
1. (From Midterm 1, Spring 2003, counted 24%) A study of college students finds that while 60 percent of college students are male, only 40 percent of college students with an A average are male. In contrast, 15 percent of female students have an A average. Assuming these results are accurate answer the following questions.
 a) Are “being a male student” and “having an A average” independent? Why?
 b) What is the probability that a randomly selected student has an A average?
 c) What is the probability that a randomly selected male student has an A average?

2. Demonstrate that \(P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C) \). (You may use a Venn diagram or use the rule for \(P(A \cup B) \) and the associative law for unions of sets.)

3. (Question 2.3 in Ramanathan.) Let \(B \) be an event and \(A_1, A_2, ..., A_n \) be \(n \) mutually exclusive events. Define \(A = \bigcup_{i=1}^{n} A_i \). Also assume \(P(A_i) > 0 \) and \(P(B|A_i) = p \) for all \(i \). Show that \(P(B|A) \) is also equal to \(p \). [A Venn diagram might help.]

4. The probability that a person will watch a movie on TV is 0.80. If a person is watching, the probability that the show is taped is one-third. If a person is not watching, the probability that the show will be taped is 0.9. What is the probability that the show will be taped? What is the probability that a show is being watched given that it is being taped?