Exam 1 Solutions

Multiple Choice Key

1. c
2. b
3. b (There was an error on the initial key. Exam scores have been corrected to reflect the correct answer.)
4. e
5. d
6. b
7. e
8. d
9. c
10. d

Worked Problems

1. To find the total force:

- Find the x and y components of both vectors.

$$
\begin{gathered}
\mathbf{F}_{1}=(55 N) \cos 335^{\circ} \hat{x}+(55 N) \sin 335^{\circ}=(49.8 N) \hat{x}+(-23.2 N) \hat{y} \\
\mathbf{F}_{2}=(71 N) \cos 75^{\circ} \hat{x}+(71 N) \sin 75^{\circ}=(18.4 N) \hat{x}+(68.6 N) \hat{y}
\end{gathered}
$$

- Add the two forces together by component to find the total force.

$$
\mathbf{F}_{t o t}=\mathbf{F}_{1}+\mathbf{F}_{2}=(49.8+18.4 N) \hat{x}+(-23.2+68.6 N) \hat{y}=(68.2 N) \hat{x}+(45.4 N) \hat{y}
$$

- Use the Pythagorean Theorem to determine the magnitude of the force.

$$
F_{\text {tot }}=\sqrt{(68.2 N)^{2}+(45.4 N)^{2}}=82 \mathrm{~N}
$$

2. For this problem:

- To find the time to strike the ground, solve $y=y_{0}+v_{y 0} t+\frac{1}{2} a_{y} t^{2}$ for t with $y=0 \mathrm{~m}, y_{0}=25 \mathrm{~m}, v_{0 y}=12 \mathrm{~m}$, and $a_{y}=-9.81 \mathrm{~m} / \mathrm{s}^{2}$. This gives $t=3.79 \mathrm{~s}$.
- To find the speed when the rock strikes the ground, substitute t from part (a) in $v=v_{y 0}-g t$, and solve for the velocity. Since it is a 1-D problem, find the speed by taking the absolute value of the velocity, $v=25.2 \mathrm{~m} / \mathrm{s}$.

