1. Textbook pages that you can skip in Chapter 48
 fig. 48-2
 insect trachea: p. 853
 birds: pp. 854-856
 tidal breathing: pp.856-857 + Fig. 48.11

2. Roadmap of the lecture
 * limits to gas exchange
 * the law of diffusion and respiratory adaptations
 * fish:
 • anatomy of gills
 • counter-current
 * humans:
 • anatomy of the lung
 • respiratory adaptations
 • gas transport in the blood
 • biochemistry of hemoglobin
 • binding curve
 • pH regulation of binding curve
 • adaptation to high altitudes
 • myoglobin
 • transport of CO2
 • control of ventilation rate: chemosensors

3. Study guide
 After studying for this lecture, you should be able to:
 • Explain how the efficiency of oxygen diffusion is affected by the surface area and the concentration gradient
 • Explain respiratory adaptations in terms of the law of diffusion and the parameters that affect the rate of diffusion
 • Explain how a counter current is useful to maximize gas exchanges
 • Describe the anatomy of the human lungs
 • Describe the respiratory adaptations in humans
 • Know the composition and role of hemoglobin (Hb)
 • Draw the binding curve of oxygen to Hb, and be able to correlate the curve to the binding or release of oxygen in different parts of the body
 • Draw how the binding curve changes with pH; explain if this corresponds to a greater or lower affinity of oxygen for Hb. Explain how this effect helps the body.
• Compare and contrast the adaptations to high altitudes done by animals who live at high altitudes (llamas) vs animals who don’t (humans)
• Know the three ways CO2 can be transported in the blood
• Discuss why CO2 is released from the blood in the lungs
• Discuss how the rhythm of ventilation is controlled
• Answer the following questions:
 • What are alveoli?
 • Is counter-current an adaptation in mammals? Explain
 • What is positive cooperativity?
 • What is the Bohr effect?
 • Is the binding of oxygen by Hb better or worse when the binding curve is shifted to the right? To the left?
 • Does myoglobin bind oxygen better or worse than hemoglobin?
 • What is carboxyhemoglobin?
 • What is diphosphoglyceric acid? What does it do?
 • Where is hemoglobin located? Where is myoglobin located? Where is carbonic anhydrase located?
 • Where are chemosensors located?
 • Is the rate of ventilation more sensitive to CO2 or O2?