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Abstract 
 
Beveridge and Nelson (1981) proposed that the long-run forecast is a measure of trend 
for time series such as GDP that do not follow a deterministic path in the long run. They 
showed that if the series is stationary in first differences, then the estimated trend is a 
random walk with drift that accounts for growth, and the cycle is stationary. In contrast to 
linear de-trending, the smoother of Hodrick and Prescott (1981/1997), and the 
unobserved components model of Harvey(1985), Watson (1986) and Clark (1987), the 
BN decomposition attributes most variation in GDP to trend shocks while the cycles are 
short and brief. Since each is an estimate of the transitory part of GDP that will die out, it 
seems natural to compare cycle measures by their ability to forecast future growth. The 
results presented here suggest that cycle measures contain little if any information beyond 
the short-term momentum captured by BN. 
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1. Genesis of the Beveridge-Nelson decomposition. 

 
 What does ‘trend’ mean for a time series that is not deterministic in the long run 

but nevertheless is ‘trending’ in the sense that it grows over time? This seemed an 

obvious question in the early 1970s when the modeling strategy of Box and Jenkins 

(1970) lead economists to model GNP and other trending economic time series as ARMA 

models in their first differences. Instead of representing the data as temporary 

fluctuations around a fixed trend, these models imply that the future will diverge from 

any pre-specified path, although the forecasted path is readily computed. It seemed to 

Stephen Beveridge and me that a satisfactory definition of trend for these ‘I(1)’ time 

series would preserve the property of trend that it is the best estimate of where the 

variable will be in the distant future; so why not define trend as simply the long-horizon 

forecast? Rather than being fixed and pre-determined, this trend will shift as each new 

data point reveals new information about the future. That implies that trend is a source of 

stochastic (unpredictable) variation in, say, GDP, and that it is meaningful to think of 

parsing its fluctuations into a part due to trend and a part due to the business cycle.  

Further, we were able to show that the trend is always a random walk with drift and the 

deviation from trend is stationary.  

 The first draft of the paper that finally became Beveridge and Nelson (1981) was 

dated July 1972 and was presented at the Western Economic Association Meetings in 

August. What distinguishes that draft from the final paper is considerably more attention 

to the algebra of the decomposition. There is little evidence in my files that the paper 

generated much interest (a letter from the chief labor economist for the State of Nevada 

stands out), and we put the paper aside until a draft dated August 1977. A hand-written 

letter from Steve Beveridge dated May 18, 1978 says “I sent the paper to Brunner last 

Friday so it is now in the hands of the gods. If it’s accepted I’ll buy you two lunches. I’m 

curious as to why you want five copies of the paper. Are scratch pads hard to come by at 

UW?” Karl Brunner was of course the editor of the Journal of Monetary Economics, and 

I am still waiting for the lunches. 

 



 3

 A letter dated March 15, 1979 from Karl Brunner reports the reaction of a referee: 

‘While he found the paper of some interest…..He also felt the paper might be more 

suitable for an NBER journal.. I would be willing to take another look at it.’ Then on Oct. 

15: ‘I am interested in publishing the paper….’  A three page referee report was enclosed, 

and of greatest concern to us was the request that we reverse the sign of the cycle 

component. What bothered the referee was our result that the cycle component of GDP is 

negative when the economy is growing rapidly. This followed from the empirical fact 

that the growth rate of GDP tends to persist, so during times of unusually rapid growth 

the forecasted level of GDP (adjusted for average growth) is above the current actual 

level, implying the cycle is negative. By redefining ‘cycle’ as ‘forecastable momentum’ 

(trend minus actual instead of the usual actual minus trend) we reversed the sign, satisfied 

the referee, and laid a trap for future readers. A July 1980 letter from Brunner said ‘When 

you have dealt with these relatively minor editorial points…we will plan to publish the 

paper in the March 1981 issue of the JME.’ It is hard to imagine a mere nine month 

publication lag today, in spite of all the new technology. 

 Since the paper was not exactly an instant hit, a reasonable question might be, 

why did we think it was worth plugging away at it for nine years? I don’t know. A 

question I would like to try to answer here is this: How well has the Beveridge-Nelson 

decomposition weathered the test of time? By that I mean, is it a useful method of trend 

cycle decomposition, particularly for U.S. GDP? The BN decomposition also stands as a 

useful statistical result, the fact that any I(1) time series may be expressed as random 

walk plus a stationary component, but that is not my focus here. 

 

2. How should we assess the effectiveness of alternative trend-cycle estimates? 

 What are appropriate criteria for judging the BN and other trend-cycle 

decompositions? Is there a meaningful ranking of them? Or is the choice of method 

simply a matter of taste, picked to match the priors of the user? I wish to argue that the 

objective of decomposition is to separate temporary movements from those that 

permanently shift the level of a time series, most importantly of aggregate output and ask: 

How successful are the BN and competing decompositions in doing that? 
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 If the measured cycle component is temporary then it predicts future growth rates 

of the opposite sign. For example, if the economy is in recession today, we mean that 

output is below trend, and recovery will require future growth at an above-average rate. 

Conversely, if output is above trend we can reasonably expect tepid growth in coming 

quarters. Predictability is the essence of ‘transitory’ variation, as it is for seasonal 

variation – both may be expected to be reversed in future periods. Indeed, the business 

cycle is like a seasonal cycle except that the seasonal frequency is known a priori. 

Predictability of the cycle implies a metric then for measuring the effectiveness of 

alternative decompositions: how well do they predict future growth or future turning 

points in the economy? This idea is not new, and it is central to several articles in the 

references including Cogley (2002), Hodrick and Zhang (2002), Orphanides and van 

Norden (2005), Rotenberg and Woodford (1996), and Wakerly, Scott, and Nason (2006). 

 However, the criterion adopted in much of the literature on business cycles is very 

different from predictability; namely that the objective is to isolate variation at ‘the 

business cycle frequency.’ Filters, basically moving averages of the data, can be designed 

to remove variation at other frequencies and so in principle reveal variation at the 

business cycle frequency. Thus, if recessions occur about every seven years, we would 

want to filter out frequencies outside a range around seven years. Certainly, the zero 

frequency – that of the trend component - is to be excluded, as should be the seasonal 

frequency.  However, the theory of filters applies to stationary time series, and 

application of that theory to non-stationary time series such as GDP is problematic; see 

Cogley and Nason (1995) and Murray (2003). In particular, the fact that the filtered series 

has a spectral peak around the business cycle frequency does not establish that this 

component contains the transitory variation in GDP, or that there is a transitory 

component. 

 And how do we know that the business cycle frequency is seven years? Estimates 

of the frequency seem to derive from the interval between NBER turning points. 

Recessions correspond to periods of two or more quarters of decline in the economy, and 

generally correspond to declines in GDP though many indicators are examined. But 

periods of decline in a non-stationary time series do not establish the existence of a 

transitory component; for example, a random walk with drift will exhibit periods of 
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decline but has no transitory component. More relevant perhaps, the interval between 

turning points will reflect properties of both the stochastic trend and the cycle component. 

Thus, the NBER chronology does not in itself tell us much about the statistical properties 

of the cyclical component of GDP, nor does it even establish the existence of a business 

cycle. Looking outside the US, Cerra and Saxena (2005) find no tendency for output to 

rebound following recessions in a virtually exhaustive sample of economies. 

 In contrast, if there is a cycle and a given trend-cycle decomposition is able to 

capture some of its variation, then a forecast based on that cycle measure will reflect the 

decay of the cycle over time as it reverts to its long run path of zero. An unobserved-

components (UC) representation of the decomposition will even predict how successful it 

will be in forecasting, as a function of the rate of decay of the cycle and the relative 

variance of shocks to trend and cycle and their correlation. In practice that ideal is never 

achieved because we only have estimates of the components, whether those are based on 

a filter or a formal UC model with estimated parameters. Further, success in forecasting 

out-of-sample is not necessarily a property of a valid decomposition – by which I mean a 

representation of the data generating process that replicates its moments. For example, 

the correct decomposition of a random walk correctly assigns zero variation to the cycle 

component, and correctly predicts that future growth cannot be forecasted. The BN 

decomposition does assign some variation to the cycle but we would expect it to have 

little power to forecast GDP growth since trend variation is large and unpredictable if the 

BN decomposition is correct. Thus we are interested too in the consistency of the 

predicted ability to predict growth and the actual ability. 

 However, forecasting success within-sample may be very high even when 

completely meaningless. A retrospective decomposition based on the inference that the 

cycle must have been positive on the eve of NBER peaks is very successful predicting 

within sample but has no implications for the future. Indeed, Nelson and Kang (1984) 

showed that a linear trend line fitted to the realization of a random walk will account for 

much of the variation ex post and produce a highly predictable cycle component within-

sample, though the ex ante predictability of a random walk is zero.  Within-sample 

predictability is not a reliable guide to the validity – or usefulness – of a decomposition 

method.   
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3. GDP Growth in Prospect: The Relative Contribution of Alternative Cycle Measures 

 The question I would like to address now is this: Do alternative measures of the 

cycle component of GDP contain information that has been useful in forecasting GDP 

growth? The forecast comparisons presented here are limited to univariate methods so the 

information set for predicting the growth of GDP is only past GDP. I think it is obvious 

(thought I do not have statistics to back this up) that the most popular method of trend-

cycle decomposition is the filter of Hodrick and Prescott (1981/1997) which seeks to 

balance smoothness of the cycle against variance of the measured cycle. Further analysis 

of the ‘HP filter’ is given by Harvey and Jaeger (1993) and Schlicht (2005). Also highly 

influential have been the UC models of Watson (1986) and Clark (1987) which both 

model the trend as a random walk and the cycle as an AR process; here we use the latter 

which allows the growth rate of the trend to evolve as a random walk as well. Certainly 

many practitioners still ‘detrend’ by fitting a linear trend line to the logs of the data so 

that is an essential benchmark. The influential work of Perron (1989) has kept the linear 

trend model in the running as a description of GDP as long as breaks in level, slope, or 

both are allowed to occur. Thus linear models with all three types of breaks are included 

in the comparison, and the break date is chosen to maximize fit.  

 The data are post-war U.S. GDP 1947.1 through 2005.3 and we compute the 

measured cycle at each quarter, beginning with 1956.4, re-estimating parameters, if any, 

up to the current date, successively through the sample period. Orphanides and van 

Norden (2002) distinguish three measures of the cycle for any given historical quarter: 

one is the estimate that would have been made in real-time using preliminary data, 

another is the ‘final’ estimate made retrospectively with the benefit of all the subsequent 

data in revised form, and a third is the ‘quasi-real-time’ (QRT) forecast made by the 

researcher today using revised data but only the observations up to the historical date. 

Those authors found significant differences between final and real-time estimates, but 

little difference between quasi-real-time and real-time estimates. In other words, data 

revisions are not as important as the distinction between use of past data as opposed to 

future as well as past data. The results presented here use only revised data and we focus 
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on the comparison between one-sided quasi-real-time (QRT) estimates of the cycle and 

two-sided ‘final’ estimates. When a decomposition requires estimation of parameters, 

they are re-estimated at each date before computing the cycle estimate, as is the break-

date when relevant.  

 Table 1 displays summary statistics for the QRT and final cycle estimates. There 

is a sharp distinction between the BN cycle and the other cycle estimates: it is much less 

strongly autocorrelated, it is much smaller in amplitude as measured by standard 

deviation, and the distinction between QRT and final cycle is much less important. The 

first two properties reflect the lack of smoothness priors for the trend; note that the 

smoothest trend – linear – also produces a cycle with the strongest autocorrelation and 

largest standard deviation.  The high correlation between QRT and final BN estimates 

reflects the fact that it is inherently a one-sided estimate of cycle, so future data only 

influences estimation of the ARMA parameters. In this case, the model is AR(1) as 

suggested by lag selection based on SIC, and the AR parameter is very stable over the 

sample period. Future data matters the most for the HP filter and the linear with break-in-

level model where the correlation between QRT and final cycles is only 0.55 for each.  

 Table 2 presents three sets of regressions in which the objective is to predict 

quarterly growth in GDP one quarter ahead using the various measures of the cycle.  The 

first panel reports the least squares coefficients and p-values for BN alone (in this paper 

the BN cycle has the conventional interpretation as the actual minus trend) and then 

successively in combination with QRT cycle estimates using Clark, HP, linear trend, and 

linear with break in level, slope, and both. This exercise is in the spirit of Granger’s 

composite prediction and is intended to suggest the marginal information content of cycle 

estimates. Explanatory power is low, R-square is only .08 for BN alone and none of the 

other cycle estimates are able to raise this number. While the p–value for BN is 

essentially zero, none of the other cycle estimates has a p-value lower (more significant) 

than .31 in the presence of BN, and in that case the sign is wrong. 

 The second exercise looks at the predictive value of each cycle estimate by itself. 

To separate the explanatory power of the level of each cycle from the dynamics of the 

cycle process I included the lagged first difference of the cycle along with the level. To 

motivate this specification, note that the predicted change in the AR(2) cycle process of 
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Clark and Watson may be expressed in terms of the lagged level and the lagged change in 

the cycle. We expect that the sign of the coefficient on the lagged level will be negative, 

indeed for a stationary AR(p) cycle process the coefficient will be the sum of the AR 

coefficients (an amount less than 1) minus 1. More generally, if the cycle does represent a 

deviation from trend, then it will predict changes back toward trend. The results in the 

second panel of Table 2 suggest that only BN and HP have predictive power, however the 

sign is the opposite of what is expected in the case of HP. A positive HP cycle has 

signaled more rapid future growth rather than reversal towards trend. 

 The third panel of Table 2 asks how much difference the forecast comparison 

would be if we gave each methodology the advantage of hindsight in the form of using all 

the historical data to estimate the cycle retrospectively after the fact. These ‘final’ cycle 

estimates are generally highly significant in the regressions and all have the appropriately 

negative sign, though BN remains significant in each composite. The difference between 

R-squared in the first panel and this one is a measure of the value of hindsight for each of 

these methods, and it is by far greatest for HP and next greatest for a linear trend with 

breaks in level and slope.   

 How well do any of the QRT cycle estimates signal NBER turning points? We 

expect that as GDP departs further from trend the probability of a turning point becomes 

more likely. In the first exercise, reported in the top panel of Table 3, the objective is to 

predict if a peak will occur the next quarter, given that an expansion is underway, using 

the duration of the expansion and, successively, each cycle estimate in a binary probit 

model. The table entries are ML p-values and the McFadden R-square.  Duration alone 

has a p-value of only .12 which is consistent with the finding in the literature that 

expansions are not strongly duration-dependent; see Kim and Nelson (1998). BN by itself 

is highly significant and remains so in combination with duration. However none of the 

other cycle estimates is significant either alone or in combination with duration, though 

HP comes closest. The lower panel reports results for predicting a trough, given that a 

recession is underway and is perhaps less realistic simply because the lag in the 

information that the economy is officially in recession is long relative to the length of a 

recession. Duration is a highly significant predictor by itself, consistent with previous 

findings that recessions are duration dependent, and it is significant in combination with 
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each of the QRT cycle estimates. The smallest p-value for any cycle estimate is for HP, 

but it loses its significance in the presence of duration, and none of the other cycle 

estimates have significant predictive ability. 

 

4. Conclusions. 

 This paper presents evidence that the univariate trend-cycle decompositions 

widely used for macro-econometric analysis have little if any value as predictors of 

economic activity in real time. Only the modest momentum in growth, captured by the 

BN cycle estimates, allows for a very modest amount of predictability. Perhaps large and 

seemingly predictable business cycles are only apparent in retrospect, only statistical 

artifacts. If so, much of the variation observed in U.S. GDP is due to permanent shocks 

which shift the level of the trend, itself a stochastic process, and are largely 

unpredictable. 

 Even if traditional business cycles do exist, the results in this and other papers 

cited here clearly show that they are not well measured in real time. This empirical fact 

poses a severe challenge to the conduct of monetary policy which aims to dampen the 

business cycle while giving weight to controlling inflation. Policy makers should pay 

little attention to real time estimates of the business cycle and focus on targeting inflation. 
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    Table 1     
 Descriptive Statistics for Quasi-Real-Time and Final Cycle Estimates
   1956.4 - 2005.3    
         
 Autocorrelation lag 1 Std. Dev. x 100  Correlation 
 QRT Final  QRT Final  QRT,Final  
Beveridge-Nelson 0.29 0.29  0.54 0.45  0.98  
Clark 0.87 0.95  1.38 1.94  0.64  
Hodrick-Prescott 0.89 0.85  1.64 1.57  0.55  
Linear 0.96 0.97  3.34 3.95  0.72  
w/ Break in Level 0.94 0.88  2.61 2.30  0.55  
w/ Break in Slope 0.93 0.94  2.84 2.99  0.59  
w/ Break in Both 0.93 0.89  2.40 2.16  0.67  
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Table 2
Predictive Regressions for Real GDP Growth using Lag of Cycle Estimates 

1956.4 - 2005.3

Least Squares Coefficient with p-value in parentheses.
Quasi-Real-Time Cycle Measures vs. BN.
Beveridge-Nelson -.46 (.00) -.47  (.00) -.37  (.01) -.48  (.00) -.49  (.00) -.48 (.00) -.51 (.00)
Clark -.03  (.50)
Hodrick-Prescott .05  (.31)
Linear -.01  (.47)
w/ Break in Level -.01  (.63)
w/ Break in Slope -.01  (.76)
w/ Break in Both -.03  (.37)

R-squared 0.08 0.08 0.08 0.08 0.08 0.08 0.08

Quasi-Real-Time Cycle Measures in presence of change in cycle.
Beveridge-Nelson -.54 (.00)
Clark -.03 (,56)
Hodrick-Prescott .09 (.02)
Linear -.01 (.71)
w/ Break in Level .01 (.78)
w/ Break in Slope .01 (.73)
w/ Break in Both -.00 (.97)

R-squared 0.08 0.004 0.1 0.09 0.08 0.08 0.06

Final Cycle Estimates vs. BN. 
Beveridge-Nelson -.58 (.00) -.63 (00) -.77 (.00) -.61 (.00) -.65 (00) -.62 (.00) -.68 (.00)
Clark -.09 (.005)
Hodrick-Prescott -.21 (.00)
Linear -.03 (.04)
w/ Break in Level -.10 (.00)
w/ Break in Slope -.05 (.01)
w/ Break in Both -.11 (00)

R-squared 0.08 0.12 0.21 0.10 0.14 0.11 0.15
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Table 3
Probit Models for NBER Turning Points Using 
Lag of Quasi-Real-Time Cycle Estimates and Duration.

1956.4-2005.3
Table Entries Are ML Binary Probit p-values.

Predicting NBER Peak During Expansions. 

Equation: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Duration 0.12 0.11 0.05 0.11 0.16 0.07 0.11 0.05
Beveridge-Nelson 0.02 0.02
Clark 0.96 0.22
Hodrick-Prescott 0.14 0.13
Linear 0.46 0.93
w/ Break in Level 0.98 0.33
w/ Break in Slope 0.85 0.68
w/ Break in Both 0.83 0.21

McFadden R-sq. 0.04 0.10 0.14 0.00 0.06 0.03 0.07 0.01 0.04 0.00 0.05 0.00 0.04 0.00 0.06

Predicting NBER Trough During Recessions.

Duration 0.01 0.02 0.01 0.09 0.03 0.02 0.05 0.01
Beveridge-Nelson 0.09 0.13
Clark 0.36 0.36
Hodrick-Prescott 0.03 0.18
Linear 0.08 0.51
w/ Break in Level 0.19 0.38
w/ Break in Slope 0.06 0.81
w/ Break in Both 0.35 0.13

McFadden R-sq. 0.25 0.12 0.38 0.03 0.28 0.22 0.32 0.10 0.27 0.06 0.28 0.12 0.26 0.03 0.33
 

 

End.  

 


