Exam 1 Solutions

Multiple Choice Key

1. d
2. a
3. c
4. b
5. a
6. d
7. c
8. b
9. e
10. c

Worked Problems

1. To find the total force:

- Find the interior angle of the right triangle next to Q_{1}.

$$
\theta=\arctan \frac{30 \mathrm{~cm}}{70 \mathrm{~cm}}=23.2^{\circ}
$$

- Find the distance from charge 1 to charge 3

$$
r=\sqrt{(70 \mathrm{~cm})^{2}+(30 \mathrm{~cm})^{2}}=76.2 \mathrm{~cm}
$$

- Find the magnitude of both forces

$$
\begin{aligned}
& F_{12}=k \frac{Q_{1} Q_{2}}{r_{12}^{2}}=0.11 \mathrm{~N} \\
& F_{13}=k \frac{Q_{1} Q_{3}}{r_{13}^{2}}=0.12 \mathrm{~N}
\end{aligned}
$$

- Find the x and y components of both vectors (taking the $+x$ axis to the right, and the $+y$ axis upward).

$$
\begin{gathered}
\mathbf{F}_{12}=-(0.11 N) \hat{y} \\
\mathbf{F}_{13}=-(0.12 N) \cos 66.8^{\circ} \hat{x}-(0.12 N) \sin 66.8^{\circ} \hat{y}=-(0.047 N) \hat{x}-(0.11 N) \hat{y}
\end{gathered}
$$

- Add the two forces together by component to find the total force.

$$
\mathbf{F}_{t o t}=\mathbf{F}_{12}+\mathbf{F}_{13}=(0-0.047 N) \hat{x}+(-0.11-0.11 N) \hat{y}=-(0.047 N) \hat{x}-(0.22 N) \hat{y}
$$

- Use the Pythagorean Theorem to determine the magnitude of the force.

$$
F_{\text {tot }}=\sqrt{(-0.047 N)^{2}+(-0.22 N)^{2}}=0.23 N
$$

2. Start with conservation of energy:

$$
K_{i}+U_{i}=K_{f}+U_{f}
$$

- The potential energies depend on the values of the potential, $U=$ $q V$. The final potential at infinity will be zero (by definition), the initial will just be the total potential due to Q_{2} and Q_{3} at the position of Q_{1} :

$$
V_{i}=\frac{k Q_{2}}{r_{2}}+\frac{k Q_{3}}{r_{3}}=86,400 \mathrm{~V}
$$

- Energy conservation (with $v_{i}=0$ since the charge starts from rest) is then:

$$
\frac{1}{2} m v_{f}^{2}=Q_{1} V_{i}
$$

- Solving for the speed gives:

$$
v_{f}=\sqrt{\frac{2 Q_{1} V_{i}}{m}}=\sqrt{\frac{0.34}{m}} \mathrm{~m} / \mathrm{s}
$$

