Problem Set 2

Due date: Thursday, February 11, in class.

Consider the simple linear regression model with one regressor:

\[y_i = \beta x_i + u_i , \]

where \(y_i \) and \(x_i \) are expressed in deviations from their means. Assume that the standard classical assumptions hold. Specifically, the \(x_i \)'s are fixed in repeated sampling, and \(u_i \sim iid(0, \sigma^2) \).

1. Consider the following linear estimator of \(\beta \):

\[\tilde{\beta} = \frac{1}{N} \sum_{i=1}^{N} \frac{y_i}{x_i} \]

Derive the mean and variance of \(\tilde{\beta} \). Compare the variance of \(\tilde{\beta} \) to \(\frac{\sigma^2}{\sum x_i^2} \). Which is larger? Are the residuals, \(y_i - \tilde{\beta} x_i \), uncorrelated with the explanatory variables?

2. Answer the same question with \(\tilde{\beta} = \frac{y_2 - y_1}{x_2 - x_1} \).

3. Consider the following regression model \(y_i = \beta x_i + u_i \), with \(u_i \sim iidN(0, \sigma^2) \), where \(i = 1, 2, \ldots, 10 \);

Suppose that \(\sum x_i y_i = 17900 \), \(\sum x_i^2 = 39400 \), and \(\sum u_i^2 = 283.27 \)

Consider the following hypothesis and 2-sided alternative:

\[H_0 : \beta = 0.50 \]
\[H_1 : \beta \neq 0.50 \]

Test the above hypothesis using a confidence interval and the test of significance approach. Set the size of your test to 0.05 and 0.01. Report the outcome of both tests. Also report the p-value of your t-statistic.
4. Prove the Frisch-Waugh Theorem. That is, in the linear regression model

\[y = X_1\beta_1 + X_2\beta_2 + u , \]

demonstrate that

\[\hat{\beta}_1 = (X_1^* X_1^*)^{-1} X_1^* y^* , \]

where \(X_1^* \equiv M_2 X_1 \), \(y^* \equiv M_2 y \), and \(M_2 = I - X_2 (X_2' X_2)^{-1} X_2' \).

5. Consider a nonsingular linear transformation of the regressors, \(XA \), where the matrix \(A \) is a \(k \times k \) and invertible.

Show that the fitted values and the residuals from a regression of \(y \) on \(XA \) are the same as from a regression of \(y \) on \(X \).

The following results from matrix algebra will be helpful:

\((BC)' = C' B' \)

\((BC)^{-1} = C^{-1} B^{-1} \), whenever all three inverses exist.