## Homework Discussion, Week 6

## Physics 1301

## Dr. Andersen

## Chapter 7

41.) a) Solve $P=\frac{W}{t}$ for $W$ with $P=0.30 \mathrm{hp}$ and $t=169 \mathrm{~min}$. b) Convert your answer from Joules to Calories.

## Chapter 8

21.) a) Use conservation of energy

$$
\frac{1}{2} m v_{i}^{2}+m g y_{i}=\frac{1}{2} m v_{f}^{2}+m g y_{f} .
$$

In this case we want to solve for $v_{i}$, and we know that $v_{f}=29 \mathrm{~m} / \mathrm{s}$ and $y_{i}=y_{f}+32 m$. Just plug and chug with these values. b) Start with the same energy conservation equation, but now we want to find the y coordinate where $v_{f}=0$. Setting $y_{i}=32 m$ (this way, the value we find for $y_{f}$ will be the height above the base of the cliff), and $v_{i}$ to the value from part (a), we again plug and chug.
26.) a) A couple of things to notice: 1) because the masses are hooked together by a rope, their speeds will be equal, and 2) if they both start out at a y-coordinate of $y_{i}$, then $m_{1}$ will end up at $y_{f}=y_{i}+h$ and $m_{2}$ will end up at $y_{f}=y_{i}-h$. Putting all this into an energy conservation equation gives (notice initial kinetic energy is zero for both)

$$
m_{1} g y_{i}+m_{2} g y_{i}=\frac{1}{2} m_{1} v_{f}^{2}+\frac{1}{2} m_{2} v_{f}^{2}+m_{1} g\left(y_{i}+h\right)+m_{2} g\left(y_{i}-h\right) .
$$

Solving for $v$ gives

$$
v=\sqrt{\frac{2\left(m_{2}-m_{1}\right) g h}{m_{1}+m_{2}}}
$$

b) Plugging in gives $v=1.1 \mathrm{~m} / \mathrm{s}$.

## Chapter 9

9.) $F=\frac{\Delta p}{\delta t}$, so since the initial speed of the ball is zero, $F=(0.045 \mathrm{~kg})(67 \mathrm{~m} / \mathrm{s}) /(0.001 \mathrm{~s})=$ $3015 N \approx 3000 \mathrm{~N}$.

