Economics 2370

Statistics and Probability

Sharon I. O'Donnell

Email: odonnell@bayou.uh.edu

Office: 246 M

Phone: (713)743-3818

Office hrs: 10:00 to 11:00 Tuesday and Thursday

by appointment or by chance

URL: http://www.uh.edu/~odonnell/econ2370

What this course will cover.

- 1. Presentations of data through graphs and charts,
- 2. Measures of central tendency and dispersion,
- 3. Probability and probability distributions,
- **4.** Sampling plans and hypothesis testing of large and small samples.

Textbook, supplemental materials, etc.

Textbook Mendenhall et al: *Introduction to* Probability and Statistics 10th edition.

Material on the Web Lecture notes, syllabus, tutorial notebooks on the software, notebook examples from class, grades.

Software Mathematica

${\bf Methods~of~obtaining/accessing} \\ {\bf \textit{Mathematica}}$

- 1. Purchase a cd of the software for \$4.00
- 2. Use software in Social Work lab.

Grading

Note: Grades will be posted on the web page only.

- 1. The grade will be based on 2 computer projects (5% each) 2 midterm exams (25% each) and a final exam (40%).
- 2. Exams are closed notes, closed book.
- **3.** I have included a list of optional problems. To motivate you to work on these problems, each test will include questions from this set.

Unannounced in-class quizzes

Math review for statistics

Introduction and Chapter 1

Motivation Why economists are interested in statistics and probability.
Why others should have a better understanding of statistics and probability.

Basics

 $Data \rightarrow Unit of analysis, experimental units, observations.$

Full set of data \rightarrow **population.**

Random subset of population \rightarrow sample.

Characteristics described by the data \rightarrow variable.

Types of data sets (sample data sets or population data sets)

Data set can describe a large number of units at a moment in time → **Cross sectional data**. (e.q., 2000 US Census for Houston)

Data set can describe one type of unit over time → **time series.** (e.g., US GDP for the last 100 years.)

Data set can be a mixture of both → **panel data** set. (e.g., The GDPs of US, UK, and Germany for the last 100 years.)

Types of analyses

- 1. **Univariate analysis** research analysis based on the examination of one variable.
- 2. **Bivariate** analysis based on the examination of two variables. Often, the researcher is interested in understanding if there exists any association between the two variables.
- 3. **Multivariate** three or more variables. Here, the researcher is also interested in the relationship among the variables.

Types of variables

- 1. Qualitative
 - (a) Categorical-multiple categories
 - (b) Ordinal-Values represent ranking or ordering
- 2. Quantitative (or interval) variable
 - (a) Discrete countable set of values.
 - (b) Continuous

Other Data issues

Missing data Why does it exist? How can it affect the analysis?

Outliers

For each example below, what is the unit of analysis and variable type.

- 1. June, 1999 Unemployment rates for the counties in Texas.
- 2. Exit poll of the last Presidential election.
- 3. Responses from the question from a class course evaluation survey that rates the quality of the class.

Summation Operator

General concepts describing statistical tools

- 1. Descriptive Statistics
 - (a) Concerned mainly with collecting, summarizing and interpreting data.
- 2. Inferential Statistics
 - (a) Process of drawing conclusions about a population or making predictions using random samples.

Graphical representation of data

Graphical displays should

- 1. show the data.
- 2. induce the viewer to think about the substance rather than the methodology, graphic design, the technology of graphic production.
- 3. avoid distorting what the data have to say.
- 4. present many numbers in a small space.
- 5. make large data sets coherent.

- 6. encourage the eye to compare different pieces of data.
- 7. reveal the data at several levels of details, from a broad overview to a fine structure.
- 8. serve a reasonable purpose: description, exploration, tabulation, or decoration.
- 9. be closely integrated with the statistical and verbal descriptions of a data set.

Stem and leaf plot - graphical representation of interval and ordinal data using numbers.

- 1. Divide data into n main categories **stem** portion of the graph.
- 2. Within each category, order values (the **leaves**) from lowest to highest.
- 3. List the stem in the first column, leaves in the remaining columns.

Example - Stem and leaf plot

Data

Plot

- 1 | 7 9
- $2 \mid 0 \; 2 \; 4 \; 5 \; 5 \; 6 \; 6 \; 7 \; 8$
- $3 \mid 0 \ 1 \ 1 \ 1 \ 2 \ 4$
- 4 | 0 1 7

Part of Graphs

- 1. Body
- 2. X-axis (horizontal axis)
- 3. Y-Axis (vertical axis)
- 4. Z-Axis (in 3D graphs, the X & Y axes become the horizontal axes, the Z axis is the vertical)
- 5. Axis labels
- 6. Data Labels often stored in a Legend.

Type of graphs - univariate analysis

Shows how the population or sample is distributed by groups. Examines relative proportions.

- 1. Pie Chart
- 2. Bar Chart ${\bf Histogram}$
- 3. Box-plot

Type of graphs - bivariate analysis

Describes the association of two variables.

1. Scatterplot

Type of graphs - multivariate analysis

Describes the association and interaction of three variables.

1. 3D plots/Contours

Frequencies, Relative Frequencies and Cumulative Relative Frequencies.

- 1. Describes the distribution of univariate data.
- 2. Distribution \rightarrow term I will use throughout the class.

Compute Frequencies.

- 1. For interval variables, group data into K mutually exclusive categories. For other variables, use existing categories.
- 2. Count within each category \rightarrow **Frequency**
- 3. Compute Total number of data items \rightarrow **n** (for sample), **N** (for population)

${\bf Compute} \ {\bf Relative} \ {\bf Frequencies}$

 $\frac{\text{Frequency of category } j}{\text{Total}}$

1. Range of values from 0 to 1.00

Compute Cumulative Relative Frequencies

 $\frac{\sum_{i=1}^{j} \text{Frequency of category } i}{\text{Total}}$

1. Range of values from 0 to 1.00

Compute **Relative Frequency as an angle** - used for PieCharts.

Relative Frequency of category j as an angle = Relative Frequency of category j*360

1. Range of values from 0 to 360

Example 1.3

Tools to analyze graphical information - univariate

- 1. Is the distribution symmetric or asymmetric?
- 2. Describing the peaks unimodal or bimodal distribution.
- 3. Describing the shape degree of skewness.