Homework Discussion, Week 8

Physics 1301

Dr. Andersen

Chapter 11

61.) The total angular momentum must be conserved. The initial angular momentum will have contributions from both the person and the merry-goround

$$
L_{i}=m v r+\frac{1}{2} M r^{2} \omega_{i}
$$

where m is the mass of the person, M is the mass of the merry-go-round, and r is its radius. Afterward, the total moment of inertia will be the sum of the merry-go-round plus a point mass for the person on the rim

$$
L_{f}=\left(m r^{2}+\frac{1}{2} M r^{2}\right) \omega_{f}
$$

To find ω_{f}, equate the two angular momenta, and solve.
65.) Again, conservation of angular momentum. The initial will be

$$
L_{i}=\left(m_{\text {mouse }} r^{2}+\frac{1}{2} M r^{2}\right) \omega_{i} .
$$

When the mouse reaches the center, it won't be contributing anything to the moment of inertia, so

$$
L_{f}=\frac{1}{2} M r^{2} \omega_{f} .
$$

a) Because the moment of inertia has decrease, the angular speed must increase, in order for L to remain constant. b) Equate the angular momenta and solve.

Chapter 12

18.) a) Weight is force of gravity acting on the object, so

$$
W=\frac{G m M_{e}}{r^{2}}
$$

Solving for r gives $r=2.8 \times 10^{7} \mathrm{~m}$. b) Using $F=m a, a=W / m=0.50 \mathrm{~m} / \mathrm{s}^{2}$. c-d) Because both the force and acceleration of gravity depend on r^{2}, doubling the distance will decrease both by a factor of $2^{2}=4$.
19.) The acceleration of gravity on the surface of the earth is

$$
g=\frac{G M_{e}}{r_{e}^{2}}
$$

and for the moon is

$$
\frac{1}{6} g=\frac{G M_{m}}{r_{m}^{2}}
$$

Solving for the mass in each gives

$$
M_{e}=\frac{g r_{e}^{2}}{G}
$$

and

$$
M_{m}=\frac{g r_{m}^{2}}{6 G} .
$$

Substituting $r_{m}=\frac{1}{4} r_{e}$ gives

$$
M_{m}=\left(\frac{1}{6}\right)\left(\frac{1}{16}\right)\left(\frac{g r_{e}^{2}}{G}\right)
$$

Note that the thing in the third parenthesis is the mass of the earth, so the moon has a mass of approximately $1 / 96$ that of the earth.

