Homework Discussion, Week 4

Physics 1302

Dr. Andersen

Chapter 21

32.) a) Since the resistors are in series, solve $V=I R_{e q}$ for $R_{e q}$, then use $R_{e q}$ to solve for R. b) Use $V=I R$ for each. c) If V were larger, and I remained the same (the textbook author doesn't explicitly say that in the statement of the problem, but that is what he had in mind), then from $V=I R$, the resistance must be larger.
Answers: a) 50Ω, b) $1.8 \mathrm{~V}, 8.5 \mathrm{~V}, 7.8 \mathrm{~V}$
37.) Start with the $4.8,3,3$, and 8.1 in parallel. That equivalent resistance is in series with the 6.3. That combination is in parallel with the 1.5 and 2.5 .
51.)(Important notice about this problem: the answers in the back of the book are wrong! The correct answers are given below.) a) I chose I_{1} to be the current through the 9.8 and 3.9Ω resistors, I_{2} to be the current through the 1.2Ω resistor, and I_{3} to be the current through the 6.7Ω resistor. I also chose to draw I_{1} and I_{3} to be entering node A on the diagram, and I_{2} to be leaving the node. This gives a node equation at node A of:

$$
I_{1}+I_{3}=I_{2} .
$$

working clockwise around the left loop and the right loop gives loop equations:

$$
12 V-(3.9 \Omega) I_{1}-(1.2 \Omega) I_{2}-(9.8 \Omega) I_{1}=0
$$

and

$$
(6.7 \Omega) I_{3}-9.0 \mathrm{~V}+(1.2 \Omega) I_{2}=0
$$

These then need to be solved for the currents. b) Because point B is connected to the negative terminal of the 9 Volt battery, and point A is separated from point B by the 1.2Ω resistor, point A must be at a higher potential. c) Note that the potential difference between A and B is just the potential difference across the 1.2Ω resistor, so that the potential difference is just $(1.2 \Omega) I_{2}$.
Answers a) $I_{1}=0.72 \mathrm{~A}, I_{2}=1.75 \mathrm{~A}, I_{3}=1.03 \mathrm{~A}$. c) 2.1 Volts.
56.) a) Since the capacitors are in parallel, add the capacitances to get the equivalent capacitance. b) Because they are connected in parallel, the potential difference across each capacitor is equal. Since $Q=C V$, the capacitor
with the larger capacitance will be holding more charge. c) Plug and chug in $Q=C V$.
Answer: a) $23 \mu F$ c) $90 \mu C$ and $180 \mu C$.

