10 Chapter 6 - Normal Probability Distribution

Oh lord: Please make the world normal, linear, and independent.

A statistician's (and an applied economist's) dream

- 1. In this section, we will examine the normal and standard normal distribution functions. They are probability functions in the set of **continuous** distribution functions. Here are the properties of continuous probability functions.
 - (a) The events described by these distributions are continuous (not countable). What this means is that for at two events in the distribution, there will exist a third event lying between these two events. This implies that between any two events, there exists an uncountable set of events.
 - (b) P(x = k) = 0 for any k in the set of events. This sounds strange but recall that within a tiny interval around K, there is an uncountable set of values. The probability that x is k becomes zero.
 - (c) Shape of the function can best be described as a continuous probability function f(x) and best represented graphically using a line chart. The end points are $-\infty$ and ∞ . The probability (f(x)) approaches zero as x approaches $-\infty$ or ∞ . Because the probability is a measurement of the area under this function, we refer to this area as the density of the function (or the probability density function).
 - (d) $P(x \le k) = \int_{-\infty}^{k} f(x)dx$ The area (or density) under the curve from its left tail to k measures the cumulative probability (F(x)) that $x \le k$.
 - (e) $P(x \ge k) = \int_k^\infty f(x) dx$ The area (or density) under the curve from k to its right tail measures the cumulative probability (1-F(x)) that $x \ge k$.
 - (f) $\int_{-\infty}^{\infty} f(x)dx = 1.0$ The area under the curve from its left tails to its right tail is 1.0
 - (g) $P(a < x < b) = \int_a^b f(x) dx = (\int_{-\infty}^b f(x) dx \int_{-\infty}^a f(x) dx)$ The area under the curve from a to b measures the probability that x is between a and b.

2. Normal Distribution

(a) Probability density function (f(x))

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where $\pi \approx 3.1416$ and e is the exponential operator. μ and σ^2 are the mean and variance of the population.

- (b) Center of the distribution is μ .
- (c) Distribution is symmetric
- (d) Symmetry implies that the probability that $x > \mu$ or $x < \mu$ is 0.50.
- (e) The shape is determined by σ^2 .

3. Standard Normal Distribution

Given that the shape of the normal distribution varies by σ^2 , computing the probabilities of different combinations of μ and σ^2 is very cumbersome.

Statisticians found that if you convert random variables into *standardized* random variables (or Z scores), one can define a single set of probabilities that works for any normal distributions. This set makes up the standard normal distribution.

(a) We know from before

$$z = \frac{x - \mu}{\sigma}$$

This means that

$$x = z\sigma + \mu$$

Replace x in the normal distribution function with $z\sigma + \mu$ and after some algebraic steps, the probability density function (pdf) of the standard normal distribution is

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}z^2}$$

- (b) Center of the distribution is $\mu = 0$.
- (c) Distribution is symmetric.
- (d) Symmetry implies that the probability that $x > \mu$ or $x < \mu$ is 0.50.
- (e) The shape is determined by $\sigma^2 = 1 \rightarrow$ the shape is constant for all random variables.
- 4. Calculating probabilities for a normal distribution (using a table of probabilities from a standard normal distribution).
 - (a) Recall: for continuous variables, we are interested in the probability of an interval. Using example 6.5, the value of μ is 10 and σ is 2. The interval we are interested in lies between 11 and 13.6.
 - i. Find Z scores for 11 and $13.6 \rightarrow 0.5$ and 1.8
 - ii. Table in the back of the book (Table 3, Appendix 1) provides you with the probability values from μ (or zero) to k. Find the probability from 0 to 1.8 and 0 to 0.5.

- iii. From before, you learned that $P(a \le x \le b) = P(k \le x \le b) P(k \le x \le a)$ when k < a. Given this $P(0.5 \le x \le 1.8) = P(0 \le x \le 1.8) P(0 \le x \le 0.5) = 0.4641 0.1915 = 0.2726$
- 5. Normal approximation of the binomial distribution
 - (a) Previously, I mentioned that some variables can be represented by a discrete or normal distribution. Some can only be represented by a discrete distribution so a researcher working with this form of random variable may not be able to use the benefits offered by the normal distribution. One exception is a subset of distributions represented by the binomial distribution.
 - (b) Rule of thumb the normal approximation to the binomial distribution will be adequate if both np > 5 and nq > 5. If this hold, use the following steps.
 - i. Calculate $\mu = np$ and $\sigma = \sqrt{npq}$
 - ii. Write the probability in terms of x.
 - iii. Correct x by ± 0.5 to include the entire block. Now you have the interval $x_1(x-0.5)$ and $x_2(x+0.5)$.
 - iv. Compute z_1 and z_2 based on x_1 , x_2 , μ and σ . Use the table to compute the probabilities.