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Abstract 
 

 
 
Despite insect-resistant Bt cotton has been lauded for its ability to reduce the 
use of pesticides, studies have shown that Chinese Bt cotton farmers continue to 
use excessive amounts of pesticides. Using results from a survey and an 
artefactual field experiment, we find that farmers who are more risk averse use 
greater quantities of pesticides.  We also find that farmers who are more loss 
averse use lesser quantities of pesticides. This result is consistent with our 
conceptual framework and suggestive evidence where farmers behave in a loss 
averse manner in the health domain and place more weight on the importance of 
health over money in the loss domain.  
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1. Introduction  

Modern agricultural biotechnology has made a great deal of progress over the past two 

decades in significantly increasing productivity and living standards in developing 

countries.  These advancements have introduced a wide array of genetically modified crops that 

are insect resistant, virus resistant, drought resistant, and even nutrient enriched. Take genetically 

modified Bacillus thuringiensis (Bt) cotton as an example. Prior to the invention of Bt cotton, 

farmers were forced to choose between letting cotton bollworms (the primary cotton pest) 

damage their cotton yields or sacrificing their own health by spraying their crops with a greater 

quantity of pesticides. Bt cotton was devised specifically to counter bollworm infestations and 

has been scientifically proven to be effective in pest resistance (Qaim & Zilberman, 2003; Qaim, 

Subramanian, Naik & Zilberman, 2006; Huang, et al., 2002b). Emboldened by this scientific 

evidence, policy makers around the world have encouraged the adoption of Bt cotton. However, 

several studies find that farmers have continued to use excessive amounts of pesticides even after 

they adopted pest-resistant Bt cotton (Huang, et al., 2002a; Pemsl & Waibel, 2005; Yang et al., 

2005).1 These findings present a puzzle as to why farmers would deviate from profit-maximizing 

behavior to spray excessive amounts of pesticides, especially considering the fact that spraying 

pesticides is detrimental to their health. Liu (2011) has suggests that Chinese cotton farmers were 

slow to adopt Bt cotton because of their risk preference. It is possible that farmers who are more 

risk averse could also be using more pesticides after adopting Bt cotton. This paper uses the same 

dataset as Liu (2011) to investigate whether Chinese cotton farmers’ pesticide-use decisions are 

correlated with their risk preferences.  

There is an extensive theoretical literature where farmers’ risk preferences play a role in 

                                                 
1 Bt cotton is not a fix-all solution as it only targets cotton bollworm. Pesticide is still essential to cotton production 
post Bt adoption. However, a few papers (Huang, et al., 2002a; Pemsl & Waibel, 2005; Yang et al., 2005) find that 
farmers are using nearly 3 times more pesticide than the optimal profit maximizing level.   
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agricultural production decisions (Just and Zilberman 1983; Feder 1980).  In determining the 

relationship between agricultural decisions and risk preferences, most of the empirical studies in 

the literature typically have two approaches when estimating risk aversion. One is to rely on the 

assumption of objective function and advanced econometric technique to impute the coefficient 

of risk aversion that will fit the model (Antle, 1988; Saha, Shumway, & Talpaz, 1994; Chavas & 

Holt, 1996). For example, if a farmer deviates from profit-maximizing production input choices, 

the structural approach would conclude that it is due to individual risk preference and impute the 

coefficient of risk aversion. As suggested by Just and Lybbert (2009) and Just (2008), the 

assumption of a utility function form and arbitrary heuristics could cause bias when estimating 

individual risk aversion. On the other hand, some studies use wealth as a proxy for risk aversion 

(Laffont and Matoussi, 1995; Ackerberg and Botticini, 2002; Dubois, 2002; and Fukunaga and 

Huffman, 2009).  Bellemare and Brown (2010) comment that it could be problematic when 

wealth is being used as a proxy for risk aversion, as it could potentially undermine the role of 

risk preferences in farming decisions. One contribution to the existing literature is that all risk 

preference parameters used in the analysis are being elicited from artefactual field experiments.2  

Starting from Binswanger’s (1980, 1981) seminal papers, it is not uncommon to elicit 

risk preference where farmers are the subjects of the experiments. However, there exists a long-

standing debate regarding the external validity of game experiments. 3 In this study, we first elicit 

farmers’ risk preference from an experiment, and we extend their game behaviors to the 

agricultural decisions. The findings from this study bridge the gap between lab experiments and 

real world behavior. Similar to research by List (2003), Schechter (2007), and Fehr and Goette 

                                                 
2 We adopt the terminology artefactual field experiment from Harrison and List (2004). Artefactual field experiments 
are conventional lab experiments but are done with nonstandard subjects. Hereafter, we will refer to it as the 
experiment.  
3 See Samuelson (2005) for discussion. 
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(2007), the findings from this study suggest that experiment results can predict real world 

decisions in the case of Chinese cotton farmers’ pesticide use.  

 Before eliciting the risk preference using the experiment, we first need to decide on the 

form of the utility function. The common approach to characterize individual risk preference is to 

use expected utility (EU), in which risk aversion is the sole parameter for determining the 

curvature of the utility function.  On the other hand, in prospect theory (Kahneman & Tversky, 

1979) (PT), the shape of the utility function is jointly determined by risk aversion, loss aversion 

(which measures one’s sensitivity to loss compared to gain), and nonlinear probability weighting 

(i.e., the individual tendency of overweighting small [large] probabilities and underweighting 

large [small] probabilities). As suggested in earlier agricultural economics research, if farmers 

follow safety-first principles by setting a target income and minimizing the probability of severe 

yield loss below that income (Moscardi & de Janvry, 1977; Young, 1979), then it is likely that 

farmers’ risk preferences will be best captured by prospect theory instead of neoclassical utility 

theory.4 Ex ante, EU or PT could act as a potential theory for explaining the cotton farmers’ 

decision making processes; however, it is not clear which theory is more appropriate. Therefore, 

we use an experimental design modeled after that of Tanaka, Camerer, and Nguyen (TCN) 

(Tanaka et al., 2010). The major advantage of TCN’s design is that it allows the experiment’s 

results to determine whether EU or PT better fits the farmers’ decision making processes. It 

allows us to elicit three risk preference parameters—coefficient of risk aversion, loss aversion, 

and nonlinear probability weighting—without rejecting outright the use of EU theory. Our 

survey covers 320 cotton farmers from 16 villages across eight counties in four provinces in 

China in 2006. We collect information on household characteristics, individual characteristics, 

                                                 
4 The applications of these two concepts, “safety-first rule” and “loss aversion,” can be found in behavioral finance 
studies (see Campbell & Kräussl, 2007; Camerer & Kunreuther, 1989; Polkovnichenko, 2005). 
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and detailed plot information for the 2006 harvest and planting season. We relate the farmers’ 

elicited risk preferences to their pesticide use while controlling for farm and individual 

characteristics.  

Before interpreting our results, in order to understand how each of the risk preference 

parameters would affect optimal pesticide use, we set up a conceptual framework in which 

farmers’ utility is a function of income as well as their health. By using more pesticide, farmers 

would prevent loss of income but would have to sacrifice their health due to the danger of 

pesticide poisoning. Therefore, depending on one’s coefficient of risk aversion, loss aversion and 

one’s reference points for health and income, the optimal pesticide use would differ.   

 Our main finding is that controlling for village fixed effects, farmers who are more risk 

averse use greater quantities of pesticides. If the average farmer from our sample became risk 

neutral, he would spray approximately 13% less pesticides—a reduction in pesticide use 

equivalent to the effect of 6 additional years of education).5 Combining with the finding from 

Liu’s (2010) paper on Bt cotton adoption, we can conclude that more risk averse farmers not 

only adopt Bt cotton later, but they also continue to use higher level of pesticide post adoption. 

Therefore, wealth accumulation associated with this technological advancement is negatively 

correlated with farmers’ risk aversion. We also find that farmers who are more loss averse use 

lesser quantities of pesticides. It may seem surprising at first glance, but it is consistent with our 

conceptual framework and suggestive evidence where farmers behave in a loss averse manner in 

the health domain and yet place more weight on the importance of their health over the 

importance of money in the loss domain.  

  We find that more educated farmers seem to better understand the advantages of using 

Bt cotton since it requires less pesticides than regular cotton. For every additional year of 
                                                 
5 The average farmer in the sample is risk averse with a coefficient of risk aversion equal to 0.48.  
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education, farmers reduce pesticide use by 0.56 kg per hectare (~2%).  Several other hypotheses 

have been put forth by others to explain the overuse of pesticide, including the deterioration of  

the bollworm-resistant quality of Bt cotton seeds, the existence of counterfeit Bt cotton seed, the 

incorrect information supplied by extension agents and the rise of secondary pests. In our study, 

with our regression specifications, controlling for village fixed effects, we find no evidence 

supporting these alternative hypotheses.6   

This paper proceeds as follows. Section 2 provides background on Bt cotton. Section 3 

describes the experiment and dataset and provides some summary statistics on farmers’ 

characteristics and describes the experimental design. Section 4 provides background on 

pesticide use and the conceptual framework.  Section 5 describes the econometric framework and 

regression results for pesticide use. Section 6 concludes.  

2. Background 

China is one of the largest cotton producers in the world. Unlike commercial cotton 

farmers in the United States, Chinese cotton farmers are generally subsistence farmers who are 

more risk averse, less tolerant of pest infestations, and place the highest priority on resolving 

severe pest problems (Bentley & Thiele, 1999; Pray et al., 2002).  During the early 1990s, many 

Chinese cotton farmers experienced failures in controlling bollworm damage to their crops due 

to frequent outbreaks of increasingly pesticide-resistant bollworm infestations. In an attempt to 

ameliorate the bollworm problem, the provincial governments in certain regions of China began 

commercializing Bt cotton seeds in 1997.7 Bt cotton seeds are planted in a similar fashion to 

                                                 
6 It is still possible that these hypotheses can explain cross-village variations of pesticide use.  For the purpose of our 
paper, investigating the role of risk preferences, it is essential to control for village fixed effects for the following 
reasons.  First, a village can play a role in determining one’s risk preferences  (e.g. a particular village may have 
more poor quality, less arable land), hence people in the village are more risk averse.  Second, if we do not have 
village-fixed effect, we need a lot more information about the village characteristics that could possibly affect pest 
severity, which is missing from our survey.   
7 It was a rolling decision. In some provinces Bt cotton was approved in 1998.  
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traditional cotton seeds, but Bt cotton seed carries the Bt toxin which targets the cotton bollworm. 

Using data collected in 2001, Huang, et al. (2002b) found that Bt cotton adoption leads to a 

significant decrease in pesticide use.  Bt cotton farmers reduce their total pesticide expenditure 

by 82%. Chinese scientists tested bollworm pests with Bt cotton and concluded that bollworms 

found in China’s cotton fields had not yet become resistant to Bt cotton (Wu, 2007). Tracking 

bollworm population over a decade in 6 provinces in China, Wu, et al. (2008) have also shown 

that populations of bollworm larvae and bollworm eggs have continually decreased from 1997 to 

2007.   

While the bollworm’s lack of resistance to Bt cotton is encouraging, significant problems 

still exist. Primarily, Chinese cotton farmers are well known for using excessive amounts of 

highly toxic pesticides, and this practice has continued even after the adoption of Bt cotton 

(Huang, et al., 2002a; Pemsl & Waibel, 2005; Yang et al., 2005).  Huang, et al. (2002a) find that 

Bt cotton farmers applied 11.8 kg per hectare when the optimal pesticide use ranges from 0.4 kg 

per hectare to 4.2 kg per hectare.8 Pemsl and Waibel (2005) find that the optimal pesticide input 

level was about 5 kg per hectare in 2004, but that Chinese farmers applied, on average, 14 kg of 

pesticides per hectare. The problem of pesticide overuse is further exacerbated by the fact that 

nearly 40% of the pesticides used by Chinese cotton farmers contain active ingredients that are 

classified as extremely or highly hazardous (classes 1a or 1b) by the World Health Organization 

(WHO).9   There are an estimated 400 to 500 Chinese cotton farmers who die every year from 

pesticide poisoning (Conko & Parkash, 2004).  In our sample, 27% of farmers reported that they 

have experienced pesticide poisoning and 38% of them reported that someone in their family has 

                                                 
8 0.4 kg/ha is based on an estimation using the Cobb-Douglas production function. 4.2 kg/ha is based on an 
estimation that uses a Weibull damage control function.  
9 The WHO classifies insecticides into four classes of toxicity. Class 1a is extremely hazardous (highest toxicity). 
Class 1b is highly hazardous. Class 2 is moderately hazardous. Class 3 is slightly hazardous.   
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experienced pesticide poisoning.   

A question that naturally arises is: if Bt cotton has proven its resistance to the cotton 

bollworm and if farmers know that spraying pesticides is detrimental to their health, why would 

farmers spray excessive quantities of pesticides? The farmers’ uncertainty about the quality of Bt 

cotton seeds could be a significant factor in their overuse of pesticides. Existing studies have 

found that the quality of Bt cotton seeds varies dramatically. Pemsl (2006) collected leaves from 

cotton farmers in Shandong and found that some of the so-called “Bt” cotton leaves do not 

contain the Bt trait that is essential to making the cotton plant resistant to the bollworm.  

Due to the high demand for Bt cotton seeds, it is not surprising that some individuals are 

trying to exploit the situation for profit through various nefarious means.  Therefore, some lower-

quality seeds have permeated the market through different channels. For example, some firms 

and local research institutions release Bt cotton seeds into the market before obtaining 

government approval (Yang et al., 2005).  Farmers also reproduce the trademarked Bt cotton 

seeds via on-farm propagation despite evidence that these self-propagated seeds are of lower 

quality (Pray et al., 2002). Some seed companies simply repackage their conventional cotton 

seeds to sell as authentic Bt cotton seeds with brand labels and logos (Louyang Agricultural 

News, 2003). There were an estimated 140 genetically modified cotton seed varieties available in 

2004, making it difficult for farmers to know which seeds are effective Bt cotton seeds a priori 

(Pray et al., 2006). One might think that farmers could learn from their own experience or from 

others over time about the quality of seeds from various sources. However, given that the 

severity of pest infestation varies greatly over time and across plots, the amount of learning 

accumulated could be limited.     

One other reason why farmers may be using excessive amounts of pesticides is proposed 
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by Wang, Just, and Pinstrup-Anderson (2006) who suggest that the population of secondary pests, 

mainly mirids, has been slowly rising. Wang et al. (2006) examine Chinese cotton farmers’ 

pesticide use using survey data from 2004 and find that Bt cotton farmers use less pesticides to 

prevent bollworms, but spray more pesticides in order to target mirids, relative to non-Bt cotton 

farmers. Furthermore, Lu, et al., (2010) find some evidence suggesting that the secondary pest, 

mirids, have increased in population density, in particular in areas where Bt cotton adoption is 

common.  

While many of the above reasons are plausible explanation, in our study we are focusing 

on the within-village variation in pesticide use across farmers.  In our empirical analysis, we 

control for village fixed effect, which would also control for village-specific pest severity and the 

rising of the secondary pest in the village. Village fixed effects should also control for the 

potential effects from skewed recommendation of extension agents. Unless the individual-

specific error term is correlated with our elicited risk preference, our results on risk preferences 

should remain unbiased.  We will have more discussion in detail in Section 5.  

3. Data 

3.1 Bt Cotton Survey 

The Bt cotton survey was designed and collected by the Center for Chinese Agricultural 

Policy (CCAP), a government-affiliated research agency, in the winter of 2006.  Four provinces 

(Shandong, Hebei, Henan, and Anhui) with high Bt cotton adoption rates and similar cotton 

growing seasons (April-October) were selected. CCAP selected two counties per province and 

two villages per county, and randomly selected 20 households in each village. The CCAP team 

compensated each participating household 10 yuan for completing the survey (equivalent to one-

third of a daily wage). We interviewed the head of each household or whoever was most 
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responsible for the farming activities.  In addition, we obtained detailed information on inputs 

and outputs used in each cotton plot, perceived pest infestation, incidence of pesticide poisoning, 

and past agricultural training experience. Most farmers are responsible for multiple plots, as 

arable land for farming is assigned by the government. Out of the 945 cotton plots belonging to 

320 farmers, 930 of them are used to grow Bt cotton and the remaining 15 are used to grow 

conventional cotton.10  

The summary statistics at the household level are presented in Table 1.  The average 

interviewee is about 50 years old and has completed 7 years of education. The average household 

in the sample is assigned 0.59 hectares of farmland. In the region where we collected the dataset, 

cotton is the major cash crop and is planted on 0.54 hectares of farmland per household with 

farmers typically practicing rotational cropping with wheat, the primary grain crop (0.33 

hectares).  Our sample spends most of their time on the farm, and when production on the farm 

stops, they perform a limited amount of off-farm work. Ownership of a set of durable goods is 

used as a proxy for wealth in 2006.  

[Insert Table 1 About Here] 

Table 2 presents the summary statistics at the plot level, breaking them down by Bt 

versus non-Bt cotton. Bt cotton is more expensive than traditional cotton, but farmers who grow 

Bt cotton spray less pesticides and experience higher yields. In this paper, wealth is proxied by 

the price of durable goods owned per capita and Bt cotton farmers are statistically wealthier than 

traditional cotton farmers. However, without a baseline survey prior to adoption, we cannot 

conclude any causality on whether the differential wealth accumulation is due to the planting of 

Bt cotton or as a cause of difference in seed choices.  

                                                 
10 In the winter of 2007, the CCAP collected cotton seeds from a subset of our sample. When researchers tested the 
seeds in the lab, they found that farmers often misreported the Bt versus non-Bt status of their seeds. Some so-called 
“non-Bt” seeds in fact contained the Bt gene and vice versa.  
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[Insert Table 2 About Here] 

Ideally, we would like to have detailed data on pesticide use and we need to know the 

severity of pest problems in the region; then we would be able to use a production function to 

estimate whether farmers overuse specific pesticides. To do so, however, we would need 

information on the pesticides’ active ingredients. However, China’s pesticide market is extremely 

fragmented; in our survey alone, we found more than 50 different pesticide brands/formulations. 

Many farmers purchase pesticides that are blends of various brands. It is also difficult to classify 

these pesticides by the WHO’s toxicity measures because most of the pesticides’ packaging does 

not contain information on  active ingredients. Therefore, in our analysis, we will only use the 

total amount and total costs of the pesticides applied by the farmers as a dependent variable. 

We also collected information on pesticide poisoning. Farmers were asked if over the 

previous 10 years anyone in their household had experienced any health impairments after 

mixing and spraying pesticides. Twenty-nine percent (94) reported that they had experienced at 

least one symptom of pesticide poisoning since 1996, with the most frequently reported 

symptoms being vomiting (59%), headaches or dizziness (53%), skin irritation (26%) and 

restlessness (16%).11 Forty percent reported that one of their family members has experienced 

pesticide poisoning since 1996.  We also asked the farmers to report any costs associated with 

these health impairments. Seventy-six farmers reported having some cost associated with 

pesticide poisoning with the average medical cost and imputed labor cost being 165 yuan 

(approximately five days worth of wages) per farmer.12  

3.2  Experimental Design  

The Chinese cotton farmers were asked to participate in an experiment after the 

                                                 
11 The percents add up to over 100 because some farmers reported multiple symptoms. 
12 76 farmers reported having some costs due to pesticide poisoning.  
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conclusion of their interviews. We conducted an experiment modeled after that of Tanaka, 

Camerer, and Nguyen (2010).13 TCN’s experiment is similar to Holt and Laury’s (2002)—

which offers subjects a series of pair-wise lotteries of both risky and safe options presented in 

Table 3.  Take Row 1 Series 1 in Table 3 for example: if farmers have chosen lottery A, there is 

a 30% chance of winning 20 Yuan and a 70% chance of winning 5 Yuan; if they have chosen 

lottery B, the riskier option, they have a 10% chance of winning 34 Yuan and a 90% chance of 

winning 2.5 Yuan. One would note that within each series, the safe option does not change, but 

the expected payoff of the risky option increases as we move down the rows.  

[Insert Table 3 About Here] 

Farmers were asked to choose either lottery A or lottery B for each row. More specifically, 

they were asked at which row, from Row 1 to Row 14, would they switch from lottery A to 

lottery B for each series.14 Farmers were told that one of the rows would be chosen at random. 

There is a bag of 10 numbered balls and depending on whether they have chosen lottery A or 

lottery B in each row, the numbered ball they draw randomly will determine the payoff.  They 

were presented with 35 questions separated into 3 series (see the Online Appendix for answer 

sheets used in the game).15  

Following TCN’s model, we assume a utility function of the following form:  

                                                 
13 Out of 320 farmers, only 5 decided not to participate in the experimental part and they own 11 plots. The more 
detailed description of the experiment instructions and imputation of risk preference parameters can be found in the 
Appendix. 
14 The option of choosing either all A or all B is also available. This method of eliciting switching point is being 
referred to as monotonic switching. This method assumes rationality of the subjects and eliminates any inconsistent 
behavior of subjects.  
15 Online Appendix can be found on Liu’s homepage.   
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where p and q are the probability of the event with monetary outcome x and y, respectively.  

v(x) is the value function and the functional form would depend on whether x is below zero or 

not. λ measures the sensitivity to loss versus gain. Bigger λ would indicate one is more 

sensitive to loss over gain. σ is the standard measure of risk aversion. The higher the sigma, the 

higher the degree of risk aversion; π(p) is the probability weighting function adapted from 

Prelec (1998). If α <  1, π(p) has an inverted S-shape—individuals overweight small 

probabilities and underweight large probabilities.16 One major advantage of the TCN method is 

that while TCN incorporates PT, it does not reject EU outright. If α = 1 and λ = 1, then utility 

function reform would reduce to the standard expected utility function TCN can fall back upon. 

Using the farmers’ three switching points from the three series and the utility function form 

assumption, we can impute the farmers’ risk preference parameters. The method of imputation 

can be found in the Appendix.  We reject the null hypothesis that λ = 1 and α =1 at the 1% level.  

The summary statistics of individual risk preference measures are provided in Table 1.17 

 

4. Decisions about Pesticide Use 

4.1 Literature on Pesticide Use 

                                                 
16 In the literature of probability weighting, Gonzalez and Wu (1999) find that the inflection point of probability 
weighting functions occurs at about 30%. In other words, if probability is less than 30%, it is considered a small 
probability event.   
17 For more detailed distribution and analysis of the risk preference parameters used in this paper, see Liu (2011).  
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 There is an extensive literature in agricultural economics regarding the optimal level of 

pesticide use.  The most common approach in estimating the optimal pesticide use (or any input) 

is to use the Cobb-Douglas production function and damage control framework to assess the 

input substitution and marginal pesticide productivity (Lichtenberg & Zilberman, 1986).18 This 

approach usually takes the form:  
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])([   is the Cobb-Douglas production function, where D
ix , i = 

1,2, . . . n are production inputs such as labor, fertilizer, etc.; βi is a vector of the coefficients; 

)( pxG is the damage control function, where xp is a vector of damage control agents such as 

pesticide, herbicide, a Bt cotton binary variable, etc. The key to this function form is that 

pesticide, a damage control agent, does not enter the production function.19  

This approach has been pursued by Pemsl and Waibel (2005) and Huang, et al. (2002a) to 

study patterns of pesticide use among Chinese farmers and to evaluate the effectiveness of each 

input on increasing yields. For the rest of this section, we focus specifically on literature that 

treats Chinese Bt cotton farmers’ pesticide use.  
                                                 
18 One might think the target input model by Jovanovic and Nyarko (1994) and Foster and Rosenzweig (1995) may 
be an alternative to the Cobb-Douglas production function in estimating the optimal pesticide use.  The key idea of 
the target input model is that as time goes by, the agent develops more expertise and become more productive. In our 
case, farmers could possibly be learning over time about the optimal pesticide use.  Without incorporating risk 
preferences, the target input model would probably predict 1) as farmers gain more experience, their pesticide use 
would be converging to the optimal pesticide level;  2) if we look at a cross section of evidence, we would find that 
farmers who have longer experience with Bt cotton would be using less pesticide.  We cannot test 1) since we only 
have a cross-sectional survey. We do not have the ability to trace one’s pesticide use pattern over time. As for 2), Liu 
(2011) finds that the time to adoption, thus farmers’ experience using Bt cotton, is also correlated with one’s risk 
preferences. If we find evidence that farmers who have longer experience with Bt cotton use less pesticide, it will be 
difficult to disentangle the effect of experience from one’s risk preferences.  
19 This approach to calculating optimal pesticide use assumes that farmers are risk neutral.  However, in actuality, as 
we discovered from the lottery experiment, most farmers are risk averse. Using a reduced-form approach, we are 
going to include farmers’ risk preferences. One could imagine instead of maximizing over the Y (yield), farmers are 
maximizing their utility which is a function of the yield.  We provide some conceptual framework of the role of risk 
preferences in the next section.    
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The main limitation of the aforementioned structural approach is that it does not account 

for endogenous pesticide use in the production function. When pest infestation is serious, farmers 

would spray more pesticide but at the same time, yield could be lower as well. Huang, et al. 

(2002a) use two-stage least square regressions to estimate yields and pesticide use. In the first 

stage, they employ determinants such as education and age to estimate pesticide use, while using 

perceived yield loss, price of pesticides, and talks with extension agents as instruments. In the 

second stage, they estimate Equation (2) using the predicted pesticide use. Their estimate of 

optimal pesticide use for Bt cotton farmers in 1999 is 1.2 kg per hectare to 4 kg per hectare, 

depending on the specification of the damage function, while actual pesticide use at the time was 

11.8 kg per hectare. The main problem with Huang, Hu, et al.’s method of estimation is that the 

instruments may not satisfy the exclusion restriction. For example, both perceived yield loss and 

communication with extension agents are very likely to be correlated with education, which also 

affects pesticide use. In addition, since the use of counterfeit Bt cotton seeds has been rampant, 

farmers’ self-reports of Bt cotton status may not be accurate, thus undermining the imputed 

effectiveness of Bt cotton.    

Unlike Huang, et al. (2002a), Pemsl and Waibel (2005) take a step forward by refining 

what Bt cotton truly represents in the damage control function. Pemsl and Waibel collected 

leaves from each plot in order to test the leaves’ toxin levels, instead of Huang, et al.’s (2002a) 

approach using a binary variable indicating Bt cotton in the damage control function. Using the 

more accurate measure of Bt toxin, Pemsl and Waibel (2005) also conclude that Chinese cotton 

farmers use an excessive amount of pesticides. They find that the optimal pesticide input level 

was about 5 kg per hectare in 2004, but that Chinese farmers applied, on average, 14 kg of 

pesticides per hectare. In sum, both Huang, et al. (2002a) and Pemsl and Waibel (2005) find that 
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Chinese cotton farmers are using nearly three times more pesticide than optimal.   

Several hypotheses have been formulated to explain the use of excessive pesticides 

(Huang, et al., 2002b; Pemsl, 2006; Yang et al., 2005). One hypothesis is related to the 

agricultural extension agents who are hired by the government to educate farmers about the 

pesticides and new farming technology. Since agricultural extension agents’ salaries are often 

tied to the profits of pesticide sales, they are incentivized to advise farmers to use pesticides even 

when it is unnecessary (Huang, et al., 2002b). Pemsl (2006) proposes that the uncertainty 

associated with the quality and effectiveness of both pesticides and Bt cotton seeds leads to 

farmers overusing pesticides. Yang et al. (2005) find that many farmers often confuse the larvae 

of cotton bollworms with those of other insects; it is possible that their vivid memories of the 

high bollworm infestation years and the crop losses sustained during those bollworm outbreaks 

could lead farmers to overuse pesticides on their Bt cotton crops.  Or the worse scenario, which 

has not been linked directly to the overuse of pesticide: Wang et al. (2006) and Lu, et al. (2010) 

find some evidence suggesting that a secondary pest, mirids, may be on the rise especially in t 

areas where there is high use of Bt cotton.  

The preceding studies on Chinese cotton farmers’ pesticide use patterns have only been 

able to offer some suggestive hypotheses without being able to test them with an econometric 

model. One important difference between these and the current study is that none of these 

aforementioned studies have incorporated farmers’ risk preferences into the decision making 

process. When uncertainty in production exists, farmers’ utility-maximizing choices would differ 

from profit-maximizing decisions if they are not risk neutral. If farmers are risk averse, the 

decision of overusing pesticide may not be suboptimal.  Therefore, farmers’ risk preferences 

should play an important role in deciding the quantity of pesticides they use.  
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4.2 Conceptual Framework 

In this section, we will set up a simple conceptual framework to demonstrate how each 

of the risk preference parameters could affect one’s optimal pesticide use if both health and 

income are part of the utility function. Suppose for an individual farmer i, the farmer’s utility 

function is an increasing function of the income ሺ ௜ܻሻ20 and health stock (Hi), we have the 

additive utility as follows : ௜ܷ ൌ ܷሺܪ௜, ௜ܻሻ ൌ ܷு ൅ ܷ௒. We take a simplistic view that ܪ௜ is a 

consumption good and is independent of the level of  ௜ܻ .   Subscripts (H, Y) denote whether a 

variable is for health or monetary domain.  The TCN experiment and its utility functional form 

(Equation 1) are written for a monetary domain.  Here we assume that both ܷு, ܷ௒ take the 

prospect theory functional form as illustrated in Equation 121.  We further assume that these risk 

preference parameters (σ, α, λ) are the same (or highly correlated) in both health and monetary 

domains.22
   In other words, one’s coefficient of loss aversion in the monetary domain, λY, is the 

same as his coefficient of loss averse in the health domain,  λH ; we make similar assumptions for 

for nonlinear probability weighting and coefficient of relative risk aversion:  αH = αY  and σ H = σ 

Y.  

In Equation 1 and TCN experiment, the reference point for income is assumed to be 

zero. In the case of Chinese farmers, each of the health and income domains would have 

different reference points. As  ܷு has a reference point (ܪ଴ሻ in the health domain, ܷ௒would have 

a reference point ( ଴ܻሻ in the income domain. Again, only when an outcome is below the 

                                                 
20 One can also assume that Y is yield, and incorporate price of cotton in the utility function. Given that there is 
almost no variation in cotton price within villages, we just use Y as income for the sake of simplicity.  
21 This is not the first paper to incorporate prospect theory in health related decision making.  Bleichrodt and his co-
authors have a series of papers exploring the interaction between loss aversion/nonlinear probability weighting in 
medical decision making (Bleichrodt et al., 2001; Bleichrodt & Pinto, 2002).  In Bleichrodt et al. (2001) elicit 
individual preference over health outcomes and they find the coefficient of loss aversion is between 2.17-3.06, 
which is similar to our measures of loss aversion.    
22 This assumption that risk preference across domain is correlated has been tested by Dohmen et al. (2010). They 
find that a general risk preference question (i.e. willingness to take risks on an 11-point scale) can predict risky 
behavior in various domains including health and monetary domains.  
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reference point, the loss aversion parameter would affect one’s utility.    

Suppose there are only two possible outcomes for health (ܪ, ,ሻ and for income ሺܻܪ ܻሻ. 

ܪ ൐ ൐ ܻ   ;ܪ ܻ. We can rewrite utility as ௜ܷ ൌ ܷሺܪ௜, ௜ܻሻ ൌ ܷு ൅ ܷ௒ ൌ ܷ ቀܪ, ,ܪ ;ு݌ ுቁ݌ ൅

ܷ ቀܻ, ,ܻ ;௒݌ ,ு݌  ௒ቁ where݌ ,ܻ ,ܪ ,ܪ ௒ are the corresponding probabilities of݌ ,௒݌ ,ு݌ ܻ 

respectively, such that ݌ு ൅ ௒݌ + ௒݌  ு=1 and݌  ൌ   ௣ ܽ݊݀ ܵ whereݔ ௒ would depend only on݌ .1

 ௣ is the amount of pesticide use. S indicates severity of pest infestation.23ݔ
ௗ௣೤

ௗௌ
൏ 0,

ௗ௣೤

ௗ௫೛ ൐

0,
ௗమ௣೤

ௗ  ሺ௫೛ሻమ ൏ 0 and  
ௗమ௣೤

ௗௌమ ൏ 0.  The more pesticide one uses, the more the probability of high 

income, ݌௒, increases.  On the other hand, the more pesticide one uses, the chance of being 

poisoned, ݌ு, increases. Thus, 
ௗ௣ಹ 

ௗ௫೛ ൏ 0 and  
ௗ௣ಹ 

ௗ௫೛ ൐ 0.  The optimal pesticide use, ሺݔ௣כሻ,  would 

depend on the risk preference parameters ߪ, ,ܻ  ݀݊ܽ ܪ ,ܪ ,S ,ߙ and ߣ ܻ. 

To illustrate how the risk aversion parameter ߪ affects optimal pesticide use ሺݔ௣כሻ, 

suppose that the possible health outcomes ሺܪ, ,ܻ) ሻ and incomeܪ ܻሻ are both above the reference 

points—ܪ଴, ଴ܻ.   ܪ <ܪ <ܪ଴ ;  ܻ ൐  ܻ ൐  ଴ܻ . For a given infestation level, S, the more risk averse 

person would spray more pesticide if he maximizes utility in the monetary domain to increase 

 ௒ .24 However, the optimal overspray would be offset if the (dis)utility in the health domain݌

from overspraying is taken into account. The overuse of pesticides caused by pesticide poisoning 

can results in higher ݌ு,  probability of a bad outcome, and thus amore risk averse person would 

spray less. Thus the optimal pesticide use would depend on the relative marginal utility of gain  

                                                 
23 S can be any event that can be resulting in lower yield production, such as the probability of getting ineffective Bt 
seeds.   
24 Mathematically, it does not matter whether the perception of pest infestation is caused by the resistance of cotton 
bollworm or the rise of the mirids.  We should find that a more risk averse person sprays more, holding the realized 
pest attack constant.   



18 
 

 

in income, 
ௗ௎ೊ 

ௗ௫೛  , and the marginal (dis)utility from loss in health due to the overspray of pesticide 

ௗ௎ಹ 

ௗ௫೛ .   

For the relationship between loss aversion and optimal pesticide use, it would depend 

on whether  ܪ ,ܪ, ܻ, ܻ are above ܪ଴ , ଴ܻ.  Suppose both ܻ, ܻ are considered a gain, while health 

can be either a gain or a loss, ܻ ൐  ܻ ൐   ଴ܻ  and ܪ < ܪ଴ ൐  then loss aversion in the monetary , ܪ

domain would not affect the optimal amount of pesticide use since ܻ is in the gain domain, i.e. 

above the reference point ଴ܻ. However, in the health domain, the loss aversion amplifies the 

disutility of the bad health outcome ܪ . Hence, one would spray less pesticide to reduce the 

likelihood of the bad health outcome: ݌ு.  Alternatively, if the reference point is the expected 

income so that income can be either a gain or a loss, i.e. ܻ ൐  ଴ܻ ൐ ܻ, then the underspray due to 

loss aversion in the health domain could be offset by loss aversion in the monetary domain. 

Hence, the net effect will again depend on the relative marginal utilities.  

Finally, the probability weighting parameter ߙ  determines how much one overweights 

small probabilities and underweights large probabilities. The smaller the alpha is, the more one 

overweights small probabilities and the further away subjective probability departs from the 

objective linear probability. One might overweight the small probability event, such as severe 

pesticide infestation,25 and thus overspray pesticide. In the health domain, depending on whether 

one would consider the probability of being poisoned by pesticide to be a large (small) 

probability, the farmer could underweight (overweight) it, and thus use pesticide more (less) 

liberally. If the probability of being poisoned is a large probability, then higher ߙ would imply 

more pesticide use; otherwise, the two forces offset and how pesticide use depends on α is 

                                                 
25 By examining the average yield over time, we observe that extremely severe pest infestation takes place on 
average once in 10 years (10%).  
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ambiguous.  In summary, the coefficient on σ, λ, α depends on the reference points in the utility 

curve. The optimal pesticide decision is a tradeoff  between disutility of health loss and utility 

gain from higher income (yield).  

In Section 5.3,  we find that an increase in risk aversion may lead to an increase in 

pesticide use, but an increase in loss aversion lead to a decrease in pesticide use.  The following 

example illustrates such a scenario. . Let us assume that there is linear probability weighting 

(α=1) in Equation 1 and   ܻ ൐  ܻ ൐   ଴ܻ  and ܪ < ܪ଴ ൐  We can then rewrite  .ܪ

 

 

ܷ ൌ ு݌ כ ܪ
ଵିఙ

൅ ு݌ כ ሺെߣሻሺെܪሻଵିఙ ൅ ௬݌ כ ܻ
ଵିఙ

൅ ௬݌ כ ሺܻሻଵିఙ 

 

  

As we have previously discussed,  
ௗ௣ಹ

ௗ௫೛ ൏ 0,
ௗ௣ಹ

ௗ௫೛ ൐ 0,  
ௗ௣೤ 

ௗ௫೛ ൐ 0 and  
ௗ௣೤ 

ௗ௫೛ ൏ 0. The optimal 

amount of pesticide ሺݔ௣כሻ is a function of (ߪ,  increases, it would  ߣ With this setting, when .(ߣ

only increase the disutility from pesticide poisoning, but does not affect any other aspects.  

Therefore, ሺݔ௣כሻ would decrease with an increasing 26.ߣ  

 Suppose ܸሺߪ, ሻߣ ൌ ܷ൫ݔ௣כሺߪ,   ሻ൯,   applying the envelope theorem, we would haveߣ

ௗ௏

ௗఒ
ൌ

డ௎

డ௫೛כ

ӃӃ
൉

డ௫೛כ

డఒ
 ܽ݊݀ 

ௗ௏

ௗఙ
ൌ

డ௎

డ௫೛כ ൉
డ௫೛כ

డఙ
. One may rewrite this as 

డ௫೛כ

డఙ
ൌ  

ௗ௏

ௗఙ
/

డ௎

డ௫೛כ  and  
డ௫೛כ

డఒ
ൌ  

ௗ௏

ௗఒ
/

డ௎

డ௫೛כ  .  

ܸ݀
ߪ݀

ൌ
ܷ݀
ߪ݀

௣ݔ| ൌ כ௣ݔ  ൌ ሻכ௣ݔுሺ݌ ൉ ሺെ1ሻ ൉ ܪ
ଵିఙ

൉ ln൫ܪ൯ ൅ ݌ு ൉ ሺߣሻ൫െܪ൯
ଵିఙ

ln൫െܪ൯ 

ሻכ௣ݔ௒ሺ݌+ ൉ ሺെ1ሻ ൉ ܻ
ଵିఙ

൉ ln൫ܻ൯  +݌௒ כ ሺെ1ሻ ൉  ൫ܻ൯
ଵିఙ

൉ ln൫ܻ൯     

From the derivation in the online appendix, we find that  
డ௎

డ௫೛0 <  כ, Thus if  డ௫೛כ

డఙ
൐  0,

ௗ௏

ௗఙ
൐ 0 .  

                                                 
26 In the online appendix available on the author’s website, we show the derivation of this negative relationship.  

Utility from  
good health 

disutility from  
poor health 

utility from  
good crop yield 

disutility from  
poor  crop yield 
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For example, if  ݁ ൐ ܻ > ܻ ൐ 0 and หܪห ൐  ݁ ൐ ܪ ൐ 0,  
ௗ௏

ௗఙ
൐ 0 , we would have our empirical 

results—an increase in risk aversion can lead to an increase in pesticide use, while an increase in 

loss aversion can lead to a decrease in pesticide use. In the next section, we set up the 

econometric framework to empirically test the relationship between farmers’ risk preferences 

and their pesticide use.  

5. Econometric Framework and Regression Results for Pesticide Use 

5.1 Basic Framework  

We first replicate Huang, et al.’s (2002b) results without the risk preference parameters, 

so we estimate the following equation by ordinary least square (OLS): 

ijvvijvijvijvoijv XBtBty   'exp)(21 ,   (3) 

where i denotes individual,  j denotes plot, and v denotes village; yijv is the amount of pesticides 

(in kg per hectare) sprayed for individual i, on plot j, in village v; Btijv equals one if Bt cotton is 

planted and zero otherwise; (Btexp)ijv is the number of years that farmer i has planted Bt cotton 

interacted with the use of Bt cotton; X’ijv is a vector of individual or plot characteristics, such as 

plot size, age, and years of education; and μv is a village fixed effect.  The main coefficients of 

interest are δ1 and δ2.   δ1 represents the effectiveness of Bt cotton in reducing pesticide use 10 

years after Bt cotton’s commercialization. The significance of δ2 is more complicated. There are 

two opposing factors that can affect this coefficient. First, if the cotton bollworm builds up a 

resistance to Bt toxin, more pesticides would need to be used over time and δ2 should be positive. 

In contrast, if farmers become more aware of the benefits of using Bt cotton as they have more 

experience with planting Bt cotton, δ2 should be negative. 

[Insert Table 4 About Here] 

Column 1 of Table 4 shows the results from the estimation of equation (3). We find that 
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more educated farmers use significantly less pesticides. For every additional year of education a 

farmer has undergone, he reduces pesticide use by 0.73 kg per hectare, which is equivalent to 

2.7% of total pesticide use (among Bt cotton farmers). In other words, farmers who finish 

elementary school use 16% less pesticides than farmers with no education. The coefficient on 

plot size is negative and significant, which could be a sign of economies of scale.  In addition, 

farmers use less pesticide when the price of pesticides is high. The main coefficient of interest (δ-

1 ) indicates that the cultivation of Bt cotton reduces pesticide use dramatically. All else equal, the 

average Bt cotton farmer reduces pesticide use by 19.5 kg per hectare on his Bt cotton plot 

compared with his traditional cotton plot. The coefficient on the interaction term (δ2) is positive, 

but it is not statistically significant from zero, which may simply mean that the two 

aforementioned factors cancel each other out. Overall, we conclude that even a decade after the 

commercialization of Bt cotton, cotton farmers still use significantly less pesticides on their Bt 

cotton plots than on their traditional cotton plots. In all regressions that follow, the standard 

errors are corrected for heteroskedasticity at the individual level.  

Next, we include the elicited measure of risk preferences in the rest of the estimation. 

We can rewrite equation (3) as: 

  ijvvijviiiijvijvoijv XBtBty   'exp)( 54321 ,   (4) 

where  is the coefficient of risk aversion, λ is a measure of loss aversion, and α is a measure of 

nonlinear probability weighting.  A higher  or λ implies greater risk or loss aversion, 

respectively.  α < 1 (α >1) implies the overweighting (underweighting) of small probability 

events. The results of estimating equation (4) are shown in Columns 2 and 3 of Table 4. The 

coefficient on  of 7.244 indicates that if a farmer is more risk averse than the average farmer by 

one standard deviation, he will use 2.39 kg per hectare (9%) more pesticides than the average 
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farmer.  There could be several reasons why we find a positive coefficient on the risk aversion 

parameter.  One such possible reason is that farmers worry about severe bollworm pest attack, 

which is exacerbated by the fact that lower quality Bt cotton seeds are rampant in the seed 

market. Not knowing whether the Bt cotton seed is effective nor how severe the bollworm 

problem will be, the more risk-averse farmers will likely spray greater quantities of pesticides.  

 The coefficient on λ of -0.502 implies that if a farmer is one standard deviation more loss 

averse than the average farmer, he will use 1.96 kg per hectare (7%) less pesticide than the 

average farmer. The negative sign on this coefficient would be consistent with the results from 

the example in Section 4.2, where the outcomes in monetary domains are above the reference 

point ܻ ൐  ܻ ൐   ଴ܻ and ܪ <ܪ଴ ൐  thus the coefficient on loss aversion parameter reflects the ,ܪ

disutility in the health domain. We will further investigate this possibility in Section 5.3. As 

illustrated in Section 4.2, there is no clear prediction for the coefficient on a nonlinear probability 

weighting parameter. We find nonlinear probability weighting to be positive and marginally 

statistically significant.  

Negative and significant coefficients on education in all of the above estimations 

suggest that less educated farmers did not benefit as much from the introduction of Bt cotton. In 

fact, what this education variable captures is the farmers’ knowledge of how to properly use Bt 

cotton and effective pest management. While it may be too late to provide formal schooling to 

adult farmers, one policy intervention to help educate farmers is training sessions. We find the 

coefficient on training to be large with a reduction of nearly one standard deviation of pesticide 

use, and it is marginally insignificant at 11%. The Chinese government has already provided 

such services, but the utilization rate of these services is far below 100%; in our sample, merely 

35% of farmers had ever attended a Bt cotton training session. These training sessions are 
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usually provided by agricultural extension services or seed companies in each village. There is at 

least one farmer in each village who reported attending a training session in each year, so the low 

participation rate is not due to a lack of availability of training sessions at the village level.  

 The findings here suggest that education and agricultural training could help farmers 

reduce their pesticide use. The coefficients on training presented in this section could suffer from 

upward bias due to an omitted variable. For example, it is possible that the more motivated 

farmers are more likely to attend training sessions and could be more knowledgeable about Bt 

cotton even in the absence of receiving training sessions. Unfortunately, we cannot investigate 

further due to the limitation of the dataset.  

5.2 Pest Severity 

One covariate that is missing from the above estimation is pest severity. Lu et al.’s (2010) 

paper published in Science concludes that in an area where the Bt cotton planting proportion is 

high, the number of mirid bugs found in the area is high. Given that almost all of the plots in our 

survey are of Bt cotton, it is safe to assume that the proportion of Bt cotton planting in the 

surveyed area is close to 100%. Moreover, the size of the mirid population has been found to 

fluctuate with rainfall and temperature (Ting, 1963; Wu et al., 2002; Wang et al. 2009).  If we 

take Lu et al.’s finding seriously, the level of mirid infestation for individual i in village v, ܯ௜௩,is 

a function of Bt cotton plant portion in the village, rainfall in the village, temperature in the 

village, and the error term, ߝ௜. Therefore, once we control for village fixed effect in our 

regression specification, we are left with the error terms, ߝ௜. As long as ߝ௜ is orthogonal to our 

measure of risk preference, then the coefficients on risk preference, which is the main focus of 

the paper, would not be biased even if we do not control for ߝ௜.  Alternatively, we also try to 

collect farmers’ perception of pest severity using the following questions:  
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What do you think your potential yield loss will be if you do not spray any 

pesticide for controlling bollworm? ___  (0-100 percent) 

What do you think your potential yield loss will be if you do not spray any 

pesticide for controlling mirids?27 ___  (0-100 percent)  

We can use the answers to these questions as proxies for pest severity with higher values 

indicating a more severe pest problem.28 These measures of pest severity are extremely 

subjective. The results including these measures are presented in Column 4 of Table 4.  Our main 

coefficients of interest—risk preferences—remain robust. Coefficients on pest severity are 

positive and insignificant. One other result worth noting is that the magnitude of the coefficient 

on education is smaller, but it remains positive and significant at the 10% level, which implies 

that education is correlated with farmers’ perceptions of pest severity.29,30 We also try alternative 

specifications including regression with only mirids severity, with bollworms severity only, with 

the mean perceived infestations of bollworms and mirids and regression with an interaction term 

between risk preferences and severity. The coefficients of risk preferences are quite constant.  

The results for these alternative specifications are available as an Online Appendix. Given the 

subjectivities of these pest measures, Column 3 of Table 4 would be our preferred specification 

throughout the paper.    

5.3 Other Hypothesis 

As discussed in Section 2, two of the possible reasons why farmers use more pesticide are: 

                                                 
27 Mirids are reported by Wang et al. (2006) as being the most serious secondary pest to Chinese Bt cotton farmers.  
28 The same methodology is also used by Huang, et al. (2002b). We try to correlate each of the pest severity 
measures with the individual risk preference. We find risk preference cannot predict pest severity, and the correlation 
between them is low.  
29 In a separate regression not reported in the current paper, when we regress the yield loss on levels of education, 
controlling for village fixed effects, the coefficient on education is negative and significant at the 1% level. Thus, 
higher levels of education are associated with lower perceptions of yield loss. 
30 Across columns, the numbers of observations have changed due to missing data. We also try to use one consistent 
sample set from Column 4 with specifications from Columns 1 to 3, and we find little difference in the regressions 
results. This table is available in the Online Appendix.   
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the wide variation in the quality of Bt cotton seeds and the false information from agricultural 

extension agents. We will explore these two hypotheses in this section.  

First, Figure 1 shows the distribution of the cost of Bt cotton seeds from 2 to 200 Yuan 

per kg. Figure 2 is a histogram of the distribution of 930 Bt cotton plots according to the source 

of the seed, cross referenced with the average seed price for each source.31  The cheapest seeds 

are those produced through on-farm propagation, also known as the saved seeds. We asked 

farmers if they knew whether the saved seeds were of lower, the same, or better quality than the 

first generation Bt cotton seeds.  Thirty percent of farmers reported that they believed saved 

seeds to be of the same quality, 7% reported that they did not know, and 63% correctly answered 

that the saved seeds are of inferior quality. The misperception of the quality of Bt cotton seeds 

may explain why a full 25% of seeds for Bt cotton plots are attained through on-farm 

propagation.   

[Insert Figure 1 About Here] 

[Insert Figure 2 About Here] 

To investigate whether the source or the price of Bt cotton seeds is a determinant of 

pesticide use, we restricted the sample to only Bt cotton plots.  While pesticide use could be an 

indicator of Bt cotton seed quality, it is not a good indicator for traditional cotton seed quality. 

The quality of conventional cotton is determined by its yield performance, which is not captured 

in our estimation.   

  [Insert Table 5 About Here] 

The regressor of interest is the seed price, which is presented in Column 1 of Table 5. The 

coefficient on seed price is not statistically different from zero.  The finding here complements 

                                                 
31 For the saved seeds and the seeds exchanged by neighbors, we asked farmers for an estimate of the market value 
of the seeds. 
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Pemsl’s (2006) finding that the more expensive Bt cotton seeds are not significantly more pest 

resistant than the cheaper Bt cotton seeds. In column 2, we include a series of dummy variables 

for the source of the seeds, for which the default source is “others.” None of the source dummies 

are statistically different from zero.  In an alternative regression specification for which the 

results are not presented in the current paper, we include an interaction term between source 

indicators and the price of the seeds, and once again, none of the coefficients are statistically 

different from zero.  This suggests that the quality of Bt seeds may not be dictated by the price 

and the source.  

We then examine farmers’ reporting of source of information. In the survey we ask “how 

do you determine how much pesticide you should spray?” (Rank top 3 in order). The tabulated 

result is presented in Figure 3.  Only 5% of farmers indicate that they rely on information from 

agricultural extension agents as their number 1 source of information when deciding how much 

pesticide to spray.  A dummy variable indicating whether an individual lists information from 

agricultural extension agent as the number 1 source of information in determining pesticide use 

is included in the regression and the results are presented in Table 6.  We find that farmers who 

follow extension agents’ advice reduce their pesticide use by 6.39 kg/ha. We also create another 

dummy for indicating whether agricultural extension agent is in the top 3 sources of information, 

but the coefficient on the dummy is no longer  significant. We find no evidence that getting 

information from extension agent is correlated with higher pesticide use.   

[Insert Figure 3 About Here] 

[Insert Table 6 About Here] 

5.4  Robustness Check  

 One might worry that our results could be driven by a few outliers, so we use natural log of 
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pesticide use as a dependent variable and the results are presented in Column 1 of Table 7. In 

Column 2, we report regression results using an alternative measure of pesticide, total pesticide 

expenditure per hectare.  Other than Table 6, the unit of observation in the regressions has been 

at the plot level. The advantage of using plot level information is that we have detailed 

information about the seed used on each plot. It is common that within the same household, 

seeds used on various plots are from a variety of sources. Therefore, in order to investigate the 

impact of seed (such as sources of the seeds or the Bt characteristics of the seeds), the regression 

would have to be at the plot level.  However, one might suspect, the plot level pesticide 

expenditure could suffer from measurement error as it is more difficult for farmers to estimate 

the pesticide expenditure by plot. As a robustness check, we examine the relationship between 

risk preferences and pesticide use at the household level. We keep only plots with Bt cotton. The 

dependent variable is also pesticide use (kilogram per hectare).  The results are presented in 

Column 3.  Coefficients on risk preferences are slightly smaller compared to Table 4, but they 

remain significant at the 10% level.  

[Insert Table 7 About Here] 

 So far we have imposed a strong function form on the utility function when we impute the 

risk preference parameters.  As a robustness check, we will relax the utility function form and 

simply divide farmers into 18 groups depending on their three switching points in the lottery 

game (see Figure 3). For instance, group 1 includes the farmers who switched from lottery A to 

lottery B before Row 6 in both Series 1 and 2 and switched before Row 4 in Series 3 (thus group 

1 should contain the most risk-seeking and least loss-averse individuals). Group 18 includes 

those farmers who switched from lottery A to lottery B after Row 11 in both Series 1 and 2 and 

switched after Row 4 in Series 3 (thus group 18 should be the most risk averse and loss averse 
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group).  In a regression, instead of using the three risk preference parameters as the specification 

in Table 4 Column 4, we include the group dummies.32  An F-test rejects the null hypothesis that 

these group dummies jointly equal to zero at the 5% level. Even without imposing the utility 

functional form, we know that the TCN field experiment can predict pesticide use. We are 

inclined to believe that the field experiment design captures individual heterogeneity in risk 

preferences and the functional form helps to ease the interpretation.  

[Insert Figure 4 About Here] 

5.5 Loss Aversion  

 Throughout the analysis, the coefficients on loss aversion are always negative and 

significant. Following the discussion in Section 4.2, we know that optimal pesticide decision 

making is a combination of tradeoff between disutility of health loss and utility gain from higher 

income (yield). The negative coefficient suggests that the disutility from health loss dominates in 

the loss aversion domain.33  

 To further examine this claim, we divide farmers into 4 groups based on their coefficient of 

loss aversion, group 1 being the least loss averse (1st quartile) and group 4 being the most loss 

averse (fourth quartile). Regression results including these dummies are reported in Column 1 of 

Table 8.34  The missing dummy is for those who are in the first quartile, the least loss averse 

farmers (lambda<= 0.83).  While the dummies are not statistically significant, the negative 

coefficients on group dummies indicate that all other groups (more loss averse) would spray less 

                                                 
32 Since coefficients on group dummies cannot be interpreted meaningfully, the estimates are not reported for brevity. 
33 There could be two interpretations why health loss dominates over monetary loss. One is that the reference point 
for monetary outcome is set low enough (ܻ ൐  ܻ ൐   ଴ܻሻ, therefore loss aversion never plays a role in the monetary 
domain. The second is that disutility from the income loss is much smaller compared to disutility for health loss, 
U(ܻሻ ൐ ܷ൫ܪ൯. 
34 In this table we exclude those individuals who were just pesticide poisoned in 2006. Our measure of pesticide use 
is also from 2006, so presumably those who were just poisoned in 2006 did not have a chance to adjust their 
pesticide use in 2006 season yet.  
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relative to the least loss averse group.  This is consistent with our hypothesis. With the data 

available, we further examine whether farmers who have experienced severe pesticide poisoning 

would behave differently from those who have not. Presumably, the farmers who have had 

firsthand experience with pesticide poisoning would be more loss averse in the health domain 

and those with more severe pesticide poisoning episodes (as proxied by total medical cost 

incurred due to pesticide poisoning) would be more conscious about loss of health, and thereby 

reduce pesticide use more. In Column 2, we present results with a set of loss aversion quartile 

dummies and the interaction terms between cost of pesticide poisoning and the quartile dummies.  

First, the negative coefficients on the interaction terms imply that those who are more severely 

poisoned would spray less. Second, most of the negative results are driven by those who are in 

the fourth quartile, the most loss averse. We find that for those individuals who are the most loss 

averse (in the fourth quartile), for every 100 Yuan of pesticide poisoning cost, they would reduce 

their pesticide use by 1.826 kg/ Ha (6%), relative to those who are least loss averse.  In summary, 

we provide some suggestive evidence that loss aversion could exist in the health domain.  

[Insert Table 8 About Here]  

6. Conclusion 

We investigate the determinants of pesticide use among Chinese Bt cotton farmers. 

Controlling for village fixed effects, our main findings are that the more risk-averse farmers use 

greater quantities of pesticides, while the more loss-averse farmers use lesser quantities of 

pesticides. The findings of this study have important policy implications. They suggest that 

farmers may not benefit as much from new technology as policy makers and scientists would 

hope. Simply achieving a Bt cotton adoption rate of 100% does not guarantee that farmers will 

know how to fully capitalize on this new technology. In order to ensure that farmers reap all the 
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benefits of modern science, formal education and continuing education, such as training sessions 

provided by the government, are essential. Given that more risk averse farmers adopt Bt cotton 

later and continue to use excessive pesticide even after adopting Bt cotton, the government could 

offer crop insurance, which helps mitigate the potential agricultural production risk.  

Several hypotheses have been put forth by other researchers to explain the cause of 

overuse of pesticide in China, including problems with counterfeit Bt seed, false information 

from extension agents and the rising of secondary pests.  In our analysis, once we control for 

village fixed effects, we find no evidence that these hypotheses can explain the difference in 

pesticide use by farmers within the same villages.  Another interesting result from our paper is 

that we find suggestive evidence that loss aversion could exist in the health domain. While health 

has long been considered a part of the utility function since Grossman’s seminal work (1972), 

very few papers have extended the utility function beyond the expected utility functional form to 

incorporate health. Given the data limitation, it is beyond the scope of this paper to fully test 

whether loss aversion exists in health domain.  It is a topic of interest for future research.  
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Figure 3. Breakdown of Top 3 Sources of Information for Amount of Pesticide Use 
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Figure 4. Divisions of Groups  

 

Note: Note: Group 1 consists of individuals who switch from A to B between Row 1 to 5 in Series 1 and 
Series 2 and switch from A to B between Row 1 to Row 4 in Series 3. 
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Age 49.52
(8.89)

Education 7.10
(2.96)

Female 0.14
(0.35)

Size of Household 4.49
(1.45)

 (Risk Aversion) 0.48
(0.33)

λ (Loss Aversion) 3.47
(3.92)

α (Probability Weighting) 0.69
(0.23)

Total Cotton Sown Area (Ha) 0.54
(0.33)

Total Land Owned (Ha) 0.59
(0.29)

Cotton Yield (Kg/Ha) 3356
(889.8)

Average Year of Bt Cotton Adoption 1998
(1.90)

Household Members Ever Been Poisoned 0.40
By Pesticide (0.49)

Observations 320

Note: Standard deviations are listed in parentheses.  

Table 1. Summary Characteristics 



Bt Cotton Non Bt

Plot Size (Ha) 0.18 0.22
(0.15) (0.09)

Amount of Pesticide Sprayed (Kg/Ha) 26.37* 37.84*
(19.44) (27.34)

Total Pesticide Cost (Yuan/Ha) 784.46 936.60
(528.55) (877.49)

Cotton Yield (Kg/Ha) 3356* 2092.5*
(889.8) (408.8)

Total Cost on Seeds (Yuan/Ha) 552.51* 254.95*
(424.76) (145.54)

Wealtha (100 Yuan) 1.03* 0.53*
(0.92) (0.58)

Total Number of Plots 930 15

Table 2. Summary Characteristics By Seed Type

Note: Standard deviations are listed in parentheses. *statistically 
difference at the 5% level. 
a.  Represented by the total value of durable goods owned per capita 
in 2006.



Series 1 Lottery A Lottery B
1 30% winning 20 Yuan and 70% winning  5 Yuan 10% winning 34 Yuan and 90% winning 2.5 Yuan
2 30% winning 20 Yuan and 70% winning  5 Yuan 10% winning 37.5 Yuan and 90% winning 2.5 Yuan
3 30% winning 20 Yuan and 70% winning  5 Yuan 10% winning 41.5 Yuan and 90% winning 2.5 Yuan
4 30% winning 20 Yuan and 70% winning  5 Yuan 10% winning 46.5 Yuan and 90% winning 2.5 Yuan
5 30% winning 20 Yuan and 70% winning  5 Yuan 10% winning 53 Yuan and 90% winning 2.5 Yuan
6 30% winning 20 Yuan and 70% winning  5 Yuan 10% winning 62.5 Yuan and 90% winning 2.5 Yuan
7 30% winning 20 Yuan and 70% winning  5 Yuan 10% winning 75 Yuan and 90% winning 2.5 Yuan
8 30% winning 20 Yuan and 70% winning  5 Yuan 10% winning 92.5 Yuan and 90% winning 2.5 Yuan
9 30% winning 20 Yuan and 70% winning  5 Yuan 10% winning 110 Yuan and 90% winning 2.5 Yuan
10 30% winning 20 Yuan and 70% winning  5 Yuan 10% winning 150 Yuan and 90% winning 2.5 Yuan
11 30% winning 20 Yuan and 70% winning  5 Yuan 10% winning 200 Yuan and 90% winning 2.5 Yuan
12 30% winning 20 Yuan and 70% winning  5 Yuan 10% winning 300 Yuan and 90% winning 2.5 Yuan
13 30% winning 20 Yuan and 70% winning  5 Yuan 10% winning 500 Yuan and 90% winning 2.5 Yuan
14 30% winning 20 Yuan and 70% winning  5 Yuan 10% winning 850 Yuan and 90% winning 2.5 Yuan
Series 2 Lottery A Lottery B
1 90%  winning 20 Yuan and 10%  winning 15 Yuan 70% winning 27 Yuan and 30% winning 2.5 Yuan
2 90%  winning 20 Yuan and 10%  winning 15 Yuan 70% winning 28 Yuan and 30% winning 2.5 Yuan
3 90%  winning 20 Yuan and 10%  winning 15 Yuan 70% winning 29 Yuan and 30% winning 2.5 Yuan
4 90%  winning 20 Yuan and 10%  winning 15 Yuan 70% winning 30 Yuan and 30% winning 2.5 Yuan
5 90%  winning 20 Yuan and 10%  winning 15 Yuan 70% winning 31 Yuan and 30% winning 2.5 Yuan
6 90%  winning 20 Yuan and 10%  winning 15 Yuan 70% winning 32.5 Yuan and 30% winning 2.5 Yuan
7 90%  winning 20 Yuan and 10%  winning 15 Yuan 70% winning 34 Yuan and 30% winning 2.5 Yuan
8 90%  winning 20 Yuan and 10%  winning 15 Yuan 70% winning 36 Yuan and 30% winning 2.5 Yuan
9 90%  winning 20 Yuan and 10%  winning 15 Yuan 70% winning 38.5 Yuan and 30% winning 2.5 Yuan
10 90%  winning 20 Yuan and 10%  winning 15 Yuan 70% winning 41.5 Yuan and 30% winning 2.5 Yuan
11 90%  winning 20 Yuan and 10%  winning 15 Yuan 70% winning 45 Yuan and 30% winning 2.5 Yuan
12 90%  winning 20 Yuan and 10%  winning 15 Yuan 70% winning 50 Yuan and 30% winning 2.5 Yuan
13 90%  winning 20 Yuan and 10%  winning 15 Yuan 70% winning 55 Yuan and 30% winning 2.5 Yuan
14 90%  winning 20 Yuan and 10%  winning 15 Yuan 70% winning 65 Yuan and 30% winning 2.5 Yuan
Series 3 Lottery A Lottery B
1 50%  winning 12.5 Yuan and 50%  losing 2 Yuan 50% winning 15 Yuan and 50% losing 10 Yuan
2 50%  winning 2 Yuan and 50%  losing 2 Yuan 50% winning 15 Yuan and 50% losing 10 Yuan
3 50%  winning 0.5 Yuan and 50%  losing 2 Yuan 50% winning 15 Yuan and 50% losing 10 Yuan
4 50%  winning 0.5 Yuan and 50%  losing 2 Yuan 50% winning 15 Yuan and 50% losing 8 Yuan
5 50%  winning 0.5 Yuan and 50%  losing 4 Yuan 50% winning 15 Yuan and 50% losing 8 Yuan
6 50%  winning 0.5 Yuan and 50%  losing 4 Yuan 50% winning 15 Yuan and 50% losing 7 Yuan
7 50%  winning 0.5 Yuan and 50%  losing 4 Yuan 50% winning 15 Yuan and 50% losing 5.5 Yuan

Table 3. Payoff Matrix from the Experiment



(1) (2) (3) (4)

σ 7.244*** 7.423*** 7.450***
(value function curvature) (2.453) (2.443) (2.455)
λ -0.502*** -0.530*** -0.525***
(loss aversion) (0.188) (0.189) (0.182)
α 7.048* 6.614* 5.989
(probability weighting) (3.958) (3.912) (3.963)
Age -0.118 -0.105 -0.124 -0.116

(0.139) (0.132) (0.132) (0.135)
Education (Years) -0.726** -0.650* -0.622* -0.542

(0.358) (0.346) (0.345) (0.333)
Plot Size (Ha) -9.441*** -7.497** -8.151** -8.858***

(3.591) (3.089) (3.162) (3.262)
Price of Pesticide -0.377*** -0.389*** -0.388*** -0.371***

(0.061) (0.062) (0.062) (0.063)

Bta -19.51** -21.48** -21.77** -25.92***

(8.135) (8.785) (8.766) (9.516)
Experience with Bt (Years) 0.99 1.084 1.147* 1.093

(0.649) (0.681) (0.682) (0.679)

Trainingb -3.27 -2.803

(2.086) (2.095)

Bollworm Severityc 0.0805

(0.050)

Mirid Severityd 0.0438

(0.035)
Observations 941 930 930 925
R-squared 0.327 0.362 0.367 0.384

Table 4. OLS Regression of Pesticide Use (Kilogram/Hectare)

Note: Robust standard errors are listed in parentheses. * significant at the 10% level; ** significant at 
the 5% level; *** significant at the 1% level. All regressions include village fixed effects. Standard 
errors are clustered at the individual level. The unit of observation for the regression is the plot. In 
particular, we have 5 farmers (11 plots) who did not participate in the experiment. 
a. Bt Cotton equals 1 if Bt cotton was planted in the plot, 0 if non-Bt cotton was planted in the plot.  
b. Training equals 1 if the farmer had ever attended a training, 0 if he/she never attended a training. 
c. It is proxied by an answer to a yield loss perception question: What do you think your potential yield 
loss will be if you do not control for bollworm?  The answer can range from 0 to 100. The higher value 
indicates the worse bollworm severity.
d. It is proxied by an answer to a yield loss perception question: What do you think your potential yield 
loss will be if you do not control for mirids?   The answer can range from 0 to 100. The higher value 
indicates the worse mirid severity.



(1) (2)

σ 7.597*** 7.454***
(value function curvature) (2.501) (2.520)
λ -0.579*** -0.611***
(loss aversion) (0.189) (0.189)
α 5.400 4.967
(probability weighting) (3.915) (3.874)
Age -0.113 -0.103

(0.137) (0.137)
Education (years) -0.357 -0.398

(0.357) (0.356)
Plot Size (Ha) -10.24*** -9.495***

(3.693) (3.629)
Price of Pesticide -0.456*** -0.450***

(0.087) (0.086)
Training -4.676* -4.975*

(2.619) (2.704)
Price of Seed 0.017

(0.028)
Source

         Seed Companies 3.973

(4.860)
        Village Office -0.279

(5.497)
        Exchange w/ Neighbors 0.323

(5.134)
        Saved Seeds 2.044

(4.750)
        Research Inst -4.963

(6.149)
        Seed Vendors -0.738

(4.280)
        Agri. Extension 2.582

(4.843)

Observations 920 920
R-squared 0.352 0.359

Table 5. OLS Regression of Pesticide Use (Kilogram/Hectare)

Note: All non-Bt cotton plots are excluded from the regressions. Robust 
standard errors are listed in parentheses. * significant at 10%; ** 
significant at 5%; *** significant at 1%. All regressions include village 
fixed effects. Standard errors are clustered at the individual level. 



(1) (2)

σ 6.587*** 6.755***
(value function curvature) (2.166) (2.226)
λ -0.440** -0.426*
(loss aversion) (0.204) (0.209)
α 4.497 4.181
(probability weighting) (5.346) (5.417)
Age -0.154 -0.157

(0.168) (0.167)
Education (years) -0.247 -0.266

(0.283) (0.286)
Total Landholing  (Ha) -4.220 -4.230

(2.911) (2.888)
Price of Pesticide -0.461*** -0.460***

(0.086) (0.093)
Training -4.167* -4.602**

(2.020) (1.991)

Extension Agent 1a -6.390*

(3.626)

Extension Agent 3b -1.451

(2.584)
Observations 311 311

R-squared 0.32 0.32 

Table 6. OLS Regression of Pesticide Use (Kilogram/Hectare)

Note: Robust standard errors are listed in parentheses. * significant at 
10%; ** significant at 5%; *** significant at 1%. Unit of observation is 
at the household level.   All traditional cotton plots are excluded when 
compiling total pesticide use and landholding. All regressions include 
village fixed effects. Standard errors are clustered at the village level. 
a.  This variable equals to 1 if the farmer reported having extension 
agent as number 1 source of information when deiciding how much 
pesticide to spray
b. This variable equals to 1 if the farmer reported having extension 
agent as top 3 source of information when deiciding how much 
pesticide to spray



Dependent Variable Ln(Pesticide Use) Pesticide Expenditure 
(Yuan/Ha)

Pesticide Use
(Kg/Ha)

(1) (2) (3)
σ 0.242** 211.7*** 6.793***
(value function curvature) (0.098) (69.360) (2.241)
λ -0.0150* -14.34** -0.414*
(loss aversion) (0.008) (5.686) (0.206)
α 0.142 118.100 4.274
(probability weighting) (0.140) (112.400) (5.363)
Age -0.004 -3.235 -0.155

(0.004) (3.821) (0.168)
Education (years) -0.022 -22.22* -0.262

(0.013) (12.020) (0.288)
Plot Size  (Ha) -0.217* -193.4** -4.213

(0.123) (78.590) (2.866)
Price of Pesticide -0.0169*** -0.458***

(0.002) (0.094)
Experience With Bt (Years) 0.035 27.780

(0.022) (19.320)
Bt -0.659*** -616.1**

(0.216) (263.600)
Training -0.122 -87.540 -4.839**

(0.081) (64.880) (1.898)
Observations 930 930 311
R-squared 0.474 0.319 0.316

Table 7. Robustness Checks for Pesticide Use 

Note: Robust standard errors are listed in parentheses. * significant at 10%; ** significant at 
5%; *** significant at 1%. Unit of observation is at the plot level for Columns 1 and 2, but it is 
at the household level for Column 3. All traditional cotton plots are excluded when compiling 
total pesticide use and landholding for Column 3. In Column 3, the plot size variable is 
replaced by total landholding.  All regressions include village fixed effects. Standard errors are 
clustered at the village level. 



Dependent Variable Ln(Pesticide Use) Pesticide Expenditure 
(Yuan/Ha)

(1) (2)
σ 5.876* 5.947*
(value function curvature) (2.827) (2.861)
α 5.437 4.577
(probability weighting) (5.390) (5.720)
λ (2nd Quartile) -0.610 -0.102
      0.83<λ<2.02 (3.260) (3.130)
λ (3rd Quartile) -1.955 -1.332
     2.02<λ<3.22 (2.764) (3.205)
λ (4th Quartile) -2.247 -1.518
     3.22<λ (2.531) (2.412)

λ (2nd Quartile)*Med Costa -1.575
      (1.680)
λ (3rd Quartile)*Med Cost -1.581

(1.424)
λ (4th Quartile)*Med Cost -1.826***

(0.458)
Observations 303 303
R-squared 0.306 0.313

Table 8. Loss Aversion and Pesticide Use

Note: Robust standard errors are listed in parentheses. * significant at 10%; 
** significant at 5%; *** significant at 1%. Unit of observation is at the 
household level.  We exclude individuals (6 farmers) whose last pesticide 
poisoning experience occurred in 2006 given that they would not have the 
chance to adjust their pesticide use after the most recent pesticide 
poisoning experience.  All regressions control for village fixed effects, age, 
education, landholding &  training. The default group are those who are in 
the first quartile (least loss averse). Standard errors are clustered at the 
village level. 
a. Med cost equals to all costs (both medical and imputed labor cost) 
incurred due to last pesticide poisoning episode in 100 Yuan.



Appendix 1 

Experiment Instruction 

Twenty farmers from a single village gather in the village office at the end of the 

interview day. We also invite the village leaders to be present in the room to witness the game so 

that the farmers will trust us. The village leader first explains to the farmers that we are 

researchers from the Center for Chinese Agricultural Policy (CCAP) is a department in Chinese 

Academy of Science (CAS) to conduct research on farmers who make use of genetically 

modified cotton. We read to the farmers the oral consent form and explain to them that everyone 

who agrees to participate will receive 10 Yuan to start, but they that might have the chance to 

lose all 10 Yuan or they might have the chance to win up to 850 Yuan. The farmers who do not 

wish to participate are given the opportunity to leave the room at this point in time.  

 We distribute an instruction sheet containing a practice question that we review with each 

farmer to verify that all participants understand the meanings of lottery A and lottery B. We then 

prepare two bags, each of a different color, that contain numbered balls. The red bag has 10 balls 

numbered 1 through 10 representing the probabilities mentioned in the survey questions. The 

green bag contains 35 balls, each representing one of the 35 rows in the survey. We explain to the 

participants that after the completion of the answer sheet, they will draw one ball out of the green 

bag first. The number on that ball will determine which line out of the 35 that they have 

answered will be played. They then draw another ball out of the red bag. Depending on the 

lottery they have chosen for that particular line, their payoff will be determined by the second 

numbered ball. We use the sample answer in the instruction sheet to demonstrate how the payoff 

would be determined. We repeat the demonstration five times, asking the participants each time 

how much the payoff would be, in order to ensure that most of them understand how the game 

works. We instruct the participants not to communicate with each other during the game. A few 



 

of participants who cannot read have special assistants who read the instruction sheet and 

questions to them. A cover sheet is attached to the answer sheet; therefore, participants need not 

worry that others will see their answers. This whole process normally takes an hour to an hour 

and an half. 

  



 

 

Appendix 2 

Switching points from Series 1 and Series 2 are used to estimate the curvature of the utility 

function  and the nonlinear probability weighting parameter (α) for each participant. Once we estimate the 

curvature of utility function, we can use switching point from Series 3 to estimate the utility curvature in 

the loss domain.  

For any subject who switches at row N, we can conclude that he prefers lottery A over lottery B at 

row N - 1 and prefers lottery B over lottery A at row N. Using a combination of switching points from 

Series 1 and Series 2, we will have a set of 4 inequalities and we will be able to find the ranges of σ and α 

that satisfy these inequalities.  In the case of “never switch” or “switching at row 1,” we have one 

inequality. We follow TCN’s convention by arbitrarily determine the lower/upper bound of the parameters, 

which is also TCN’s approach.  For example, when a subject switches from lottery A to lottery B at row 7 

for both Series 1 and Series 2, the following inequalities should be satisfied:   

5ଵିఙ ൅ exp ሾെሺെ ln 0.3ሻఈሿሺ20ଵିఙ െ 5ଵିఙሻ ൐ 2.5ଵିఙ ൅ exp ሾെሺെ ln 0.1ሻఈሿሺ62.5ଵିఙ െ 2.5ଵିఙሻ 
5ଵିఙ ൅ exp ሾെሺെ ln 0.3ሻఈሿሺ20ଵିఙ െ 5ଵିఙሻ ൏ 2.5ଵିఙ ൅ exp ሾെሺെ ln 0.1ሻఈሿሺ 75ଵିఙ െ 2.5ଵିఙሻ 
15ଵିఙ ൅ exp ሾെሺെ ln 0.9ሻఈሿሺ20ଵିఙ െ 15ଵିఙሻ ൐ 2.5ଵିఙ ൅ exp ሾെሺെ ln 0.7ሻఈሿሺ32.5ଵିఙ െ 2.5ଵିఙሻ 
15ଵିఙ ൅ exp ሾെሺെ ln 0.9ሻఈሿሺ20ଵିఙ െ 15ଵିఙሻ ൏ 2.5ଵିఙ ൅ exp ሾെሺെ ln 0.7ሻఈሿሺ34ଵିఙ െ 2.5ଵିఙሻ. 
 

Parameters that satisfy the above inequalities are 0.26 < σ < 0.35 and 0.66 < α < 0.74. For all the 

parameters, we use the midpoint of each interval and take it first decimal place as the point estimate. After 

obtaining an estimate of σ, we use switching point from Series 3 to write out inequalities involving λ. We 

use the midpoint of each interval as the point estimate.  More details about estimation method can be 

found in Tanaka et al. (2009).  
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