Homework Discussion, Week 9

Physics 1302

Dr. Andersen

Chapter 28

19.) We can use equation $28-3$ to find the angle between the central bright fringe and first fringe, and then use that angle in equation $28-1$. Note that the sharp edges of the 2 razor blades will be separated by the thickness of 1 of the razor blades, so that the slit separation in this case is just the thickness of one of the blades.
32.) a) In this case, we need to use equation $28-11$, and solve for the thickness. b) Using equation 28-11 we can solve for the longest wavelength for which there will be destructive interference, this turns out to be 326 nm , which is already in the ultra-violet, so there are no visual wavelengths at which we will get destructive interference.
Answer: a) 123 nm
42.) The angular position of the minima is given by

$$
\sin \theta=\frac{m \lambda}{W}
$$

The distance between the two fringes is $y_{2}-y_{1}=L\left(\tan \theta_{2}-\tan \theta_{1}\right)$. Because $y_{2}-y_{1} \ll L$, we can use the small angle approximation for the tangent function $\tan \theta \approx \theta$, and for the sine function $\sin \theta \approx \theta$, so:

$$
y_{2}-y_{1}=L\left(\frac{2 \lambda}{W}-\frac{\lambda}{W}\right) .
$$

Solve this for W.
Answer: $12 \mu \mathrm{~m}$.

