## Homework Discussion, Week 8

## Physics 1301 <br> Dr. Andersen

## Chapter 11

20.) The student is in static equilibrium. In this case all the forces act in the y direction only. a) The force equation for y is:

$$
122 N+290 N-m g=0
$$

Solving for $m$ gives $m=42 \mathrm{~kg}$. b) To find the distance to the center of mass, we need the torque equation. Taking the torque around the students head gives

$$
(2.5 m)(122 N)-m g x=0
$$

where $x$ is the distance from her head to her center of mass. Solving gives $x=0.74 \mathrm{~m}$.
27.) We must apply the conditions of static equilibrium:

$$
\begin{aligned}
& F_{x}+T_{x}+W_{x}=0 \\
& F_{y}+T_{y}+W_{y}=0,
\end{aligned}
$$

and taking the torque to be around the position of the hinge:

$$
\tau_{T}+\tau_{W}=0
$$

In this problem, the angle between the tension and the $+x$ axis is $180^{\circ}$, so:

$$
\begin{aligned}
& F_{x}+T \cos 180^{\circ}+m g \cos 270^{\circ}=0 \\
& F_{y}+T \sin 180^{\circ}+m g \sin 270^{\circ}=0 \\
& T(1.2 m) \sin 25^{\circ}-m g \sin 65^{\circ}=0
\end{aligned}
$$

Solving these equations gives $F_{x}=32 N, F_{y}=30 N$, and $T=32 N$.

