Homework Discussion, Week 5

Physics 1301
 Dr. Andersen

Chapter 6

51.) In this case, the normal force acts upward, the weight of the car downward, and the acceleration is a centripetal acceleration (which points downward), so $\mathbf{F}=m \mathbf{a}$ can be written as

$$
N-m g=-m \frac{v^{2}}{r}
$$

In order to feel weightless, $N=0$, so $v=\sqrt{r g}$.
71.) Again use $\mathbf{F}=m \mathbf{a}$. In this case, the x -component equation will be

$$
T \sin \theta=m a=m \frac{v^{2}}{r}
$$

and the y -component equation will be (notice, no acceleration in the vertical direction)

$$
T \cos \theta-m g=0 .
$$

Now just solve the two equations for the two unknowns.

Chapter 7

10.) a) From the definition of the work, $W=F d \cos \theta=(50.0 \mathrm{~N})(0.50 \mathrm{~m}) \cos 55^{\circ}=$ $14 \mathrm{~J} . \mathrm{b})$ Increasing the angle with the floor causes the cosine to get smaller, so the work would decrease.

