed rather than accuracy (as the latter is expected to be near-perfect). The dependent 

measure for Go/No Go (Inquisit 3, 2003) was the recorded latency (in milliseconds) between 

stimuli presentation and response for all valid Go trials. For the Delis-Kaplan Executive 
Function System (D-KEFS); Trail Making Test (TMT; Condition 5: Motor Speed; Delis, 

Kaplan, & Kramer, 2001), the dependent measure was the total completion time (in 

seconds). The dependent measure for the N-Back Tasks (Shapes & Letters; Inquisit 3, 2003) 

was the mean RT (in milliseconds) for all valid 0-back trials. For Stop Signal (Inquisit 3, 

2003), the dependent measure was the mean RT (in milliseconds) for latency to respond to a 

simple (go) command.

Middle Level PS.—The variables in this cluster have in common that some modest level 

of cognitive processing is required, but switching, inhibition, and working memory are not. 

Although several “parent” tasks are common EF measures, the specific variables here are not 

those considered to be the “executive” variables. For Corsi Block-Tapping Task (Forward 
Condition; Inquisit 3, 2003), the dependent variable was the total completion time (in 

milliseconds) for all correct trials. The dependent measures for Delis-Kaplan Executive 
Function System (D-KEFS) Color Word Interference Test (CWIT; Condition 1: Color 
Naming; Delis et al., 2001), for D-KEFS Trail Making Test (TMT; Condition 2: Number 
Sequencing; Delis et al., 2001), and for NEPSY-II; Visuomotor Precision (Korkman, Kirk, & 

Kemp, 2007), were the total completion time (in seconds). For Purdue Pegboard (Lafayette 

Instruments, 1999), the dependent measure was the total number of pegs placed in the 

allotted time, using both hands simultaneously. For Woodcock-Johnson III Tests of 
Academic Achievement; Visual Matching (WJ-III; Woodcock, McGrew, & Mather, 2001), 

the dependent measure was the total number of correctly identified matches within the 

allotted time.

High Level PS.—The variables in this cluster are most aligned with what could be 

classified as a very specific class of EF – one that emphasizes speed/efficiency rather than 

problem solving or working memory or cognitive flexibility. The dependent measure for D-
KEFS Verbal Fluency (Letter and Category Fluency Conditions; Delis et al., 2001) was the 

total number of accurate responses across all prompts (three letters or two categories) for 

each measure (60 seconds per prompt). For D-KEFS Design Fluency (Condition 2: Empty 
Dots; Delis et al., 2001), the dependent measure was the total correct number of correct 

designs within the allotted time (60 seconds). The dependent measure for D-KEFS TMT 
(Condition 4: Number-Letter Sequencing; Delis et al., 2001) was the total completion time 

(in seconds). For the Tower of London Task (TOL; Shallice, 1982; Inquisit 3, 2003), the 

dependent measure was the latency time (in milliseconds) for the first move for all correct 

problems (and thus invokes planning to some extent); the more traditionally used accuracy-

based total score was not used, to better capture the speed-related processes of the task 

(Kaller, Unterrainer, Rahm, & Halsband, 2004).
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Reading Outcome Measures.—Single word reading was operationalized by the WJ-III 
Letter-Word Identification (LWID) subtest (Woodcock, McGrew, & Mather, 2001). Reading 

fluency was assessed with the Test of Word Reading Efficiency – Second Edition 
(TOWRE-2) Sight Word Efficiency subtest (Torgesen, Wagner, & Rashotte, 1999), and 

comprehension was assessed with the Gates MacGinitie Reading Tests – 4th Edition 
(GMRT) Passage Comprehension subtest (MacGinitie, MacGinitie, Maria, Dreyer, & 

Hughes, 2000). The outcomes were the standard scores generated from these measures.

Language Covariates.—Total raw scores were used for the WJ-III Oral Comprehension 
subtest (Woodcock, McGrew, & Mather, 2001), and the Comprehensive Test of 
Phonological Processing (CTOPP) Elision subtest (Wagner, Torgesen, & Rashotte, 1999). 

For CTOPP Rapid Letter Naming subtest (Wagner, Torgesen, & Rashotte, 1999), we used 

time to complete forms A and B. Raw scores were used so that all predictors are expressed 

in the same fashion.

Procedures

Data were collected by trained examiners over a six-month period. The larger study included 

many more measures, so to better facilitate testing procedures, students were randomly 

assigned to one of six data collection patterns, allowing for planned missing data within the 

entire sample (see Table 3 for measure-specific data patterns). The data patterns were 

designed so that at least 1/6 (~16%) of the total participants completed any pair of measures. 

The Gates MacGinitie Reading Test was collected in a group setting; all other measures 

were collected in individual testing settings over multiple sessions. Procedures were 

approved by the participating Institutional Review Board.

Analyses

Preliminary analyses included evaluation of sample-based and model-based residual outliers, 

and variable distributions (e.g., skewness and kurtosis). Most variables had satisfactory 

properties, though 20 extreme observations across three measures (Go/No Go, Purdue 

Pegboard and the Corsi tasks) were Winsorized (set to three SD, but maintaining original 

rank ordering). Tower of London and Rapid Naming variables displayed more pervasive 

skew, and were log transformed to normalize distributions.

Confirmatory factor analyses (CFA) were conducted in Mplus (Muthén & Muthén, 2012). A 

“weight” variable was included in the models to account for the large percentage of students 

in the 4th grade who were struggling readers (Cirino et al., 2018a). The distribution of the 

“weight” variable was smoothed using PROC GENMOD, a log-linear smoothing technique 

(Holland & Thayer, 1987; Moses & von Davier, 2006). As a result, the weighted mean of 

this sample was similar to the raw mean of the entire screened sample. The Maximum 

Likelihood Robust (MLR) estimator was used to allow for examination of the data with a 

weighted variable. Of note, the results below were not substantively affected by this 

weighting.

Model fit was examined at both global and local levels. Global fit indices included: the 

model chi-square (χ2); the Comparative Fit Index (CFI) and the Tucker-Lewis (non-normed 
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fit) Index (TLI) with values between .90 and 1.00 indicative of good fit; the root mean 

square error of approximation (RMSEA) and the standardized root mean square residual 

(SRMR) with values of < .08 indicative of good fit (Hu & Bentler, 1999); and the Akaike 

information criterion (AIC) and the Bayes information criterion (BIC), with smaller values 

across models indicative of better fit (Kline, 2004). Local fit of parameters focused on factor 

loadings and beta weights (for structural relations) (Kline, 2004). Chi-square (χ2) 

comparisons were used to compare nested models and the Satorra-Bentler (2001) alternate 

χ2 difference test was used to account for the weighted sample. Parsimony per se was not 

the only goal, as not all models were sequentially nested. Where this was the case (e.g., 

models with the same degrees of freedom), the preferred model was selected on the basis of 

(a) comparisons against the Unitary model; (b) values relative to established cutpoints; (c) 

model differences on other metrics, such as change in CFI (Cheung & Rensvold, 2002); and 

(d) theoretical and empirical support in the literature.

Structural regressions within Mplus directly evaluated the predictive role of latent PS factors 

for reading. Demographic covariates included age, gender, Limited English Proficiency 

(LEP) status, grade, and free/reduced lunch eligibility. Because grade had three levels 

(Grades 3, 4, and 5), it was dummy coded as two contrasts of grades 3 and 5 with the largest 

group (Grade 4). Relevant language covariates included CTOPP Elision and Rapid Naming 

given their well-known relation to reading (Schatschneider, Fletcher, Francis, Carlson, & 

Foorman, 2004); WJ-III Letter Word Identification was considered as a covariate for reading 

fluency and reading comprehension, and WJ-III Oral Comprehension was additionally 

considered for reading comprehension, per the Simple View of Reading (Gough & Tunmer, 

1986). Specific details regarding which covariates were included in prediction models are 

described below. Models were run hierarchically, first with demographic and cognitive 

covariates, to which PS variables were added. Satorra-Bentler χ2 difference tests were used 

to evaluate the unique role of PS.

Results

Individual processing speed variables had significant small to medium correlations with one 

another (range r = |.03 to .52|), and with reading outcomes (range r = |.02 to .43|), and with 

language covariates (range r = |.01 to .48|). Two exceptions were NEPSY Visuomotor 

Precision and TOL latency, which correlated rather weakly with most measures.

Processing Speed Structure Results (Aim 1)

All model fits can be found in Table 4. A single (conceptually appropriate) covariance (of 

two verbal fluency measures) was added to all models. Model 1 (Unitary) had a single latent 

variable for all 16 PS indicators and was a poor fit to the data. Chi-square differences 

between each subsequent model and Model 1 were examined using the Satorra-Bentler 

(2001) scaled (mean-adjusted) chi-square formula.

Model 2a (Complexity) had three latent variables: Simple, Middle, and High. This model 

showed an adequate fit to the data, and was a significant improvement in fit over Model 1, p 
< .001 (see Table 4). However, the Middle and High factors perfectly correlated (r = 1.06). 

Thus Model 2a was collapsed into a two-factor Complexity model (Model 2b) with the same 
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Simple factor and a new Complex factor consisting of all the indicators from both the 

Middle and High factors of Model 2a. Indicator factor loadings for Model 2b are presented 

in Figure 1. Model 2b provided a similar fit to the data as Model 2a and was also 

significantly better than Model 1 in χ2 difference comparisons, p = .002. The correlation 

between the two factors (Simple and Complex) was moderate (r = .46, p < .001).

Model 3 (Stimulus Input), with two latent factors (Alphanumeric and Non-Alphanumeric), 

showed a poor fit to the data and did not differ from (Unitary) Model 1, χ2 difference, p 
= .108 (see Table 4). Additionally, the Alphanumeric and Non-Alphanumeric factors were 

strongly intercorrelated, r = .90, p < .001. Similarly, Model 4 (Output Response), with two 

response-based latent factors (Verbal and Manual), also was a poor fit to the data, did not 

differ from Model 1, χ2 difference p = .460; Verbal and Motor latent factors were strongly 

intercorrelated, r = .94, p < .001. Chi-square difference tests between these models and 

Model 2b could not be examined because all models had the same df, but other indices (χ2 

value, CFI, TLI, SRMR, RMSEA) suggested a much better fitting model for Model 2b, 

relative to Models 3 and 4 (and Model 1).

Model 5a had three Timing latent factors (Latency – time to begin activity; Time-Dependent 

– accuracy within a specified time; Timed – total time to complete activity), and provided a 

strong fit to the data, with global fit indices exceeding those of all other models (see Table 

4), and significantly better than Model 1 in χ2 difference comparisons, p < .001. However, 

the Time-Dependent and Timed latent factors were perfectly correlated (r = 1.00), and 

therefore were collapsed into a single Efficiency factor in Model 5b. Model 5b provided a 

similar fit to the data as Model 5a, and the resultant correlation between the two factors 

(Latency and Efficiency) was moderate, r = .44, p < .001. Model 5b met the aforementioned 

standard criteria for global fit indices and was significantly better from Model 1 in χ2 

difference comparisons, p < .001.

Models 5b (Timing) and 2b (Complexity) could not really be compared with statistics. 

Although Table 4 reveals that Model 5b could be considered a better fit to the data on the 

basis of alternative metrics, these models differ only on two indicators (TOL and TMT 

Motor Speed), and factor loadings for other measures were similar across models. Also, 

results of the prediction models below were run with both Models 2b and 5b, and results 

were substantively the same. Given this, and the fact that Model 2b (Complexity) was 

conceptually derived and has support in the literature, the prediction results below report 

only this more theoretically driven model.

Reading Prediction Results (Aim 2)

For parsimony, we considered which of the above-noted covariates were related to outcomes 

at the zero-order level, as well as when considered collectively. Economic disadvantage was 

missing systematically (~10% sample), although the sample overall was highly (90%) 

disadvantaged, and likely for this reason, it was not a significant covariate in final models 

and so was excluded. Demographics with the strongest zero-order relations were age, grade, 

and LEP status; all cognitive/academic covariates were also quite strong. When covariates 

were considered collectively, the relevant covariates for single word reading were age, grade, 

CTOPP Elision, and CTOPP Rapid Naming. For reading fluency, relevant covariates were 
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age, grade, CTOPP Rapid Naming and WJ-III LWID. Finally, for reading comprehension, 

the relevant covariates were LEP status, grade, CTOPP Rapid Naming, and WJ-III LWID 

and Oral Comprehension. Results for final prediction models appear in Table 5. It should be 

noted that the PS factors were scaled so that a more negative score indicated better (faster) 

PS.

Single Word Reading.—The model with PS variables only was significant, R2 = .090, p 
< .001, with significant effects for Complex PS, p < .001, but not Simple PS, p = .819. The 

model without PS variables (covariates alone) was significant, R2 = .450, p < .001. Adding 

PS variables yielded R2 = .465, p < .001, with significant effects for PA, RAN, age, grade 

(all p < .05), and for Complex PS, p = .043, but not Simple PS, p = .054. The ΔR2 value 

derived from examination of the models with and without the PS latent factors was .015, and 

Satorra-Bentler χ2 difference testing yielded a significant value, t = 13.54, p = .005. Better 

word reading performance was associated better PA, faster RAN, younger age, and stronger 

(faster) Complex PS. Considering all other variables in the model, Grade 3 students had 

lower reading standard scores than Grade 4 students, and Grade 5 students had higher 

reading standard scores than those in Grade 4.

Reading Fluency.—The model with PS variables only was significant, R2 = .158, p 
< .001, with significant effects for both Simple PS, p = .031, as well as Complex PS, p 
< .001. The model without PS variables was significant, R2 = .618, p < .001. Adding PS 

variables yielded R2 = .644, p < .001, with significant effects for LWID, RAN, age, grade 

(all p < .05), and for both Simple PS, p = .027, and Complex PS, p < .001. Better word 

reading fluency was associated better LWID, faster RAN, younger age, and stronger (faster) 

Complex PS. Considering all other variables, both Grade 3 and Grade 5 students had higher 

reading standard scores than Grade 4. Also, and somewhat surprisingly, Simple PS was 

inversely related to reading performance. The ΔR2 value comparing models with and 

without PS was .026, and the model comparison with and without PS was significant, t = 
25.21, p = .002.

Reading Comprehension.—A model with PS variables alone was significant, R2 = .206, 

p < .001, with effects for Complex PS, p < .001, but not Simple PS, p = .717. The model 

without PS variables was significant, R2 = .625, p < .001. Adding PS variables yielded R2 

= .642, p < .001, with significant effects for LWID, Oral Comprehension, LEP, and grade 

(all p < .05), and for Complex PS, p < .001, but not for RAN or for Simple PS (all p > .05). 

Better reading comprehension was associated with better LWID and Oral Comprehension, 

faster RAN, not having LEP status, and stronger (faster) Complex PS. Considering all other 

variables in the model, Grade 3 students had better reading standard scores than Grade 4 

students. The ΔR2 value (.017) comparing models with and without PS was significant, t = 
20.24, p = .002.

Discussion

The goals of the present study were to evaluate the structure of PS in children, and to relate 

this structure to reading. Key strengths of the study included its large sample size, the large 

number of PS measures (all separate from RAN), its latent-variable comparison of different 
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models of PS dimensionality (unitary, complexity, timing, input, output), and the evaluation 

of the role of those resultant models for multiple types of reading outcomes (decoding, 

fluency, and comprehension). The nature of the sample, elementary students having 

generally low reading performances, is also advantageous in that it is for such children that 

identifying key predictors is especially useful. The preferred model was one that fit PS as a 

two-factor model, differentiating along the lines of Simple versus Complex processing. 

Complex PS was uniquely predictive of each reading skill examined, even accounting for 

strong language covariates; Simple PS was additionally predictive of reading fluency.

PS as a Two-Factor Model

The present study had as one goal to compare five models of PS to one another (see Table 

1). However, neither of our hypothesized three-factor models (of complexity and timing) 

were viable – although data fit was excellent (see Table 4, Models 2a and 5a), each had 

factors that correlated at unity (Middle and High for Model 2a; Time-Dependent and Timed 

for Model 5a). In each case, those factors were collapsed (into Complex for Model 2b; into 

Efficiency for Model 5b), and these two resultant two-factor models continued to fit the data 

well. These models also both clearly better than a Unitary model, or methodological models 

that stressed either Input or Output (see Table 4).

The two factor Complexity and Timing models could not be differentiated on the basis of χ2 

difference tests (because they have the same degrees of freedom), and comparison on other 

statistical grounds was also difficult because the models differed on only two indicators. 

Thus, one could question whether ‘processing’ or ‘speed’ is the driving difference. However, 

Model 2b (Complexity) is preferred because it is conceptually rather than methodologically 

derived, and has more prior empirical support (e.g., Carroll, 1993; Chiaravalloti et al., 2003; 

Demetriou et al., 2002). Given their overlap, it also implies that the indicators of the 

Efficiency factor of Model 5b were more cognitively complex than those of the Model 5b 

Latency factor. Further, the Complexity model, unlike the Timing model, is more able to be 

meaningfully contrasted with models of EF. Based on all the above, we therefore interpret 

the findings of this study as support for PS in children as being separable along a complexity 

continuum (Simple versus Complex). Of course, future studies would be needed to replicate 

and extend the current findings, and to further dissociate models of this type from others.

Tasks of the Simple PS factor had in common that they were low-cognitive demand, 

relatively “pure speed” measures, whereas the tasks of the Complex PS factor involved some 

degree of cognitive load. Some of the tasks of Complex PS (e.g., verbal and design fluency) 

could directly be considered measures of EF, which is why they were a priori assigned to the 

highest level of complexity. Other indicators of Complex PS were derived from measures of 

inhibition (e.g., Stop Signal, Color-Word Inhibition) or flexibility (Trailmaking), each of 

which is closely linked with EF. However, the specific indicators chosen for that factor were 

not those that are typically indexed to measure ‘EF’ (and thus why they were hypothesized 

to represent a “middle” level of complexity). As noted above, however, these two factors 

were indistinguishable. We are unaware of studies that attempt to more systematically parse 

the “speeded executive” from “speeded non-executive” components of the same set of 

measures, particularly in latent fashion, though doing so would be important for demarcating 
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the boundaries between (complex) processing speed and speeded executive function. The 

results of the present study provide some guidance as to how such a comparison might be 

made, thus highlighting its relevance. For example, an important model to test would be one 

that separates Simple PS, Complex PS (derived from tasks with no EF component), Speeded 

EF tasks, and untimed EF tasks. Doing so would require a large enough number of tasks to 

also control for input, output, and method of timing. Evaluating the role of those resulting 

factors for functional outcomes would also be of benefit.

Contribution of PS to Reading

The predictive role of PS in the evaluation of key reading skills for third through fifth grade 

children has variable support in the literature (Christopher et al., 2012; Cormier, McGrew, 

Bulut, & Funamoto, 2017; Shaul & Nevo, 2015). Results from this study provide support for 

the hypothesis that Complex PS is a significant predictor of single word reading, reading 

fluency, and reading comprehension. Simple PS factor was contributory only for word 

reading fluency. Given the structural models tested, and covariates utilized, these 

contributions of PS are not attributable to the use of alphanumeric material, or verbal output, 

or due to individual differences in general (e.g., oral comprehension) or specific (e.g., PA 

and RAN) language.

Somewhat unexpectedly, PS as a whole accounted for small, relatively similar amounts of 

unique variance in all three reading outcomes (~2%). Although this at first appears to be a 

small contribution, models without covariates demonstrated that PS variables predicted 

substantial portions of reading variance in single word reading, fluency, and comprehension 

(9%, 16%, and 21%, respectively). This pattern suggests that a substantial portion of the 

total variance for any given outcome was shared. For example, in the comprehension model, 

the latent Complex PS factor correlated r = .58 with rapid naming, in line with extant 

literature, given that the latent relation of PS and RAN varies from r = .41 (Pires et al., 2019) 

to r = .74 (McGrath et al., 2011). Complex PS also correlated r = −.50 with single word 

reading, and r = −.52 with oral comprehension, and the standardized beta weight for 

Complex PS was similar to that of oral comprehension. A second highly relevant 

consideration is that these percentage contributions are over and above prediction models 

where baseline variables (demographic and language covariates) are already extremely 

strong predictors. These “value added” contributions, much like the case of EF (Miciak et 

al., 2018b), are more impressive in such a context.

That PS is related to word decoding is well-supported, regardless of how PS is defined and 

captured, as evidenced in the large literature evoking PS as a shared cognitive factor for 

reading, particularly in its comorbid contexts (Catts et al., 2002; Christopher et al., 2012; 

Shaul & Nevo, 2015). However, as noted above, the overall effects of PS (both Simple and 

Complex) showed the weakest individual effects for decoding. Stronger effects were noted 

for reading fluency, where both Simple and Complex PS were significant predictors, though 

even here, its independent contribution (as denoted by standardized beta weight) was small 

(Table 4). PS has been less systematically related to reading comprehension, but it requires 

an array of cognitive processes (e.g., EF; Butterfuss & Kendeou, 2017; Cirino et al., 2018a), 

and therefore the contribution of (Complex) PS was to be expected. The large contribution 
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of Complex PS to comprehension (in the absence of covariates) was somewhat surprising, 

although in struggling readers, time may be more of a factor given reduced automaticity 

(although the Gates MacGinitie has a time limit, it is not typically considered a speeded 

test).

Prior studies that have evaluated the simultaneous role of RAN and PS for reading have been 

mixed. Georgiou et al. (2016) and Papadopoulos et al. (2016) found that RAN had stronger 

direct effects, whereas Christopher et al. (2012) found that PS had stronger direct effects, 

and McGrath et al. (2011) and Peterson et al. (2017) found that both had direct effects. The 

present results are most similar to those of McGrath et al. (2011) and Peterson et al. (2017) 

for single word reading and fluency, but aligned with those of Christopher et al. (2012) with 

regard to reading comprehension. This pattern makes sense given that the RAN-reading 

relationship is weaker for comprehension than for word reading (Araujo et al., 2015), and 

the present results provide some clarity to this literature.

Implications

A definitive, multi-field agreed upon definition of PS remains elusive. In reviewing the 

labels commonly assigned to the construct of PS in the literature, the Simple PS factor may 

align best with terms such as “reaction time” or “perceptual speed” and may be best 

captured by computerized, millisecond-based tasks that require very few cognitive 

requirements. Complex PS, on the other hand, aligns better with terms such as “cognitive 

tempo”, “information processing”, or “cognitive processing speed” (Gs; Cormier et al., 

2017) and can be captured at the second-to-second level to account for varying degrees of 

cognitive processing. However, as noted, the results of the present study highlight the need 

for a stronger test of the differentiation of complexity from method of timing, both in terms 

of structure, but also for how each relates to important functional outcomes.

The relatively weak predictive effects of the Simple PS factor for reading suggests that the 

role for PS in functional outcomes suffers as it gets closer to capturing the “speed” of PS 

relative to the “processing” of PS. On the other hand, the closer a PS measure gets to 

capturing a more cognitively complex process, the more important the consideration of 

overlap with other cognitive processes (such as EF) becomes. In fact, one intent of the 

present study was to examine where PS might “end” and EF might “begin”; commonality 

between the constructs can be seen in studies that have used PS as a control variable when 

examining the structure of EF (Huizinga et al., 2006). However there was no clear 

differentiation between PS and EF in the present study, again noting that EF was very 

narrowly considered. As eluded to above, the present study is informative for future studies 

to more clearly evaluate any such potential distinctions in terms of structure and prediction.

Another implication of these results concerns the role of PS as a shared cognitive process for 

comorbid disorders, such as RD, math disability (MD), and ADHD. For example, Peterson 

et al. (2017) found PS to account for some of the overlap between attention with either 

reading or math. Within the adult literature, slowed PS has been theorized to be a broad trait 

of externalizing psychopathology, whereas EF was more closely tied to specific disorder 

(e.g., ADHD; Nigg et al., 2017). Our results suggest that Complex PS would be a stronger 
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candidate for any such shared process, relative to Simple PS, given that reading, math, and 

attention are all complex multi-faceted outcomes.

Given the role of (especially Complex) PS for each reading outcome identified in this study, 

it would be tempting to suggest that intervening on PS would be a fruitful means of directly 

improving reading. However, given the difficulties associated with transfer when training 

other cognitive skills (e.g., WM; Jacob & Parkinson, 2015; Sala & Gobet, 2020), it may be 

more relevant to accommodate PS weakness in the context of content-focused interventions.

Limitations

One limitation of the present study is that the PS measures chosen did not capture all 

possibilities, and the measures used were selected in part for the purposes of a larger study. 

However, many of these measures have been used in prior studies examining PS (Demetriou 

et al., 2014). The present study also did not use standard-practice clinical measures of PS 

(i.e., Coding, Symbol Search, Cancellation; Wechsler, 2014), and it is known that these are 

related to reading skill (Mayes & Calhoun, 2007). However, few studies separate the 

contributions of such measures from those of rapid naming, and even these tasks vary in 

their “processing” requirements. We also did not derive our PS measures as separate “speed” 

factors from inductive or reasoning tasks that are not typically timed (e.g., Papadopoulos, 

Georgiou, Deng, & Das, 2018; Ren, Wang, Sun, Deng, & Schweizer, 2018; Zeller, Reiß, & 

Schweizer, K. (2020). Importantly, though, each of those studies is with adults, and do not 

allow for a comparison of unitary versus complexity versus methodological models. 

Nonetheless, the present study raises interesting questions regarding how such a speed 

factor(s) would relate to the Simple and Complex PS factors here, though we would expect 

moreso with the latter than the former given that the speed factors are produced from 

complex cognitive (i.e., reasoning) tasks.

The demographic make-up of the sample might also be a limitation. As noted earlier, there 

was an abundance of struggling readers in 4th grade (though the weighting variable was 

included to partially compensate for this). Ninety-percent of the sample was also eligible for 

free or reduced lunch, a proxy for socioeconomic status (Harwell & LeBeau, 2010; 

Ransdell, 2012). SES is an important factor in the development of reading skills and PS 

(Hackman & Farah, 2009), although limited variability here is a possibility for why it did 

not contribute uniquely in the present study. All measures in this study were presented in 

English, and poor English proficiency can impact academic performance (Abedi, 2002; 

Lesaux, Crosson, Kieffer, & Pierce, 2010). We included this designation in the present study, 

and this was found to be a factor for the reading comprehension model, but it did not 

eliminate effects of PS. The results of the present study should nonetheless be considered 

with regard to the constellation of this sample, and the robustness of the structure across 

samples with different characteristics would be a welcome future area of investigation.

Conclusion

PS can be operationalized as a two-level construct with separation apparent between a 

simple, speed-based level and more complex, efficiency-based level of cognitive processing. 

However, separation between the complex level of PS and EF is as yet undetermined. 

Gerst et al. Page 15

J Cogn Dev. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Complex PS is predictive of single word reading, reading fluency and reading 

comprehension for late elementary-aged children, even in the context of highly relevant 

demographic and language covariates, highlighting its relevance. The present study can 

inform future examinations of how to more carefully differentiate the structure and 

predictive utility of each defined level of PS, particularly EF, and particularly those that 

control from timing, input, and output parameters.
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Figure 1: 
Model 2b (Complexity)

Note: All loadings were significant at p < .001; TMT MS = DKEFS TMT: Motor Speed, 

TOL = Tower of London, CWIT = DKEFS CWIT: Color Naming, TMT NS = DKEFS 

TMT: Number Sequencing, PP = Purdue Pegboard, NEPSY VP = NEPSY Visuomotor 

Precision, Visual Matching = WJ-III Visual Matching, Design Fluency = DKFES Design 

Fluency: Empty Dots, VF Categories = DKEFS Verbal Fluency: Categories, VF Letters = 

DKEFS Verbal Fluency: Letters, TMT NLS = DKEFS TMT: Number-Letter Sequencing.
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Table 1.

Indicator Variables by Predicted Model

Complexity Model Output Model Input Model Timing Model

Task 
Name

Unitary Simple Middle 
(Complex)

High 
(Complex) Verbal Manual Alphanumeric Non-

Alphanumeric Latency
Time-

Dependent 
(Efficiency)

Timed 
(Efficiency)

VF L X X X X X

VF 
Ca X X X X X

DF X X X X X

TMT 
NLS X X X X X

TOL X X X X X

CB X X X X X

CWIT X X X X X

TMT 
NS X X X X X

VP X X X X X

PP X X X X X

VM X X X X X

GNG X X X X X

TMT 
MS X X X X X

NB L X X X X X

NB S X X X X X

SS X X X X X

Note: VF L = DKEFS Verbal Fluency: Letters, VF Ca = DKEFS Verbal Fluency: Categories, DF = DKFES Design Fluency: Empty Dots, TMT 
NLS = DKEFS TMT: Number-Letter Sequencing, TOL = Tower of London, CB = Corsi Blocks: Forward, CWIT = DKEFS CWIT: Color Naming, 
TMT NS = DKEFS TMT: Number Sequencing, VP = NEPSY Visuomotor Precision, PP = Purdue Pegboard, VM = WJ-III Visual Matching, GNG 
= Go/No-Go, TMT MS = DKEFS TMT: Motor Speed, NB L = N-Back: Letters, NB S = N-Back: Shapes, SS = Stop Signal
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Table 2.

Demographic Characteristics

Category/Scale Grade 3 Grade 4 Grade 5 Total

N 186 482 176 844

Sex

Female (%) 101 (54%) 225 (47%) 84 (48%) 410 (49%)

Age

Mean (SD) 8.94 (0.50) 9.92 (0.53) 11.22 (0.49) 9.98 (0.91)

Site

Houston (%) 91 (49%) 244 (51%) 86 (49%) 421 (50%)

Ethnicity

Hispanic (%) 42 (22%) 213 (44%) 50 (28%) 304 (36%)

White (%) 46 (25%) 49 (10%) 45 (26%) 140 (17%)

Black (%) 73 (39%) 121 (25%) 53 (30%) 247 (29%)

Other (%) 26 (14%) 99 (21%) 28 (16%) 153 (18%)

Special education (N = 451)

Yes (%) 14 (8%) 47 (10%) 28 (16%) 89 (11%)

No (%) 84 (45%) 211 (44%) 67 (38%) 362 (43%)

Economic disadvantage

Free/Reduced lunch (%) 162 (87%) 448 (93%) 149 (85%) 759 (90%)

Not economically disadvantaged (%) 24 (13%) 34 (7%) 27 (15%) 85 (10%)

Limited English Proficiency (N = 830)

LEP (%) 0 (0%) 197 (41%) 0 (0%) 197 (23%)

Non-LEP (%) 186 (100%) 280 (58%) 167 (95%) 633 (75%)
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Table 3:

Descriptive Statistics for Indicators, Outcomes and Covariates

Data Patterns

Variable N Mean SD Skewness Kurtosis 1 2 3 4 5 6

VF L x x x x x x

 Total Raw Score 832 18.22 7.13 0.48 0.27

 Scaled Score 832 8.93 2.91 0.44 0.04

VF Ca x x x x x x

 Total Raw Score 832 24.52 6.78 0.37 0.15

 Scaled Score 832 9.20 2.68 0.25 0.07

DF x x x x x x

 Total Raw Score 827 5.85 2.30 0.36 −0.01

 Scaled Score 827 8.93 2.48 0.40 0.18

TMT NLS x x x

 Total Time (seconds) 410 159.26 58.96 0.05 −1.35

 Scaled Score 405 7.33 4.12 −0.13 −1.26

TOL x x x x x x

 Mean Latency to First Move (ms) 822 7.33 0.36 0.78 1.46

CB x x x x x x

 Total Time (ms) 826 1532.08 341.84 1.10 1.79

CWIT x x x

 Total Time (seconds) 415 44.86 9.33 0.79 1.52

 Scaled Score 415 9.78 2.92 −0.51 0.04

TMT NS x x x

 Total Time (seconds) 410 62.09 27.93 1.35 1.35

 Scaled Score 410 6.95 4.12 −0.22 −1.31

VP x x x x

 Total Time (seconds) 563 120.44 45.46 0.96 1.00

 Scaled Score 563 9.26 3.02 −0.28 0.57

PP x x x x x

 Total Pegs 685 9.94 2.03 0.78 2.12

 z-score 685 −0.73 1.30 0.78 2.61

VM x x x x

 Total Raw Score 565 35.23 6.14 −0.24 0.75

Scaled Score 562 94.66 14.56 0.05 0.01

GNG x x x x

 Mean Latency for Go Trials (ms) 563 508.80 69.37 0.58 0.47

TMT MS x x x

 Total Time (seconds) 410 57.78 26.46 1.26 1.76

 Scaled Score 410 8.00 3.42 −0.55 −0.53

NB L x x x x

 Mean RT (ms) 544 373.47 48.33 0.68 0.84

J Cogn Dev. Author manuscript; available in PMC 2022 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gerst et al. Page 25

Data Patterns

Variable N Mean SD Skewness Kurtosis 1 2 3 4 5 6

NB S x x x x

 Mean RT (ms) 559 377.82 47.65 0.68 0.75

SS x x x x x

 Mean RT (ms) 524 714.12 162.32 0.82 0.45

WJ LWID x x x x x x

 Total Raw Score 842 47.47 8.62 0.02 −0.19

 Standard Score 839 96.08 13.44 −0.09 0.29

TOWRE x x x x x x

 Total Raw Score 836 57.58 13.13 −0.56 0.56

 Standard Score 835 87.64 14.98 0.06 −0.11

GMRT x x x x x x

 Total Raw Score 835 20.29 10.63 0.69 −0.57

 Standard Score 835 89.03 15.01 0.62 0.01

WJ Oral Comp x x x x x x

 Total Raw Score 838 16.03 5.22 −0.33 0.09

 Standard Score 834 92.96 15.94 −0.45 0.49

CTOPP Elision x x x x x x

 Total Raw Score 837 11.31 4.80 0.23 −1.29

 Scaled Score 836 8.25 3.00 0.33 −0.56

CTOPP RLN x x x x x x

 Total Time (seconds) 838 3.73 0.27 0.80 1.40

 Scaled Score 837 8.86 2.39 0.19 −0.08

Note: RT = Reaction Time, ms = Milliseconds, VF L = DKEFS Verbal Fluency: Letters, VF Ca = DKEFS Verbal Fluency: Categories, DF = 
DKEFS Design Fluency: Empty Dots, TMT NLS = DKEFS TMT: Number-Letter Sequencing, TOL = Tower of London, CB = Corsi Blocks: 
Forward, CWIT = DKEFS CWIT: Color Naming, TMT NS = DKEFS TMT: Number Sequencing, VP = NEPSY Visuomotor Precision, PP = 
Purdue Pegboard, VM = WJ-III Visual Matching, GNG = Go/No-Go, TMT MS = DKEFS TMT: Motor Speed, NB L = N-Back: Letters, NB S = N-
Back: Shapes, SS = Stop Signal, WJ LWID = WJ-III Letter-Word ID, TOWRE = TOWRE Sight Word Efficiency, GMRT = Gates MacGinitie 
Reading Tests, Reading Comprehension, WJ Oral Comp = WJ-III Oral Comprehension, CTOPP Elision = CTOPP Phoneme Elision, CTOPP RLN 
= CTOPP Rapid Letter Naming
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Table 5:

Prediction Aim Regression Statistics for Complexity Full Model (Model 2b)

Predictor β b SE(b) t p

Single Word Reading

   CTOPP Elision 0.383 1.026 0.089 11.511 < .001

   CTOPP Rapid Letter Naming −0.146 −7.224 1.743 −4.144 < .001

   Age −0.758 −10.29 0.771 −13.351 < .001

   Grade 3 −0.109 −3.199 1.025 −3.122 .002

   Grade 5 0.451 13.00 1.559 8.337 < .001

   Simple PS −0.079 −0.920 0.477 −1.927 .054

   Complex PS −0.127 −1.129 0.557 −2.027 .043

Total Model R2= 0.465, p < .001

Reading Fluency

   WJ-III Letter Word Identification 0.454 0.261 0.017 15.112 < .001

   CTOPP Rapid Letter Naming −0.275 −15.11 2.084 −7.253 < .001

   Age −0.549 −8.261 0.684 −12.079 < .001

   Grade 3 0.094 3.076 0.988 3.113 .002

   Grade 5 0.167 5.324 1.481 3.594 < .001

   Simple PS 0.071 0.912 0.412 2.214 .027

   Complex PS −0.242 −2.372 0.532 −4.457 < .001

Total Model R2= 0.644, p < .001

Reading Comprehension

   WJ-III Letter Word Identification 0.454 0.247 0.014 17.146 < .001

   WJ-III Oral Comprehension 0.186 0.147 0.022 6.648 < .001

   CTOPP Rapid Letter Naming −0.012 −0.621 1.607 −0.387 .699

   Limited English Proficient −0.165 −6.618 0.858 −7.713 < .001

   Grade 3 0.358 10.960 0.866 12.648 < .001

   Grade 5 −0.035 −1.070 0.892 −1.200 .230

   Simple PS 0.010 0.123 0.345 0.357 .721

   Complex PS −0.207 −1.850 0.439 −4.211 < .001

Total Model R2= 0.642, p < .001

Note. PS = Processing Speed. Grade 3 and Grade 5 represent contrasts of students in these grades with the reference group (Grade 4). See Tables 1 
and 3 for other acronyms.
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