Exam 3 Solutions

Multiple Choice Key

1. d
2. e
3. b
4. a
5. d
6. b
7. c
8. c
9. e
10. c

Worked Problems

1. Start with the general Doppler shift formula:

$$
f^{\prime}=\left(\frac{1 \pm u_{o} / v}{1 \mp u_{s} / v}\right) f
$$

- In this case, $u_{o}=5.0 \mathrm{~m} / \mathrm{s}, u_{s}=25 \mathrm{~m} / \mathrm{s}$, and $f=210 \mathrm{~Hz}$.
- Hobo is moving away from train, so top sign should be minus, train is moving toward hobo, so bottom sign is also minus.
- Sticking in values, gives $f^{\prime}=223 \mathrm{~Hz}$.

2. This is an energy conservation problem:

$$
K_{i}+U_{i}=K_{f}+U_{f}
$$

- In this case, $U=U=-G \frac{m_{1} m_{2}}{r}$, where $r_{i}=r_{e}+300 \mathrm{~km}$ and $r_{f}=r_{e}$ (Note that you are not free to set either potential energy to zero!)
- Since the object starts from rest, $K_{i}=0$, so

$$
K_{f}=G \frac{m m_{e}}{r_{e}}-G \frac{m m_{e}}{\left(r_{e}+h\right)} .
$$

- For part b, solve $K=\frac{1}{2} m v^{2}$ for v.

