Homework Discussion, Week 7

Physics 1301

Dr. Andersen

Chapter 9

23.) It's a 1-D problem. Taking the direction of the moving cart to be positive, momentum conservation reads

$$
m v=2 m v_{f}
$$

(since the carts stick together.) So $v_{f}=v / 2$. The final kinetic energy will thus be $\frac{1}{2} m\left(\frac{v}{2}\right)^{2}$.
35.) a) Since it's a 1-D elastic collision, use momentum conservation

$$
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}
$$

and, from kinetic energy conservation

$$
v_{1 i}+v_{1 f}=v_{2 i}+v_{2 f} .
$$

Taking the elephant to be moving in the positive direction, and labeling it as object $1, v_{1} i=4.45 \mathrm{~m} / \mathrm{s}$ and for the ball $v_{2 i}=-7.91 \mathrm{~m} / \mathrm{s}$. Stick those in the above equations and plug and chug.

Chapter 10

29.) a) use $v=\omega r$, and solve for ω. b) Use $a_{c p}=\frac{v^{2}}{r}=\omega^{2} r$. b) The centripetal acceleration is produced by the tension in the vine.
54.) a) Use $K E_{\text {rot }}=\frac{1}{2} I \omega^{2}$, with $I=\frac{1}{12} m L^{2}$ (see table 10-1). b) Set the rotational kinetic energy equal to the gravitational potential $\frac{1}{2} I \omega^{2}=m g h$, and solve for h.
Answers: a) $1020 \mathrm{~J}, \mathrm{~b}) 180 \mathrm{~m}$.
60.) a) This is a conservation of energy problem, with both translational and rotational kinetic energy, so

$$
\frac{1}{2} m v_{C M i}^{2}+\frac{1}{2} I \omega_{i}^{2}+m g y_{i}=\frac{1}{2} m v_{C M f}^{2}+\frac{1}{2} I \omega_{f}^{2}+m g y_{f} .
$$

Because it is rolling without slipping, the speed of the center of mass will just be the tangential speed of a point on the ball in contact with the ground
$v_{C M}=v_{t}=\omega R$, and the moment of inertial will just be that of a solid sphere rotating around its center $I=\frac{2}{5} m R^{2}$. Put all this together and solve for $v_{C M f}$. b) Notice that the final answer for part (a) didn't depend on the radius of the ball, so changing the radius of the ball won't change the final answer.
Answer: a) $0.83 \mathrm{~m} / \mathrm{s}$.

