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Abstract  Automated processing and analysis of video 
recordings of neonatal seizures can generate novel methods 
for extracting quantitative information that is relevant only 
to the seizure [5], [6]. This information can be used to: 1) 
develop automated mechanisms capable of detecting the 
beginning of clinical seizures, 2) refine the characterization 
of repetitive motor behaviors, and 3) facilitate the 
differentiation of certain clinical seizures from other 
abnormal paroxysmal behaviors not due to seizures. The 
development of an automated video analysis system would 
represent a major advance in seizure surveillance and 
offers the possibility for earlier identification of potential 
neurological problems and subsequent intervention.  

 This paper presents a procedure developed to extract 
quantitative information from video recordings of neonatal 
seizures in the form of temporal motion strength signals. 
These signals are obtained by applying nonlinear filtering, 
segmentation, and morphological filtering on the 
differences between adjacent frames. The experiments 
indicate that temporal motion strength signals constitute 
an effective representation of videotaped clinical events 
and can be used for seizure recognition and 
characterization. 

 
 
 This paper summarizes the results of a study that 
aimed at improving the extraction of motion strength 
signals from video recordings of neonatal seizures. In 
principle, motion strength signals quantify motion by 
measuring the area of the frames occupied by moving body 
parts affected by seizures.  

1.  Introduction 
 
 Seizures occur in approximately 2-5/1000 live births, 
depending upon studied populations and methodology [4], 
[9], [12]. In fact, the incidence of seizures in infants 
weighing less than 1500 grams is 57.5/1000 live births 
compared to 3.5/1000 live births for all birthweights [9]. 
Similarly, seizures occurred in approximately 4% of 
premature infants less than 30 weeks conceptional age, 
although some have reported the incidence in this 
population reaching as high as 20% [13]. These studies 
indicate that seizure occurrence represents the most 
frequent clinical sign of central nervous system disorders 
in the newborn [2], [11], [14]. These disturbances in 
cerebral function may result in significant long-term 
adverse sequelae such as neurological handicaps, mental 
retardation, and postnatal epilepsy [1], [4], [7], [10], [14]. 
The prompt identification of clinical seizures when they 
occur in the newborn, the subsequent evaluation of their 
etiology, and the institution of etiology-specific therapy 
may significantly reduce associated morbidity.  

 
2.  Extraction of temporal motion strength 
signals from video 
 
 The extraction of quantitative information from 
videotaped seizures must focus only on the moving parts of 
the infant’s body that are affected by the seizure [5], [6]. 
The extraction from video recordings of visual information 
that is relevant only to the seizure can be accomplished by 
quantifying motion between adjacent frames of the video 
recording of a neonatal seizure. 
 
2.1 Detection of motion  
 
 In this study, motion was detected on a new frame 
sequence obtained by subtracting the current frame from 
the previous frame. The experiments indicated that the 
difference frames contain the moving body parts but they 
are also corrupted by spiky noise, probably due to camera 
jitter and other recording imperfections. The noise appears 
as spurious patches (i.e., spikes) that occupy very small 
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areas in comparison with those of the moving body parts. 
Removing random spiky noise is essential since this kind 
of noise can mislead the clustering algorithm used in the 
next stage for segmentation. Spiky noise was removed in 
this study by applying median filtering, which is very 
effective in removing this type of noise without blurring 
the edges of the objects [3]. 
 
 Figure 1(b) shows the frames resulting from the 
application of a 2-D median filter of size  pixels on 
the difference frames corresponding to the videotaped 
focal clonic seizure shown in Figure 1(a). The difference 
frames corresponding to frames 82, 150, and 190 show the 
infant’s right leg, which is affected by the seizure. In frame 
82, the right leg moves to the bottom and to the left of the 
frame. In frame 150, the right leg moves to the top and to 
the right of the frame. 
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2.2 Segmentation 
 
 Following median filtering, the time sequence formed 
by the difference frames was segmented in order to isolate 
the moving body parts from background noise and other 
irrelevant clusters of pixels. Segmentation was performed 
in the original study by an adaptive version of the c-means 
(or k-means) algorithm, which clustered all pixels of each 
frame from the sequence formed by the difference frames 
into  clusters [5], [6]. The main drawback of such a 
segmentation procedure is that it ignores the spatial 
correlation within each frame since it forms clusters of 
individual pixels. Moreover, the use of scalar clustering 
degrades the resistance of the segmentation procedure to 
noise. The robustness of the procedure developed to extract 
motion strength signals was improved by employing a 
segmentation technique that relies on clustering of vectors 
instead of scalar clustering. More specifically, the c-means 
algorithm was used to form  clusters of vectors 
formed by groups of neighboring pixels. This procedure 
clustered vectors of length 9 that contained the pixels of a 

 window. 
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  The pixels of the difference frames with nonzero 
values belong to a region of the frame occupied by the 
moving body part. Note that the infant’s body and the 
background have different intensity values in the original 
frames. Thus, if an object moves from a certain position in 
the previous frame to a new position in the current frame, 
the intensity differences in the old and new positions of the 
object will have different signs. In the original study, the 
pixels corresponding to the old and new positions were 
segmented together [5], [6]. In the approach described in 
this paper, the pixels corresponding to the old and new 
positions of the moving object formed two different 
segments. This was accomplished by employing the c-

means algorithm to partition the available vectors into 
4c =  clusters. The c-means algorithm was initialized to 

produce a cluster corresponding to pixels of positive 
intensity values of large magnitude, a cluster 
corresponding to pixels of negative intensity values of 
large magnitude, and a cluster containing background 
pixels. The fourth cluster was introduced deliberately in 
order to accommodate pixels that do not belong to the 
background but they are not relevant to the seizure. 
Following cluster formation, the segmentation process was 
completed by assigning to all pixels belonging to the 
cluster of the highest intensities the same intensity value of 
255 (corresponding to white color). The pixels belonging 
to the cluster of the lowest intensities were all assigned the 
same intensity value of 0 (corresponding to black color). 
Finally, the pixels corresponding to the other two clusters 
were all considered background and were assigned the 
same intensity value of 128 (corresponding to gray color). 
 
 Figure 1(c) shows the difference frames corresponding 
to the four frames in Figure 1(a) following segmentation. 
Segmentation eliminated most spurious clusters of pixels 
in frame 190. Segmentation also eliminated the clusters of 
pixels with low absolute intensity values from frame 82 
and 150, which led to a better definition of the moving 
body part. The traces of the infant’s left leg are shown in 
frame 82 and 150 as white and black patches in a gray 
background. It is clear from Figure 1(c) that the two black 
and white segments correspond well with the motion of the 
right leg, which moves along the horizontal direction. 
Moreover, the relative locations of the black and white 
segments reveal the direction of motion. Nevertheless, the 
segmented frames shown in Figure 1(c) contain some 
spurious black and white patches of relatively small sizes. 
These patches are rather isolated and do not correspond to 
the moving body part. These patches can be eliminated, or 
at least reduced, by applying nonlinear binary operators 
developed for mathematical morphology [3], [8]. 
 
2.3 Morphological filtering 
 
 The frames produced by the segmentation process 
outlined above still contained spurious white and black 
patches (i.e., small groups of pixels with high and low 
intensity values relative to the gray background). Such 
patches do not typically belong to body parts affected by 
the seizure and they resemble ‘salt-and-pepper’ noise. The 
reduction of such spurious patches was attempted by 
relying on the OPENING and CLOSING morphological 
operations [3], [8]. The OPENING of an object A by a 
structuring element ,X  denoted as ,A X  is the erosion of 
A by X  followed by a dilation of the result by .X  In 

mathematical terms ( ) ,A X A XX= ⊕  where A X  
and A X⊕  denote the erosion and dilation of the object 



 A  by the structuring element ,X  respectively. OPENING 
smoothes the contour of an object and breaks narrow 
bridges. The CLOSING of an object A  by a structuring 
element ,X  denoted as ,A X•  is the dilation of A  by X  
followed by an erosion of the result by .X  In mathematical 
terms, ( ) .A X A• = ⊕

5×

X X  CLOSING also smoothes the 
contour of an object. However, in contrast with OPENING, 
CLOSING fuses narrow breaks, eliminates small holes, 
and fills gaps in the contour. 
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2.4 Extraction of motion strength signals 
 
 The motion strength signals were obtained by 
measuring the area of the moving body parts. In order to 
improve the robustness of the proposed procedure to noise, 
the extraction of motion strength signal exploited the black 
and white patches produced by the segmentation process 
and refined by morphological filtering. Note that the black 
and white patches represent the areas occupied by the 
moving body part in two successive frames of the 
sequence. Since the black and white patches represent 
motion of the same body part between successive frames, 
their areas are expected to be equal or, at least, sufficiently 
close to each other. In the presence of noise, the area 
occupied by either the black patches or the white patches 
may be abnormally high. In order to reduce the sensitivity 
of the proposed procedure to noise, the area of the moving 
body part was calculated as the minimum of the areas 
occupied by black patches and white patches. 

 
 In this study, each of the segmented frames 
(containing three intensity levels) produced two binary 
frames. One of the binary frames contained only the white 
patches of the segmented frame while the rest of the frame 
(including the black patches) was considered to be 
background. The other binary frame contained only the 
black patches of the segmented frame while the rest of the 
frame (including the white patches) was considered to be 
background. The spurious black and white patches were 
reduced by applying a sequence of morphological 
operators to the binary frames. More specifically, each of 
the two binary frames was operated first by the OPENING 
morphological operator followed by the CLOSING 
morphological operator. Both operators employed the same 
structuring element, which was selected to be a circle 
within a  square window. The OPENING operator 
reduced the size of the big black and white patches 
corresponding to the moving body parts and eliminated the 
black and white patches that were relatively small in size 
and isolated from each other. The CLOSING operator that 
followed restored the size and shape of the black and white 
patches that belong to body parts affected by the seizure. 
The binary frames resulting after the application of these 
two morphological operators were subsequently used to 
restore the segmented frame. This was accomplished by 
copying the black and white patches left intact after the 
morphological operators and considering the rest of the 
frame to be background. 

 
3.  Experimental results 
 
 The two procedures described above were 
evaluated on the video recordings of neonatal seizures and 
other clinical events representing normal and abnormal 
infant behaviors not due to seizures [6]. Figures 2, 3 and 4 
show the temporal motion strength signals extracted from 
video recordings of a myoclonic seizure, a focal clonic 
seizure, and a random infant movement, respectively. The 
value of the motion strength signal ( )A t  at each frame  
of the video recording represents the number of pixels 
from the area of the frame identified by the proposed 
procedure as belonging to the moving body part. The 
locations of the moving body parts during the clinical 
event are shown in representative frames of each video 
recording. The frames of the video recordings shown in 
Figures 2-4 can be used as a reference to verify the 
consistency of the temporal signals with the corresponding 
clinical events. The values of the signals corresponding to 
the frames shown at the top of each figure are indicated by 
dots, while the moving body part in each video recording is 
shown within a box. 

t

 
 Figure 1(d) shows that the frames produced by 
applying morphological filtering on the segmented frames 
shown in Figure 1(c). It is clear that morphological 
filtering eliminated most of the noisy black and white 
patches that were not located at the infant’s moving body 
part. Motion of the infant’s right leg was clearly identified 
in frames 82 and 150. Comparison of Figures 1(c) and 1(d) 
indicates that the size of the black and white patches 
generated by the motion of the infant’s right leg was 
reduced slightly after the application of the OPENING and 
CLOSING morphological operators. The location of the 
black and white patches in Figure 1(d) clearly reveals the 
direction of motion. Finally, morphological filtering 
eliminated most of the noisy black and white patches that 
can be seen in frame 190 of Figure 1(c). 

 
       In the myoclonic seizure shown in Figure 2, the 
infant’s left leg moves to the right of the frame between 
frames 10 and 16 (Figure 2 shows only frame 14). Both 
approaches identified that the left leg moved between 
frames 10 and 16, which is indicated by the sizable spike in 
this time interval shown in Figures 2(c) and 2(d). However, 
the proposed procedure produced a higher spike; this 
indicates that, according to the proposed method, the 
moving body part occupied a larger area of the frames. 
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Figure 2:  Temporal signals produced for a video recording 
of a myoclonic seizure affecting the infant’s left leg: (a) 
selected frames of the sequence, (b) difference frames 
following segmentation and morphological filtering, (c) 
temporal motion strength signal produced by the original 
procedure, and (d) temporal motion strength signal 
produced by the proposed procedure. 

Figure 1: Extraction of temporal motion strength signals: 
(a) selected frames from a video taped focal clonic seizure, 
(b) frames produced by applying median filtering  on the 
difference frames, (c) frames produced by segmenting the 
filtered difference frames and (d) frames produced by 
morphological filtering.  

 
 

According to Figure 2(d), the proposed method identified 
no motion after frame 16. In contrast, the motion strength 
signal produced by the original procedure contains some 
weaker spikes after the big spike between frames 10 and 
16. It was visually verified that the infants left leg remains 
at an almost fixed position after frame 16. Thus, the weak 
spikes shown in Figure 2(c) can be attributed to noise that 
interferes with the extraction of the motion strength signal 
or to some weak motion that is not visually detectable 
when reviewing the video recording frame-by-frame. 
Nevertheless, even if the weak spikes in Figure 2(c) 
represent motion, this motion is too weak to be attributed 
to the myoclonic seizure. Note that the signature 

characteristic of a myoclonic seizure is the rapid motion of 
the extremities affected by the seizure. The temporal 
motion strength signals shown in Figure 2 contain a sharp 
spike that corresponds to strong motion due to the seizure. 
Thus, both signals shown in Figure 2 are consistent with 
the “jerky” movements that are the typical signatures of 
myoclonic seizures. 
 

The motion strength signals produced for the 
focal clonic seizure shown in Figure 3(a) reveal the 
rhythmicity that is the signature characteristic of this 
clinical event. Comparison of Figures 3(c) and 3(d) 
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Figure 3:  Temporal signals produced for a video recording 
of a focal clonic seizure affecting the infant’s right leg: (a) 
selected frames of the sequence, (b) difference frames 
following segmentation and morphological filtering, (c) 
temporal motion strength signal produced by the original 
procedure, and (d) temporal motion strength signal 
produced by the proposed procedure. 

Figure 4:  Temporal signals produced for a video recording 
of a random movement of the infant’s left arm: (a) selected 
frames of the sequence, (b) difference frames following 
segmentation and morphological filtering, (c) temporal 
motion strength signal produced by the original procedure, 
and (d) temporal motion strength signal produced by the 
proposed procedure. 
 
 

indicates that the two procedures employed in the 
experiments identified motion at the same frames of the 
video recording. This becomes clear by the locations of the 
spikes produced by the two procedures. However, there are 
some noteworthy differences between the motion strength 
signals produced by the two procedures. The original 
procedure identified strong motion between frames 100 
and 150. In contrast, the procedure proposed in this paper 
identified only weak motion in this time interval. On the 
other hand, the proposed procedure identified stronger 
motion right before and after frame 100. Compared with 
the original method, similar differences can also be seen 
between frames 0 and 50. Overall, the experiments 
indicated that the temporal signals produced by the 

proposed procedure capture and quantify the differences 
between myoclonic and focal clonic seizures. In the case of 
focal clonic seizures, the temporal motion strength signals 
contain multiple spikes that correspond well with the 
rhythmicity that characterizes the movements of such 
clinical events. 
 

Figure 4 shows the temporal motion strength 
signals produced by the original and the proposed 
procedures for the video recording of a random movement 
of an infant’s left arm. The two procedures produced 
spikes located at almost the same frames of the video 
recording as indicated by comparing Figures 4(c) and 4(d). 



These spikes represent the motion strength of the moving 
body part. As such, they are not as sharp as those produced 
for myoclonic seizures. This is consistent with the motion 
patterns that differentiate random movements from the 
rapid movements caused by myoclonic seizures.  
 
4.  Conclusions 
 

This paper outlined a new procedure proposed for 
extracting temporal motion strength signals from video 
recordings of neonatal seizures. This procedure employs 
nonlinear filtering, segmentation based on vector 
clustering, and morphological filtering. The outcome of the 
experiments indicates that the proposed method is less 
susceptible to noise than the original method. As a result, 
the proposed method typically produces fewer significant 
spikes than the original procedure. On the other hand, it is 
possible that the proposed procedure underestimates the 
area occupied by the moving body part in an attempt to 
eliminate the “salt-and-pepper” noise present in the 
segmented difference frames. 

 
       Further improvement and refinement of the procedure 
developed in this study can produce temporal motion 
strength signals that constitute a consistent and effective 
representation of videotaped clinical events. The trade-off 
between noise reduction and underestimation of motion 
can be resolved by adjusting the free parameters and 
thresholds involved in various stages of the proposed 
procedure. This can be accomplished by testing the 
proposed procedure on a large database of video recordings 
of neonatal seizures and clinical events not due to seizures, 
which is currently in progress. This fine-tuning of the 
proposed procedure is expected to eliminate, or at least to 
reduce, the uncertainty associated with the validity of the 
resulting motion strength signals. In practice, the 
quantification of neonatal seizures can become more 
reliable by using temporal motion strength signals in 
conjunction with temporal motor activity signals, which 
quantify motor activity by relying on different but 
complementary computational procedures [5], [6]. 
 
 The long-term goal of the research described in this 
paper is to integrate the computational procedures outlined 
in this paper into the development of a stand-alone 
automated system that could be used as a supplement in the 
neonatal intensive care unit to: 1) provide 24-hour a day 
noninvasive monitoring of infants at risk for seizures, and 
2) facilitate the analysis and characterization of videotaped 
neonatal seizures by physicians during retrospective 
review. This goal will be accomplished by developing an 
intelligent system capable of recognizing focal clonic and 
myoclonic seizures and distinguishing them from 

videotaped clinical events characterized by increased 
motor activity of the infant’s extremities.  
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